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ABSTRACT  27 

Atmospheric aerosols contribute some of the greatest uncertainties to estimates of global radiative 28 

forcing, and have significant effects on human health. New particle formation (NPF) is the process 29 

by which new aerosols of sub-2 nm diameter form from gas-phase precursors and contributes 30 

significantly to particle numbers in the atmosphere, accounting for approximately 50% of cloud 31 

condensation nuclei globally. Here, we study summertime NPF in urban Barcelona in NE Spain. 32 

The rate of formation of new particles is seen to increase linearly with sulphuric acid concentration 33 

in a manner similar to systems studied in chamber studies involving sulphuric acid, water and 34 

dimethylamine (DMA), as well as sulphuric acid, water and the oxidation products of pinanediol. 35 

The sulphuric acid dimer:monomer ratio is significantly lower than that seen in experiments 36 

involving sulphuric acid and DMA in chambers, indicating that stabilization of sulphuric acid 37 

clusters by bases is weaker in this dataset than in chambers, and thus another mechanism, likely 38 

involving the plentiful highly oxygenated organic molecules (HOMs) is plausible. The high 39 

concentrations of HOMs arise largely from both alkylbenzene and monoterpene oxidation, with the 40 

former providing greater concentrations of HOMs due to significant local sources. The 41 

concentration of these HOMs shows a dependence on both temperature and precursor VOC 42 

concentration. New particle formation without growth past 10 nm is also observed, and on these 43 

days the highly oxygenated organic compound concentration is significantly lower than on days 44 

with growth, and thus high concentrations of low volatility oxygenated organics appear to be a 45 

necessary condition for the growth of newly formed particles in Barcelona. These results are 46 

consistent with prior observations of new particle formation in both chambers and the real 47 

atmosphere, and these results are likely representative of the urban background of many European 48 

Mediterranean cities. 49 

  50 
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1.  INTRODUCTION 51 

Atmospheric aerosols, defined as liquid or solid droplets suspended in a gas, affect the climate both 52 

directly by scattering and absorbing radiation, and indirectly by acting as cloud condensation nuclei 53 

(CCN) (Penner et al., 2011), providing great uncertainties in estimates of global radiative forcing 54 

(IPCC, 2014). Further, fine ambient aerosols (defined as those with diameter below 2.5 μm) are the 55 

fifth greatest global mortality risk factor, resulting in 103.1 million disability-adjusted life year loss 56 

in 2015 (Cohen et al., 2017). The number concentration of the ultrafine fraction of these (aerosols 57 

with diameter below 0.1 μm, referred to as ultrafine particles or UFP) pose potentially significant 58 

health risks also, due to their high concentration and surface area. The more diffuse, gas-like 59 

behaviour of UFP allows them to penetrate into the deep lung and enter the bloodstream (Miller et 60 

al., 2017). Ultrafine particles occur in the urban environment either as primary emissions (i.e., from 61 

car exhaust (Harrison et al., 2018)) or secondarily as the product of new particle formation (NPF) 62 

(Agudelo-Castañeda et al., 2019; Bousiotis et al., 2019) 63 

 64 

NPF is the formation of aerosol particles from gas-phase precursors. NPF can be considered a two-65 

step process involving initial formation of a cluster of gas molecules at the critical diameter at 66 

around 1.5 nm - the diameter at which a free-energy barrier must be overcome to allow the 67 

spontaneous phase transition from gas to liquid or solid (Zhang et al., 2012), and the subsequent 68 

growth of this droplet to a larger aerosol particle. The first step of this process is dependent upon 69 

the stability and abundance of the clustering molecules. Sulphuric acid, water, and dimethylamine 70 

(DMA), for example, efficiently form particles as the strong hydrogen bonding between the acid 71 

base pair produces near negligible evaporation, much lower than the evaporation rate seen for the 72 

more weakly bound sulphuric acid-ammonia-water system. Nucleation of sulphuric acid, DMA and 73 

water proceeds at, or near to the kinetic limit (Almeida et al., 2013; Kurtén et al., 2008). Once past 74 

this 1.5 nm diameter, condensation and coagulation will drive particle growth. Both the abundance 75 

of condensable gases and their vapour pressures limit condensational growth. Vapour pressures are 76 
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especially important for the initial growth stages, as the Kelvin effect barrier impairs condensation 77 

of more volatile species, with this condition of low vapour pressures becoming less significant as 78 

the diameter of the particle increases (Tröstl et al., 2016). Once sufficiently large (>50 nm), the loss 79 

processes for these particles become inefficient, resulting in a significant atmospheric lifetime. It is 80 

at these diameters the climate forcing effects of these particles become most pronounced. 81 

 82 

NPF processes happen globally, across a diverse range of environments from pristine polar regions, 83 

to polluted urban megacities (Kerminen et al., 2018), and represent a significant source of CCN, 84 

with 10-60% of NPF events shown to produce CCN and enhancement factors to CCN count ranging 85 

from 0.5 – 1.1 (Lee et al., 2019 and references within). Strong NPF events are observed across a 86 

range of urban environments, despite high condensation sinks (Bousiotis et al., 2019; Yu et al., 87 

2016), and can act as a precursor to strong haze events (Guo et al., 2014). Urban NPF occurs despite 88 

extremely high condensation sinks, an effect which has only been partially explained by growing 89 

understanding from recent in-depth studies (Yao et al., 2018). Recent advances in instrumentation 90 

allow for the measurement of particles down to the critical diameter with instruments such as the 91 

particle size magnifier (PSM), and (Neutral) Air Ion Spectrometer (NAIS/AIS) (Lee et al., 2019), 92 

and mass spectral techniques for measuring the abundance and composition of neutral (Jokinen et 93 

al., 2012) and charged (Junninen et al., 2010) clusters. Elucidated mechanisms with these 94 

techniques involve sulphuric acid and ammonia in remote environments (Jokinen et al., 2018; Yan, 95 

2018), monoterpene derived highly oxygenated molecules (HOM) in remote environments (Rose et 96 

al., 2018), iodic acid in coastal environments (Sipilä et al., 2016), and sulphuric acid and DMA in 97 

polluted urban environments (Yao et al., 2018).  98 

 99 

Urban Barcelona sees frequent, strong summer-time NPF events. These events are associated with 100 

high insolation and relatively high ozone when considering the whole year (Brines et al., 2014, 101 

2015). This has been also reported in other urban environments such as Los Angeles, Brisbane, 102 
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Rome and Madrid (Brines et al., 2015). However, when considering mid-summer, maximum ozone 103 

episodes are typically associated with high aerosol load, but not with NPF around the regional 104 

background of Barcelona (Carnerero et al., 2019; Querol et al., 2017). Ground-level observations 105 

report NPF events starting typically at midday, and either occurring in urban Barcelona and the 106 

surrounding regional background simultaneously, or isolated to just urban Barcelona, or just the 107 

regional background (Dall’Osto et al., 2013). Vertical profiles over urban Barcelona reveal that 108 

NPF occurs at higher altitudes, and starts earlier in the day, as at a given altitude these events are 109 

not suppressed by early traffic peaks contributing to particle load (Minguillón et al., 2015). Here, 110 

we examine molecular level evidence for formation of particles at the critical diameter from 111 

sulphuric acid in Barcelona, with possible contribution from strong bases and highly oxygenated 112 

organic molecules (HOMs), as well as factors influencing subsequent particle growth. 113 

 114 

2.  METHODS 115 

2.1  Sampling Site 116 

The Palau Reial site in Barcelona (41°23'15'' N, 2°6'53.64'' E) is representative of the urban 117 

background of Barcelona, located at the Institute of Environmental Assessment and Water Research 118 

(IDAEA-CSIC) in the north-west of the city. Sampling was performed from a container 20 m from 119 

a low traffic road, and 200 m from the nearest main road (Avinguda Diagonal). Data were taken 120 

from 2018/06/28 through 2018/07/18.  121 

 122 

2.2  Chemical Ionisation Atmospheric Pressure Interface Time of Flight Mass 123 

  Spectrometry 124 

The Aerodyne Nitrate Chemical Ionisation Atmospheric Pressure Interface Time of Flight Mass 125 

Spectrometer (CI-APi-ToF) was used to make measurements of neutral oxygenated organic 126 

compounds, organic and inorganic acids, bases, and their molecular clusters at high time resolution 127 

with high resolving power. The ionization system charges molecules by adduct formation, such as 128 
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in the case of organic compounds with two or more hydrogen bond donor groups (Hyttinen et al., 129 

2015), or proton transfer in the case of strong acids like sulphuric acid (Jokinen et al., 2012). 130 

Hydroxyl or hydroperoxyl functionalities are both common hydrogen bond donating groups, with 131 

hydroperoxyl being the more efficient hydrogen bond donor (Møller et al., 2017). This instrument 132 

has been explained in great detail elsewhere (Jokinen et al., 2012; Junninen et al., 2010), but briefly, 133 

the front end consists of a chemical ionisation system where a 10 L min-1 sample flow is drawn in 134 

through the 1 m length 1” OD stainless steel tubing opening. A secondary flow was run parallel and 135 

concentric to this sample flow, rendering the reaction chamber effectively wall-less. A 3 cm3 min-1 136 

flow of a carrier gas (N2) is passed over a reservoir of liquid HNO3, entraining vapour which is 137 

subsequently ionised to NO3
- via an X-ray source. This flow is then guided into the sample flow. 138 

The nitrate ions will then charge molecules either by clustering or proton transfer. The mixed flows 139 

travelling at 10 L min-1 enter the critical orifice at the front end of the instrument at 0.8 L min-1 and 140 

are guided through a series of differentially pumped chambers before reaching the ToF analyser. All 141 

data analysis was carried out in the Tofware package in Igor Pro 7 (Tofwerk AG, Switzerland). 142 

Sensitivity of 3×109
 cm-3 was assumed based upon a prior calibration (Brean et al., 2019) and 143 

comparison with a calculated sulphuric acid proxy (Mikkonen et al., 2011). Due to the high 144 

resolving power of the CI-APi-ToF system (mass resolving power of 3000, and mass accuracy of 20 145 

ppm at 201 m/Q), multiple peaks can be fit at the same unit mass and their molecular formulae 146 

assigned. Beyond 500 m/Q, peak fitting and assignment of compositions becomes problematic as 147 

signal decreases, mass accuracy decreases, and the total number of possible chemical compositions 148 

increases, so peaks above the C20 region have not been assigned (Cubison and Jimenez, 2015), 149 

however, signals past this region tended to be extremely low. As proton transfer mostly happens 150 

with acids, and nearly all HOM molecules will be charged by adduct formation it is possible to infer 151 

the uncharged formula; therefore, all HOMs from here onwards will be listed as their uncharged 152 

form. The CI-APi-ToF inlet was placed approximately 1.5 m a.g.l. CI-APi-ToF data is only 153 

available between the dates 2018/07/06 and 2018/07/17. 154 
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2.2  Particle Size and Number Measurements 155 

Two Scanning Mobility Particle Sizer (SMPS) instruments measured particle size distributions at 5 156 

minute time resolution, one Long Column SMPS (TSI 3080 EC, 3082 Long DMA, 3772 CPC, TSI, 157 

USA) and one NanoSMPS (3082 EC, 3082 Nano DMA, 3776 CPC, TSI, USA) measuring the 158 

ranges 10.9 – 478.3 nm and 4.5 – 65.3 nm respectively. A Particle Size Magnifier (A10, Airmodus, 159 

FN) linked to a CPC (3775, TSI, USA) measured the sub-3 nm size fraction. The PSM was run in 160 

stepping mode, operating at four different saturator flows to vary the lower size cut of particles that 161 

it will grow (defined as the point of 50% efficiency, D50). This was set at 4 flows giving D50 from 162 

1.4 to 2.4 nm. The instrument switched between saturator flows each 2.5 minutes, giving a sub-2.4 163 

nm size distribution every 10 minutes. Aerosol sampling inlets were placed approximately 2 m a.g.l. 164 

 165 

2.3  Other Measurements 166 

Mixing ratios of non-methane VOC with proton affinity greater than H3O
+ were made using the 167 

proton transfer reaction time of flight mass spectrometer (PTR-ToF-MS 8000, Ionicon Analytik 168 

GmbH, Austria). A detailed description of the instrument is provided by Graus et al., (2010) The 169 

sampling set up, operating conditions, and quantification procedures are similar to those described 170 

in Minguillón et al. (2016). Continual monitoring of composition and mass of submicron aerosol 171 

was carried out with an Aerosol Chemical Speciation Monitor (ACSM, Aerodyne, USA) (Ng et al., 172 

2011). Ozone, NO, and NO2 were measured by conventional ultraviolet and chemiluminiscence air 173 

quality instrumentation. Meteorological data were supplied by the Faculty of Physics of University 174 

of Barcelona, from a nearby (200 m from the measurement site) meteorological station located at 175 

the roof of an 8 floor building. 176 

 177 

2.4  Condensation Sink and Particle Growth Rate 178 

The condensation sink (CS) represents the rate at which a vapour phase molecule will collide with 179 

pre-existing particle surface, and was calculated from the size distribution data as follows: 180 
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𝐶𝑆 = 4𝜋𝐷 ∑ 𝛽𝑚,𝑑𝑝
𝑑𝑝𝑁𝑑𝑝𝑑𝑝

 , (1) 181 

 182 

where D is the diffusion coefficient of the diffusing vapour (assumed sulphuric acid), βm is a 183 

transition regime correction (Kulmala et al., 2001), dp is particle diameter, and Ndp is the number of 184 

particles at diameter dp. The formation rate of new particles at size dp is calculated as follows: 185 

𝐽𝑑𝑝
=

𝑑𝑁𝑑𝑝

𝑑𝑡
+  𝐶𝑜𝑎𝑔𝑆𝑑𝑝

 . 𝑁𝑑𝑝
+

𝐺𝑅

∆𝑑𝑝
. 𝑁𝑑𝑝

   (2) 186 

Where the first term on the right-hand side comprises the rate at which particles enter the size dp, 187 

and the latter two terms represent losses from this size by coagulation and growth respectively. See 188 

Kulmala et al. (2001) for more information on calculation of coagulation sinks and formation rates, 189 

and Kulmala et al. (2012) for calculation of growth rates.   190 

 191 

3.  RESULTS AND DISCUSSION 192 

3.1  General Conditions of NPF Events 193 

Summer NPF events in the regional background around Barcelona are associated with high 194 

insolation, relatively low ozone (high compared with the rest of the year), and lower particulate 195 

matter load (Brines et al., 2014; Carnerero et al., 2019). Figure 1 shows an example of a day with no 196 

NPF in panel (a), referred to as “non-event” here, where two traffic-associated peaks in particle 197 

number are seen during rush hours. Midday traffic peaks are also seen on certain days, but these are 198 

easily distinguished from nucleation processes due to the lack of a significant <10 nm mode. Figure 199 

1(b) shows a nucleation day with growth to larger sizes >10 nm, termed “full-event”, showing  the 200 

growth through the course of the day. These fulfil all the criteria of Dal Maso et al. (2005). Figure 201 

1(c) shows a day with nucleation occurring, but no growth past 10 nm. These days are referred to as 202 

“burst-event” days. Here, NPF is seen to occur, but particles fail to grow past the nucleation mode. 203 

Two such events were seen in this data, and both are accompanied by a distinct mode appearing 204 

beforehand at ~20-40 nm. Condensation sinks were not significantly higher than on full event days, 205 

so this failure of particles to grow further cannot be attributed to condensational losses. 206 
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 207 

Figure 2 contains box plots showing condensation sink, temperature and global radiation for all 3 208 

NPF types. Condensation sinks during NPF periods of both types (Figure 1(b) & 1(c)) were not 209 

significantly lower than in non-event periods. Global radiation and temperature were higher for full-210 

event, most significantly for temperature. Figure 3 is as Figure 2 but for sulphuric acid, ammonia 211 

and amines, and HOMs as measured by CI-APi-ToF. Sulphuric acid is elevated during both full-212 

event and burst-event periods. In urban Barcelona, sulphuric acid will primarily arise from 213 

oxidation of SO2 by the OH. radical, with anthropogenic emissions such as shipping emissions from 214 

the port areas being significant sources of SO2 (Henschel et al., 2013). Direct traffic emissions have 215 

been shown to be a significant primary sulphuric acid source (Olin et al., 2020), but our sulphuric 216 

acid data show no traffic peaks. Ammonia and amines show enhancement for full-event periods, but 217 

not burst-event periods. Nucleation rates (at typical tropospheric sulphuric acid concentrations) are 218 

sensitive to amine concentrations in the range of a few pptv, with enhancements to amine mixing 219 

ratios past this point increasing the nucleation rate marginally (Almeida et al., 2013). 220 

Concentrations of DMA and other alkylamines vary from zero to a few pptv in the boundary layer.  221 

 222 

Barcelona has been shown to contain ppbv levels of ammonia (Pandolfi et al., 2012), arising from 223 

both agriculture to the north (Van Damme et al., 2018), and anthropogenic activities such as waste 224 

management and traffic, with waste management being the primary ammonia source. Highest 225 

ammonia mixing ratios are found in the densely populated old city centre (Reche et al., 2015). 226 

Agriculture, waste management, and traffic are also all significant sources of low molecular weight 227 

alkylamines, such as DMA (Ábalos et al., 1999; Cadle and Mulawa, 1980; Hutchinson et al., 1982; 228 

Ge et al., 2011), and are likely the source of amines found in this dataset. Activities such as 229 

composting and food industry are especially strong sources of trimethylamine (TMA) (Ge et al., 230 

2011). A similar tertiary amine, trimethylamine (TEA) has been shown to be highly inefficient at 231 

forming particles with sulphuric acid, likely due to its inability to form strong hydrogen bonded 232 
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pairs (Glasoe et al., 2015), and NO3
- ionization is therefore likely not sensitive to tertiary amines. 233 

As the charging mechanism of amines is similar to the mechanism by which amines form clusters 234 

with sulphuric acid, the sensitivities will be roughly similar to the strength of the bonding within 235 

sulphuric acid clusters, therefore, although significant levels of TMA are expected, they were not 236 

seen in the CI-APi-ToF spectra, nor will they participate efficiently in nucleation. The 237 

quantification of amines seen in the CI-APi-ToF is highly uncertain, with sensitivities likely being 238 

dependent upon the efficiency with which an amine will form a cluster with the nitrate trimer in the 239 

CI-APi-ToF, so no mixing ratios have been calculated from these signals (Simon et al., 2016). All 240 

ammonia and amine signals follow similar trends, indicating similar sources (R2 ranging from 0.34 241 

– 0.89 between ammonia and amines). The relative strength of these signals are shown in Figure S1, 242 

with significantly higher signals attributed to ammonia compared to amines, despite a likely lower 243 

sensitivity (Simon et al., 2016). HOM concentrations were greatly enhanced during full-event 244 

periods, but lower during burst-event periods, implying their necessity for growth. Further, all full 245 

and burst events are associated with southerly and south-westerly air masses. Despite this, 246 

concentrations of iodine and DMS-derived acids such as iodic acid (HIO3) and methanesulphonic 247 

acid (MSA) are low, indicating a small influence of oceanic emissions on particle 248 

nucleation/growth. 249 

 250 

3.2  Mechanisms of New Particle Formation 251 

The correlation between J5 and ion signals for sulphuric acid is plotted in Figure 4. J5 is used here in 252 

place of J1.5 due to better data coverage. A close relationship between NPF rates and sulphuric acid 253 

concentrations (R2 = 0.49) are consistent with observations globally (Lee et al., 2019). This 254 

relationship is not dependent upon condensation sink. These NPF rates have no dependence on 255 

other ions as measured by CI-APi-ToF, including HIO3, MSA, ammonia, amines or HOMs (R2 for 256 

all <0.1). This is not to say that all of these molecules are not involved in the nucleation process, 257 

rather that elevations or reductions to their concentrations during nucleation periods do not have 258 
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significant impact on NPF rates. In the example of alkylamines, their gas phase concentration may 259 

decrease due to clustering with elevated sulphuric acid (and therefore they will not be detectable as 260 

free amines), and losses due to enhanced photochemistry during the periods of highest NPF rate. 261 

Concentrations for these ions are shown in Figure S5. The strength of the relationship between 262 

sulphuric acid and nucleation rate has been quantitatively reproduced in chamber studies involving 263 

the H2SO4-H2O-DMA, and H2SO4-H2O-BioOxOrg system, accurately reproducing tropospheric 264 

observations of nucleation rates (Almeida et al., 2013; Riccobono et al., 2014). A comparison 265 

between our data and results from the CLOUD chamber is presented in Figure 5; included are the 266 

H2SO4-H2O, H2SO4-NH3-H2O (Kirkby et al., 2011), H2SO4-H2O-DMA (Almeida et al., 2013) and 267 

H2SO4-BioOxOrg-H2O systems (Riccobono et al., 2014) – BioOxOrg refers to the oxidation 268 

products of pinanediol (C10H18O2) and OH.. The relationship between sulphuric acid and nucleation 269 

rate is similar to the H2SO4-DMA-H2SO4 system, with extremely high nucleation rates compared to 270 

the other systems. The nucleation rate is also broadly similar also to the system involving 271 

BioOxOrg. No dissimilarity is seen between the data points corresponding to full or burst type 272 

nucleation, indicating similar mechanisms of formation, despite lower HOM concentrations on 273 

these days. No higher-order sulphuric acid clusters, sulphuric acid-base clusters, nor sulphuric acid-274 

HOM clusters were visible in the mass spectral data, likely due to these being below the limit of 275 

detection of the instrument (Jokinen et al., 2012), so cluster identity cannot be directly identified. 276 

Sulfuric acid trimer stabilisation is dependent upon base abundance (Ortega et al 2012), and 277 

conversely, sensitivity of nitrate CI-APi-ToF to sulfuric acid-base clusters is reduced due to the 278 

high base content of such clusters (Jen et al., 2016).  279 

 280 

To further explore the relationship between sulphuric acid clusters and the rate of nucleation, the 281 

sulphuric acid dimer:monomer ratio is plotted in Figure 6. Sulphuric acid dimer roughly represents 282 

the strength of sulphuric acid clustering in the nitrate CI-APi-ToF, as significant fragmentation of 283 

sulphuric acid-base clusters occurs upon charging, with evaporation of water and bases from the 284 
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system (Ortega et al., 2012, 2014). Stronger bases result in more sulphuric acid dimer making it 285 

through the system, and thus this ratio is higher for systems involving bases that form stronger 286 

clusters with sulphuric acid. The dashed line represents the lower limit of sulphuric acid that would 287 

be seen due to ion induced clustering (IIC) in the nitrate chemical ionisation system (Zhao et al., 288 

2010). The sulphuric acid dimer:monomer ratio seen in the CLOUD H2SO4-DMA-H2O system is 289 

plotted, alongside our own data from Barcelona. The ratio from our own data is seen to be much 290 

lower than that for the system purely involving DMA as a ternary stabilising species. Similarly, this 291 

ratio is lower than for reports of H2SO4-DMA-H2O nucleation in Shanghai (Yao et al., 2018), but is 292 

markedly similar to reports in central rural Germany (Kürten et al., 2016). Similar to central 293 

Germany, this ratio increases at lower sulphuric acid concentrations to a ratio more similar to the 294 

H2SO4-DMA-H2O system. A possible explanation for this is that at higher sulphuric acid 295 

concentrations, the concentrations of stronger stabilising bases are insufficient to stabilise all 296 

present sulphuric acid, with the higher end of the sulphuric acid concentrations seen in this data 297 

roughly equivalent to 1 pptv sulphuric acid (3×107 cm-3
 = 1.2 pptv sulphuric acid). We also cannot 298 

account for clustering due to naturally charged sulphuric acid in the atmosphere, but ion 299 

concentrations in urban environments tend to be small due to efficient sink processes (Hirsikko et 300 

al., 2011). Particle formation therefore plausibly operates by mechanisms similar to the H2SO4-301 

DMA-H2O and H2SO4-BioOxOrg-H2O systems which may occur in parallel. 302 

 303 

3.3  HOMs and Growth 304 

Barcelona, as a densely populated urban agglomerate, is characterised by higher NOx than the 305 

remote conditions under which HOMs have primarily been studied (Bianchi et al., 2016, 2017; 306 

Schobesberger et al., 2013; Yan et al., 2016). High insolation will also result in higher HO2
., as well 307 

as higher RO2
. and other radicals. NOx, HO2

. act as peroxy radical terminators, reducing the 308 

likelihood of autoxidation to produce high O:C molecules, and the likelihood of RO2
.-RO2

. 309 

dimerization. The NOx-RO2
. reaction also produces HOMs with nitrate ester functionality (Brean et 310 
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al., 2019; Garmash et al., 2019; Rissanen, 2018), which tend to have higher volatilities, and are less 311 

efficient at participating in early-stage NPF (Ehn et al., 2014; Lehtipalo et al., 2018), likely due to 312 

intramolecular H-bonding (Elm et al., 2017). This, combined with plentiful VOCs with carbon 313 

number <10 results in more volatile HOMs (see Figures S2 and S3) likely classed as LVOC or 314 

SVOC (Bianchi et al., 2019; Tröstl et al., 2016). HOMs of this volatility are mostly incapable of 315 

producing particles in the absence of sulphuric acid by ion-induced mechanisms observed in a 316 

chamber study and the remote environment (Kirkby et al., 2016; Rose et al., 2018). Peaks due to 317 

certain night-time HOMs are seen, largely C10 HOMs attributable to inland air masses (Querol et 318 

al., 2017). Many of these night-time C10 HOMs contain nitrogen functionalities, attributable to 319 

either oxidation by NO3
. radicals or NOx chemistry and were not associated with night-time NPF. 320 

As shown in Figure 3, an elevated HOM concentration appears to be a necessary condition for 321 

particle growth past 10 nm during NPF events. These days are associated with elevated 322 

temperatures, solar radiation, higher ozone, and lower NO:NO2 ratio. HIO3 is also significantly 323 

higher on burst-event days, likely a function of air mass trajectory, as HIO3 would not inhibit 324 

particle growth, condensational growth being a reversible, step-wise kinetic process. A recent study 325 

in a remote environment reports growth rates matching condensation rates without accounting for 326 

aqueous phase chemistry (Mohr et al., 2019). HOM yields are highly dependent upon temperature 327 

(Quéléver et al., 2019; Stolzenburg et al., 2018). Lower temperatures result in slower H-328 

abstractions, which will result in the likelihood of an RO2
. to undergo a different reaction pathway, 329 

such as termination with HO2
. to increase (Praske et al., 2018). This is particularly important if there 330 

is a large energy barrier for the first or second H-abstraction taking place, as this will determine the 331 

number of hydrogen bond donating groups, and therefore whether the NO3
- CI-APi-ToF is sensitive 332 

to a molecule or not. Figure 7(a) shows temperature plotted against the signal of HOMs. The 333 

precursors for these HOMs are presumed to be largely isoprene, alkylbenzenes and monoterpenes. 334 

The mean peak intensities assigned to alkylbenzene derived HOMs are approximately a factor of 335 

two higher than those assigned to isoprene and monoterpene oxidation across this entire campaign. 336 
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In this data these VOCs are, with the exception of isoprene, not largely temperature dependent, with 337 

many of these HOMs forming under negligible or zero insolation, and therefore very low OH. 338 

concentrations. These nighttime HOMs will not be derived from the oxidation of aromatics, 339 

however, as rates of oxidation of alkylbenzenes by O3 and NO3
. are negligible (Molteni et al, 2018). 340 

These nighttime HOMs will therefore mostly be derived from biogenic emissions which undergo 341 

more rapid nocturnal oxidation, and are likely transported inland by the land breeze during night 342 

(Millán, 2014; Querol et al., 2017). 343 

 344 

Operating under the assumption that C5, C7, and C9 HOMs primarily arise from isoprene, toluene 345 

and C3-alkylbenzene oxidation respectively (Molteni et al., 2018; Wang et al., 2017), HOM signals 346 

plotted against parent VOC concentration indicate their dependence upon that VOC. Here, a C7 347 

HOM is thought to follow the formula C7H8-12O5-10N0-2. This has been done in Figure 7(b). HOM 348 

concentration is broadly dependent on VOC concentration. This is most significant for isoprene. 349 

Fragmented monoterpene oxidation products will also contribute to the total number of C9 HOMs, 350 

and similarly, other VOCs can fragment upon oxidation. However, these results indicate that the 351 

limiting factor in HOM production is temperature, and to a lesser degree VOC concentration.   352 

 353 

Figure 8 shows three mass-defect plots for a non-event period, full-event period, and burst-event 354 

period (event days are the same days as shown in Figure 1). Here, oxygenated volatile organic 355 

compounds (OVOC) are defined as species visible in the nitrate CI-APi-ToF that do not classify as 356 

HOM. Here, the detailed criteria provided by Bianchi et al. (2019) cannot be applied to define 357 

HOM, as knowledge as to whether a molecule is a result of autoxidation requires sound knowledge 358 

of the structure of the precursors present. The criteria of both containing 6 oxygen atoms and 5 359 

carbon atoms or greater, and having an O:C ratio >0.6 is applied, as these molecules will all 360 

plausibly fulfil the updated criteria of “HOM”.  The particular non-event day included in Figure 8 361 

was characterised by lower solar radiation and temperatures than average, so lower signals for 362 
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oxygenated species are seen due to weaker photochemistry (i.e., OH. concentration), and slower 363 

autoxidation due to slower H-shift reactions (Frege et al., 2018; Quéléver et al., 2019; Stolzenburg 364 

et al., 2018). The full-event day sees enhancements to smaller OVOCs and HOMs compared to the 365 

non-event day, especially around 150-200 m/Q. Some of the largest peaks in the mass spectra 366 

correspond to formulae seen arising from the OH.
 oxidation of alkylbenzenes (Molteni et al., 2018; 367 

Wang et al., 2017). Larger HOMs see a less significant enhancement to smaller alkylbenzene 368 

derived HOMs. Most significant is the presence of many larger, unidentified HOMs >500 m/Q. 369 

During full-event periods, these peaks are both more numerous, and larger. This area of the mass 370 

spectrum will compromise the largest HOMs, from oxidation of large VOCs or from the RO2
. + 371 

RO2
. dimerization reaction of two smaller RO2

., these will likely have extremely low vapour 372 

pressures and be able to drive early stage particle growth (Mohr et al., 2019; Tröstl et al., 2016). 373 

The burst-event day has significantly lower concentrations of OVOCs and HOMs, and to a lesser 374 

degree, their nitrogen containing counterparts (N-OVOCs and N-HOMs), with significantly fewer 375 

compounds >500 m/Q. The most significant difference between the HOMs on both types of event 376 

days is the C9 and C10 HOMs, consistent with lower concentrations of monoterpenes on burst-event 377 

days.  The sulphur containing acids all have similar peak areas to the full-event day. These 378 

elevations to condensable HOMs on particle formation days with growth consistent with particle 379 

composition data as measured by ACSM, also showing a significant increase to organic mass 380 

concentration in the late evening (around when new particles reach sizes measurable by ACSM) and 381 

night on full-event days. This was not seen on days without nucleation, nor on days with nucleation 382 

but no growth (see Figure S4). 383 

 384 

4.  CONCLUSIONS 385 

We show new particle formation rates in Barcelona are linearly dependent upon the sulphuric acid 386 

concentrations, and this mechanism plausibly proceeds by the formation of clusters involving 387 

sulphuric acid and highly oxygenated organic molecules, with likely involvement of bases. This 388 
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multiplicity of mechanisms has been shown to occur in chamber studies but has not been observed 389 

in the real atmosphere previously. The rate of nucleation relative to sulphuric acid concentration is 390 

similar to observations of H2SO4-DMA-H2O and H2SO4-BioOxOrg-H2O nucleation. Nucleation 391 

rates seem independent of HOM concentrations, implying that these mechanisms may occur in 392 

competition with one another. The HOMs present in this study occur mostly from oxidation of 393 

alkylbenzenes and monoterpenes, with a strong dependence of their concentration on both 394 

temperature and VOC concentration. Concentrations of species associated with coastal and oceanic 395 

sources such as MSA and HIO3 were low, even though NPF was consistently associated with 396 

southerly and south-westerly air masses, indicating that anthropogenic emissions of SO2, (largely 397 

arising from shipping emissions in Barcelona) and aromatic organic compounds are more important 398 

precursors for compounds which intiate new particle formation and growth than oceanic emissions. 399 

High HOM signals are seen to be a necessary condition for new particle growth past 10 nm, and it is 400 

evident that HOM concentrations are dependent upon temperature and VOC precursor 401 

concentration. Specifically large HOMs of extremely low volatility >500 m/Q are absent in the 402 

mass spectra on these days without particle formation, as well as particle formation without growth.  403 

 404 

These results are consistent with extensive chamber and flow tube studies on particle formation 405 

from sulphuric acid, amines and HOMs, and further, nucleation rates relative to sulphuric acid are 406 

similar to many tropospheric observations. Barcelona is representative of many Mediterranean 407 

urban environments, with moderate pollution, influence of shipping emissions, and high insolation, 408 

and thus the present study reveals the complexity of NPF mechanisms in these environments. 409 

 410 
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 431 

FIGURE LEGENDS: 432 

 433 

Figure 1:  Example SMPS contour plots of (a) non-event day, (b) full-event day and (c) burst-434 

event day. 435 

  436 

Figure 2:  Box plots for days of non-event, full-event and burst-event, showing (a) condensation 437 

sink, (b) temperature, and (c) global radiation. 438 

 439 

Figure 3:  Box plots for days of non-event, full-event and burst-event, showing (a) sulphuric acid, 440 

(b) ammonia, C2 and C4 amines, as clustered with the nitrate dimer and trimer, and (c) 441 

summed HOM concentration from C5+. Units for ammonia + amines are normalised 442 

counts, as no calibration was performed. 443 

 444 

Figure 4:  Formation rate (J5) plotted against sulphuric acid monomer concentration, coloured by 445 

condensation sink. Circles represent burst-events, squares represent full events. 446 

 447 

Figure 5:  Formation rate (J1.5) plotted against sulphuric acid monomer concentration for data 448 

collected from Barcelona. Tan circles represent burst-events, purple squares represent 449 

full events. as well as that for the H2SO4-H2O (blue inverted triangles), H2SO4-NH3-450 

H2O (yellow inverted triangles), H2SO4-DMA-H2O (pink triangles), and H2SO4-451 

BioOxOrg-H2O (brown diamonds) systems from the CLOUD chamber (Almeida et al., 452 

2013; Kirkby et al., 2011; Riccobono et al., 2014). 453 

 454 

Figure 6:  Sulphuric acid dimer concentration plotted against monomer concentration, showing 455 

burst-event periods (tan circles), full event periods (purple squares), non-event periods 456 

(green inverted triangles), and the ratio of sulphuric acid dimer:monomer in the 457 

CLOUD chamber for the H2SO4-H2O-DMA system (pink triangles)  (Almeida et al., 458 

2013). Dashed line represents the lower limit of dimer concentration produced by ion 459 

induced clustering in the chemical ionization unit (Zhao et al., 2010). 460 

 461 

Figure 7:  Influencing factors on VOC concentration, showing (A) temperature plotted against C5-462 

10 HOM signal, coloured by global radiation, and (B) VOC concentration plotted against 463 

HOM signal. These are segregated by carbon number/VOC, i.e, C7 HOMs plotted 464 

against toluene, under the assumption that toluene oxidation is the main producer of C7 465 

HOMs. Ellipses show 95% confidence on a multivariate t-distribution. 466 

 467 

Figure 8:  Mass defect plots for (a) non-event, (b) full-event, and (c) burst-event periods, data 468 

taken from 10:00 – 15:00 on the days 12/07/2018, 16/07/2018 and 15/07/2018 469 

respectively. Size corresponds to mass spectral peak area. Ions are coloured according 470 

to identified chemical composition. Blue points correspond to HOMs containing all 471 

organic species with ≥5 carbon atoms and ≥6 oxygen atoms, and an O:C ratio of >0.6.  472 

Purple points correspond to the same but for species containing 1-2 nitrogen atoms. 473 

Species not meeting this HOM criterea were classed generally as OVOCs which are 474 

coloured brown, with the nitrogen containing OVOCs coloured orange. Sulphur acids 475 

(red) include ions HSO4
-, CH3SO3

- and SO5
-, as well as the sulphuric acid dimer. Iodine 476 

acids (green) contains both IO3
- and I- (the latter presumably deprotonated hydrogen 477 

iodide). Unidentified points are left uncoloured.  478 

 479 

  480 
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 904 

 905 

 906 

Figure 1: Example SMPS contour plots of (a) non-event day, (b) full-event day and (c) burst-event 907 

day. 908 

  909 

 910 

Figure 2: Box plots for days of non-event, full-event and burst-event, showing (a) condensation sink, 911 

(b) temperature, and (c) global radiation. 912 
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 914 

Figure 3: Box plots for days of non-event, full-event and burst-event, showing (a) sulphuric acid, (b) 915 

ammonia, C2 and C4 amines, as clustered with the nitrate dimer and trimer, and (c) summed HOM 916 

concentration from C5+. Units for ammonia + amines are normalised counts, as no calibration was 917 

performed. 918 

 919 

 920 

Figure 4: Formation rate (J5) plotted against sulphuric acid monomer concentration, coloured by 921 

condensation sink. Circles represent burst-events, squares represent full events. 922 
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 923 

Figure 5: Formation rate (J1.5) plotted against sulphuric acid monomer concentration for data 924 

collected from Barcelona. Tan circles represent burst-events, purple squares represent full events. as 925 

well as that for the H2SO4-H2O (blue inverted triangles), H2SO4-NH3-H2O (yellow inverted triangles), 926 

H2SO4-DMA-H2O (pink triangles), and H2SO4-BioOxOrg-H2O (brown diamonds) systems from the 927 

CLOUD chamber (Almeida et al., 2013; Kirkby et al., 2011; Riccobono et al., 2014). 928 

 929 

Figure 6: Sulphuric acid dimer concentration plotted against monomer concentration, showing burst-930 

event periods (tan circles), full event periods (purple squares), non-event periods (green inverted 931 

triangles), and the ratio of sulphuric acid dimer:monomer in the CLOUD chamber for the H2SO4-932 

H2O-DMA system (pink triangles)  (Almeida et al., 2013). Dashed line represents the lower limit of 933 
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dimer concentration produced by ion induced clustering in the chemical ionization unit (Zhao et al., 934 

2010). 935 

 936 

Figure 7: Influencing factors on VOC concentration, showing (A) temperature plotted against C5-10 937 

HOM signal, coloured by global radiation, and (B) VOC concentration plotted against HOM signal. 938 

These are segregated by carbon number/VOC, i.e, C7 HOMs plotted against toluene, under the 939 

assumption that toluene oxidation is the main producer of C7 HOMs. Ellipses show 95% confidence 940 

on a multivariate t-distribution. 941 
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 943 

Figure 8: Mass defect plots for (a) non-event, (b) full-event, and (c) burst-event periods, data taken 944 

from 10:00 – 15:00 on the days 12/07/2018, 16/07/2018 and 15/07/2018 respectively. Size 945 

corresponds to mass spectral peak area. Ions are coloured according to identified chemical 946 

composition. Blue points correspond to HOMs containing all organic species with ≥5 carbon atoms 947 

and ≥6 oxygen atoms, and an O:C ratio of >0.6.  Purple points correspond to the same but for species 948 

containing 1-2 nitrogen atoms. Species not meeting this HOM criterea were classed generally as 949 

OVOCs which are coloured brown, with the nitrogen containing OVOCs coloured orange. Sulphur 950 

acids (red) include ions HSO4
-, CH3SO3

- and SO5
-, as well as the sulphuric acid dimer. Iodine acids 951 

(green) contains both IO3
- and I- (the latter presumably deprotonated hydrogen iodide). Unidentified 952 

points are left uncoloured.  953 
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