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Abstract: In recent years, intense haze events in megacities such as Beijing have received significant study. 12 
Although secondary organic aerosol (SOA) has been identified as a major contributor to such events, knowledge 13 
of its sources and formation mechanisms remains uncertain. We investigate this question through the first field 14 
deployment of the extractive electrospray ionisation time-of-flight mass spectrometer (EESI-TOF) in Beijing, 15 
together with an Aerodyne long time-of-flight aerosol mass spectrometer (L-TOF AMS). Measurements were 16 
performed during autumn and winter 2017, capturing the transition from non-heating to heating seasons. Source 17 
apportionment resolved four factors related to primary organic aerosols (traffic, cooking, biomass burning, and 18 
coal combustion), as well as four related to secondary organic aerosol (SOA). Of the SOA factors, two were 19 
related to solid fuel combustion (SFC), one to SOA generated from aqueous chemistry, and one to 20 
mixed/indeterminate sources. The SFC factors were identified from spectral signatures corresponding to aromatic 21 
oxidation products, while the aqueous SOA factor was characterised by signatures of small organic acids and 22 
diacids, and unusually low CO+/CO2

+ fragment ratios measured by the AMS. Solid fuel combustion was the 23 
dominant source of SOA during the heating season. However, a comparably intense haze event was also observed 24 
in the non-heating season, and was dominated by the aqueous SOA factor. During this event, aqueous chemistry 25 
was promoted by the combination of high relative humidity and air masses passing over high NOx regions to the 26 
south and east of Beijing, leading to high particulate nitrate. The resulting high liquid water content was highly 27 
correlated with the concentration of the aqueous SOA factor. These results highlight the strong compositional 28 
variability between different haze events, indicating the need to consider multiple formation pathways and 29 
precursor sources to describe SOA during intense haze events in Beijing.    30 

 31 

1. Introduction 32 

Atmospheric aerosols negatively affect human health (Liu et al., 2017a; Krapf et al., 2017; Beelen et al., 2014; 33 
Laden et al., 2006; Pope et al., 2002), visibility (Chow et al., 2002), and urban air quality (Fenger, 1999; Mayer, 34 
1999) on local and regional scales. Aerosols are also linked to the most important uncertainties related to global 35 
radiation balance and climate change (Myhre et al., 2014; Penner et al., 2011; Forster et al., 2007; Lohmann and 36 
Feichter, 2005). Therefore, understanding of aerosol chemical composition, sources, and evolution is fundamental 37 
to the development of appropriate mitigation policies. Organic aerosol (OA) is a major component of atmospheric 38 
aerosol and contributes significantly to the total aerosol mass (Jimenez et al., 2009). OA sources are typically 39 
classified as either primary organic aerosol (POA), which is directly emitted from sources such as fossil fuel 40 
combustion, industrial emissions, biomass burning and cooking emissions, or secondary organic aerosol (SOA), 41 
which is produced by atmospheric oxidation of volatile organic compounds (VOCs), yielding lower-volatility 42 
products that can subsequently partition to the particle phase. Globally, SOA accounts for approximately 50 % to 43 
90 % of total OA, with the predominant fraction of SOA (90 %) from oxidation of biogenic VOCs and only 10 % 44 
of SOA from anthropogenic VOCs (Jimenez et al., 2009; Hallquist et al., 2009). However, studies have shown 45 
that SOA production and its properties can be affected by the interaction between biogenic and anthropogenic 46 
VOCs. Apart from huge uncertainties in production and properties, SOA can also exert serious health effects, 47 
including protein and DNA damage caused by reactive oxygen species (ROS) induced from SOA (Reuter et al., 48 
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2010; Li et al., 2003; Halliwell and Cross, 1994). Recent studies indicate that the ROS content of SOA is source-1 
dependent, suggesting health risks may likewise be source-dependent, highlighting the importance of OA source 2 
identification and quantification (Daellenbach et al., 2020; Zhou et al., 2018). Previous studies have been 3 
relatively successful in quantitatively linking POA to its sources, However, quantification of SOA sources and/or 4 
formation pathways is much more challenging (Qi et al., 2019; Stefenelli et al., 2019; Xu et al., 2019; Elser et al., 5 
2016; Sun et al., 2016a; Sun et al., 2013), because SOA consists of thousands of multifunctional, oxygenated to a 6 
highly varying degree, and includes high molecular weight species and oligomers, which are difficult to measure 7 
using traditional instrumentation. Therefore, the effects of individual SOA sources on health and climate remain 8 
poorly constrained. 9 
 10 
Fine aerosol pollution is a major public health concern in many megacities, highlighting the need for efficient 11 
mitigation strategies informed by a detailed assessment of POA and SOA sources. Beijing is an area of particular 12 
interest, due to the frequency of extreme haze events in northern China (An et al., 2019) and a rapidly changing 13 
pollution landscape in response to the “Atmospheric Pollution Prevention and Control Action Plan” implemented 14 
in 2013 by the Chinese government. This initiative targeted selected anthropogenic emissions sources, reducing 15 
annual mean PM2.5 concentration by ~30% between 2013 and 2017 (Xinhuanet, 2018), although annual 16 
concentrations remain much higher than both national air quality standards and WHO guidelines. As a result, 17 
numerous studies have investigated the composition and sources of PM2.5 in Beijing (Duan et al., 2020; Duan et 18 
al., 2019; Xu et al., 2019; Zhao et al., 2019; Äijälä et al., 2017; Elser et al., 2016; Hu et al., 2016; Sun et al., 2016a; 19 
Huang et al., 2014; Zhang et al., 2014; Sun et al., 2013), with most online source apportionment studies utilising 20 
aerosol mass spectrometers (AMS). These studies have successfully identified POA sources, with dominant winter 21 
sources including coal combustion (10 to 30%), biomass burning (9 to 18%), traffic (9 to 18%), and cooking (12 22 
to 20%). In contrast, although SOA typically comprises 35 to 70% of Beijing OA, far less is known about its 23 
sources and formation processes. In summer, Bryant et al. (2020) found the isoprene-derived SOA is strongly 24 
controlled by anthropogenic NOx and sulphate aerosols via offline-filter analysis. Wang et al. (2019) discussed 25 
the factors that influence the formation of secondary nitro-aromatic compounds under high NOx and aromatic 26 
precursor concentrations. Modeling studies also established links between atmospheric oxidising capacity and 27 
SOA formation (Feng et al., 2019), and suggested an influence of heterogeneous reactions with HONO and 28 
primary residential emissions in SOA formation in winter (Xing et al., 2019). However, apportionment of SOA 29 
to specific sources has not yet been achieved, with online source apportionment studies (using AMS) reporting 30 
either a single SOA factor (denoted oxygenated organic aerosol, OOA), or two factors distinguished by the extent 31 
of oxygenation (less oxygenated OOA, LO-OOA, and more oxygenated OOA, MO-OOA) (Xu et al., 2019; Elser 32 
et al., 2016; Sun et al., 2016a; Sun et al., 2013). 33 

Limitations in SOA source apportionment are tied directly to limitations of the measuring instruments. For the 34 
Aerodyne aerosol mass spectrometer (AMS), a trade-off exists between quantification and time resolution vs. 35 
chemical resolution. Quantification and time resolution are facilitated by high temperature vaporisation, which 36 
induces significant thermal decomposition and ionisation-induced fragmentation (DeCarlo et al., 2006). This 37 
decreases chemical resolution, particularly for the multifunctional and highly oxygenated molecules of which 38 
SOA is comprised (e.g., multifunctional acids, peroxides, organonitrates, organosulphates, oligomers), thereby 39 
hindering SOA source apportionment. To avoid thermal decomposition, the CHemical Analysis of AeRosol 40 
ONline proton-transfer-reaction mass spectrometer (CHARON PTR-MS) uses a lower temperature vaporisation 41 
scheme, but the proton transfer reaction ionisation scheme is sufficiently energetic to cause extensive 42 
fragmentation of typical SOA molecules (Muller et al., 2017; Eichler et al., 2015). To reduce ionisation-induced 43 
fragmentation, several semi-continuous measurement techniques have also been developed, e.g., Thermal 44 
Desorption Aerosol GC/MS-FID (TAG) by Williams et al. (2006), and Filter Inlet for Gases and AEROsols 45 
chemical ionisation time-of-flight mass spectrometer (FIGAERO-CIMS) by Lopez-Hilfiker et al. (2014). 46 
Although these instruments have lower thermal decomposition and better chemical resolution, like offline filter 47 
sampling they are subject to reaction/vaporisation processes on the collection substrate and decreased time 48 
resolution. Alternatively, offline filter analysis has some advantages, including 1) the possibility to apply a wide 49 
variety of analytical techniques, which can maximise the chemical information retrieved for the analysed fraction; 50 
and 2) low cost and maintenance requirements for filter sampling, which in turn facilitates 3) practicality of 51 
measurements with wide spatial and temporal coverage. However, it also has some drawbacks, including 1) low 52 
time resolution incapable of capturing characteristic timescales of certain OA sources and/or ageing and formation 53 
processes, 2) artefacts due to adsorption, evaporation, and chemical reactions during sample collection, storage, 54 
and/or transfer (Ge et al., 2012; Huang et al., 2010; Hildebrandt et al., 2010; Hallquist et al., 2009), and 3) the 55 
analysable OA faction may vary significantly between different techniques. 56 
 57 
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To better investigate SOA sources and/or formation processes, an instrument that can resolve aerosol chemical 1 
composition was recently developed at the Paul Scherrer Institute (PSI). The extractive electrospray ionisation 2 
time-of-flight mass spectrometer (EESI-TOF) utilises a soft ionisation technique with minimal thermal energy 3 
transfer to the analyte molecules. This yields online, near-molecular-level measurements (i.e., molecular formulae) 4 
of organic aerosol composition with high time resolution (seconds) without thermal decomposition or ionisation-5 
induced fragmentation (Lopez-Hilfiker et al., 2019). Operating principles are discussed in detail in Sect. 2.2.1. 6 
Two recent source apportionment studies in Zurich using an EESI-TOF, together with an AMS, successfully 7 
resolved several SOA factors and quantified the processes governing SOA concentrations for summer and winter 8 
(Qi et al., 2019; Stefenelli et al., 2019). These studies confirm that EESI-TOF and AMS are highly complementary, 9 
with the AMS providing robust quantification but limited chemical resolution, and the EESI-TOF providing a 10 
linear but hard-to-quantify response with high chemical resolution. The combined measurements, therefore, have 11 
the potential to provide quantitative, real-time measurements of organic aerosol composition with high chemical 12 
resolution. 13 

Here we present AMS and EESI-TOF measurements in Beijing from late September to mid-December 2017. This 14 
campaign captures distinct characteristics of the non-heating season and heating season, which begins on 15 15 
November. An integrated source apportionment analysis of AMS and EESI-TOF data is performed to characterise 16 
the sources and physicochemical processes governing SOA composition. 17 

 18 

2. Methodologies 19 
2.1 Measurement campaign 20 

Beijing is the capital city of China PR and one of the most populated cities in the world, with more than 20 million 21 
inhabitants. It is located at the northwestern end of the North China Plain and bordered by the Yan Mountains 22 
from the southwest-northwest-north. Measurements were conducted at the National Centre for Nanoscience and 23 
Technology in Beijing (40.00º N, 116.38º E) and the measurement site is located on the roof of the South Building 24 
of the National Centre for Nanoscience and Technology (~20 m above ground level) mostly surrounded by smaller 25 
buildings. The exception is an 18-floor building approximately 30 m to the north, which may interfere with and 26 
even block the wind from this direction. The northern part of the fourth ring highway is situated about 200 m 27 
south of the site. However, buildings between the highway and the site reduce the influence from local highway 28 
traffic. This location is not affected by major emissions from industries. 29 

The measurements took place from late September to mid-December, 2017, conducted by an extractive 30 
electrospray ionisation long-time-of-flight mass spectrometer (EESI L-TOF MS) and a long-time-of-flight aerosol 31 
mass spectrometer (L-TOF AMS). A scanning mobility particle sizer (SMPS), consisting of a model 3080 DMA 32 
and model 3022 CPC (TSI, Inc., Shoreview, MN, USA), an aethalometer (model AE33, Magee Scientific, 33 
Ljubljana, Slovenia) and an Xact 625i Ambient Metals Monitor (Cooper Environmental Services LLC, Tigard, 34 
Oregon, USA) were additionally deployed at the site to measure the particle size distribution from 15.7 to 850.5 35 
nm, the equivalent black carbon (eBC) concentration and the mass of 35 different elements in PM10 and PM2.5, 36 
respectively (Rai et al., 2021). Ambient air was sampled through a PM2.5 cyclone (∼ 50 cm above the roof of the 37 
measurement site building) at a flow rate of 5 L min-1 to remove coarse particles. The air passed through a stainless 38 
steel (∼ 6 mm outer diameter and ~ 4 mm inner diameter) tube into the EESI L-TOF MS, L-TOF AMS, and SMPS, 39 
installed on the same line and in close proximity. Here we focus on OA measurements from late October to mid-40 
December 2017, during which period both the AMS and EESI-TOF were operational. 41 

2.2 Instrumentation 42 
2.2.1 Extractive electrospray ionisation long time-of-flight mass spectrometer (EESI-TOF) 43 

The EESI-TOF provides online, highly time-resolved measurements of the organic aerosol molecular ions without 44 
thermal decomposition or ionisation-induced fragmentation. A detailed description is provided elsewhere (Lopez-45 
Hilfiker et al., 2019). The system used in this campaign consists of a recently developed EESI source integrated 46 
with a commercial long-time-of-flight (L-TOF) mass spectrometer (Tofwerk AG, Thun, Switzerland), which in 47 
this campaign achieved mass resolution of ~8000 Th Th-1 at mass to charge ratios m/z higher than 170. The EESI-48 
TOF continuously sampled at ~0.8 L min-1, alternating between direct ambient sampling (15 min) and sampling 49 
through a particle filter (5 min) to obtain a measurement of the instrument background. The ambient spectrum 50 
(Mtotal) minus the average of the immediately adjacent background spectra (before and after) (Mfilter) yields a 51 
difference spectrum, which is taken as the ambient aerosol composition (Mdiff). In both modes, the sampled air 52 
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passes through a multi-channel extruded carbon denuder (with diameter of 4 mm and length of 3 to 4 cm) 1 
positioned at 9 cm away from the inlet capillary (see Text S1) which eliminates negative artefacts from semi-2 
volatile species desorbing from the particle filter and positive artefacts when the particle filter acts as a sink of 3 
semi-volatile species. The denuder also improves detection limits by reducing the gas-phase background. After 4 
sampling for 24 hrs, the denuder was replaced, and regenerated for 24 hrs in an oven at ~200 °C. After the denuder, 5 
particles intersect a spray of charged droplets generated by a conventional electrospray probe and the soluble 6 
fraction is extracted into the solvent. The droplets then pass through a heated stainless-steel capillary (~250 ◦C), 7 
wherein the electrospray solvent evaporates and ions are ejected into the mass spectrometer. Due to the short 8 
residence time (~1 ms) in the capillary, the effective temperature experienced by the droplets is much lower than 9 
250 ◦C and no thermal decomposition is observed. Finally, the ions are analysed by a portable high resolution 10 
long-time-of-flight mass spectrometer with an atmospheric pressure interface (Junninen et al., 2010). In this 11 
campaign, the electrospray consisted of a 1:1 water/acetonitrile mixture doped with 100 ppm NaI, and the mass 12 
spectrometer was configured to detect positive ions. Ions are detected in the form of [M]Na+ (where M is the 13 
analyte) and other ionisation pathways are mostly suppressed, yielding a linear response to mass (without 14 
significant matrix effects) and simplifying spectral interpretation (Lopez-Hilfiker et al., 2019). 15 

The high pollution levels experienced during this campaign presented several operational and analytical 16 
challenges for the EESI-TOF, specifically: (1) denuder breakthrough, which increased background signal, led to 17 
the detection of spurious signals in the particle phase, and increased the time required to achieve a stable signal 18 
following a filter switch between Mtotal and Mfilter; (2) prevalence of large particles during haze events; and (3) 19 
increase in the required frequency of cleaning (unclogging) and realigning the electrospray capillary. These issues 20 
and corresponding solutions are discussed in detail in the supplement, and briefly summarised here:  21 

(1) increased background signals induced by denuder breakthrough compromised high-resolution peak 22 
fitting of the spectral region containing particle-phase signals in Tofware (Tofwerk AG, Thun, 23 
Switzerland). Therefore, a custom peak fitting algorithm (outside of Tofware) was used, as described in 24 
the supplement (see Text S2, Fig. S5 and Fig. S6). Further, denuder breakthrough made it non-trivial to 25 
determine whether ions with significantly non-zero difference signal (Mdiff) derive from the particle phase, 26 
gas phase, or desorption from dirtier-than-normal walls (in addition to the standard challenge of 27 
background ions with high signal from minor contaminants in the working solution). As only particle-28 
phase ions are desired for further analysis, three criteria were applied for their selection, namely 1) the 29 
ratio of signal to uncertainties, 2) ratio of signal to background and 3) estimated saturation vapour mass 30 
concentration (C0) (see Text S3). In addition, the time required to achieve a stable signal following a 31 
filter switch between Mtotal and Mfilter was longer than normal, and therefore only the stabilised part of the 32 
time series was used for further analysis. Note that compared to normal operation, denuder breakthrough 33 
and high background signals significantly increase uncertainties of EESI-TOF data, which poses great 34 
challenges in source apportionment and thus motivates the source apportionment strategy in Sect 2.3. 35 
Further, the selection of particle-phase ions using saturation vapour mass concentration introduces a bias 36 
against less oxygenated and lower molecular weight species, as well as small organic acids (e.g., small 37 
multifunctional acids).  38 

(2) prevalence of large particles during haze events was observed. To prevent massive sampling losses 39 
of large particles, the denuder was pulled back and located at 9 cm away from the inlet capillary (see 40 
Text S1). 41 

 (3) due to high pollution levels, the clogging of capillary was required more frequently, therefore, the 42 
frequency of cleaning (unclogging) and realigning the electrospray capillary increased, which resulted in 43 
changes in EESI-TOF sensitivity that uniformly affect all measured ions. Therefore, a normalisation of 44 
time-dependent EESI-TOF sensitivity was implemented based on a comparison of [NaNO3]Na+ 45 
measured by the EESI-TOF with nitrate measured by the AMS (see Text S4).  46 

The EESI-TOF achieved ~ 90 % data coverage during the sampling period and all ions were detected as adducts 47 
with Na+. Before high-resolution peak fitting, data were averaged to 2 min. Then the custom peak fitting algorithm 48 
(Text S2) was implemented, resulting in 2824 identified ions in total ranging from m/z 64 to m/z 400. As discussed 49 
above, denuder breakthrough yielded stabilisation times from several seconds to several minutes, depending on 50 
the ion. Therefore, only the stabilised part of the averaged time series was used for further analysis, corresponding 51 
to the last 4 min in the 15 min period of ambient sampling, and the last 2 min in the 5 min filter sampling period, 52 
while the remaining time is classified as a transitional period and discarded from further analysis. Adjacent periods 53 
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of filter sampling were linearly interpolated to obtain an estimated Mfilter corresponding to each Mtotal; the 1 
difference of Mtotal minus the interpolated Mfilter yields the Mdiff reported here. To facilitate comparison with bulk 2 
mass measurements, EESI-TOF signals were converted from counts per second (cps) to the mass flux of ions to 3 
the microchannel plate detector (ag s-1), as follows: 4 

MW MW 1  5 

where  and Ix are respectively the mass flux of ions in attograms per second and the ion flux (counts per second, 6 
cps) reaching the detector for a given ion of identity  . MW  and MW  represent the molecular weight of the 7 
ion and the charge carrier (e.g., Na+), respectively (Lopez-Hilfiker et al., 2019; Qi et al., 2019; Stefenelli et al., 8 
2019). This measured mass flux can in principle be converted to ambient concentration by the instrument flow 9 
rate, EESI collection efficiency (the probability that the analyte-laden droplet enters the inlet capillary), EESI 10 
extraction efficiency (the probability that a molecule dissolves in the spray), ionisation efficiency (the probability 11 
that an ion forms and survives declustering forces induced by evaporation and electric fields), and ion transmission 12 
efficiency (the probability that a generated ion is transmitted to the detector). However, since several of these 13 
parameters are compound-dependent and remain uncharacterised, mass concentration cannot be determined 14 
(Lopez-Hilfiker et al., 2019).  15 

After application of the criteria in Text S3, 401 ions are retained for further analysis. As will be discussed in Sect. 16 
2.3, source apportionment was conducted on the EESI-TOF data by positive matrix factorisation (PMF), which 17 
requires as inputs the mass spectral time series and corresponding uncertainties. The input data matrix ,  18 
is calculated according to Eq. (2):   19 

. 	M , , , 2  20 

where ,  denotes the signal of spectra measured in total sampling period, , ,  denotes 21 

signal of estimated background spectra after interpolation of the filter sampling period, and ,  denotes 22 
signal of the difference spectra between total sampling period and estimated background and consists of 401 (ions) 23 
× 1239 (time points). The error matrix corresponding to  is estimated by adding in quadrature the uncertainty 24 

of total sampling measurement σ	 , 	and filter sampling measurement σ ,
	 ,  , which are in turn 25 

based on ion counting statistics and detector variability (Allan et al., 2003b), shown in Eq. (3):  26 

σ , σ , σ , , 	 3  27 

 28 

2.2.2 Long time-of-flight aerosol mass spectrometer (L-TOF AMS) 29 

A long time-of-flight aerosol mass spectrometer (L-TOF AMS, Aerodyne Research Inc.) equipped with a PM2.5 30 
aerodynamic lens was deployed to monitor the non-refractory (NR) particle composition with a time resolution 31 
of 2 min. The instrument is described in detail elsewhere (Canagaratna et al., 2007). Briefly, particles are sampled 32 
continuously at ~0.1 L min -1 into a 100 µm critical orifice and then a PM2.5 aerodynamic lens, which focuses the 33 
particles into a narrow beam and accelerates them to a velocity inversely related to their vacuum aerodynamic 34 
diameter (Williams et al., 2013). The particle beam impacts on a heated tungsten surface (standard AMS vaporiser, 35 
~ 600 ◦C, and ∼ 10−7 Torr) and the NR components flash vaporise. The resulting gases are ionised by electron 36 
ionisation (EI, ∼ 70 eV) and measured by a TOF mass spectrometer. The instrument was calibrated for ionisation 37 
efficiency (IE) at the beginning, middle, and end of the campaign by a mass-based method using 350 nm NH4NO3 38 
particles. To eliminate the influence from relative humidity (RH) on collection efficiency (CE), a Polytube Dryer 39 
Gas Sample Dryer (Perma Pure LLC) was mounted in front of the AMS inlet. A composition-dependent collection 40 
efficiency (CDCE) was applied to correct the measured aerosol mass (Middlebrook et al., 2012), and no size-41 
dependent CE corrections were applied. Data analysis was performed in Igor Pro 6.39 (Wavemetrics, Inc.) using 42 
SQUIRREL 1.57 and PIKA 1.16 (Donna Sueper, ToF-AMS high-resolution analysis software).  43 

In conventional AMS data analysis, the signal from CO+ cannot be directly determined due to interference from 44 
N2

+, and is instead assumed to be equal to that of CO2
+. However, the increased mass resolution provided by the 45 

L-TOF detector was sufficient in this study to allow direct peak fitting of CO+, which is reported herein. As shown 46 
by Pieber et al. (2016), the CO2

+ signal in the AMS derives not only from OA and gaseous CO2, but is also 47 
generated directly from the vaporiser in the presence of some inorganic aerosols, notably NH4NO3. This effect 48 



6 
 

was corrected using 350 nm NH4NO3 aerosol according to the method recommended by Pieber et al. (2016). Since 1 
the nitrate fraction was lower than 50 %, the additional correction for nitrate according to Freney et al. (2019) was 2 
not applied. The CO2

+ signal resulting from nitrate was found to be 4.4 % of the total CO2
+ signal. In principle, 3 

spurious CO+ signal can be generated by the same process, either through fragmentation of CO2 or directly via 4 
related oxidation reactions. However, the CO+ signal was below detection limit for the NH4NO3 test aerosol. We 5 
therefore assumed a value of 0.4 % of total CO+ signal, which corresponds to 10 % of CO2

+ as given by the 70 eV 6 
EI reference mass spectrum of CO2 according to the NIST Standard Reference Simulation Website (Shen et al., 7 
2017).  8 

Source apportionment (see Sect. 2.3) was performed on the AMS OA data and requires as inputs the OA mass 9 
spectral time series and corresponding uncertainties. The data matrix was constructed by including both (1) ions 10 
with known molecular formula for m/z ≤ 120 and (2) the integrated signal across each integer m/z for m/z 121 to 11 
m/z 300. This allows inclusion of chemical information at m/z where the number of possible ions and AMS 12 
resolution are insufficient for robust identification and quantification of individual ions. Of particular note for the 13 
current dataset, inclusion of the high m/z data allows inclusion of polycyclic aromatic hydrocarbons (PAHs) in 14 
the PMF analysis. Uncertainties were calculated according to the method of Allan et al. (2003a), and account for 15 
electronic noise, ion-to-ion variability at the detector, and ion counting statistics, with a minimum error enforced 16 
according to the method of Ulbrich et al. (2009). As recommended by Paatero and Hopke (2003), variables with 17 
weak SNR (0.2<SNR<2) were down-weighted by a factor of 2 and variable with low SNR (SNR<0.2) were 18 
removed from the input matrices.  19 

Ions that were not independently fit but calculated as a constant ratio of CO2
+, i.e., O+, HO+ and H2O+, were 20 

removed from PMF analysis to avoid overweighting the contribution of CO2
+. After obtaining the PMF solutions, 21 

the contribution of these ions was recalculated and reinserted into the factor profile. The resulting factor profiles 22 
were re-normalised, likewise the total mass. Note that although typical AMS source apportionment studies 23 
likewise remove CO+, the increased mass resolution of the L-TOF detector allows an independent measurement 24 
of CO+ and this ion is therefore retained for PMF. Isotopes were removed prior to PMF analysis (to avoid 25 
overweighting the parent ions) and reinserted afterwards.  26 

2.3 Source Apportionment Technique 27 

Source apportionment was performed using the positive matrix factorisation (PMF) model, implemented within 28 
the multilinear engine (ME-2). AMS and EESI-TOF measurements are highly complementary, with the AMS 29 
providing robust quantification but limited chemical resolution, and the EESI-TOF providing a linear but hard-30 
to-quantify response with high chemical resolution. As a result, integrating these two instruments in single source 31 
apportionment model represents a promising strategy for improved source apportionment, especially of the SOA 32 
fraction. Conceptually, this can be executed in three ways: (1) PMF analysis on a single dataset containing both 33 
AMS and EESI-TOF data; (2) PMF analysis of EESI-TOF-only data to identify factors and determine their time 34 
series, followed by PMF on AMS-only data with factor time series constrained according to EESI-TOF results; 35 
or (3) PMF on AMS-only data to determine factor time series, followed by PMF on EESI-TOF-only data with 36 
constrained factor time series to facilitate chemical interpretation of the AMS-determined factors. For the present 37 
analysis, we selected method (3) because of EESI-TOF data quality issues related to denuder breakthrough (see 38 
Sect. 2.2.1) and the appearance of several interesting-but-unexplained factors in preliminary AMS PMF analysis.  39 

For the AMS PMF analysis, one factor related to traffic and one factor related to cooking activities were 40 
constrained using the a-value approach for the HOA spectra from Mohr et al. (2012) and the COA spectra from 41 
Crippa et al. (2013). Based on the result from PMF analysis on AMS data, PMF was then performed for the EESI-42 
TOF dataset, by constraining all factor time series retrieved from the AMS PMF source apportionment, except for 43 
the HOA time series (which was excluded because the hydrocarbon-like species dominating HOA are 44 
undetectable by the EESI-TOF extraction/ionisation scheme used here). This is conceptually similar to chemical 45 
mass balance (CMB), except that here the factor time series are constrained instead of factor profiles. This allows 46 
AMS-resolved factors, notably those related to SOA, to be described in terms of the higher chemical resolution 47 
achievable by the EESI-TOF. To explore the robustness and uncertainties of each step in our integrated source 48 
apportionment, bootstrap analysis was conducted individually on the AMS PMF solution and the second step 49 
“CMB-analogue” result from the EESI-TOF.  50 

Note that this strategy would not necessarily be the optimal use of co-located AMS and EESI-TOF data, if both 51 
instruments were performing optimally. In particular, it neglects to take advantage of the higher chemical 52 
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resolution of the EESI-TOF for factor separation. However, for the specific situation encountered in this study, 1 
where (1) interpretation of the standalone EESI-TOF data is significantly complicated by denuder breakthrough; 2 
(2) high EESI-TOF backgrounds may increase the uncertainty of peak fitting; and (3) AMS PMF resolves multiple 3 
factors that are temporally distinct but difficult to interpret chemically, we believe the selected approach 4 
maximises the explanatory power of the dataset. As an alternative strategy, a preliminary PMF of standalone 5 
EESI-TOF data was attempted, but did not yield interpretable results. This is likely because the PMF model, as 6 
will be discussed in the next section, requires detector linearity and static factor composition. Denuder 7 
breakthrough compromises both assumptions, because the volatile and semi-volatile contributions to factor 8 
profiles depends on the time-dependent state of the denuder (Brown et al., 2021). The EESI-TOF data processing 9 
protocols utilised above reduce but do not eliminate this issue. However, by constraining the EESI-TOF PMF 10 
solution with AMS factor profiles, the solution becomes weighted towards explaining temporal trends observed 11 
in the particle phase. Further, by utilising the EESI-TOF for qualitative (factor identification) rather than 12 
quantitative (factor resolution) purposes, the impact of artifacts introduced by gaseous signals is reduced. 13 

Determination of the proper number of factors to obtain the most interpretable PMF solution is partly subjective. 14 
In this paper, criteria to identify and interpret the factors implemented include comparison of correlation between 15 
factor time series or profiles with external references, and investigation of the factor’s  distinctive chemical 16 
signatures.   17 

2.3.1 Positive matrix factorisation (PMF) 18 

Positive matrix factorisation (PMF) was implemented using the Multilinear Engine (ME-2) (Paatero, 1997), with 19 
model configuration and post-analysis performed with the Source Finder interface (SoFi, version 6.8b) (Canonaco 20 
et al., 2013), programmed in Igor Pro 6.39 (Wavemetrics, Inc.). PMF is a bilinear receptor model which describes 21 
the input data matrix (here the mass spectral time series) as a linear combination of static factor profiles (in this 22 
case characteristic mass spectra, representing specific sources or/and atmospheric processes) and their 23 
corresponding time-dependent source contributions, as described in Eq. (4): 24 

	 	 4  25 

Here X is the input data matrix with dimensions of m×n, representing m measurements of n variables (here ions 26 
or m/z), G and F are respectively the static factor time series with the dimension of m×p, and factor profiles with 27 
the dimension of p×n, where p is the number of factors in the PMF solution, and is determined by the user. E is 28 
the residual matrix. G and F in Eq. (4) are solved by a least-squares algorithm that iteratively minimises the 29 
quantity Q, which is defined in Eq. (5) as the sum of the squares of the uncertainty-weighted residuals:  30 

5  31 

Here eij is an element in the residual matrix E, and σij is the corresponding element in the measurement uncertainty 32 
matrix, where i and j are the indices representing measurement time and ion (or integer m/z), respectively.  33 

PMF is subject to rotational ambiguity, in that different combinations of the G and F matrices may yield solutions 34 
with the same or similar Q. In practice, this often leads to mixed or unresolvable factors. Here we explore a subset 35 
of the possible PMF solutions, directed towards environmentally meaningful rotations. This is achieved via the a-36 
value approach, wherein one or more factor profiles and/or time series are constrained using reference profiles 37 
or/and time series, with the scalar a (0≤ a ≤1) determining the tightness of constraint. This approach has been 38 
shown to improve solution quality relative to unconstrained PMF (Crippa et al., 2014; Canonaco et al., 2013). The 39 
a-value approach determines the extent to which the resolved factor profiles , 		  and time series 40 

, may differ from the input values ( ,  or , ), as shown in Eq. (6a) and Eq. (6b): 41 

, 		 , , 6  42 

, 		 , , 6 	 43 

Note that the final value of , 		 and , may slightly exceed the prescribed limits due to post-44 

PMF renormalisation of the G and F matrices. Here the a-value approach was used for both the AMS and EESI-45 
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TOF datasets. Sensitivity tests to determine an appropriate range of a-values were performed in combination with 1 
bootstrap analysis, as described in the following section. 2 

2.3.2 Bootstrap Analysis 3 
Bootstrap analysis (Davison and Hinkley, 1997) was performed to characterise solution stability and estimate 4 
uncertainties. Bootstrapping creates a set of new input and error matrices by random resampling of rows from the 5 
original input data and error matrices. This resampling preserves the original dimensions of the input data matrix, 6 
but randomly duplicates some time points while excluding others (Paatero et al., 2014). For the AMS dataset, we 7 
performed 1000 bootstrap runs on an eight-factor solution, with HOA and COA factors constrained. For each 8 
factor, a random a-value was selected for each bootstrap run, ranging from 0 to 0.5 with a step size of 0.1. For the 9 
EESI-TOF dataset, 1000 bootstrap runs were performed on a 7-factor solution. Each EESI-TOF factor was 10 
constrained by a factor from the AMS 8-factor solution, with AMS HOA excluded because it is not detectable in 11 
the EESI-TOF due to low solubility and ionisation efficiency. For the EESI-TOF bootstrapping, each factor was 12 
constrained with a randomly selected a-value ranging from 0 to 0.6 with a step size of 0.1.  13 
 14 
Conceptually, each bootstrap solution can be classified in three ways: (1) qualitatively similar to the base case; (2) 15 
qualitatively similar to the base case, but with 2 or more factors mixed; (3) fundamentally different from the base 16 
case, e.g., one or more factors has appeared and/or disappeared. For characterising uncertainties in the factor 17 
profiles and/or time series, only solutions of type (1) are considered. We therefore use the solution classification 18 
methods of Stefenelli et al. (2019), which are based on determining whether each factor profile and/or time series 19 
from the base case is with statistical significance more similar to one and only one factor in a given bootstrapped 20 
solution. This method is implemented in three steps: 1) creation of a base case, 2) calculation of the Spearman 21 
correlation between the time series of each factor from the base case vs. each factor from the bootstrap solution, 22 
3) sorting the resulting correlation matrix such that the highest correlation coefficients fall on the diagonal, 4) 23 
comparing each correlation coefficient on the diagonal to values along the same row and column to evaluate 24 
whether the coefficient on the diagonal is higher by a statistically significant margin, assessed by t-test analysis. 25 
The bootstrap solutions that fail to meet this criterion are classified as “mixed”.  26 
 27 
The definition of a mixed solution therefore depends on the selected confidence level p, which is evaluated here 28 
by a sensitivity test of p ranging from 0.05 to 0.95 with a step of 0.05; the number of solutions classified as “mixed” 29 
rises as p increases (Fig. S7). This enables identification of the solutions most likely to be classified as “mixed” 30 
for each increment of p. These solutions are manually inspected to confirm that they do in fact appear mixed, and 31 
the final p is selected once this no longer holds true. Using this method, a final p of 0.40 for AMS was chosen, 32 
yielding 918 accepted bootstrap runs. For EESI-TOF bootstrap analysis, since the time series of all factors are 33 
constrained, all runs are considered as good runs and utilised to explore the variability of factor profiles.  34 
 35 
2.3.3 z-score analysis of factor profiles 36 

The dynamic range of EESI-TOF and AMS ion signal concentrations spans several orders of magnitude. Key 37 
chemical information may be contained in low-intensity ions, which are not readily evident from the factor profile. 38 
To assist in identifying such spectral features, we calculate the z-score of each ion across the factor profile matrix 39 
as follows:  40 

, , 	μ / 7  41 

Here .  and ,  are the z-score and the relative intensity of ion j in factor profile k, respectively, and μ  and  42 
is the mean and standard deviation of relative intensity of ion j in all PMF factors. The z-score is a signed, 43 
dimensionless quantity whose absolute value is to describe the distance between an observation x and population 44 
mean µ in the unit of standard deviation σ (Larsen and Marx, 2018). It therefore highlights ions whose contribution 45 
to a factor profile is unexpectedly high (or low), independent of absolute signal magnitude. In this study, z-score 46 
is used to identify key ions that are unique to a specific factor or small subset of factors, as will be discussed in 47 
Sect. 3.3.  48 

 49 

3. Results 50 
3.1 Campaign overview 51 
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Figure 1 shows an overview of the NR-PM2.5 composition and meteorological parameters observed during the 1 
campaign. During the measurement period, we observed nine haze episodes, classified as light haze (NR-PM2.5 2 
concentrations from 20 to 150 µg m-3) or severe haze (NR-PM2.5 concentrations above 150 µg m-3). Of these, four 3 
haze episodes occurred during the non-heating season, four during the heating season, and one episode bridged 4 
the transition date. Consistent with previous studies (Duan et al., 2020; Duan et al., 2019; Zhao et al., 2019; Xu et 5 
al., 2019; Sun et al., 2016a; Sun et al., 2016b), alternating haze episodes and clean periods corresponded 6 
systematically to changing meteorological conditions. Haze build-up was associated with stagnant air masses with 7 
slow wind speed (< 1.5 m s-1) mainly from the south or southwest, and terminated by air masses with high wind 8 
speed (> 3.0 m s-1) from the north or northwest (Fig. 1b and 1c). Different from previous studies in Beijing in 9 
2014 and 2015, where haze events lasting more than five days were observed (Zhao et al., 2019; Xu et al., 2019; 10 
Sun et al., 2016b), all haze events in this campaign lasted for two to four days. The maximum concentration of 11 
NR-PM2.5 measured by the L-TOF AMS exceeded 100 µg m-3 during only one haze event (4 to 7 November), and 12 
the mean NR-PM2.5 concentration in the haze episodes was 36.6 ± 22.7 µg m-3. This is lower than the mean 13 
concentrations of NR-PM1 observed in Beijing winter from 2013 (89.3 ± 85.6 µg m-3) to 2016 (64 ± 59 µg m-3) 14 
(Zhao et al., 2019; Xu et al., 2019; Sun et al., 2016a; Zhang et al., 2014).  15 

Aerosol bulk composition differs between the non-heating and heating seasons, indicating changes in sources 16 
and/or chemical processes. Organic aerosol (OA) is the major fraction of NR-PM2.5 throughout the campaign 17 
period, with a mean contribution of 54.0 %, consistent with previous winter studies in Beijing (Zhao et al., 2019; 18 
Xu et al., 2019; Elser et al., 2016). The temporal evolution of OA shows that the contribution in haze episodes 19 
increased from 41.0 % during the non-heating season to 54.0 % during the heating season. This contrasts with 20 
nitrate, which is the second largest contributor to NR-PM2.5 in this study and contributes 37.0 % of NR-PM2.5 in 21 
non-heating season haze events but decreases to 23.0 % during heating season haze events. Of particular note is 22 
the non-heating season haze event from 4 to 7 November, where nitrate comprises more than 50.0 % of NR-PM2.5, 23 
exceeding OA contribution to total mass in this event. This event is discussed in detail in Sect. 3.3.4 and Sect. 4. 24 
It is also worth noticing that the nitrate concentration and its contribution was lower than sulphate during every 25 
clean period, but higher during every haze episode. The mean nitrate/sulphate ratio in the present study is 2.8±2.4, 26 
a substantial increase compared to observations in 2014 (0.7±0.6) and 2016 (1.4±0.9) from Xu et al. (2019). In 27 
addition, the nitrate/sulphate ratio exceeded 1 for 63 % of measurements in the present study, compared with only 28 
24 % in 2014. It is clear that the contribution of nitrate in haze events gradually exceeded the contribution of 29 
sulphate from 2014 to 2017, indicating nitrate is playing an increasingly important role relative to sulphate in haze 30 
formation, mainly due to large reduction in SO2 emissions from coal fired power plants in Beijing and surrounding 31 
areas. 32 

3.2 AMS source apportionment 33 

With the combination of HR ions (range from m/z 12 to m/z 120, see Table S2) and UMR sticks (from m/z 121 to 34 
m/z 300) in the PMF input matrix, eight factors were resolved, including four primary and four secondary organic 35 
factors. Figure 2 shows the averaged MS profiles of the selected eight-factor solution and corresponding relative 36 
contribution of each ion (i.e., fraction of signal from a given ion apportioned to each factor), while Fig. 3 shows 37 
the factor time series in terms of both absolute concentration and OA mass fraction. Diurnal patterns are shown 38 
in Fig. 3c. The four POA factors consist of a traffic related factor (hydrocarbon-like OA, HOA), cooking-related 39 
OA (COA), and two solid fuel combustion-related factors (biomass burning OA, BBOA, and coal combustion 40 
OA, CCOA). The four primary factors retrieved in this solution (HOA, COA, BBOA, and CCOA) have been 41 
resolved in several previous winter studies in Beijing (Huang et al., 2014; Elser et al., 2016; Hu et al., 2016; Sun 42 
et al., 2016a). However, the SOA factor resolution is unusual. AMS source apportionment studies typically report 43 
one or two oxygenated organic aerosol (OOA) factors attributed to SOA, which are distinguished by the extent of 44 
oxygenation, which is in turn typically linked to volatility, age, or season. Here, we report four secondary factors, 45 
consisting of two more-oxygenated OOAs (MO-OOAs) and two less-oxygenated OOAs (LO-OOAs). For reasons 46 
described below and in Sect. 3.3, the one MO-OOA factor is attributed to aqueous phase chemistry (MO-OOAaq) 47 
and the other to solid fuel combustion (MO-OOASFC), while one LO-OOA factor is attributed to solid fuel 48 
combustion (LO-OOASFC), and the other considered a non-source-specific factor denoted as (LO-OOAns).   49 

In selecting the PMF solution that best represents the AMS dataset, we considered both mathematical diagnostics 50 
(e.g., Q/Qexp) and the interpretability of the retrieved factors. Evaluation of factor interpretability includes: 1) 51 
correlation of the time series with external data, 2) comparison of factor diurnal cycles with known source activity 52 
and previous measurements in Beijing; 3) identification of source-specific spectral features; and 4) differences in 53 
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factor trends between heating/non-heating and/or haze/non-haze periods. Solutions from five to ten factors were 1 
explored (Fig. S9 to Fig. S14), with an eight-factor solution selected as the best representation of the data 2 
according to the above criteria. Solutions with less than six factors showed evidence of mixed primary sources. 3 
The seven- and eight-factor solutions resolve additional OOA factors, which have clear temporal and 4 
compositional differences that support their separation and interpretation. Higher-order solutions lead to 5 
uninterpretable splitting of OOA factors. Therefore, the eight-factor solution is retained for further analysis. 6 

HOA -- The HOA spectrum (Fig. 2a) is characterised by alkyl fragments, especially CnH2n-1
+ and CnH2n+1

+. Major 7 
ions include C3H7

+, C4H9
+, C5H11

+ (Zhao et al., 2019; Xu et al., 2019; Sun et al., 2016a; Elser et al., 2016; Zhang 8 
et al., 2014; Ng et al., 2011). It also shows good correlation with CO and eBC (r2 = 0.50 and 0.70, Fig. S16), 9 
which are tracers for traffic emissions (Sun et al., 2016a; Zhang et al., 2014; Chan et al., 2011). Concentrations of 10 
this factor are elevated overnight due to boundary layer dynamics, and exhibit peaks from 06:00 to 09:00 and 11 
from 17:00 to 21:00, corresponding respectively to the morning and evening rush hours (Fig. 3c and Fig. S15). 12 
The averaged concentration during the evening peak (0.5 µg m-3) is almost twice as high as the morning peak 13 
(~0.3 µg m-3), due to the low planetary boundary layer height and resulting accumulation of vehicle emissions at 14 
night (Sun et al., 2016a; Han et al., 2009). This diurnal pattern is consistent with other winter studies in Beijing 15 
(Sun et al., 2016a; Zhang et al., 2014). However, the averaged relative contribution of HOA factor to total mass 16 
(~3.0 %) is significantly lower than previous studies (~10.0 %) (Elser et al., 2016; Hu et al., 2016; Sun et al., 17 
2016a; Zhang et al., 2014; Huang et al., 2010), this indicates that primary traffic emissions comprise a minor 18 
fraction of OA during both non-heating and heating periods.   19 

COA -- The COA spectrum contains both alkyl fragments and slightly oxygenated ions, consistent with aliphatic 20 
acids from cooking oils (Hu et al., 2016). It is typically characterised by a ratio of C3H3O+ to C3H5O+ greater than 21 
2.0, and is 3.4 in this study (Xu et al., 2019; Zhao et al., 2019; Sun et al., 2016a; Sun et al., 2016b; Crippa et al., 22 
2013; Mohr et al., 2012). The time series of the COA factor strongly correlates with AMS C6H10O+ (m/z 98), a 23 
good tracer for cooking activities reported by many studies (Xu et al., 2019; Zhao et al., 2019; Elser et al., 2016; 24 
Hu et al., 2016; Sun et al., 2016a; Sun et al., 2016b; Mohr et al., 2012; Sun et al., 2011), with r2 = 0.96 and 60.1 % 25 
of the mass of this ion being apportioned to COA. The diurnal cycle shows three peaks: from 07:00 to 09:00 at 26 
breakfast and from 12:00 to 13:00 at lunch time and a larger peak from 18:00 to 21:00 during dinner (Fig. 3c and 27 
Fig. S15). This three-peak diurnal pattern agrees with the diurnal cycle observed by Sun et al. (2016a), but differs 28 
from many other studies at different sites during winter in Beijing, where only two peaks are evident and the 29 
morning peak from 07:00 to 09:00 is missing. This suggests a dependence on the proximity to local emissions 30 
(Xu et al., 2019; Elser et al., 2016; Hu et al., 2016; Zhang et al., 2014). The ratio of dinner peak to lunch peak is 31 
about 2.0, similar to the values of ~2.0 and 2.3 observed by Elser et al. (2016) and Hu et al. (2016), respectively, 32 
whereas Sun et al. (2016a) reported a ratio of 1.29. Overall, the COA factor is a non-negligible contributor to total 33 
OA, with a relative contribution of 6 %, lower than 18 % in 2013 (Sun et al., 2016a), 25 % in 2014 and 16 % in 34 
2016 wintertime (Xu et al., 2019). The mean concentration is 0.3 µg m-3, lower than previous studies (Xu et al., 35 
2019; Zhao et al., 2019; Elser et al., 2016; Hu et al., 2016; Sun et al., 2016a; Sun et al., 2016b; Mohr et al., 2012; 36 
Sun et al., 2011).  37 

BBOA – Consistent with other studies in Beijing (Zhao et al., 2019; Elser et al., 2016; Hu et al., 2016; Sun et al., 38 
2016a), a BBOA factor was resolved. Typically, the BBOA factor mass spectrum is characterised by increased 39 
contributions from C2H4O2

+ at m/z 60 and C3H5O2
+ at m/z at 73, which is typical of anhydrosugars such as 40 

levoglucosan (Alfarra et al., 2007; Lanz et al., 2007; Sun et al., 2011). However, although the contribution of the 41 
BBOA factor to C2H4O2

+ is the highest (28.6 %) among those factors and its correlation is also high, with r2 = 42 
0.62, other primary sources like CCOA and COA also contribute significant fractions of C2H4O2

+ signal. BBOA 43 
also correlates strongly with C3H5O2

+ (r2 = 0.71) and C6H6O2
+ (r2 = 0.81), which are also typical of biomass 44 

burning activities (Lanz et al., 2007; Sun et al., 2011). The O:C ratio and N:C ratios for this factor are 0.4 and 45 
0.02, respectively, agreeing quite well with the values found in other studies (Xu et al., 2019; Zhao et al., 2019; 46 
Hu et al., 2016).  47 

The BBOA time series is event-driven, with both concentrations and relative contributions increasing during haze 48 
events, especially the haze event from 18 to 22 November (68.7 % of total OA). Apart from this event, the BBOA 49 
concentration increase during other haze events is also clear, regardless of non-heating vs. heating season. Overall, 50 
the average BBOA concentration for the haze events was 1.9 µg m-3, with a maximum of 19.1 µg m-3 for the event 51 
from 18 to 22 November, and ~0.1 µg m-3 for the clean periods. These are both lower than the study in mid-winter 52 
from 2013 to 2014 (Sun et al., 2016a) and studies from early winter in 2014 and 2016 (Xu et al., 2019). The 53 
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relative contribution of BBOA to total OA is 15.4 % for haze periods and 8.2 % for the clean period, respectively, 1 
consistent with observations of Elser et al. (2016), who report 13.9 % and 8.9 % for haze and clean periods in 2 
wintertime in Beijing, respectively.   3 

CCOA – apart from alkyl fragments CnH2n-1
+ and CnH2n+1

+, the main feature of the CCOA profile is the high 4 
contribution from PAHs (approximately m/z 175 to 300), especially in the high m/z range, consistent with studies 5 
from Elser et al. (2016), Zhang et al. (2008) and Xu et al. (2006). In the high mass range, PAHs contribute an 6 
increasingly higher fraction with increasing m/z (Fig. 2b). A series of strong signals are found in the factor profile 7 
at m/z 115 (C9H7

+), 128, 139, 152, 165, 178, 189, 202, 215, 226, 239 and 252, which have been shown to be 8 
characteristic of aromatics and PAHs (Dzepina et al., 2007). Moreover, the time series of this factor and these 9 
ions correlate quite well with r2 of 0.81 (C9H7

+), 0.80 (m/z 128), 0.83 (m/z 139), 0.90 (m/z 152), 0.90 (m/z 165), 10 
0.93 (m/z 178), 0.94 (m/z 189), 0.97 (m/z 202), 0.97 (m/z 215), 0.98 (m/z 226), 0.96 (m/z 239) and 0.98 (m/z 252), 11 
respectively, consistent with observations from Dzepina et al. (2007), Hu et al. (2013), Hu et al. (2016) and Sun 12 
et al. (2016a).  13 

Coal is widely used for domestic heating in northern China including the greater Beijing area and surrounding 14 
provinces (Zhang et al., 2008), but is not permitted for residential use in the downtown area. Instead, beginning 15 
on 15 November, power plants using natural gas provide heating to every household in the Beijing downtown 16 
area, and municipal coal combustion starts providing heat to the surrounding area. Interestingly, the time series 17 
of the CCOA factor reflects this seasonal transition, as the mean daily maximum concentration increased from 18 
2.9 µg m-3 before 15 November to 5.9 µg m-3 after. Similar to other studies (Elser et al., 2016; Hu et al., 2016; 19 
Sun et al., 2016a; Zhang et al., 2014), the diurnal concentration peaks at night between 21:00 and 06:00 with an 20 
average contribution of 15.5 % to total OA, and decreases during the day from 07:00 to 20:00 with an average 21 
contribution of 7.4 %, consistent with domestic heating (Fig. 3c and Fig. S15). Overall, the mean contribution to 22 
total OA is 11.4 %, with 7.1 % in the non-heating period and 14.7 % in the heating season. The latter number 23 
agrees with observations conducted in the heating period in Beijing during winter, ranging from 10 % to 30 % 24 
(Elser et al., 2016; Hu et al., 2016; Zhang et al., 2014; Sun et al., 2013).  25 

OOAs – As noted above, the OOA factors resolved here differ from previous AMS studies in Beijing, where only 26 
one or two OOA factors were resolved and classified based on volatility (semi-volatile OOA and low-volatility 27 
OOA) (Zhao et al., 2019; Zhang et al., 2014; Hu et al., 2013) or oxidation state (more-oxygenated OOA and less-28 
oxygenated OOA) (Xu et al., 2019; Elser et al., 2016; Sun et al., 2016a; Sun et al., 2013). In this study, two more-29 
oxygenated OOAs (MO-OOA) and two less-oxygenated OOA (LO-OOA) factors were resolved. The OOA 30 
factors are characterised by higher signal from CO2

+ than found in the POA factors. In this study, CO2
+ comprises 31 

approximately 15.0 % of the two MO-OOA factors. For the two LO-OOAs, the CO2
+ contribution to the total 32 

signal is only 3.8 % in LO-OOASFC and 5.4 % in LO-OOAns, while the ratio of CO2
+ to C2H3O+ is still higher than 33 

for the POAs. Moreover, a higher contribution of the CxHy group is observed in the LO-OOA factors than in the 34 
MO-OOA factors. Each OOA factor has a significantly different time series, corresponding to specific haze events 35 
and/or seasonal changes, providing a first suggestion that their separation may be meaningful. 36 

Among the MO-OOA factors, one factor (influenced by aqueous phase chemistry, defined as MO-OOAaq) has 37 
high absolute and relative concentrations during a single haze event from 4 to 7 November (maximum 16.2 µg m-38 
3, > 60.0 % of the total OA mass), but is a minor component throughout the rest of the campaign. In contrast, the 39 
other MO-OOA factor (aged solid fuel combustion emissions, defined as MO-OOASFC) is a minor component 40 
before 15 November, but both its mass and relative contribution steadily increase during the heating season, 41 
especially during haze periods. This is consistent with the temporal pattern of CCOA, suggesting this factor may 42 
be linked to coal combustion activities. The temporal evolution of the two LO-OOA factors are also 43 
distinguishable. The concentration of one factor (LO-OOASFC) increases in every haze episode under stagnant 44 
conditions and is correlated with the total OA time series (r2 =0.91), whereas the other factor (LO-OOAns) exhibits 45 
a clear diurnal pattern in the non-heating season, but this diurnal cycle is absent during the heating season. 46 
Interestingly, the contribution of the LO-OOAns factor to total OA is higher during the clean days, suggesting this 47 
factor may be more influenced by regional processes. The chemical characteristics and sources/processes 48 
governing these OOA factors are discussed in detail in the next section, in conjunction with the EESI-TOF analysis.  49 

3.3 Investigation of factor composition by EESI-TOF 50 

As discussed in Sect. 2.3, PMF of the EESI-TOF mass spectral time series was conducted on a 7-factor solution 51 
where all factor time series were constrained by the seven non-HOA factors retrieved from AMS PMF. The EESI-52 
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TOF factor time series are compared to their AMS counterparts in Fig. S17, and scatter plots of EESI-TOF vs 1 
AMS on a factor-by-factor basis are shown in Fig. S18. These comparisons suggest that the EESI-TOF factor time 2 
series mostly reflect the main trends in the AMS factor time series. This approach enables a more chemically 3 
specific interpretation of the retrieved AMS factors, which both supports POA factor identification and provides 4 
additional insight into the sources and processes governing SOA. Note that all factors resolved in this study are 5 
based on time series derived from AMS PMF analysis, therefore, in the following sections, these factors are 6 
discussed from the chemical perspective of the EESI-TOF and no distinction is made between factors represented 7 
by PMF analysis of AMS or EESI-TOF. The PMF result of the EESI-TOF time series was used as the base case 8 
for bootstrap runs, and all the bootstrap runs were retained for further analysis. EESI-TOF factor profiles 9 
(corresponding to AMS-derived factor time series) are interpreted by 1) comparison between these factor profiles 10 
and mass spectra retrieved from a chamber study using an EESI-TOF (Amelie Bertrand, personal communication) 11 
and/or field studies (Qi et al., 2019; Stefenelli et al., 2019), 2) identification of key ions in the factor profiles by 12 
z-score analysis introduced in Sect. 2.3.3. The time series and factor profiles of the seven-factor solution are 13 
shown in Fig. 4.  14 

We discuss the three primary factors in Sect. 3.3.1 and the four OOA factors individually in the subsequent 15 
sections. Carbon number distribution plots generated from the EESI-TOF factor profiles and colour-coded by 16 
different families are presented in Fig. 5 and Fig. 6 for the three POA factors, and Fig. 7 and Fig. 8 for the four 17 
OOA factors. In the carbon number distribution plots, ions are classified first based on carbon numbers (x-axis) 18 
and ions with same number of carbons are further divided into different categories based on H:C and O:C ratios 19 
(colour code). Figure 9 shows Van Krevelen plots (atomic H:C vs. O:C ratio) for the four OOA factors based on 20 
AMS factor profiles coloured by number of nitrogen atoms in each fragment, and sized by the median z-score 21 
across all bootstrap runs, with large markers denoting ions having z-score > 1.5.  22 

3.3.1 POA factors 23 

COA – Consistent with Qi et al. (2019) and Stefenelli et al. (2019), the mass spectrum of this factor (Fig. 4b) is 24 
characterised by having most of the mass at ions with high m/z. These ions at high m/z are likely long-chain fatty 25 
acids or/and alcohols related to cooking emission and oils (Liu et al., 2017b). For example, this factor is 26 
characterised by long-chain acids like C18H34O2

+, C19H36O2
+ and C21H38O3

+, which apportion 87.2 %, 76.2 %, and 27 
92.3 % of their total mass to this factor, and they are also unique ions in this factor, with z-scores of 2.61, 2.95 28 
and 3.34, respectively.  29 

BBOA – The mass spectrum of BBOA (Fig. 4b) is characterised by a strong signal at C6H10O5, corresponding to 30 
levoglucosan and its isomers. Levoglucosan is a well-established tracer for primary aerosols formed from 31 
pyrolysis of cellulose in biomass burning activities. This ion contributes 6.6 % to the mass in this factor, about 32 
4.5 times higher than the second strongest ion, consistent with previous field and laboratory measurements of 33 
biomass burning by the EESI-TOF. Both winter measurements in Zurich, Switzerland (Qi et al., 2019) and a 34 
chamber study of wood burning emissions (Amelie Bertrand, personal communication) showed levoglucosan and 35 
its isomers to be the dominant ion in EESI-TOF spectra of primary wood burning, with contributions of 13.0 % 36 
and 21.0 % respectively. In addition, the ion series C10H14Ox (x ≥ 4) is observed in the BBOA and aged-SFC 37 
factors, consistent with Qi et al. (2019).  38 

CCOA – as shown in the carbon number distribution plots (Fig. 5 and Fig. 6), lower H:C and O:C ratios are 39 
observed compared to other factors, especially for species with more than 10 carbons, suggesting increased 40 
contributions from aromatic acids. This is consistent with Zhang et al. (2008) who found that particles generated 41 
from industrial boilers typically contain a considerable fraction from both aromatic acids and aliphatic acids. Note 42 
that PAHs, which comprise the unique AMS spectral marker, are not detectable by the EESI-TOF 43 
extraction/ionisation scheme used here. 44 

3.3.2 MO-OOASFC 45 

As noted in Sect. 3.2, the AMS MO-OOASFC mass spectrum is consistent with OOA factors characteristic of SOA, 46 
and represents aged, oxygenated emissions from solid fuel combustion. The carbon number distribution of the 47 
EESI-TOF MO-OOASFC mass spectrum (Fig. 7b) shows several notable features that provide further insight into 48 
its source. First, the contribution of CxHyOz ions with low H:C is significantly higher than for the other OOA 49 
factors. Specifically, (CxHyOz)H:C≤1.3 comprises 11.6 % of the total signal and 20.9 % of CxHyOz; for the other non-50 
SFC related OOA factors, (CxHyOz)H:C≤1.3 comprises a maximum of 8.6 % of the total signal and 10.9 % of CxHyOz. 51 
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The high fraction of low H:C ratio ions suggests a higher contribution from aromatic precursors relative to the 1 
other OOA factors. The (CxHyOz)H:C≤1.3  signal is consistent with that of aged wood burning factors retrieved 2 
during winter in Zurich (13-14%, Qi et al., 2019) (Fig. S19). Aged wood burning factors were also retrieved from 3 
source apportionment of wintertime EESI-TOF measurements in Magadino, located in a Swiss alpine valley 4 
(Giulia Stefenelli, personal communication), where (CxHyOz)H:C≤1.3 comprises 9.0-23.0 % of the total signal. 5 
Different from the aged biomass burning factors found in Zurich and Magadino, C6H10O5 is not observed in MO-6 
OOASFC, but other ions found in the aged biomass burning factors from Qi et al. (2019) and Stefenelli (personal 7 
communication) including C10H16Ox  (x ≥3), are also apportioned to SFC-related factors in the present study. Still, 8 
the CxHyOz distribution in the MO-OOASFC factor retrieved in Beijing differs from the previous studies in 9 
Switzerland in terms of the overall carbon number distribution. Specifically, the Swiss measurement in Magadino, 10 
a site strongly influenced by biomass burning activities (Giulia Stefenelli, personal communication) showed a 11 
peak at C6 and a peak from C8 to C10, the chamber study on coal combustion oxidation (Amelie Bertrand, personal 12 
communication) exhibits a peak from C6 to C12 whereas in Beijing the signal is spread over a much larger range 13 
(approximately C7 to C19).  14 

Also evident from Fig. 7 is the high contribution from CxHyOzN1-2 ions, which comprise 45.5 % of the total signal. 15 
This is significantly higher than the 18-25 % observed in the Zurich factors by Qi et al. (2019) but comparable to 16 
35-41 % observed in Magadino. As above, the carbon number distribution of CxHyOzN1-2 differs between Beijing 17 
and Switzerland, although the trends are reversed. In Beijing, the CxHyOzN1-2 signal occurs mostly in the C6 to 18 
C10 range with a contribution of 73.0 % to total CxHyOzN1-2 signal, whereas for the Swiss measurements it spans 19 
C6 to C10 with a contribution of 56 % at most to total CxHyOzN1-2 signal and almost evenly distributes into other 20 
bins. High intensity CxHyOzN1-2 ions in Beijing MO-OOASFC include C6H11NO4, C7H13NO4, C8H15NO4, C9H17NO4 21 
and C10H19NO4. The high nitrogen content in MO-OOASFC likely reflects high NOx concentrations in the Beijing 22 
region during wintertime. In addition, ions tentatively attributed to nitrocatechol (C6H5NO4) and its homologous 23 
series (C7H7NO4, C8H9NO4) are apportioned predominantly to this factor and CCOA (see Fig. S25b and Fig. 24 
S25c), indicating the influence of oxidised aromatics from coal combustion emissions (Mohr et al., 2013).  25 

Interestingly, the AMS MO-OOASFC profile and Van Krevelen plot (Fig. 9) show that the ions for which MO-26 
OOASFC has a high z-score (>1.5) predominantly exhibit low H:C ratios. These ions include C7H2O+, C7H3O+, 27 
C7H4O+, C7H5O+, C8H4O+ and C8H5O+. Although these ions are not addressed in OOA factor separation in most 28 
AMS PMF studies due to their low intensities, their high z-score in the present work suggests they may contain 29 
some source-specific information. The temporal evolution of these ions is consistent with EESI-TOF ions having 30 
a low H:C ratio and thus tentatively attributed to aromatics e.g., C12H10O8 and C16H14O6 (see Fig. S25d and Fig. 31 
S25e). This also suggests an elevated contribution from aromatic oxidation relative to the non-SFC-derived SOA 32 
factors. An increased contribution from EESI-TOF ions with low H:C was also observed in oxidised wood burning 33 
emissions by Qi et al. (2019). 34 

3.3.3 LO-OOASFC 35 

The LO-OOASFC factor mass spectrum is also consistent with solid fuel combustion, but is less oxygenated than 36 
MO-OOASFC. The carbon number distribution of the EESI-TOF LO-OOASFC mass spectrum (Fig. 7c) shows a 37 
contribution of CxHyOz ions with low H:C comparable to that of MO-OOASFC. Specifically, (CxHyOz)H:C≤1.3 38 
comprises 10.9 % of the total LO-OOASFC signal, compared to 11.6 % from MO-OOASFC. This is consistent with 39 
less-aged biomass burning (LABB) factors retrieved from source apportionment of wintertime EESI-TOF data in 40 
Zurich and Magadino, where (CxHyOz)H:C≤1.3 contributed 10-16 %. LO-OOASFC contains a substantial contribution 41 
(10.5 %) from C6H10O5 (levoglucosan and its isomers), which is substantially higher than that of MO-OOASFC 42 
(0 %) and LO-OOAns (0 %) and also than for primary BBOA (6.6 %) and CCOA (8.6 %). Interestingly, this factor 43 
has a very high fraction (31.8 %) from (CxHyOz)H:C≥1.7, substantially higher than the 12 % to 14 % observed in 44 
Zurich and Magadino. It also has 18.9 % contribution from (CxHyOz)O:C≥0.65, half of the fraction (~40 %) of the 45 
LABB factors in Zurich and Magadino. The high H:C (1.66) and low O:C (0.41) from EESI-TOF result in low 46 
averaged carbon oxidation states  (-0.87) of this factor, suggesting that this factor is less oxygenated than the 47 
LABB factors in those two studies, which had a minimum  of -0.60. 48 

Regarding nitrogen-containing species, CxHyOzN1-2 ions contribute 23.0 % to the total signal in this factor, similar 49 
to their contributions in the Zurich and Magadino LABB (17 % to 22 %). However, in Beijing a large fraction 50 
(10.7 %) of the CxHyOzN1-2 derives from a single ion (C6H11NO4). Otherwise, the carbon number distribution of 51 
CxHyOzN1-2 ions in Beijing is weighted from C7 to C10, consistent with SOA from wood burning experiments with 52 
OH or NO3 (Amelie Bertrand, personal communication) as shown in Fig. S28. Similar to the primary BBOA and 53 
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CCOA factors, LO-OOASFC is elevated overnight, suggesting a contribution from nighttime chemistry and/or 1 
rapid oxidation of primary emissions.  2 

3.3.4 MO-OOAaq 3 

The MO-OOAaq factor time series is dominated by high absolute and relative concentrations during a haze event 4 
in the non-heating season. Both the atmospheric conditions during this event and the overall factor composition 5 
are consistent with a strong influence from SOA formed by aqueous phase chemistry.  6 

Figure 10a shows the time series of the CO2
+ and CO+ ions from AMS, and the corresponding scatter plot is shown 7 

in Fig. 10b. For most of the data, the ratio of CO+ to CO2
+ is approximately 1, consistent with the mean CO+/CO2

+ 8 
value for bulk atmospheric OA (Canagaratna et al., 2015; Aiken et al., 2008) and the assumption in the standard 9 
AMS fragmentation table. In contrast, the CO+/CO2

+ slope is only 0.5 for the haze event on 4 to 7 November. This 10 
relative enhancement of CO2

+ is characteristic of small acids or diacids, e.g., oxalic acid, malonic acid and succinic 11 
acid (Canagaratna et al., 2015), shown in Fig. S22. These molecules can enter the particle via solvation, potentially 12 
followed by aqueous-phase chemistry (Tan et al., 2012; Tan et al., 2010; Carlton et al., 2007; Ervens et al., 2004), 13 
or as condensation products of gas-phase reactions (Mehra et al., 2020; Wang et al., 2020; Zaytsev et al., 2019; 14 
Legrand et al., 2005; Sellegri et al., 2003; Sempere and Kawamura, 1994). For example, Lamkaddam et al. (2021) 15 
have shown that up to 70% of isoprene oxidation products can be dissolved in a water film. However, because 16 
aqueous reaction pathways under subsaturated conditions favour the uptake of highly soluble molecules such as 17 
small acids/diacids, their contribution relative to larger oxygenates is increased, consistent with the lower 18 
CO+/CO2

+ slope observed here. 19 

An enhanced contribution from small acids is also suggested by the EESI-TOF MO-OOAaq profile. As shown in 20 
Fig. 7 and Fig. 8, MO-OOAaq has enhanced signal from ions with low carbon number relative to the other OOA 21 
factors. Further, Fig. 7 shows that these low-C ions are highly oxygenated (e.g., C6H6O5), which is likewise 22 
consistent with small multifunctional acids and polyacids. The EESI-TOF spectra thus provide further support for 23 
the attribution of this factor to the processes discussed in the previous paragraph. However, the carbon number 24 
distribution in Fig. 7a shows (CxHyOz)H:C≤1.3 comprises only 6.6 % to the total signal, suggesting these acids are 25 
unlikely formed by oxidation of aromatic precursors. Note that due to the application of the volatility-based filter 26 
for distinguishing particle-phase vs. spurious ions (see Sect. Text S3), the contribution of such small, highly 27 
oxygenated ions presented here represents a lower limit. 28 

As shown in Fig. 3 and Fig. 11, MO-OOAaq provides a major fraction of 40.8 % to the total OA during the major 29 
haze event on 4 to 7 November (peak concentration > 40 µg m-3). In fact, OA concentrations during this event are 30 
at least as high as those observed during the heating period, despite the likelihood of reduced concentrations of 31 
precursor VOCs due to the mandated reductions in combustion activities related to domestic heating in rural areas. 32 
We therefore investigate the reasons for the high SOA production during this specific event. The aerosol liquid 33 
water content (LWC) was calculated from ISORROPIA-II (Fountoukis and Nenes, 2007), and a high LWC is 34 
typically associated with aqueous phase chemistry. The LWC concentration is presented in Fig. 10, together with 35 
the time series of MO-OOAaq. The two time series are strongly correlated (r2 = 0.93), and both are dramatically 36 
higher during the 4 to 7 November event than for the rest of the study, suggesting the role of the aqueous phase 37 
chemistry in this haze event. Note that the strong correlation between MO-OOAaq and LWC is not driven solely 38 
by the event on 4 to 7 November; rather, the two time series are remarkably well correlated throughout the entire 39 
campaign. This further supports the interpretation of MO-OOAaq as characteristic of aqueous SOA production 40 
throughout the campaign, rather than being characteristic of only a single event.  41 

The question arises whether MO-OOAaq reflects the irreversible production of SOA via aqueous pathways, or 42 
instead reversible solvation of volatile and semi-volatile organics. To assess this, we look in detail at the MO-43 
OOAaq and LWC correlations during the 4 to 7 November event (shown in Fig. 10) and change of MO-OOAaq in 44 
every two-hour interval (Fig. S24). The most significant disagreement between the time series occurs from 08:00 45 
to 23:00 on 6 November, when the LWC sharply decreases while MO-OOAaq remains high. If MO-OOAaq were 46 
driven by reversible solvation, this extended decrease in LWC would be expected to drive a corresponding 47 
decrease in MO-OOAaq. However, the MO-OOAaq concentrations appear unaffected by the decrease in LWC, 48 
suggesting that the MO-OOAaq does indeed consist of irreversibly-generated SOA via aqueous chemistry.  49 

The reasons for the high LWC are driven by the combination of high RH and high inorganic fraction (especially 50 
NH4NO3), which as shown in Fig. 1 are both maximised during this period. The high NH4NO3 content during 4 51 
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to 7 November is in turn driven by a unique airmass source region. Figure 12a shows 72-h backward trajectories 1 
calculated from the HYSPLIT transport model (Rolph et al., 2017; Stein et al., 2015), and analysed in Zefir v 4.0 2 
(Petit et al., 2017). Trajectories are coloured by date and time. In the figure, trajectories from 4 to 7 November 3 
pass over regions of high NOx emissions to the east and south of Beijing (Shandong and Henan provinces) before 4 
arriving at the sampling site. The air parcel spends approximately 30 hours over these high-NOx regions, as shown 5 
in Fig. 12b. As shown in Fig. S29, the period of 4 to 7 November is the only time in the campaign where the back 6 
trajectories pass over this region. Due to the high NO2 concentration and high RH in this period, particulate nitrate 7 
is produced during this regional transport homogeneously and/or heterogeneously, resulting in water uptake and 8 
high LWC in the aerosol phase. The high LWC in turn facilitates further heterogeneous formation of nitrate. This 9 
positive feedback provides favorable conditions for efficient aqueous chemistry and thus production of MO-10 
OOAaq (Kuang et al., 2020).  11 

3.3.5 LO-OOAns 12 

In Sect. 3.2, this factor has been identified as LO-OOA because of its moderately high CO2
+ signal and non-13 

negligible contribution from the CxHy group. The time series of this factor shows clear diurnal variation which 14 
peaks at around 20:00 in the non-heating season (Fig. 3a and 3c), but this variation is not clear in the heating 15 
season. In addition, the contribution of this factor to total OA is higher in the clean period than during the haze 16 
events (Fig. 3b), indicating this may be related to regional sources/processes rather than more local SFC emissions. 17 
The diurnal cycle of this factor is similar to COA and LO-OOASFC, but the chemical characteristics of these three 18 
factors are different. Compared to LO-OOASFC, this factor is characterised by ions with high H:C and low O:C 19 
and does not have a significant contribution from C6H10O5, a key ion in SFC-related LO-OOAs identified in both 20 
the present and previous studies (Qi et al., 2019). LO-OOAns also does not have large contributions from ions with 21 
the aromatic feature of low H:C. Although the spectrum of COA is also characterised by ions with high H:C and 22 
low O:C, the carbon number distribution plots of COA are characterised by significant signal from long-chain 23 
acids at high carbon number, whereas the carbon number distribution of this factor is characterised by high signal 24 
at low carbon number (from C8 to C12). Compared to other OOA factors, this factor has the lowest O:C ratio (0.33) 25 
and highest H:C ratio (1.69) from EESI-TOF. Since it is not characterised by any source-specific ions or signatures 26 
identified in previous EESI-TOF studies (e.g., levoglucosan and its isomers), this factor is named as LO-OOAns, 27 
representing non-source-specific LO-OOA. 28 

4. Atmospheric implications 29 

As discussed in Sect. 3.1, meteorological conditions are responsible for an alternating occurrence of haze and 30 
clean periods and these effects from meteorology are well-understood (Duan et al., 2020; Duan et al., 2019; Zhao 31 
et al., 2019; Xu et al., 2019; Sun et al., 2016a; Sun et al., 2016b). In addition, meteorology can also influence air 32 
mass trajectories on the regional/mesoscale, which may further influence the aerosol chemical composition. By 33 
comparing measurements before and after the start of the heating season (15 November), the effects of heating 34 
emissions on clean and haze periods in Beijing can be assessed. Figure 11 shows the time series of total OA and 35 
the contribution of different factors to each haze event. Systematic differences between seasons suggest the 36 
influences of different sources/processes.  37 

Clean periods in both the non-heating and heating seasons are dominated by SOA, comprising 76.9 % in the non-38 
heating season and 70.3 % in the heating season. In both seasons, the single largest component is LO-OOAns 39 
(45.3 % and 33.2 % in the non-heating and heating seasons, respectively), consistent with its identification as 40 
regional SOA not specific to a single emissions source. The SFC fraction is higher in the heating season, with 41 
CCOA and BBOA jointly comprising 22.7 % (vs. 15.0 % in the non-heating season) and LO-OOASFC and MO-42 
OOASFC jointly comprising 25.1 % (vs. 19.2 % non-heating season).  43 

Seasonal differences become more pronounced under haze conditions. Three light haze events (maximum 44 
concentrations between 15.4 and 30.8 µg m-3) were observed in each season. During these events in the non-45 
heating season, LO-OOAns remains the single largest component (33.0 to 42.7 %), although its fraction is slightly 46 
reduced relative to clean conditions (45.3 %). There is no corresponding fractional increase observed in any of 47 
the other factors, but rather an across-the-board relative increase in all, which results in a slightly increased POA 48 
fraction (ranging from 29.1 to 37.5 %, vs. 23.1 % under clean conditions). These changes likely result from an 49 
increased role of local emissions and reactivity under the stagnant conditions giving rise to haze. The non-heating 50 
light haze events contrast strongly with the heating light haze, where there is a larger reduction in the LO-OOAns 51 
fraction (at least 33.0 % in non-heating season to at most 29.6 % in heating season) that corresponds specifically 52 
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to increased SFC POA (at most 26.7 % in non-heating season to at least 27.5 % in heating season). Interestingly, 1 
the SFC SOA fraction is not significantly higher than under clean conditions, although event-to-event variation is 2 
large (ranging from 20.3 % to 41.0 % under heating season haze vs 25.1 % under clean conditions). 3 

In general, the light haze events within a given season are relatively similar to each other. However, significant 4 
differences in composition are observed between the light and severe haze events within a given season. The two 5 
severe haze events occurring within the heating season are also quite different from each other. The conclusions 6 
that can be drawn from this observation are limited by the small number of severe haze events sampled (1 non-7 
heating, 2 heating), but suggest the potential for unique meteorological/transport phenomena that may affect 8 
sources and composition during the most extreme events. For example, the non-heating haze event (4 to 7 Nov.) 9 
is dominated by MO-OOAaq from aqueous processes (40.8 % of OA), and as discussed in the previous section 10 
corresponds to unique airmass back-trajectories over high-NOx regions. The event from 18 to 22 Nov. is 11 
dominated by SFC, especially BBOA, which comprises 35.8 % of OA (with CCOA contributing an additional 12 
12.5 %), while SFC SOA comprises an only slightly larger fraction (27.8 % of OA) than under clean conditions. 13 
In contrast, the severe haze event from 30 Nov. to 3 Dec. has a large contribution from both SFC POA (32.8 %) 14 
and SFC SOA (41.0 %). Interestingly, the temporal evolution of these two events is also different, with the 18 to 15 
22 Nov. event (high SFC POA) commencing with a sudden concentration increase but remaining relatively stable 16 
thereafter, while concentrations during the 30 Nov. to 3 Dec. event (high SFC POA and SOA) increase gradually 17 
over multiple days. However, a close inspection of the 18 to 22 Nov. event in Fig. 3b shows a decrease in the 18 
BBOA fraction and increase in MO-OOASFC as the event proceeds, suggesting a generally important role for local 19 
SOA formation in a stagnant airmass during the course of a haze event. 20 

As a conclusion, our observation suggests that the sources and processes giving rise to haze events in Beijing are 21 
variable and seasonally-dependent. Two salient features are observed: 1) in the heating season, SOA formation is 22 
driven by oxidation of aromatics from solid fuel combustion, with secondary SFC-related factors (i.e., sum of 23 
MO-OOASFC and LO-OOASFC) contributing 37.2 % to 72.8 % of total SOA, and 2) under high NOx and RH 24 
conditions, aqueous phase chemistry may make a major contribution to SOA formation (with MO-OOAaq 25 
comprising 53.7 % of total SOA). The combination of high inorganic content and aqueous SOA can yield total 26 
mass concentrations comparable to those observed in the heating season, despite reduced regional VOC emissions 27 
in the absence of heating processes. 28 

Back-trajectory analysis shows that from 4 to 7 November, the air masses passed through a high NO2 29 
concentration region and remained for more than 24 hrs in this region (Fig. 12), which facilitated nitrate formation 30 
in the aerosol phase and thus water uptake. This suggests that meteorology cannot only influence the haze 31 
evolution on a local scale, but can also affect aerosol chemistry and chemical composition by influencing the 32 
origin and pathway of air mass.  33 

From a technical perspective, a surprising outcome of this source apportionment analysis was the extent to which 34 
the AMS SOA factor profiles contained source-related information corroborating the chemically more specific 35 
measurements of the EESI-TOF. Specifically, the SFC-related factors exhibited systematic enhancements in ions 36 
with low H:C ratios, while the CO+/CO2

+ ratio clearly higher than 1 was found to be a clear indicator for aqueous-37 
phase chemical processing. Although the latter observation requires the improved mass resolution of the L-TOF-38 
AMS and is therefore not retrievable from most existing AMS datasets, taken together they suggest that AMS 39 
SOA spectra may contain more source-specific information than is typically recognised. Although these results 40 
represent a single case study and so should not be overinterpreted, we suggest that intensity-independent statistical 41 
tools such as the z-score analysis employed here may be effective in retrieving such information and in providing 42 
additional insight into SOA sources. The combination of quantitative AMS data with semi-quantitative EESI-43 
TOF measurements is also shown to be promising, and alternative methods for combining such datasets (e.g., as 44 
discussed in the Methods section) should be pursued.  45 

5. Conclusions 46 

OA sources were investigated in Beijing during an intensive field deployment of AMS and EESI-TOF instruments 47 
from late September to mid-December 2017, covering the transition from the non-heating to heating seasons. This 48 
represents the first deployment of the EESI-TOF in a heavily polluted city. The robust quantification of the AMS 49 
and high chemical resolution of the EESI-TOF are shown to be highly complementary, facilitating identification 50 
of the sources and processes governing SOA concentrations. An integrated source apportionment study was 51 
conducted, by the application of PMF to AMS-only data to determine factor time series, followed by PMF on 52 
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EESI-TOF-only data using AMS-derived factor time series as constraints, to increase the chemical information 1 
associated with each factor. The chemical interpretation of the AMS-determined factors was facilitated by using 2 
z-score analysis and carbon number distribution plots, which successfully resolved and interpreted four SOA 3 
sources and processes. 4 

The source apportionment analysis yielded four primary factors and four secondary factors. Primary factors were 5 
hydrocarbon-like OA (HOA) characterised by a high fraction of hydrocarbon fragments, cooking-related OA 6 
(COA) characterised by long-chain fatty acids, biomass burning OA (BBOA) with a high contribution from 7 
levoglucosan, and coal combustion OA (CCOA) with a high PAH signal at high m/z range. The secondary factors 8 
consisted of more- and less-oxygenated oxygenated organic aerosol from solid fuel combustion (MO-OOASFC 9 
and LO-OOASFC), more-oxygenated aerosol from aqueous-phase chemistry (MO-OOAaq), and less-oxygenated 10 
OA from mixed or indeterminate sources (LO-OOAns). The SFC-related factors were characterised by a low H:C 11 
ratio in both the EESI-TOF and AMS spectra and increased concentrations during the heating period. MO-OOAaq 12 
was characterised by an increased contribution from small, highly oxygenated ions and a low AMS CO+/CO2

+ 13 
ratio; taken together, these observations suggest an enhanced contribution from small acids and diacids.  14 

The OA composition in Beijing is dominated by organic aerosols, with a high SOA fraction (66.4±13.5 %) to total 15 
OA throughout the campaign. SOA formation during the heating season derives mainly from solid fuel 16 
combustion. However, even during the non-heating season when solid fuel combustion was not a major source, 17 
an intense haze event was observed with OA concentrations comparable to the highest concentrations observed 18 
during the heating season. These high concentrations were due to substantial SOA production from aqueous phase 19 
chemistry, and corresponded to the passage of air parcels over the high NOx regions to the east and south of 20 
Beijing. This suggests that aqueous chemistry may provide a major contribution to SOA formation under certain 21 
meteorological conditions, even during periods of intense haze. 22 
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 1 

Figure 1. Time series of meteorological variables and NR-PM2.5 composition. (a) temperature (T) and relative humidity 2 
(RH), (b) wind speed and wind direction, (c) mass concentrations of NR-PM2.5 species measured by the AMS, and (d) 3 
mass fractions of the species shown in Fig. 1c. Shaded area indicates haze episodes: light haze episodes are defined as 4 
having NR-PM2.5 concentrations from 20 to 150 µg m-3 (light blue), while severe haze episodes are defined having NR-5 
PM2.5 concentrations above 150 µg m-3 (light red).  6 
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1 

 2 

Figure 2. Averaged mass spectra (a) and relative contributions (b) of the 8-factor solution from the AMS PMF bootstrap 3 
result. The mass spectra consist of HR ions from m/z 12 to 120, and integrated integer m/z (denoted UMR) from m/z 4 
121 to 300, whose intensity is multiplied by 5. In (a), error bars denote standard deviation calculated from all accepted 5 
bootstrap solutions. 6 
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Figure 3. (a) Averaged time series with interquartile range (shaded area with same colour as factor), (b) 2 
averaged total OA concentration and relative contributions and (c) median diurnal cycle the accepted AMS 3 
PMF bootstrap 8-factor solutions based on the criteria discussed in Sect. 2.3. Lower and upper dashed lines 4 
in (c) indicate 1st and 3rd quantiles. In (a) and (b), the shaded areas in red and in blue represent periods of 5 
severe haze and light haze, respectively.  6 
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Figure 4. The averaged (a) time series and (b) mass spectra of accepted solutions from combined bootstrap/a-value 3 
analysis of the EESI-TOF dataset. EESI-TOF time series are constrained by the 7 non-HOA factors retrieved from 4 
AMS PMF analysis. Shaded area in (a) indicates the anchor of bootstrap/a-value analysis as shown in Eq. (6). Error 5 
bars in (b) indicate the standard deviation of each ion calculated from all selected solutions. In (a), the shaded area in 6 
red and in blue represents severe and light haze periods, respectively.  7 
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Figure 5. Carbon number distribution plots of three primary factors: (a) COA, (b) BBOA and (c) CCOA, coloured by 6 
CxHyOzN1-2 and five different CxHyOz categories based on H:C ratio (H:C < 1.1, 1.1 < H:C < 1.3, 1.3 < H:C < 1.5, 1.5 < 7 
H:C < 1.7 and H:C > 1.7). Each distribution is normalised such that its sum is 1. 8 
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Figure 6. Carbon number distribution plots of three primary factors: (a) COA, (b) BBOA and (c) CCOA, coloured by 4 
CxHyOzN1-2 and five different CxHyOz categories based on O:C ratio (O:C < 0.25, 0.25 < O:C < 0.45, 0.45 < O:C < 0.65, 5 
0.65 < O:C < 0.85 and O:C > 0.85). Each distribution is normalised such that its sum is 1. 6 
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Figure 7. Carbon number distribution plots of four OOA factors: (a) MO-OOAaq, (b) MO-OOASFC, (c) LO-OOASFC 4 
and (d) LO-OOAns, coloured by CxHyOzN1-2 (red) and five different CxHyOz categories (green to blue) based on H:C 5 
ratio (H:C < 1.1, 1.1 < H:C < 1.3, 1.3 < H:C < 1.5, 1.5 < H:C < 1.7 and H:C > 1.7). Each distribution is normalised such 6 
that its sum is 1. 7 
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Figure 8. Carbon number distribution plots of four OOA factors: (a) MO-OOAaq, (b) MO-OOASFC, (c) LO-OOASFC 4 
and (d) LO-OOAns, coloured by CxHyOzN1-2 (red) and five different CxHyOz categories (green to blue) based on O:C 5 
ratio (O:C < 0.25, 0.25 < O:C < 0.45, 0.45 < O:C < 0.65, 0.65 < O:C < 0.85 and O:C > 0.85). Each distribution is 6 
normalised such that its sum is 1. 7 
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Figure 9. Van Krevelen plot of AMS factor mass spectra for (a) MO-OOAaq, (b) MO-OOASFC, (c) LO-OOASFC and (d) 3 
LO-OOAns, coloured by the number of nitrogen atoms. Large symbols denote ions with median z-score ≥ 1.5 and small 4 
symbols denotes median z-score < 1.5 for accepted runs from bootstrap analysis. 5 
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Figure 10. (a) Time series of AMS-measured CO+ and CO2
+ throughout the campaign. (b) Scatter plot of CO+ and CO2

+ 4 
indicating a different slope for the haze event between 4 November to 7 November 2017, suggesting aqueous phase 5 
chemistry may happen in this period. (c) Time series of LWC, both in fraction (top) and mass concentration (bottom), 6 
complemented by MO-OOAaq, demonstrating the high correlation between the latter two variables. In (a) and (c), the 7 
shaded area in red and in blue represents severe and light haze periods, respectively.  8 
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Figure 11. Time series of total OA and the mean contribution of eight AMS factors in each haze event and clean periods 2 
for the non-heating and heating periods. The top two pie charts indicate the averaged contributions for clean periods 3 
in non-heating season and heating season, three middle and six bottom pie charts indicate corresponding the averaged 4 
contributions for three severe haze events (shaded red area) and six light haze events (shaded blue area) according to 5 
time series of total OA below, respectively.  6 
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Figure 12. Airmass trajectory analysis. (a) 72-h back-trajectories (HYSPLIT) for the haze event from 4 to 7 November 4 
colour-coded by date and time, (b) 72-h back-trajectories for the haze event from 4 to 7 November colour-coded by 5 
hours before the air mass reaches Beijing. In both figures, trajectories are overlaid on a 2015 map of surface NO2 6 
concentrations based on the CHIMERE model and driven by the 2015 DECSO inventory (Liu et al., 2018). 7 
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