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Abstract: In recent years, intense haze events in megacities such as Beijing have received significant study. 13 
Although secondary organic aerosol (SOA) has been identified as a major contributor to such events, knowledge 14 
of its sources and formation mechanisms remains uncertain. We investigate this question through the first field 15 
deployment of the extractive electrospray ionisation time-of-flight mass spectrometer (EESI-TOF) in Beijing, 16 
together with an Aerodyne long time-of-flight aerosol mass spectrometer (L-TOF AMS). Measurements were 17 
performed during autumn and winter 2017, capturing the transition from non-heating to heating seasons. Source 18 
apportionment resolved four factors related to primary organic aerosols (traffic, cooking, biomass burning, and 19 
coal combustion), as well as four related to secondary organic aerosol (SOA). Of the SOA factors, two were 20 
related to solid fuel combustion (SFC), one to SOA generated from aqueous chemistry, and one to 21 
mixed/indeterminate sources. The SFC factors were identified from spectral signatures corresponding to 22 
aromatic oxidation products, while the aqueous SOA factor was characterised by signatures of small organic 23 
acids and diacids, and unusually low CO+/CO2

+ fragment ratios measured by the AMS. Solid fuel combustion 24 
was the dominant source of SOA during the heating season. However, a comparably intense haze event was also 25 
observed in the non-heating season, and was dominated by the aqueous SOA factor. Aqueous chemistry was 26 
promoted by the combination of high relative humidity and air masses passing over high NOx regions to the 27 
south and east of Beijing, leading to high particulate nitrate. The resulting high liquid water content was highly 28 
correlated with the concentration of the aqueous SOA factor. These results highlight the strong compositional 29 
variability between different haze events, indicating the need to consider multiple formation pathways and 30 
precursor sources to describe SOA during intense haze events in Beijing.    31 

 32 

1. Introduction 33 

Atmospheric aerosols negatively affect human health (Liu et al., 2017a; Krapf et al., 2017; Beelen et al., 2014; 34 
Laden et al., 2006; Pope et al., 2002), visibility (Chow et al., 2002), and urban air quality (Fenger, 1999; Mayer, 35 
1999) on local and regional scales. Aerosols are also linked to the most important uncertainties related to global 36 
radiation balance and climate change (Myhre et al., 2014; Penner et al., 2011; Forster et al., 2007; Lohmann and 37 
Feichter, 2005). Therefore, understanding of aerosol chemical composition, sources, and evolution is 38 
fundamental to the development of appropriate mitigation policies. Organic aerosol (OA) is a major component 39 
of atmospheric aerosol and contributes significantly to the total aerosol mass (Jimenez et al., 2009). OA sources 40 
are typically classified as either primary organic aerosol (POA), which is directly emitted from sources such as 41 
fossil fuel combustion, industrial emissions, biomass burning and cooking emissions, or secondary organic 42 
aerosol (SOA), which is produced by atmospheric oxidation of volatile organic compounds (VOCs), yielding 43 
lower-volatility products that can subsequently partition to the particle phase. Globally, SOA accounts for 44 
approximately from 50 % to 90 % of total OA, with the predominant fraction of SOA (90 %) from oxidation of 45 
biogenic VOCs and only 10 % of SOA from anthropogenic VOCs (Jimenez et al., 2009; Hallquist et al., 2009). 46 
However, studies have shown that SOA production and its properties can be affected by the interaction between 47 
biogenic and anthropogenic VOCs. Apart from huge uncertainties in production and properties, SOA can also 48 
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exert serious health effects, including protein and DNA damage caused by reactive oxygen species (ROS) 1 
induced from SOA (Reuter et al., 2010; Li et al., 2003; Halliwell and Cross, 1994). Recent studies indicate that 2 
the ROS content of SOA is source-dependent, suggesting health risks may likewise be source-dependent, 3 
highlighting the importance of OA source identification and quantification (Daellenbach et al., 2020; Zhou et 4 
al., 2018). Previous studies have been relatively successful in quantitatively linking POA to its sources, 5 
However, quantification of SOA sources and/or formation pathways is much more challenging (Qi et al., 2019; 6 
Stefenelli et al., 2019; Xu et al., 2019; Elser et al., 2016; Sun et al., 2016a; Sun et al., 2013), because SOA 7 
consists of thousands of multifunctional, highly oxygenated compounds, including high molecular weight 8 
species and oligomers, which are difficult to measure using traditional instrumentation. Therefore, the effects of 9 
individual SOA sources on health and climate remain poorly constrained. 10 
 11 
Fine aerosol pollution is a major public health concern in many megacities, highlighting the need for efficient 12 
mitigation strategies informed by a detailed assessment of POA and SOA sources. Beijing is an area of 13 
particular interest, due to the frequency of extreme haze events in northern China (An et al., 2019) and a rapidly 14 
changing pollution landscape in response to the “Atmospheric Pollution Prevention and Control Action Plan” 15 
implemented in 2013 by the Chinese government. This initiative targeted selected anthropogenic emissions 16 
sources, reducing annual mean PM2.5 concentration by ~30% between 2013 and 2017 (Xinhuanet, 2018), 17 
although annual concentrations remain much higher than both national air quality standards and WHO 18 
guidelines. As a result, numerous studies have investigated the composition and sources of PM2.5 in Beijing 19 
(Duan et al., 2020; Duan et al., 2019; Xu et al., 2019; Zhao et al., 2019; Äijälä et al., 2017; Elser et al., 2016; Hu 20 
et al., 2016; Sun et al., 2016a; Huang et al., 2014; Zhang et al., 2014; Sun et al., 2013), with most online source 21 
apportionment studies utilising aerosol mass spectrometers (AMS). These studies have successfully identified 22 
POA sources, with dominant winter sources including coal combustion (10 to 30%), biomass burning (9 to 23 
18%), traffic (9 to 18%), and cooking (12 to 20%). In contrast, although SOA typically comprises 35 to 70% of 24 
Beijing OA, far less is known about its sources and formation processes. In summer, Bryant et al. (2020) found 25 
the isoprene-derived SOAs are strongly controlled by anthropogenic NOx and sulphate aerosols via offline-filter 26 
analysis. Wang et al. (2019) discussed the factors that influence the formation of secondary nitro-aromatic 27 
compounds under high NOx concentration and aromatic precursor concentrations. Modeling studies also 28 
established links between atmospheric oxidising capacity and SOA formation (Feng et al., 2019), and suggested 29 
an influence of  heterogeneous HONO and primary residential emission in SOA formation in winter (Xing et al., 30 
2019). However, apportionment of SOA to specific sources has not yet been achieved, with online source 31 
apportionment studies (using AMS) reporting either a single SOA factor (denoted oxygenated organic aerosol, 32 
OOA), or two factors distinguished by the extent of oxygenation (less oxygenated OOA, LO-OOA, and more 33 
oxygenated OOA, MO-OOA) (Xu et al., 2019; Elser et al., 2016; Sun et al., 2016a; Sun et al., 2013). 34 

Limitations in SOA source apportionment are directly tied to limitations of the measuring instruments. For the 35 
Aerodyne aerosol mass spectrometer (AMS), a trade-off exists between quantification and time resolution vs. 36 
chemical resolution. Quantification and time resolution are facilitated by high temperature vaporisation. which 37 
induces significant thermal decomposition and ionisation-induced fragmentation (DeCarlo et al., 2006). This 38 
decreases chemical resolution, particularly for the multifunctional and highly oxygenated molecules of which 39 
SOA is comprised (e.g., multifunctional acids, peroxides, organonitrates, organosulphates, oligomers), thereby 40 
hindering SOA source apportionment. To avoid thermal decomposition, the CHARON PTR-MS uses a lower 41 
temperature vaporisation scheme, but the proton transfer reaction ionisation scheme is sufficiently energetic to 42 
cause extensive fragmentation of typical SOA molecules (Muller et al., 2017; Eichler et al., 2015). To reduce 43 
ionisation-induced fragmentation, several semi-continuous measurement techniques have also been developed, 44 
e.g., Thermal Desorption Aerosol GC/MS-FID (TAG) by Williams et al. (2006), and Filter Inlet for Gases and 45 
AEROsols chemical ionisation time-of-flight mass spectrometer (FIGAERO-CIMS) by Lopez-Hilfiker et al. 46 
(2014). Although these instruments have lower thermal decomposition and better chemical resolution, like 47 
offline filter sampling they are subject to reaction/vaporisation processes on the collection substrate and 48 
decreased time resolution. Alternatively, offline filter analysis has some advantages, including 1) the possibility 49 
to apply a wide variety of analytical techniques, which can maximise the chemical information retrieved for the 50 
analysed fraction; and 2) low cost and maintenance requirements for filter sampling, which in turn facilitates 3) 51 
practicality of measurements with wide spatial and temporal coverage. However, it also has some drawbacks, 52 
including 1) low time resolution incapable of capturing characteristic timescales of certain OA sources and/or 53 
ageing and formation processes, 2) artefacts due to adsorption, evaporation, and chemical reactions during 54 
sample collection, storage, and/or transfer (Ge et al., 2012; Huang et al., 2010; Hildebrandt et al., 2010; 55 
Hallquist et al., 2009), and 3) the analysable OA faction may vary significantly between different techniques. 56 
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To better investigate SOA sources and/or formation processes, an instrument that can resolve aerosol chemical 1 
composition was recently developed at the Paul Scherrer Institute (PSI). The extractive electrospray ionisation 2 
time-of-flight mass spectrometer (EESI-TOF) utilises a soft ionisation technique with minimal thermal energy 3 
transfer to the analyte molecules. This yields online, near-molecular-level (i.e., molecular formulae) 4 
measurement of organic aerosol composition with high time resolution (seconds) without thermal 5 
decomposition or ionisation-induced fragmentation (Lopez-Hilfiker et al., 2019). Operating principles are 6 
discussed in detail in section 2.2.1. Two recent source apportionment studies in Zurich using an EESI-TOF, 7 
together with an AMS, successfully resolved several SOA factors and quantified the processes governing SOA 8 
concentrations for summer and winter (Qi et al., 2019; Stefenelli et al., 2019). These studies confirm that EESI-9 
TOF and AMS are highly complementary, with the AMS providing robust quantification but limited chemical 10 
resolution, and the EESI-TOF providing a linear but hard-to-quantify response with high chemical resolution. 11 
The combined measurements, therefore, have the potential to provide quantitative, real-time measurements of 12 
organic aerosol composition with high chemical resolution. 13 

Here we present AMS and EESI-TOF measurements in Beijing from late September to mid-December 2017. 14 
This campaign captures distinct characteristics of the non-heating season and heating season, which begins on 15 
15 November. An integrated source apportionment analysis of AMS and EESI-TOF data is performed to 16 
characterise the sources and physicochemical processes governing SOA composition. 17 

 18 

2. Methodologies 19 
2.1 Measurement campaign 20 

Beijing is the capital city of China PR and one of the most populated cities in the world, with more than 20 21 
million inhabitants. It is located at the northwestern end of the North China Plain and bordered by the Yan 22 
Mountains from the southwest-northwest-north. Measurements were conducted at the National Centre for 23 
Nanoscience and Technology in Beijing (40.00º N, 116.38º E) and the measurement site is located on the roof of 24 
the South Building of the National Centre for Nanoscience and Technology (~20 m above ground level) mostly 25 
surrounded by smaller buildings. The exception is an 18-floor building approximately 30 m to the north, which 26 
may interfere with and even block the wind from this direction. The northern part of the fourth ring highway is 27 
situated about 200 m south of the site. However, buildings between the highway and the site reduce the 28 
influence from local highway traffic. This location is not affected by major emissions from industries. 29 

The measurements took place from late September to mid-December, 2017, conducted by an extractive 30 
electrospray ionisation long-time-of-flight mass spectrometer (EESI L-TOF MS) and a long-time-of-flight 31 
aerosol mass spectrometer (L-TOF AMS). A scanning mobility particle sizer (SMPS), consisting of a model 32 
3080 DMA and model 3022 CPC (TSI, Inc., Shoreview, MN, USA), an aethalometer (model AE33, Magee 33 
Scientific, Ljubljana, Slovenia) and an Xact 625i Ambient Metals Monitor (Cooper Environmental Services 34 
LLC, Tigard, Oregon, USA) were additionally deployed at the site to measure the particle size distribution from 35 
15.7 to 850.5 nm, the equivalent black carbon (eBC) concentration and the mass of 35 different elements in 36 
PM10 and PM2.5, respectively. Ambient air was sampled through a PM2.5 cyclone (∼ 50 cm above the roof of the 37 
measurement site building) at a flow rate of 5 L min-1 to remove coarse particles. The air passed through a 38 
stainless steel (∼ 6 mm outer diameter and ~ 4 mm inner diameter) tube into the EESI L-TOF MS, L-TOF 39 
AMS, and SMPS, installed on the same line and in close proximity. Here we focus on OA measurements from 40 
late October to mid-December 2017, during which period both the AMS and EESI-TOF were operational. 41 

2.2 Instrumentation 42 
2.2.1 Extractive electrospray ionisation long time-of-flight mass spectrometer (EESI-TOF) 43 

The EESI-TOF provides online, highly time-resolved measurements of the organic aerosol molecular ions 44 
without thermal decomposition or ionisation-induced fragmentation. A detailed description can be found 45 
elsewhere (Lopez-Hilfiker et al., 2019). The system used in this campaign consists of a recently developed EESI 46 
source integrated with a commercial long-time-of-flight (L-TOF) mass spectrometer (Tofwerk AG, Thun, 47 
Switzerland), which in this campaign achieved mass resolution of ~8000 Th Th-1 at mass to charge ratios m/z 48 
higher than 170. The EESI-TOF continuously sampled at ~0.8 L min-1, alternating between direct ambient 49 
sampling (15 min) and sampling through a particle filter (5 min) to obtain a measurement of the instrument 50 
background. The ambient spectrum (Mtotal) minus the average of the immediately adjacent background spectra 51 
(before and after) (Mfilter) yields a difference spectrum, which is taken as the ambient aerosol composition (Mdiff). 52 
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In both modes, the sampled air passes through a multi-channel extruded carbon denuder (with diameter of 4 mm 1 
and length of 3 to 4 cm) positioned at 9 cm away from the inlet capillary (see Text S1) which eliminates 2 
negative artefacts from semi-volatile species desorbing from the particle filter and positive artefacts when the 3 
particle filter acts as a sink of semi-volatile species. The denuder also improves detection limits by reducing the 4 
gas-phase background. After sampling for 24 hrs, the denuder was replaced, and regenerated for 24 hrs in an 5 
oven at ~200 °C. After the denuder, particles intersect a spray of charged droplets generated by a conventional 6 
electrospray probe and the soluble fraction is extracted into the solvent. The droplets then pass through a heated 7 
stainless-steel capillary (~250 ◦C), wherein the electrospray solvent evaporates and ions are ejected into the 8 
mass spectrometer. Due to the short residence time (~1 ms) in the capillary, the effective temperature 9 
experienced by the droplets is much lower than 250 ◦C and no thermal decomposition is observed. Finally, the 10 
ions are analysed by a portable high resolution long-time-of-flight mass spectrometer with an atmospheric 11 
pressure interface (Junninen et al., 2010). In this campaign, the electrospray consisted of a 1:1 water/acetonitrile 12 
mixture doped with 100 ppm NaI, and the mass spectrometer was configured to detect positive ions. Ions are 13 
detected in the form of [M]Na+ (where M is the analyte) and other ionisation pathways are mostly suppressed, 14 
yielding a linear response to mass (without significant matrix effects) and simplifying spectral interpretation 15 
(Lopez-Hilfiker et al., 2019). 16 

The high pollution levels experienced during this campaign presented several operational and analytical 17 
challenges for the EESI-TOF, specifically: (1) denuder breakthrough, which increased background signal, led to 18 
the detection of spurious signals in the particle phase, and increased the time required to achieve a stable signal 19 
following a filter switch between Mtotal and Mfilter; (2) prevalence of large particles during haze events; and (3) 20 
increase in the required frequency of cleaning (unclogging) and realigning the electrospray capillary. These 21 
issues and corresponding solutions are discussed in detail in the supplement, and briefly summarised here:  22 

(1) increased background signals induced by denuder breakthrough compromised high-resolution peak 23 
fitting of the spectral region containing particle-phase signals in Tofware (Tofwerk AG, Thun, 24 
Switzerland). Therefore, a custom peak fitting algorithm (outside of Tofware) was used, as described in 25 
the supplement (see Text S2, Fig. S5 and Fig. S6). Further, denuder breakthrough made it non-trivial to 26 
determine whether ions with significantly non-zero difference signal (Mdiff) derive from the particle 27 
phase, gas phase, or desorption from dirtier-than-normal walls (in addition to the standard challenge of 28 
background ions with high signal from minor contaminants in the working solution). As only particle-29 
phase ions are desired for further analysis, three criteria were applied for their selection, namely 1) the 30 
ratio of signal to uncertainties, 2) ratio of signal to background and 3) estimated saturation vapour mass 31 
concentration (C0) (see Text S3). In addition, the time required to achieve a stable signal following a 32 
filter switch between Mtotal and Mfilter was longer than normal, only the stabilised part of the time series 33 
was used for further analysis. Note that compared to normal operation, denuder breakthrough and high 34 
background signals significantly increase uncertainties of EESI-TOF data, which poses great 35 
challenges in source apportionment and thus motivates the source apportionment strategy in Sect 2.3. 36 
Further, the selection of ions in particle phase using saturation vapour mass concentration also 37 
introduces a bias against less oxygenated and lower molecular weight species, as well as small organic 38 
acids (e.g., small multifunctional acids).  39 

(2) prevalence of large particles during haze events was observed. To prevent the massive sampling 40 
losses of large particles, the denuder was pulled back, located at 9 cm away from the inlet capillary (see 41 
Text S1). 42 

 (3) due to high pollution levels, the clogging of capillary was required more frequently, therefore, the 43 
frequency of cleaning (unclogging) and realigning the electrospray capillary increased, which resulted 44 
in changes in EESI-TOF sensitivity that uniformly affect all measured ions. Therefore, a normalisation 45 
of time-dependent EESI-TOF sensitivity was implemented based on a comparison of [NaNO3]Na+ 46 
measured by the EESI-TOF with nitrate measured by the AMS (see Text S4).  47 

The EESI-TOF achieved ~ 90 % data coverage during the sampling period and all ions were detected as adducts 48 
with Na+. Before high-resolution peak fitting, data were averaged to 2 min. Then the custom peak fitting 49 
algorithm (Text S2) was implemented, resulting in 2824 identified ions in total ranging from m/z 64 to m/z 400. 50 
As discussed above, denuder breakthrough yielded stabilisation times from several seconds to several minutes, 51 
depending on the ion. Therefore, only the stabilised part of the averaged time series was used for further 52 
analysis, corresponding to the last 4 min in the 15 min period of ambient sampling, and the last 2 min in the 5 53 
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min filter sampling period, while the remaining time is classified as a transitional period and discarded from 1 
further analysis. Adjacent periods of filter sampling were linearly interpolated to obtain an estimated Mfilter 2 
corresponding to each Mtotal; the difference of Mtotal minus the interpolated Mfilter yields the Mdiff reported here. 3 
To facilitate comparison with bulk mass measurements, EESI-TOF signals were converted from counts per 4 
second (cps) to the mass flux of ions to the microchannel plate detector (ag s-1), as follows: 5 

௫ܯ ൌ ௫ܫ ൈ ሺMW௫ െMW஼஼ሻ ሺ1ሻ 6 

where ܯ௫ and Ix are respectively the mass flux of ions in attograms per second and the ion flux (counts per 7 
second, cps) reaching the detector for a given ion of identity ݔ . MW௫ and MW஼஼ represent the molecular weight 8 
of the ion and the charge carrier (e.g., Na+), respectively (Lopez-Hilfiker et al., 2019; Qi et al., 2019; Stefenelli 9 
et al., 2019). This measured mass flux can in principle be converted to ambient concentration by the instrument 10 
flow rate, EESI collection efficiency (the probability that the analyte-laden droplet enters the inlet capillary), 11 
EESI extraction efficiency (the probability that a molecule dissolves in the spray), ionisation efficiency (the 12 
probability that an ion forms and survives declustering forces induced by evaporation and electric fields), and 13 
ion transmission efficiency (the probability that a generated ion is transmitted to the detector). However, since 14 
several of these parameters are compound-dependent and remain uncharacterised, mass concentration at this 15 
stage cannot be determined (Lopez-Hilfiker et al., 2019).  16 

After application of the criteria in Text S3, 401 ions are retained for further analysis. As will be discussed in 17 
Sect. 2.3, source apportionment was conducted on the EESI-TOF data by positive matrix factorisation (PMF), 18 
which requires as inputs the mass spectral time series and corresponding uncertainties. The input data matrix 19 
,ௗ௜௙௙ሺ݅ܯ ݆ሻ is calculated according to Eq. (2):   20 

.ௗ௜௙௙ሺ݅ܯ ݆ሻ ൌ 	M௧௢௧௔௟ሺ݅, ݆ሻ െ ,௙௜௟௧௘௥,௘௦௧௜௠௔௧௘ሺ݅ܯ ݆ሻ ሺ2ሻ 21 

where ܯ௧௢௧௔௟ሺ݅, ݆ሻ denotes the signal of spectra measured in total sampling period, ܯ௙௜௟௧௘௥,௘௦௧௜௠௔௧௘ሺ݅, ݆ሻ denotes 22 

signal of estimated background spectra after interpolation of the filter sampling period, and ܯௗ௜௙௙ሺ݅, ݆ሻ denotes 23 
signal of the difference spectra between total sampling period and estimated background and consists of 401 24 
(ions) × 1239 (time points). The error matrix corresponding to ܯௗ௜௙௙ is estimated by adding in quadrature the 25 

uncertainty of total sampling measurement σ௧௢௧௔௟
	 ሺ݅, ݆ሻ	and filter sampling measurement σ௙௜௟௧௘௥,௘௦௧௜௠௔௧௘

	 ሺ݅, ݆ሻ , 26 

which are in turn based on ion counting statistics and detector variability (Allan et al., 2003b), shown in Eq. (3):  27 

σௗ௜௙௙ሺ݅, ݆ሻ ൌ ටσ௧௢௧௔௟
ଶ ሺ݅, ݆ሻ ൅ σ௙௜௟௧௘௥,௘௦௧௜௠௔௧௘

ଶ ሺ݅, ݆ሻ	 ሺ3ሻ 28 

 29 

2.2.2 Long time-of-flight aerosol mass spectrometer (L-TOF AMS) 30 

A long time-of-flight aerosol mass spectrometer (L-TOF AMS, Aerodyne Research Inc.) equipped with a PM2.5 31 
aerodynamic lens was deployed to monitor the non-refractory (NR) particle composition with a time resolution 32 
of 2 min. The instrument is described in detail elsewhere (Canagaratna et al., 2007). Briefly, particles are 33 
sampled continuously at ~0.1 L min -1 into a 100 µm critical orifice and then a PM2.5 aerodynamic lens, which 34 
focuses the particles into a narrow beam and accelerates them to a velocity inversely related to their vacuum 35 
aerodynamic diameter (Williams et al., 2013). The particle beam impacts on a heated tungsten surface (standard 36 
AMS vaporiser, ~ 600 ◦C, and ∼ 10−7 Torr) and the NR components flash vaporise. The resulting gases are 37 
ionised by electron ionisation (EI, ∼ 70 eV) and measured by a TOF mass spectrometer. The instrument was 38 
calibrated for ionisation efficiency (IE) at the beginning, middle, and end of the campaign by a mass-based 39 
method using 350 nm NH4NO3 particles. To eliminate the influence from relative humidity (RH) on collection 40 
efficiency (CE), a Polytube Dryer Gas Sample Dryer (Perma Pure LLC) was mounted in front of the AMS inlet. 41 
A composition-dependent collection efficiency (CDCE) was applied to correct the measured aerosol mass 42 
(Middlebrook et al., 2012), and no size-dependent CE corrections were applied. Data analysis was performed in 43 
Igor Pro 6.39 (Wavemetrics, Inc.) using SQUIRREL 1.57 and PIKA 1.16 ((Donna Sueper, ToF-AMS high-44 
resolution analysis software).  45 

In conventional AMS data analysis, the signal from CO+ cannot be directly determined due to interference from 46 
N2

+, and is instead assumed to be equal to that of CO2
+. However, the increased mass resolution provided by the 47 

L-TOF detector was sufficient in this study to allow direct peak fitting of CO+, which is reported herein. As 48 
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shown by Pieber et al. (2016), CO2
+ signal in the AMS derives not only from OA and gaseous CO2, but is also 1 

generated directly from the vaporiser in the presence of some inorganic aerosols, notably NH4NO3. This effect 2 
was corrected using 350 nm NH4NO3 aerosol according to the method recommended by Pieber et al. (2016) and 3 
the nitrate fraction was not high enough to require the composition-dependent method of Freney et al. (2019). 4 
The CO2

+ signal resulting from nitrate was found to be 4.4 % of the total CO2
+ signal. In principle, spurious CO+ 5 

signal can be generated by the same process, either through fragmentation of CO2 or directly via related 6 
oxidation reactions. However, the CO+ signal was below detection limit for the NH4NO3 test aerosol. We 7 
therefore assumed a value of 0.4 % of total CO+ signal, which corresponds to 10 % of CO2

+ as given by the 70 8 
eV EI reference mass spectrum of CO2 according to the NIST Standard Reference Simulation Website (Shen et 9 
al., 2017).  10 

Source apportionment (see Sect. 2.3) was performed on the AMS OA data and requires as inputs the OA mass 11 
spectral time series and corresponding uncertainties. The data matrix was constructed by including both (1) ions 12 
with known molecular formula for m/z ≤ 120 and (2) the integrated signal across each integer m/z for m/z 121 to 13 
m/z 300. This allows inclusion of chemical information at m/z where the number of possible ions and AMS 14 
resolution are insufficient for robust identification and quantification of individual ions. Of particular note for 15 
the current dataset, inclusion of the high m/z data allows inclusion of polycyclic aromatic hydrocarbons (PAHs) 16 
in the PMF analysis. Uncertainties were calculated according to the method of Allan et al. (2003a), and account 17 
for electronic noise, ion-to-ion variability at the detector, and ion counting statistics, with a minimum error 18 
enforced according to the method of Ulbrich et al. (2009). As recommended by Paatero and Hopke (2003), 19 
variables with weak SNR (0.2<SNR<2) were down-weighted by a factor of 2 and variable with low SNR 20 
(SNR<0.2) were removed from the input matrices.  21 

Ions that were not independently fit but calculated as a constant ratio of CO2
+, i.e., O+, HO+ and H2O+, were 22 

removed from PMF analysis to avoid overweighting the contribution of CO2
+. After obtaining the PMF 23 

solutions, the contribution of these ions was recalculated and reinserted into the factor profile. The resulting 24 
factor profiles were re-normalised, likewise the total mass. Note that although typical AMS source 25 
apportionment studies likewise remove CO+, the increased mass resolution of the L-TOF detector allows an 26 
independent measurement of CO+ and this ion is therefore retained for PMF. Isotopes were removed prior to 27 
PMF analysis (to avoid overweighting the parent ions) and reinserted afterwards.  28 

2.3 Source Apportionment Technique 29 

Source apportionment was performed using the positive matrix factorisation (PMF) model, implemented within 30 
the multilinear engine (ME-2). AMS and EESI-TOF measurements are highly complementary, with the AMS 31 
providing robust quantification but limited chemical resolution, and the EESI-TOF providing a linear but hard-32 
to-quantify response with high chemical resolution. As a result, integrating these two instruments in single 33 
source apportionment model represents a promising strategy for improved source apportionment, especially of 34 
the SOA fraction. Conceptually, this can be executed in three ways: (1) PMF analysis on a single dataset 35 
containing both AMS and EESI-TOF data; (2) PMF analysis of EESI-TOF-only data to identify factors and 36 
determine their time series, followed by PMF on AMS-only data with factor time series constrained according to 37 
EESI-TOF results; or (3) PMF on AMS-only data to determine factor time series, followed by PMF on EESI-38 
TOF-only data with constrained factor time series to facilitate chemical interpretation of the AMS-determined 39 
factors. For the present analysis, we selected method (3) because of EESI-TOF data quality issues related to 40 
denuder breakthrough (see Sect. 2.2.1) and the appearance of several interesting-but-unexplained factors in 41 
preliminary AMS PMF analysis.  42 

For the AMS PMF analysis, one factor related to traffic and one factor related to cooking activities were 43 
constrained using the a value approach for the HOA spectra from Mohr et al. (2012) and the COA spectra from 44 
Crippa et al. (2013). Based on the result from PMF analysis on AMS data, PMF was then performed for the 45 
EESI-TOF dataset, by constraining all factor time series retrieved from the AMS PMF source apportionment, 46 
except for the HOA time series (which was excluded because the hydrocarbon-like species dominating HOA are 47 
undetectable by the EESI-TOF extraction/ionisation scheme used here). This is conceptually similar to chemical 48 
mass balance (CMB), except that here the factor time series are constrained instead of factor profiles. This 49 
allows AMS-resolved factors, notably those related to SOA, to be described in terms of the higher chemical 50 
resolution achievable by the EESI-TOF. To explore the robustness and uncertainties of each step in our 51 
integrated source apportionment, bootstrap analysis was conducted individually on the AMS PMF solution and 52 
the second step “CMB-analogue” result from the EESI-TOF.  53 
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Note that this strategy would not necessarily be the optimal use of co-located AMS and EESI-TOF data, if both 1 
instruments were performing optimally. In particular, it neglects to take advantage of the higher chemical 2 
resolution of the EESI-TOF for factor separation. However, for the specific situation encountered in this study, 3 
where (1) interpretation of the standalone EESI-TOF data is significantly complicated by denuder breakthrough; 4 
(2) high EESI-TOF backgrounds may increase the uncertainty of peak fitting; and (3) AMS PMF resolves 5 
multiple factors that are temporally distinct but difficult to interpret chemically, we believe the selected 6 
approach maximises the explanatory power of the dataset. As an alternative strategy, a preliminary PMF of 7 
standalone EESI-TOF data was attempted, but did not yield interpretable results. This is likely because the PMF 8 
model, as will be discussed in the next section, requires detector linearity and static factor composition. Denuder 9 
breakthrough compromises both assumptions, because the volatile and semi-volatile contributions to factor 10 
profiles depends on the time-dependent state of the denuder (Brown et al., 2021). The EESI-TOF data 11 
processing protocols utilised above reduce but do not eliminate this issue. However, by constraining the EESI-12 
TOF PMF solution with AMS factor profiles, the solution becomes weighted towards explaining temporal 13 
trends observed in the particle phase. Further, by utilising the EESI-TOF for qualitative (factor identification) 14 
rather than quantitative (factor resolution) purposes, the impact of artifacts introduced by gaseous signals is 15 
minimised. 16 

Determination of the proper number of factors to obtain the most interpretable PMF solution is partly subjective. 17 
In this paper, criteria to identify and interpret the factors implemented include comparison of correlation 18 
between factor time series or profiles with external references, and to investigate the factor’s distinctive 19 
chemical signatures.   20 

2.3.1 Positive matrix factorisation (PMF) 21 

Positive matrix factorisation (PMF) was implemented using the Multilinear Engine (ME-2) (Paatero, 1997), 22 
with model configuration and post-analysis performed with the Source Finder interface (SoFi, version 6.8b) 23 
(Canonaco et al., 2013), programmed in Igor Pro 6.39 (Wavemetrics, Inc.). PMF is a bilinear receptor model 24 
which describes the input data matrix (here the mass spectral time series) as a linear combination of static factor 25 
profiles (in this case characteristic mass spectra, representing specific sources or/and atmospheric processes) and 26 
their corresponding time-dependent source contributions, as described in Eq. (4): 27 

܆ ൌ ۵	 ൈ 	۴ ൅ ۳ ሺ4ሻ 28 

Here X is the input data matrix with dimensions of m×n, representing m measurements of n variables (here ions 29 
or m/z), G and F are respectively the static factor time series with the dimension of m×p, and factor profiles with 30 
the dimension of p×n, where p is the number of factors in the PMF solution, and is determined by the user. E is 31 
the residual matrix. G and F in Eq. (4) are solved by a least-squares algorithm that iteratively minimises the 32 
quantity Q, which is defined in Eq. (5) as the sum of the squares of the uncertainty-weighted residuals:  33 

ܳ ൌ෍෍ቆ
݁௜௝
௜௝ߪ
ቇ
ଶ

௝௜

ሺ5ሻ 34 

Here eij is an element in the residual matrix E, and σij is the corresponding element in the measurement 35 
uncertainty matrix, where i and j are the indices representing measurement time and ion (or integer m/z), 36 
respectively.  37 

PMF is subject to rotational ambiguity, in that different combinations of the G and F matrices may yield 38 
solutions with the same or similar Q. In practice, this often leads to mixed or unresolvable factors. Here we 39 
explore a subset of the possible PMF solutions, directed towards environmentally meaningful rotations. This is 40 
achieved via the a-value approach, wherein one or more factor profiles and/or factor time series are constrained 41 
using reference factors profiles or/and time series, with the scalar a (0≤ a ≤1) determining the tightness of 42 
constraint. This approach has been shown to improve solution quality relative to unconstrained PMF (Crippa et 43 
al., 2014; Canonaco et al., 2013). The a-value approach determines the extent to which the resolved factor 44 
profiles ൫ ௜݃,௞൯௦௢௟௨௧௜௢௡		 and time series ൫ ௞݂,௝൯௦௢௟௨௧௜௢௡may differ from the input values ( ௜݃,௞ or ௞݂,௝), as shown in 45 

Eq. (6a) and Eq. (6b): 46 

൫ ௜݃,௞൯௦௢௟௨௧௜௢௡ 		ൌ ௜݃,௞ േ ܽ ൈ ݃௜,௞ ሺ6ܽሻ 47 
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൫ ௞݂,௝൯௦௢௟௨௧௜௢௡ 		ൌ ௞݂,௝ േ ܽ ൈ ௞݂,௝ ሺ6ܾሻ	 1 

Note that the final value of ൫݃௜,௞൯௦௢௟௨௧௜௢௡		 and ൫ ௞݂,௝൯௦௢௟௨௧௜௢௡may slightly exceed the prescribed limits due to 2 

post-PMF renormalisation of the G and F matrices. Here the a-value approach was used for both the AMS and 3 
EESI-TOF datasets. Sensitivity tests to determine an appropriate range of a-values were performed in 4 
combination with bootstrap analysis, as described in the following section. 5 

2.3.2 Bootstrap Analysis 6 
Bootstrap analysis (Davison and Hinkley, 1997) was performed to characterise solution stability and estimate 7 
uncertainties. Bootstrapping creates a set of new input and error matrices by random resampling of rows from 8 
the original input data and error matrices. This resampling preserves the original dimensions of the input 9 
datamatrix, but randomly duplicates some time points while excluding others (Paatero et al., 2014). For the 10 
AMS dataset, we performed 1000 bootstrap runs on an eight-factor solution, with HOA and COA factors 11 
constrained. For each factor, a random a-value was selected for each bootstrap run, ranging from 0 to 0.5 with a 12 
step size of 0.1. For the EESI-TOF dataset, 1000 bootstrap runs were performed on a 7-factor solution. Each 13 
EESI-TOF factor was constrained by a factor from the AMS 8-factor solution, with AMS HOA excluded 14 
because it is not detectable in the EESI-TOF due to low solubility and ionisation efficiency. For the EESI-TOF 15 
bootstrapping, each factor was constrained with a randomly selected a-value ranging from 0 to 0.6 with a step 16 
size of 0.1.  17 
 18 
Conceptually, each bootstrap solution can be classified in three ways: (1) qualitatively similar to the base case; 19 
(2) qualitatively similar to the base case, but with 2 or more factors mixed; (3) fundamentally different from the 20 
base case, e.g., one or more factors has appeared and/or disappeared. For characterising uncertainties in the 21 
factor profiles and/or time series, only solutions of type (1) are considered. We therefore use the solution 22 
classification methods of Stefenelli et al. (2019), which are based on determining whether each factor profile 23 
and/or time series from the base case is with statistical significance more similar to one and only one factor in a 24 
given bootstrapped solution. This method is implemented in three steps: 1) creation of a base case, 2) calculation 25 
of the Spearman correlation between the time series of each factor from the base case vs. each factor from the 26 
bootstrap solution, 3) sorting the resulting correlation matrix such that the highest correlation coefficients fall on 27 
the diagonal, 4) each correlation coefficient on the diagonal is compared to values on the row and column to 28 
evaluate whether this coefficient is statistically significant higher than other values on the same row or column, 29 
by t-test analysis. The bootstrap solutions that fail to meet this criterion are classified as “mixed”.  30 
 31 
The definition of a mixed solution therefore depends on the selected confidence level p, which is evaluated here 32 
by a sensitivity test of p ranging from 0.05 to 0.95 with a step of 0.05; the number of solutions classified as 33 
“mixed” rises as p increases (Fig. S7). This enables identification of the solutions most likely to be classified as 34 
“mixed” for each increment of p. These solutions are manually inspected to confirm that they do in fact appear 35 
mixed, and the final p is selected once this no longer holds true. Using this method, a final p of 0.40 for AMS 36 
was chosen, yielding 918 accepted bootstrap runs. For EESI-TOF bootstrap analysis, since the time series of all 37 
factors are constrained, all runs are considered as good runs and utilised to explore the variability of factor 38 
profiles.  39 
 40 
2.3.3 z-score analysis of factor profiles 41 

The dynamic range of EESI-TOF and AMS ion signal concentrations spans several orders of magnitude. Key 42 
chemical information may be contained in low-intensity ions, which are not readily evident from the factor 43 
profile. To assist in identifying such spectral features, we calculate the z-score of each ion across the factor 44 
profile matrix as follows:  45 

௣,௚ݖ ൌ ሺݔ௣,௚ െ	μ௣ሻ/ߪ௣ ሺ7ሻ 46 

Here ݖ௣,௚	 and ݔ௣,௚ are the z-score and the relative intensity of ion p in factor profile g, respectively, and μ௣ and 47 
 ௣ is the mean and standard deviation of relative intensity of ion p in all PMF factors. The z-score is a signed, 48ߪ
dimensionless quantity whose absolute value is to describe the distance between an observation x and population 49 
mean µ in the unit of standard deviation σ (Larsen and Marx, 2018). It therefore highlights ions whose 50 
contribution to a factor profile is unexpectedly high (or low), independent of absolute signal magnitude. In this 51 
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study, z-score is used to identify key ions that are unique to a specific factor or small subset of factors, as will be 1 
discussed in Sect. 3.3.  2 

 3 

3. Results 4 
3.1 Campaign overview 5 

Figure 1 shows an overview of the NR-PM2.5 composition and meteorological parameters observed during the 6 
campaign. During the measurement period, we observed nine haze episodes, classified as light haze (NR-PM2.5 7 
concentrations from 20 to 150 µg m-3) or severe haze (NR-PM2.5 concentrations above 150 µg m-3). Of these, 8 
four haze episodes occurred during the non-heating season, four during the heating season, and one episode 9 
bridged the transition date. Consistent with previous studies (Duan et al., 2020; Duan et al., 2019; Zhao et al., 10 
2019; Xu et al., 2019; Sun et al., 2016a; Sun et al., 2016b), alternating haze episodes and clean periods 11 
corresponded systematically to changing meteorological conditions. Haze build-up was associated with stagnant 12 
air masses with slow wind speed (< 1.5 m s-1) mainly from the south or southwest, and terminated by air masses 13 
with high wind speed (> 3.0 m s-1) from the north or northwest (Fig. 1b and 1c). Different from previous studies 14 
in Beijing in 2014 and 2015, where haze events lasting more than five days were observed (Zhao et al., 2019; 15 
Xu et al., 2019; Sun et al., 2016b), all haze events in this campaign lasted for two to four days. The maximum 16 
concentration of NR-PM2.5 measured by the L-TOF AMS exceeded 100 µg m-3 in only one haze event (4 to 7 17 
November), and the mean NR-PM2.5 concentration in the haze episodes was 36.6 ± 22.7 µg m-3, which is even 18 
lower than mean concentrations of NR-PM1 observed in Beijing winter from 2013 (89.3 ± 85.6 µg m-3) to 2016 19 
(64 ± 59 µg m-3) (Zhao et al., 2019; Xu et al., 2019; Sun et al., 2016a; Zhang et al., 2014).  20 

Aerosol bulk composition differs between the non-heating and heating seasons, indicating changes in sources 21 
and/or chemical processes. Organic aerosol (OA) is the major fraction of NR-PM2.5 throughout the campaign 22 
period, with a mean contribution of 54.0 %, consistent with previous winter studies in Beijing (Zhao et al., 23 
2019; Xu et al., 2019; Elser et al., 2016). The temporal evolution of OA shows that the contribution in haze 24 
episodes increased from 41.0 % during the non-heating season to 54.0 % during the heating season. This 25 
contrasts with nitrate, which is the second largest contributor to NR-PM2.5 in this study and contributes 37.0 % 26 
of NR-PM2.5 in non-heating season haze events but decreases to 23.0 % during heating season haze events. Of 27 
particular note is the non-heating season haze event from 4 to 7 November, where nitrate comprises more than 28 
50.0 % of NR-PM2.5, exceeding OA contribution to total mass in this event. This event is discussed in detail in 29 
Sect. 3.3.4 and Sect. 4. It is also worth noticing that the nitrate concentration and its contribution was lower than 30 
sulphate during every clean period, but higher during every haze episode. The mean nitrate/sulphate ratio in the 31 
present study is 2.8±2.4, a significant increase compared to observations in 2014 (0.7±0.6) and 2016 (1.4±0.9) 32 
from Xu et al. (2019). In addition, the nitrate/sulphate ratio exceeded 1 for 63 % of measurements in the present 33 
study, compared with only 24 % in 2014. It is clear that the contribution of nitrate in haze events gradually 34 
exceeded the contribution of sulphate from 2014 to 2017, indicating nitrate is playing an increasingly important 35 
role relative to sulphate in haze formation, mainly due to large reduction in SO2 emissions from coal fired power 36 
plants in Beijing and surrounding areas. 37 

3.2 AMS source apportionment 38 

With the combination of HR ions (range from m/z 12 to m/z 120, see Table S2) and UMR sticks (from m/z 121 39 
to m/z 300) in the PMF input matrix, eight factors were resolved, including four primary and four secondary 40 
organic factors. Figure 2 shows the averaged MS profiles of the selected eight-factor solution and corresponding 41 
relative contribution of each ion (i.e., fraction of signal from a given ion apportioned to each factor), while Fig. 42 
3 shows the factor time series in terms of both absolute concentration and OA mass fraction. Diurnal patterns 43 
are shown in Fig. 3c. The four POA factors consist of a traffic related factor (hydrocarbon-like OA, HOA), 44 
cooking-related OA (COA), and two solid fuel combustion-related factors (biomass burning OA, BBOA, and 45 
coal combustion OA, CCOA). The four primary factors retrieved in this solution (HOA, COA, BBOA, and 46 
CCOA) have been resolved in several previous winter studies in Beijing (Huang et al., 2014; Elser et al., 2016; 47 
Hu et al., 2016; Sun et al., 2016a). However, the SOA factor resolution is unusual. AMS source apportionment 48 
studies typically report one or two oxygenated organic aerosol (OOA) factors attributed to SOA that are 49 
distinguished by the extent of oxygenation, which is in turn typically linked to volatility, age, or season. Here, 50 
we report four secondary factors, consisting of two more-oxygenated OOAs (MO-OOAs) and two less-51 
oxygenated OOAs (LO-OOAs). For reasons described below and in Sect. 3.3, the one MO-OOA factor is 52 
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attributed to aqueous phase chemistry (MO-OOAaq) and the other to solid fuel combustion (MO-OOASFC), while 1 
one LO-OOA factor is attributed to solid fuel combustion (LO-OOASFC), and the other considered a non-source-2 
specific factor denoted as (LO-OOAns).   3 

In selecting the PMF solution that best represents the AMS dataset, we considered both mathematical 4 
diagnostics (e.g., Q/Qexp) and the interpretability of the retrieved factors. Evaluation of factor interpretability 5 
includes: 1) correlation of the time series with external data, 2) comparison of factor diurnal cycles with known 6 
source activity and previous measurements in Beijing; 3) identification of source-specific spectral features; and 7 
4) differences in factor trends between heating/non-heating and/or haze/non-haze periods. Solutions from five to 8 
ten factors were explored (Fig. S9 to Fig. S14), with an eight-factor solution selected as the best representation 9 
of the data according to the above criteria. Solutions with less than six factors showed evidence of mixed 10 
primary sources. The seven- and eight-factor solutions resolve additional OOA factors, which have clear 11 
temporal and compositional differences that support their separation and interpretation. Higher-order solutions 12 
lead to uninterpretable splitting of OOA factors. Therefore, the eight-factor solution is retained for further 13 
analysis. 14 

HOA -- The HOA spectrum (Fig. 2a) is characterised by alkyl fragments, especially CnH2n-1
+ and CnH2n+1

+. 15 
Major ions include C3H7

+, C4H9
+, C5H11

+ (Zhao et al., 2019; Xu et al., 2019; Sun et al., 2016a; Elser et al., 2016; 16 
Zhang et al., 2014; Ng et al., 2011). It also shows good correlation with CO and eBC (r2 = 0.50 and 0.70, Fig. 17 
S16), which are tracers for traffic emissions (Sun et al., 2016a; Zhang et al., 2014; Chan et al., 2011). 18 
Concentrations of this factor are elevated overnight due to boundary layer dynamics, and exhibit peaks from 19 
06:00 to 09:00 and from 17:00 to 21:00, corresponding respectively to the morning and evening rush hours (Fig. 20 
3c and Fig. S15). The averaged concentration during the evening peak (0.5 µg m-3) is almost twice as high as the 21 
morning peak (~0.3 µg m-3), due to the low planetary boundary layer height and resulting accumulation of 22 
vehicle emissions at night (Sun et al., 2016a; Han et al., 2009). This diurnal pattern is consistent with other 23 
winter studies in Beijing (Sun et al., 2016a; Zhang et al., 2014). However, the averaged relative contribution of 24 
HOA factor to total mass (~3.0 %) is significantly lower than previous studies (~10.0 %) (Elser et al., 2016; Hu 25 
et al., 2016; Sun et al., 2016a; Zhang et al., 2014; Huang et al., 2010), this indicates that primary traffic 26 
emissions comprise a minor fraction of OA during both non-heating and heating periods.   27 

COA -- The COA spectrum contains both alkyl fragments and slightly oxygenated ions, consistent with 28 
aliphatic acids from cooking oils (Hu et al., 2016). It is typically characterised by a ratio of C3H3O+ to C3H5O+ 29 
which greater than 2.0, and is 3.4 in this study (Xu et al., 2019; Zhao et al., 2019; Sun et al., 2016a; Sun et al., 30 
2016b; Crippa et al., 2013; Mohr et al., 2012). The time series of the COA factor strongly correlates with AMS 31 
C6H10O+ (m/z 98), a good tracer for cooking activities reported by many studies (Xu et al., 2019; Zhao et al., 32 
2019; Elser et al., 2016; Hu et al., 2016; Sun et al., 2016a; Sun et al., 2016b; Mohr et al., 2012; Sun et al., 2011), 33 
with r2 = 0.96 and 60.1 % of the mass of this ion being apportioned to COA. The diurnal cycle shows three 34 
peaks: from 07:00 to 09:00 at breakfast and from 12:00 to 13:00 at lunch time and a larger peak from 18:00 to 35 
21:00 during dinner (Fig. 3c and Fig. S15). This three-peak diurnal pattern agrees with the diurnal cycle 36 
observed by Sun et al. (2016a), but differs from many other studies at different sites during winter in Beijing, 37 
where only two peaks are evident and the morning peak from 07:00 to 09:00 is missing. This suggests a 38 
dependence on the proximity to local emissions (Xu et al., 2019; Elser et al., 2016; Hu et al., 2016; Zhang et al., 39 
2014). The ratio of dinner peak to lunch peak is about 2.0, similar to the values of ~2.0 and 2.3 observed by 40 
Elser et al. (2016) and Hu et al. (2016), respectively, whereas Sun et al. (2016a) reports a ratio of 1.29. Overall, 41 
the COA factor is a non-negligible contributor to total OA, with a relative contribution of 6 %, lower than 18 % 42 
in 2013 (Sun et al., 2016a), 25 % in 2014 and 16 % in 2016 wintertime (Xu et al., 2019). The mean 43 
concentration is 0.3 µg m-3, lower than previous studies (Xu et al., 2019; Zhao et al., 2019; Elser et al., 2016; Hu 44 
et al., 2016; Sun et al., 2016a; Sun et al., 2016b; Mohr et al., 2012; Sun et al., 2011).  45 

BBOA – Consistent with other studies in Beijing (Zhao et al., 2019; Elser et al., 2016; Hu et al., 2016; Sun et 46 
al., 2016a), a BBOA factor was resolved. Typically, the BBOA factor mass spectrum is characterised by 47 
increased contributions from C2H4O2

+ at m/z 60 and C3H5O2
+ at m/z at 73, which is typical of anhydrosugars 48 

such as levoglucosan (Alfarra et al., 2007; Lanz et al., 2007; Sun et al., 2011). However, although the 49 
contribution of the BBOA factor to C2H4O2

+ is the highest (28.6 %) among those factors and its correlation is 50 
also high, with r2 = 0.62, other primary sources like CCOA and COA also contribute significant fractions of 51 
C2H4O2

+ signal. BBOA also correlates strongly with C3H5O2
+ (r2 = 0.71) and C6H6O2

+ (r2 = 0.81), which are 52 
also typical of biomass burning activities (Lanz et al., 2007; Sun et al., 2011). The O:C ratio and N:C ratio of 53 
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this factor is 0.4 and 0.02, respectively, agreeing quite well with the values found in other studies (Xu et al., 1 
2019; Zhao et al., 2019; Hu et al., 2016).  2 

The BBOA time series is event-driven, with both concentrations and relative contributions increasing during 3 
haze events, especially the haze event from 18 to 22 November (68.7 % of total OA). Apart from this event, the 4 
BBOA concentration increase during other haze events is also clear, regardless of non-heating vs. heating 5 
season. Overall, the average BBOA concentration for the haze events was 1.9 µg m-3, with a maximum of 19.1 6 
µg m-3 for the event from 18 to 22 November, and ~0.1 µg m-3 for the clean periods, both lower than the study 7 
in mid-winter from 2013 to 2014 (Sun et al., 2016a) and the studies covering the same time period of the early 8 
winter in 2014 and 2016 (Xu et al., 2019). Its relative contribution to total OA is 15.4 % for haze periods and 9 
8.2 % for the clean period, respectively, consistent to observations of Elser et al. (2016), who report 13.9 % and 10 
8.9 % for haze and clean periods in wintertime in Beijing, respectively.   11 

CCOA – apart from alkyl fragments CnH2n-1
+ and CnH2n+1

+, the main feature of the CCOA profile is the high 12 
contribution from PAHs (approximately m/z 175 to 300), especially in the high m/z range, consistent with 13 
studies from Elser et al. (2016), Zhang et al. (2008) and Xu et al. (2006). In the high mass range, PAHs 14 
contribute an increasingly higher fraction at higher m/z (Fig. 2b). A series of strong signals are found in the 15 
factor profile at m/z 115 (C9H7

+), 128, 139, 152, 165, 178, 189, 202, 215, 226, 239 and 252, which have been 16 
shown to be characteristic of aromatics and PAHs (Dzepina et al., 2007). Moreover, the time series of this factor 17 
and these signatures correlate quite well with  r2 of 0.81 (C9H7

+), 0.80 (m/z 128), 0.83 (m/z 139), 0.90 (m/z 152), 18 
0.90 (m/z 165), 0.93 (m/z 178), 0.94 (m/z 189), 0.97 (m/z 202), 0.97 (m/z 215), 0.98 (m/z 226), 0.96 (m/z 239) 19 
and 0.98 (m/z 252), respectively, consistent with observations from Dzepina et al. (2007), Hu et al. (2013), Hu et 20 
al. (2016) and Sun et al. (2016a).  21 

Coal is used widely for domestic heating in northern China including the greater Beijing area and surrounding 22 
provinces (Zhang et al., 2008), but is not permitted for residential use in the downtown area. Instead, beginning 23 
on 15 November, power plants using natural gas provide heating to every household in the Beijing downtown 24 
area, and municipal coal combustion begins to provide heating to the surrounding area. Interestingly, the time 25 
series of the CCOA factor reflects this seasonal transition, as the mean daily maximum concentration increased 26 
from 2.9 µg m-3 before 15 November to 5.9 µg m-3 after. Similar to other studies (Elser et al., 2016; Hu et al., 27 
2016; Sun et al., 2016a; Zhang et al., 2014), the diurnal concentration peaks at night between 21:00 and 06:00 28 
with an average contribution of 15.5 % to total OA, and decreases during the day from 07:00 to 20:00 with an 29 
average contribution of 7.4 %, consistent with domestic heating (Fig. 3c and Fig. S15). Overall, the mean 30 
contribution to total OA is 11.4 %, with 7.1 % in the non-heating period and 14.7 % in the heating season. The 31 
latter number agrees with observations conducted in the heating period in Beijing during winter, ranging from 32 
10 % to 30 % (Elser et al., 2016; Hu et al., 2016; Zhang et al., 2014; Sun et al., 2013).  33 

OOAs – As noted above, the OOA factors resolved here differ from previous AMS studies in Beijing, where 34 
only one or two OOA factors were resolved and classified based on volatility (semi-volatile OOA and low-35 
volatility OOA) (Zhao et al., 2019; Zhang et al., 2014; Hu et al., 2013) or oxidation state (more-oxygenated 36 
OOA and less-oxygenated OOA) (Xu et al., 2019; Elser et al., 2016; Sun et al., 2016a; Sun et al., 2013). In this 37 
study, two more-oxygenated OOAs (MO-OOA) and two less-oxygenated OOA (LO-OOA) were resolved. The 38 
OOA factors are characterised by higher signal from CO2

+ than found in the POA factors. In this study, CO2
+ 39 

comprises approximately 15.0 % of the two MO-OOA factors. For the two LO-OOAs, the CO2
+ contribution to 40 

the total signal is only 3.8 % in LO-OOASFC and 5.4 % in LO-OOAns, while the ratio of CO2
+ to C2H3O+ is still 41 

higher than for the POAs. Moreover, a higher contribution of the CxHy group is observed in the LO-OOA 42 
factors than in the MO-OOA factors. Each OOA factors has a significantly different time series, corresponding 43 
to specific haze events and/or seasonal changes, providing a first suggestion that their separation may be 44 
meaningful. 45 

Among the MO-OOA factors, one factor (influenced by aqueous phase chemistry, defined as MO-OOAaq) has 46 
high absolute and relative concentrations during a single haze event from 4 to 7 November (maximum 16.2 µg 47 
m-3, > 60.0 % of the total OA mass), but is a minor component throughout the rest of the campaign. In contrast, 48 
the other MO-OOA factor (aged solid fuel combustion emissions, defined as MO-OOASFC) is a minor 49 
component before 15 November, but both its mass and relative contribution steadily increase during the heating 50 
season, especially during haze periods. This is consistent with the temporal pattern of CCOA, suggesting this 51 
factor may be linked to coal combustion activities. The temporal evolution of the two LO-OOA factors are also 52 
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distinguishable. The concentration of one factor (LO-OOASFC) increases in every haze episode under stagnant 1 
conditions and is correlated with the total OA time series (r2 =0.91), whereas the other factor (LO-OOAns) 2 
exhibits a clear diurnal pattern in the non-heating season, but this diurnal cycle is absent during the heating 3 
season. Interestingly, the contribution of the LO-OOAns factor to total OA is higher during the clean days, 4 
suggesting this factor may be more influenced by regional processes. The chemical characteristics and 5 
sources/processes governing these OOA factors are discussed in detail in the next section, in conjunction with 6 
the EESI-TOF analysis.  7 

3.3 Investigation of factor composition by EESI-TOF 8 

As discussed in Sect. 2.3, PMF of the EESI-TOF mass spectral time series was conducted on a 7-factor solution 9 
where all factor time series were constrained by the seven non-HOA factors retrieved from AMS PMF. The 10 
EESI-TOF factor time series are compared to their AMS counterparts in Fig. S17, and scatter plots of EESI-11 
TOF vs AMS on a factor-by-factor basis are shown in Fig. S18. These comparisons suggest that the EESI-TOF 12 
factor time series mostly reflect the main trends in the AMS factor time series. This approach enables a more 13 
chemically specific interpretation of the retrieved AMS factors, which both supports POA factor identification 14 
and provides additional insight into the sources and processes governing SOA. Note that all factors resolved in 15 
this study are based on time series derived from AM PMF analysis, therefore, in the following sections, these 16 
factors are discussed from the chemical perspective of EESI-TOF and no subscript is added to distinguish 17 
factors represented by PMF analysis of AMS or EESI-TOF. The PMF result of the EESI-TOF time series was 18 
used as the base case for bootstrap runs, and all the bootstrap runs were retained for further analysis. EESI-TOF 19 
factor profiles (corresponding to AMS-derived factor time series) are interpreted by 1) comparison between 20 
these factor profiles and mass spectra retrieved from a chamber study using an EESI-TOF (Amelie Bertrand, 21 
personal communication) and/or field studies (Qi et al., 2019; Stefenelli et al., 2019), 2) identification of key 22 
ions in the factor profiles by z-score analysis introduced in Sect. 2.3.3. The time series and factor profiles of the 23 
seven-factor solution are shown in Fig. 4.  24 

We discuss the three primary factors in Sect. 3.3.1 and the four OOA factors individually in the subsequent 25 
sections. For better interpretation, we present carbon number distribution plots from the EESI-TOF factor 26 
profiles colour-coded by different families in Fig. 5 and Fig. 6 for the three POA factors, and Fig. 7 and Fig. 8 27 
for the four OOA factors respectively. In the carbon number distribution plots, ions are classified first based on 28 
carbon numbers (x-axis) and ions with same number of carbons are further divided into different categories 29 
based on H:C and O:C ratios (colour code). Figure 9 shows Van Krevelen plots (atomic H:C vs. O:C ratio) for 30 
the four OOA factors based on AMS factor profiles coloured by number of nitrogen atoms in each fragment, and 31 
sized by the median z-score across all bootstrap runs, with large markers denoting ions having z-score > 1.5.  32 

3.3.1 POA factors 33 

COA – Consistent with Qi et al. (2019) and Stefenelli et al. (2019), the mass spectrum of this factor (Fig. 4b) is 34 
characterised by having most of the mass at ions with high m/z. These ions at high m/z are likely long-chain fatty 35 
acids or/and alcohols related to cooking emission and oils (Liu et al., 2017b). For example, this factor is 36 
characterised by long-chain acids like C18H34O2

+, C19H36O2
+ and C21H38O3

+, which apportion 87.2 %, 76.2 %, 37 
and 92.3 % of their total mass to this factor, and they are also unique ions in this factor, with z-scores of 2.61, 38 
2.95 and 3.34, respectively.  39 

BBOA – The mass spectrum of BBOA (Fig. 4b) is characterised by a strong signal at C6H10O5, corresponding to 40 
levoglucosan and its isomers. Levoglucosan is a well-established tracer for primary aerosols formed from 41 
pyrolysis of cellulose in biomass burning activities. This ion contributes 6.6 % to the mass in this factor, about 42 
4.5 times higher than the second strongest ion, consistent with previous field and laboratory measurements of 43 
biomass burning by the EESI-TOF. Both Qi et al. (2019) (winter measurements in Zurich, Switzerland) and 44 
Bertrand (personal communication) (chamber study of wood burning emissions) showed levoglucosan and its 45 
isomers to be the dominant ion in EESI-TOF spectra of primary wood burning, with contributions of 13.0 % and 46 
21.0 % respectively. In addition, the ion series C10H14Ox (x ≥ 4) is observed in the BBOA and aged-SFC factors, 47 
consistent with Qi et al. (2019).  48 

CCOA – as shown in the carbon number distribution plots (Fig. 5 and Fig. 6), lower H:C and O:C ratios are 49 
observed compared to other factors, especially for species with more than 10 carbons, suggesting increased 50 
contributions from aromatic acids. This is consistent with Zhang et al. (2008) who found that particles generated 51 
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from industrial boilers typically contain a considerable fraction from both aromatic acids and aliphatic acids. 1 
Note that PAHs, which comprise the unique AMS spectral marker, are not detectable by the EESI-TOF 2 
extraction/ionisation scheme used here. 3 

3.3.2 MO-OOASFC 4 

As noted in Sect. 3.2, the AMS MO-OOASFC mass spectrum is consistent with OOA factors characteristic of 5 
SOA, and represents aged, oxygenated emissions from solid fuel combustion. The carbon number distribution of 6 
the EESI-TOF MO-OOASFC mass spectrum (Fig. 7b) shows several notable features that provide further insight 7 
into its source. First, the contribution of CxHyOz ions with low H:C is significantly higher than for the other 8 
OOA factors. Specifically, (CxHyOz)H:C≤1.3 comprises 11.6 % of the total signal and 20.9 % of CxHyOz; for the 9 
other non-SFC related OOA factors, (CxHyOz)H:C≤1.3 comprises a maximum of 8.6 % of the total signal and 10 
10.9 % of CxHyOz. The high fraction from low H:C ratio ions is consistent with other field studies using the 11 
EESI-TOF, and suggests a higher contribution from aromatic precursors relative to the other OOA factors. The 12 
(CxHyOz)H:C≤1.3  is consistent with that of aged wood burning factors retrieved during winter in Zurich (13-14%, 13 
Qi et al., 2019) (Fig. S19). Aged wood burning factors were also retrieved from source apportionment of 14 
wintertime EESI-TOF measurements in Magadino, located in a Swiss alpine valley (Stefenelli et al., in prep), 15 
where (CxHyOz)H:C≤1.3 comprises 9.0-23.0 % of the total signal. Different from the aged biomass burning factors 16 
found in Zurich and Magadino, C6H10O5 is not observed in MO-OOASFC, but other ions found in the aged 17 
biomass burning factors from Qi et al. (2019) and Stefenelli et al. (in prep) including C10H16Ox  (x ≥3), are also 18 
apportioned to SFC-related factors in the present study. Still, the CxHyOz distribution in the MO-OOASFC factor 19 
retrieved in Beijing differs from the previous studies in Switzerland in terms of the overall carbon number 20 
distribution. Specifically, the Swiss measurement in Magadino featured by biomass burning activities (Stefenelli 21 
et al., in prep) showed a peak at C6 and a peak from C8 to C10, the chamber study on coal combustion oxidation 22 
(Amelie Bertrand, personal communication) exhibits a peak from C6 to C12 whereas in Beijing the signal is 23 
spread over a much larger range (approximately C7 to C19).  24 

Also evident from Fig. 7 is the high contribution from CxHyOzN1-2 ions, which comprise 45.5 % of the total 25 
signal. This is significantly higher than the 18-25 % observed in the Zurich factors by Qi et al. (2019) but 26 
comparable to 35-41 % observed in Magadino. As above, the carbon number distribution of CxHyOzN1-2 differs 27 
between Beijing and Switzerland, although the trends are reversed. In Beijing, the CxHyOzN1-2 signal occurs 28 
mostly in the C6 to C10 range with a contribution of 73.0 % to total CxHyOzN1-2 signal, whereas for the Swiss 29 
measurements it spans C6 to C10 with a contribution of 56 % at most to total CxHyOzN1-2 signal and almost 30 
evenly distributes into other bins. High intensity CxHyOzN1-2 ions in Beijing MO-OOASFC include C6H11NO4, 31 
C7H13NO4, C8H15NO4, C9H17NO4 and C10H19NO4. The high nitrogen content in MO-OOASFC likely reflects high 32 
NOx concentrations in the Beijing region during wintertime. In addition, ions tentatively attributed to 33 
nitrocatechol (C6H5NO4) and its homologous series (C7H7NO4, C8H9NO4) are apportioned predominantly to this 34 
factor and CCOA (see Fig. S25b and Fig. S25c), indicating the influence of oxidised aromatics from coal 35 
combustion emissions (Mohr et al., 2013).  36 

Interestingly, the AMS MO-OOASFC profile and Van Krevelen plot (Fig. 9) show that the ions for which MO-37 
OOASFC has a high z-score (>1.5) predominantly exhibit low H:C ratios. These ions include C7H2O+, C7H3O+, 38 
C7H4O+, C7H5O+, C8H4O+ and C8H5O+. Although these ions are not addressed in OOA factor separation in most 39 
AMS PMF studies due to their low intensities, their high z-score in the present work suggests they may contain 40 
some source-specific information. The temporal evolution of these ions is consistent with EESI-TOF ions 41 
having a low H:C ratio and thus tentatively attributed to aromatics e.g., C12H10O8 and C16H14O6 (see Fig. S25d 42 
and Fig. S25e). This also suggests an elevated contribution from aromatic oxidation relative to the non-SFC-43 
derived SOA factors. An increased contribution from EESI-TOF ions with low H:C was also observed in 44 
oxidised wood burning emissions by Qi et al. (2019). 45 

3.3.3 LO-OOASFC 46 

The LO-OOASFC factor mass spectrum is also consistent with solid fuel combustion, but is less oxygenated than 47 
MO-OOASFC. The carbon number distribution of the EESI-TOF LO-OOASFC mass spectrum (Fig. 7c) shows a 48 
contribution of CxHyOz ions with low H:C comparable to that of MO-OOASFC. Specifically, (CxHyOz)H:C≤1.3 49 
comprises 10.9 % of the total LO-OOASFC signal, compared to 11.6 % from MO-OOASFC. This is consistent 50 
with less-aged biomass burning (LABB) factors retrieved from source apportionment of wintertime EESI-TOF 51 
data in Zurich and Magadino, where (CxHyOz)H:C≤1.3 contributed 10-16 %. LO-OOASFC contains a substantial 52 
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contribution (10.5 %) from C6H10O5 (levoglucosan and its isomers), which is substantially higher than that of 1 
MO-OOASFC (0 %) and LO-OOAns (0 %) and also than for primary BBOA (6.6 %) and CCOA (8.6 %). 2 
Interestingly, this factor has a very high fraction (31.8 %) from (CxHyOz)H:C≥1.7, significantly higher than the 3 
12 % to 14 % observed in Zurich and Magadino. It also has 18.9 % contribution from (CxHyOz)O:C≥0.65, half of 4 
the fraction (~40 %) of the LABB factors in Zurich and Magadino. The high H:C (1.66) and low O:C (0.41) 5 
from EESI-TOF result in low averaged carbon oxidation states ܱܵതതതതୡ (-0.87) of this factor suggests this factor is 6 
less oxygenated than the LABB factors in those two studies, with lowest ܱܵതതതതୡ of -0.60. 7 

Regarding nitrogen-containing species, CxHyOzN1-2 ions contribute 23.0 % to the total signal in this factor, 8 
similar to their contributions in the Zurich and Magadino LABB (17 % to 22 %). However, in Beijing a large 9 
fraction (10.7 %) of the CxHyOzN1-2 derives from a single ion (C6H11NO4). Otherwise, the carbon number 10 
distribution of CxHyOzN1-2 ions in Beijing is weighted from C7 to C10, consistent with SOA from wood burning 11 
experiments with OH or NO3 (Amelie Bertrand, personal communication) as shown in Fig. S28. Similar to the 12 
primary BBOA and CCOA factors, LO-OOASFC is elevated overnight, suggesting a contribution from nighttime 13 
chemistry and/or rapid oxidation of primary emissions.  14 

3.3.4 MO-OOAaq 15 

The MO-OOAaq factor time series is dominated by high absolute and relative concentrations during a haze event 16 
in the non-heating season. Both the atmospheric conditions during this event and the overall factor composition 17 
are consistent with a strong influence from SOA formed by aqueous phase chemistry.  18 

Figure 10a shows the time series of the CO2
+ and CO+ ions from AMS, and the corresponding scatter plot is 19 

shown in Fig. 10b. For most of the data, the ratio of CO+ to CO2
+ is approximately 1, consistent with the mean 20 

CO+/CO2
+ value for bulk atmospheric OA (Canagaratna et al., 2015; Aiken et al., 2008) and the assumption in 21 

the standard AMS fragmentation table. In contrast, the CO+/CO2
+ slope is only 0.5 for the haze event on 4 to 7 22 

November. This relative enhancement of CO2
+ is characteristic of small acids or diacids, e.g., oxalic acid, 23 

malonic acid and succinic acid (Canagaratna et al., 2015), shown in Fig. S22. These molecules can enter the 24 
particle via solvation, potentially followed by aqueous-phase chemistry (Tan et al., 2012; Tan et al., 2010; 25 
Carlton et al., 2007; Ervens et al., 2004), or as condensation products of gas-phase reactions (Mehra et al., 2020; 26 
Wang et al., 2020; Zaytsev et al., 2019; Legrand et al., 2005; Sellegri et al., 2003; Sempere and Kawamura, 27 
1994). For example, Lamkaddam et al. (2021) have shown that up to 70% of isoprene oxidation products can be 28 
dissolved in a water film. However, because aqueous reaction pathways under subsaturated conditions favor the 29 
uptake of highly soluble molecules such as small acids/diacids, their contribution relative to larger oxygenates is 30 
increased, consistent with the lower CO+/CO2

+ slope observed here. 31 

An enhanced contribution from small acids is also suggested by the EESI-TOF MO-OOAaq profile. As shown in 32 
Fig. 7 and Fig. 8, MO-OOAaq has enhanced signal from ions with low carbon number relative to the other OOA 33 
factors. Further, Fig. 7 shows that these low-C ions are highly oxygenated (e.g., C6H6O5), which is likewise 34 
consistent with small multifunctional acids and polyacids. The EESI-TOF spectra thus provide further support 35 
for the attribution of this factor to the processes discussed in the previous paragraph. However, the carbon 36 
number distribution in Fig. 7a shows (CxHyOz)H:C≤1.3 comprises only 6.6 % to total signal, suggesting these acids 37 
are unlikely formed by oxidation of aromatic precursors. Note that due to the application of the volatility-based 38 
filter for distinguishing particle-phase vs. spurious ions (see section Text S3), the contribution of such small, 39 
highly oxygenated ions presented here represents a lower limit. 40 

As shown in Fig. 3 and Fig. 11, MO-OOAaq provides a major fraction of 40.8 % to the total OA during the 41 
major haze event on 4 to 7 November (peak concentration > 40 µg m-3). In fact, OA concentrations during this 42 
event are at least as high as those observed during the heating period, despite the likelihood of reduced 43 
concentrations of precursor VOCs due to the mandated reductions in combustion activities related to domestic 44 
heating in rural areas. We therefore investigate the reasons for the high SOA production during this specific 45 
event. The aerosol liquid water content (LWC) was calculated from ISORROPIA-II (Fountoukis and Nenes, 46 
2007), and high LWC is typically associated with aqueous phase chemistry. The LWC concentration is 47 
presented in Fig. 10, together with the time series of MO-OOAaq. The two time series are strongly correlated (r2 48 
= 0.93), and both are dramatically higher during the 4 to 7 November event than for the rest of the study, 49 
suggesting the role of the aqueous phase chemistry in this haze event. Note that the strong correlation between 50 
MO-OOAaq and LWC is not driven solely by the event on 4 to 7 November; rather, the two time series are 51 
remarkably well correlated throughout the entire campaign. This further supports the interpretation of MO-52 
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OOAaq as characteristic of aqueous SOA production throughout the campaign, rather than being characteristic of 1 
only a single event.  2 

The question arises whether MO-OOAaq reflects the irreversible production of SOA via aqueous pathways, or 3 
instead reversible solvation of volatile and semi-volatile organics. To assess this, we look in detail at the MO-4 
OOAaq and LWC correlations during the 4 to 7 November event (shown in Fig. 10) and change of MO-OOAaq in 5 
every two-hour interval (Fig. S24). The most significant disagreement between the time series occurs from 6 
08:00 to 23:00 on 6 November, when the LWC sharply decreases while MO-OOAaq remains high. If MO-7 
OOAaq were driven by reversible solvation, this extended decrease in LWC would be expected to drive a 8 
corresponding decrease in MO-OOAaq. However, the MO-OOAaq concentrations appear unaffected by the 9 
decrease in LWC, suggesting that the MO-OOAaq does indeed consist of irreversibly-generated SOA via 10 
aqueous chemistry.  11 

The reasons for the high LWC are driven by the combination of high RH and high inorganic fraction (especially 12 
NH4NO3), which as shown in Fig. 1 are both maximised during this period. The high NH4NO3 content during 4 13 
to 7 November is in turn driven by a unique airmass source region. Figure 12a shows 72-h backward trajectories 14 
calculated from the HYSPLIT transport model (Rolph et al., 2017; Stein et al., 2015), and analysed in Zefir v 15 
4.0 (Petit et al., 2017). Trajectories are coloured by date and time. In the figure, trajectories from 4 to 7 16 
November pass over regions of high NOx emissions to the east and south of Beijing (Shandong and Henan 17 
provinces) before arriving at the sampling site. The air parcel spends approximately 30 hours over these high-18 
NOx regions, as shown in Fig. 12b. As shown in Fig. S29, the period of 4 to 7 November is the only time in the 19 
campaign where the back trajectories pass over this region. Due to the high NO2 concentration and high RH in 20 
this period, particulate nitrate is produced during this regional transport homogeneously and/or heterogeneously, 21 
resulting in water uptake and high LWC in the aerosol phase. The high LWC in turn facilitates further 22 
heterogeneous formation of nitrate. This positive feedback provides favorable conditions for efficient aqueous 23 
chemistry and thus production of MO-OOAaq (Kuang et al., 2020).  24 

3.3.5 LO-OOAns 25 

In Sect. 3.2, this factor has been identified as LO-OOA because of its moderately high CO2
+ signal and non-26 

negligible contribution from the CxHy group. The time series of this factor shows clear diurnal variation which 27 
peaks at around 20:00 in the non-heating season (Fig. 3a and 3c), but this variation is not clear in the heating 28 
season. In addition, the contribution of this factor to total OA is higher in the clean period than during the haze 29 
events (Fig. 3b), indicating this may be related to regional sources/processes rather than more local SFC 30 
emissions. The diurnal cycle of this factor is similar to COA and LO-OOASFC, but the chemical characteristics 31 
of these three factors are different. Compared to LO-OOASFC, this factor is characterised by ions with high H:C 32 
and low O:C and does not have a significant contribution from C6H10O5, a key ion in SFC-related LO-OOAs 33 
identified in both the present and previous studies (Qi et al., 2019; Stefenelli et al., in prep). LO-OOAns also 34 
does not have large contributions from ions with the aromatic feature of low H:C. Although the spectrum of 35 
COA is also characterised by ions with high H:C and low O:C, the carbon number distribution plots of COA are 36 
characterised by significant signal from long-chain acids at high carbon number, whereas the carbon number 37 
distribution of this factor is characterised by high signal at low carbon number (from C8 to C12). Compared to 38 
other OOA factors, this factor has the lowest O:C ratio (0.33) and highest H:C ratio (1.69) from EESI-TOF. 39 
Since it is not characterised by any source-specific ions or signatures identified in previous EESI-TOF studies 40 
(e.g., levoglucosan and its isomers), this factor is named as LO-OOAns, representing non-source-specific LO-41 
OOA. 42 

4. Atmospheric implications 43 

As discussed in Sect. 3.1, meteorological conditions are responsible for an alternating occurrence of haze and 44 
clean periods and these effects from meteorology are well-understood (Duan et al., 2020; Duan et al., 2019; 45 
Zhao et al., 2019; Xu et al., 2019; Sun et al., 2016a; Sun et al., 2016b). In addition, meteorology can also 46 
influence air mass trajectories on the regional/mesoscale, which may further influence the aerosol chemical 47 
composition. By comparing measurements before and after the start of the heating season (15 November), the 48 
effects of heating emissions on clean and haze periods in Beijing can be assessed. Figure 11 shows the time 49 
series of total OA and the contribution of different factors to each haze event. Systematic differences between 50 
seasons suggest the influences of different sources/processes.  51 
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Clean periods in both the non-heating and heating seasons are dominated by SOA, comprising 76.9 % in the 1 
non-heating season and 70.3 % in the heating season. In both seasons, the single largest component is LO-2 
OOAns (45.3 % and 33.2 % in the non-heating and heating seasons, respectively), consistent with its 3 
identification as regional SOA not specific to a single emissions source. The SFC fraction is higher in the 4 
heating season, with CCOA and BBOA jointly comprising 22.7 % (vs. 15.0 % in the non-heating season) and 5 
LO-OOASFC and MO-OOASFC jointly comprising 25.1 % (vs. 19.2 % non-heating season).  6 

Seasonal differences become more pronounced under haze conditions. Three light haze events (maximum 7 
concentrations between 15.4 and 30.8 µg m-3) were observed in each season. During these events in the non-8 
heating season, LO-OOAns remains the single largest component (33.0 to 42.7 %), although its fraction is 9 
slightly reduced relative to clean conditions (45.3 %). There is no corresponding fractional increase observed in 10 
any of the other factors, but rather an across-the-board relative increase in all, which results in a slightly 11 
increased POA fraction (ranging from 29.1 to 37.5 %, vs. 23.1 % under clean conditions). These changes likely 12 
result from an increased role of local emissions and reactivity under the stagnant conditions giving rise to haze. 13 
The non-heating light haze events contrast strongly with the heating light haze, where there is a larger reduction 14 
in the LO-OOAns fraction (at least 33.0 % in non-heating season to at most 29.6 % in heating season) that 15 
corresponds specifically to increased SFC POA (at most 26.7 % in non-heating season to at least 27.5 % in 16 
heating season). Interestingly, the SFC SOA fraction is not significantly higher than under clean conditions, 17 
although event-to-event variation is large (ranging from 20.3 % to 41.0 % under heating season haze vs 25.1 % 18 
under clean conditions). 19 

In general, the light haze events within a given season are relatively similar to each other. However, significant 20 
differences in composition are observed between the light and severe haze events within a given season. The 21 
two severe haze events occurring within the heating season are also quite different from each other. The 22 
conclusions that can be drawn from this observation are limited by the small number of severe haze events 23 
sampled (1 non-heating, 2 heating), but suggest the potential for unique meteorological/transport phenomena 24 
that may affect sources and composition during the most extreme events. For example, the non-heating haze 25 
event (4 to 7 Nov.) is dominated by MO-OOAaq from aqueous processes (40.8 % of OA), and as discussed in 26 
the previous section corresponds to unique airmass back-trajectories over high-NOx regions. The event from 18 27 
to 22 Nov. is dominated by SFC, especially BBOA, which comprises 35.8 % of OA (with CCOA contributing 28 
an additional 12.5 %), while SFC SOA comprises an only slightly larger fraction (27.8 % of OA) than under 29 
clean conditions. In contrast, the severe haze event from 30 Nov. to 3 Dec. has a large contribution from both 30 
SFC POA (32.8 %) and SFC SOA (41.0 %). Interestingly, the temporal evolution of these two events is also 31 
different, with the 18 to 22 Nov. event (high SFC POA) commencing with a sudden concentration increase but 32 
remaining relatively stable thereafter, while concentrations during the 30 Nov. to 3 Dec. event (high SFC POA 33 
and SOA) increase gradually over multiple days. However, a close inspection of the 18 to 22 Nov. event in Fig. 34 
3b shows a decrease in the BBOA fraction and increase in MO-OOASFC as the event proceeds, suggesting a 35 
generally important role for local SOA formation in a stagnant airmass during the course of a haze event. 36 

As a conclusion, our observation suggests that the sources and processes giving rise to haze events in Beijing are 37 
variable and seasonally-dependent. Two salient features are: 1) in the heating season, SOA formation is driven 38 
by oxidation of aromatics from solid fuel combustion, with secondary SFC-related factors (i.e., sum of MO-39 
OOASFC and LO-OOASFC) contributing 37.2 % to 72.8 % of total SOA, and 2) under high NOx and RH 40 
conditions, aqueous phase chemistry may make a major contribution to SOA formation (with MO-OOAaq 41 
comprising 53.7 % of total SOA). The combination of high inorganic content and aqueous SOA can yield total 42 
mass concentrations comparable to those observed in the heating season, despite reduced regional VOC 43 
emissions in the absence of heating processes. 44 

Our back-trajectory analysis shows that from 4 to 7 November, the air masses passed through a high NO2 45 
concentration region and remained for more than 24 hours in this region (Fig. 12), which facilitated nitrate 46 
formation in the aerosol phase and thus water uptake. Therefore, our observation suggests that meteorology 47 
cannot only influence the haze evolution on a local scale, but also can have significant effect on aerosol 48 
chemistry and chemical composition by influencing the origin and pathway of air mass.  49 

From a technical perspective, a surprising outcome of this source apportionment analysis was the extent to 50 
which the AMS SOA factor profiles contained source-related information corroborating the chemically more 51 
specific measurements of the EESI-TOF. Specifically, the SFC-related factors exhibited systematic 52 
enhancements in ions with low H:C ratios, while the CO+/CO2

+ ratio clearly higher than 1 was found to be a 53 
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clear indicator for aqueous-phase chemical processing. Although the latter observation requires the improved 1 
mass resolution of the L-TOF-AMS and is therefore not retrievable from most existing AMS datasets, taken 2 
together they suggest that AMS SOA spectra may contain more source-specific information than is typically 3 
recognised. Although these results represent a single case study and so should not be overinterpreted, we 4 
suggest that intensity-independent statistical tools such as the z-score analysis employed here may be effective 5 
in retrieving such information and in providing additional insight into SOA sources. The combination of 6 
quantitative AMS data with semi-quantitative EESI-TOF measurements is also shown to be promising, and 7 
alternative methods for combining such datasets (e.g., as discussed in the Methods section) should be pursued.  8 

5. Conclusions 9 

OA sources were investigated in Beijing during an intensive field deployment of AMS and EESI-TOF 10 
instruments from late September to mid-December 2017, covering the transition from the non-heating to heating 11 
seasons. This represents the first deployment of the EESI-TOF in a heavily polluted city. The robust 12 
quantification of the AMS and high chemical resolution of the EESI-TOF are shown to be highly 13 
complementary, facilitating identification of the sources and processes governing SOA concentrations. An 14 
integrated source apportionment study was conducted, by the application of PMF to AMS-only data to 15 
determine factor time series, followed by PMF on EESI-TOF-only data using AMS-derived factor time series as 16 
constraints, to increase the chemical information associated with each factor.  facilitate chemical interpretation 17 
of the AMS-determined factors by using z-score analysis and carbon number distribution plots, which 18 
successfully resolved and interpreted four SOA sources and processes. 19 

The source apportionment analysis yielded four primary factors and four secondary factors. Primary factors 20 
were hydrocarbon-like OA (HOA) characterised by a high fraction of hydrocarbon fragments, cooking-related 21 
OA (COA) characterised by long-chain fatty acids, biomass burning OA (BBOA) with a high contribution from 22 
levoglucosan, and coal combustion OA (CCOA) with a high PAH signal at high m/z range. The secondary 23 
factors consisted of more- and less-oxygenated oxygenated organic aerosol from solid fuel combustion (MO-24 
OOASFC and LO-OOASFC), more-oxygenated aerosol from aqueous-phase chemistry (MO-OOAaq), and less-25 
oxygenated OA from mixed or indeterminate sources (LO-OOAns). The SFC-related factors were characterised 26 
by a low H:C ratio in both the EESI-TOF and AMS spectra and increased concentrations during the heating 27 
period. MO-OOAaq was characterised by an increased contribution from small, highly oxygenated ions and a 28 
low AMS CO+/CO2

+ ratio; taken together, these observations suggest an enhanced contribution from small acids 29 
and diacids.  30 

The OA composition in Beijing is dominated by organic aerosols, with a significant SOA fraction 31 
(66.4±13.5 %) to total OA throughout the campaign. SOA formation during the heating season derives mainly 32 
from solid fuel combustion. However, even during the non-heating season when solid fuel combustion was not a 33 
major source, an intense haze event was observed with OA concentrations comparable to the highest 34 
concentrations observed during the heating season. These high concentrations were due to significant SOA 35 
production from aqueous phase chemistry, and corresponded to the passage of air parcels over the high NOx 36 
regions to the east and south of Beijing. This suggests that aqueous chemistry may provide a major contribution 37 
to SOA formation under certain meteorological conditions, even during periods of intense haze. 38 
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 1 

Figure 1. Time series of meteorological variables and NR-PM2.5 composition. (a) temperature (T) and relative 2 
humidity (RH), (b) wind speed and wind direction, (c) mass concentrations of NR-PM2.5 species measured by the 3 
AMS, and (d) mass fractions of the species shown in Fig. 1c. Shaded area indicates haze episodes: light haze episodes 4 
are defined as having NR-PM2.5 concentrations from 20 to 150 µg m-3 (light blue), while severe haze episodes are 5 
defined having NR-PM2.5 concentrations above 150 µg m-3 (light red).  6 
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1 

 2 

Figure 2. Averaged mass spectra (a) and relative contributions (b) of the 8-factor solution from the AMS PMF 3 
bootstrap result. The mass spectra consist of HR ions from m/z 12 to 120, and integrated integer m/z (denoted UMR) 4 
from m/z 121 to 300, whose intensity is multiplied by 5. In (a), error bars denote standard deviation calculated from 5 
all accepted bootstrap solutions. 6 
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Figure 3. (a) Averaged time series with standard deviations (shaded area with same colour as factor), (b) averaged 2 
total OA concentration and relative contributions and (c) median diurnal cycle the accepted AMS PMF bootstrap 8-3 
factor solutions based on the criteria discussed in Sect. 2.3. Lower and upper dashed lines in (c) indicate 1st and 3rd 4 
quantiles. In (a) and (b), the shaded areas in red and in blue represent periods of severe haze and light haze, 5 
respectively.  6 
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Figure 4. The averaged (a) time series and (b) mass spectra of accepted solutions from combined bootstrap/a-value 3 
analysis of the EESI-TOF dataset. EESI-TOF time series are constrained by the 7 non-HOA factors retrieved from 4 
AMS PMF analysis. Shaded area in (a) indicates the anchor of bootstrap/a-value analysis as shown in Eq. (6) and in 5 
(b) indicate the standard deviation of each stick calculated from all selected solutions. In (a), the shade area in red 6 
and in blue represents severe haze period and light haze period, respectively.  7 

11.11.2017 21.11.2017 01.12.2017

Time Series

5000

0

4000
2000

0

2000

0

5000

0

M
as

s 
F

lu
x 

[a
g

 s
-1

]

2000

0

2000
1000

0

5000

0

a)

COA
BBOA
CCOA
MO-OOAaq

MO-OOASFC

LO-OOASFC

LO-OOAns

 Light haze  Severe haze           Clean period

0.15
0.10
0.05
0.00

400350300250200

m/z

0.2

0.1

0.0

0.10
0.05
0.00
0.06
0.04
0.02
0.00

R
el

a
ti

v
e 

In
te

n
si

ty

0.06
0.04
0.02
0.00

0.06
0.04
0.02
0.00

0.3
0.2
0.1
0.0

b)

COA

BBOA

CCOA

MO-OOAaq

MO-OOASFC

LO-OOASFC

LO-OOAns

CxHyOz    CxHyOzN1-2

C6H10O5Na
+ C18H32O2Na

+ C18H34O2Na
+ C19H36O3Na

+

C21H38O3Na
+

C10H22O3Na
+

C12H22O3Na
+

C10H18O3Na
+

C6H11NO4Na
+

C7H13NO4Na
+

C8H15NO4Na
+

C9H17NO4Na
+

C8H14O4Na
+

C8H16O4Na
+

C10H20O5Na
+



33 
 

 1 

 2 

3 

 4 

 5 

Figure 5. Carbon number distribution plots of three primary factors: (a) COA, (b) BBOA and (c) CCOA, coloured by 6 
CxHyOzN1-2 and five different CxHyOz categories based on H:C ratio (H:C < 1.1, 1.1 < H:C < 1.3, 1.3 < H:C < 1.5, 1.5 < 7 
H:C < 1.7 and H:C > 1.7). Each distribution is normalised such that its sum is 1. 8 
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Figure 6. Carbon number distribution plots of three primary factors: (a) COA, (b) BBOA and (c) CCOA, coloured by 4 
CxHyOzN1-2 and five different CxHyOz categories based on O:C ratio (O:C < 0.25, 0.25 < O:C < 0.45, 0.45 < O:C < 5 
0.65, 0.65 < O:C < 0.85 and O:C > 0.85). Each distribution is normalised such that its sum is 1. 6 
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Figure 7. Carbon number distribution plots of four OOA factors: (a) MO-OOAaq, (b) MO-OOASFC, (c) LO-OOASFC 4 
and (d) LO-OOAns, coloured by CxHyOzN1-2 (red) and five different CxHyOz categories (green to blue) based on H:C 5 
ratio (H:C < 1.1, 1.1 < H:C < 1.3, 1.3 < H:C < 1.5, 1.5 < H:C < 1.7 and H:C > 1.7). Each distribution is normalised 6 
such that its sum is 1. 7 
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Figure 8. Carbon number distribution plots of four OOA factors: (a) MO-OOAaq, (b) MO-OOASFC, (c) LO-OOASFC 4 
and (d) LO-OOAns, coloured by CxHyOzN1-2 (red) and five different CxHyOz categories (green to blue) based on O:C 5 
ratio (O:C < 0.25, 0.25 < O:C < 0.45, 0.45 < O:C < 0.65, 0.65 < O:C < 0.85 and O:C > 0.85). Each distribution is 6 
normalised such that its sum is 1. 7 
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Figure 9. Van Krevelen plot of AMS factor mass spectra for (a) MO-OOAaq, (b) MO-OOASFC, (c) LO-OOASFC and 3 
(d) LO-OOAns, coloured by the number of nitrogen atoms. Large symbols denote ions with median z-score ≥ 1.5 and 4 
small symbols denotes median z-score < 1.5 for accepted runs from bootstrap analysis. 5 
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Figure 10.   (a) Time series of AMS-measured CO+ and CO2
+ throughout the campaign after CO+ and CO2

+ being 4 
corrected according to Pieber et al. (2016) and (b) scatter plot of CO+ and CO2

+ indicating a different slope for the 5 
haze event between 4 November to 7 November 2017, suggesting aqueous phase chemistry may happen in this period. 6 
(c) Time series of LWC, both in fraction (top) and mass concentration (bottom), complemented by MO-OOAaq, 7 
demonstrating the high correlation between the latter two variables. In (a) and (c), the shaded area in red and in blue 8 
represents severe haze period and light haze period, respectively.  9 
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Figure 11. Time series of total OA and the mean contribution of eight AMS factors in each haze event and clean 2 
periods for the non-heating and heating periods. The top two pie charts indicate the averaged contributions for clean 3 
periods in non-heating season and heating season, three middle and six bottom pie charts indicate corresponding the 4 
averaged contributions for three severe haze events (shaded red area) and six light haze events (shaded blue area) 5 
according to time series of total OA below, respectively.  6 
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Figure 12. Airmass trajectory analysis. (a) 72-h back-trajectories (HYSPLIT) for the haze event from 4 to 7 4 
November colour-coded by date and time, (b) 72-h back-trajectories for the haze event from 4 to 7 November colour-5 
coded by hours before the air mass reaches Beijing. In both figures, trajectories are overlaid on a 2015 map of 6 
surface NO2 concentrations based on the CHIMERE model and driven by the 2015 DECSO inventory (Liu et al., 7 
2018). 8 
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