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Abstract. The buoyant rise and the resultant vertical distribution of wildfire smoke in the atmosphere have a strong influence

on downwind pollutant concentrations at the surface. The amount of smoke injected vs. height is a key input into chemical

transport models and smoke modelling frameworks. Due to scarcity of model evaluation data as well as inherent complexity

of wildfire plume dynamics, smoke injection height predictions have large uncertainties. In this work we use a coupled fire-

atmosphere model WRF-SFIRE configured in large eddy simulation (LES) mode to develop a synthetic plume dataset. Using5

this numerical data, we demonstrate that crosswind integrated smoke injection height for a fire of arbitrary shape and intensity

can be modelled with a simple energy balance. We introduce two forms of updraft velocity scales that exhibit a linear dimen-

sionless relationship with the plume vertical penetration distance through daytime convective boundary layers. Lastly, we use

LES and prescribed burn data to constrain and evaluate the model. Our results suggest that the proposed simple parameteriza-

tion of mean plume rise as a function of vertical velocity scale offers reasonable accuracy (30 m errors) at little computational10

cost.

1 Introduction

Predictions of surface concentrations of wildfire smoke by regional and global chemical transport models depends on the initial

equilibrium height of the smoke plume. Plume rise, which determines this equilibrium height, is widely recognized as an area

of uncertainty (Goodrick et al., 2013; Paugam et al., 2016). Traditionally, many operational smoke modelling frameworks15

relied on plume rise equations originally developed by Briggs (1975) for industrial smokestacks (Larkin et al., 2010; Pavlovic

et al., 2016). Yet several studies suggest that this approach may not be appropriate for wildfires (Pavlovic et al., 2016; Heilman

et al., 2014; Freitas et al., 2007).

In a recent review of existing plume rise parameterizations, Paugam et al. (2016) highlight three notable models that stand

out in literature, as that of Freitas et al. (2007), Sofiev et al. (2012) and Rio et al. (2010). Both Freitas and Rio’s approaches20

use first principles to characterize plume temperature, vertical velocity and entrainment. While the former provides prognostic

1-D equations that can be solved as a stand-alone "offline" model, the latter is implemented as a sub-grid effect within a

host chemistry transport model. Notably, both consider an idealized heat source to represent the fire. To initialize the plume

at the lower boundary, simplified fire geometry (circular and rectangular for Freita’s and Rio’s models, respectively) with a
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uniform heat flux is assumed. Sofiev’s semi-empirical approach relies on energy balance and dimensional analysis, while using25

satellite data to both initialize and constrain the parameterization. Unlike Briggs’s equations, all of the above models address

wildfire plumes specifically, yet much research is needed to reduce the large uncertainties associated with the model predictions

(Mallia et al., 2018). Moreover, it is unclear, whether unreliable predictions should be attributed to the fire input parameters or

the plume rise model itself.

One of the central challenges in plume rise model development has been the scarcity of comprehensive model evaluation30

data (Coen et al., 2012b; Ottmar et al., 2016). To date, information on wildfire smoke emissions and dispersion has largely

been derived from two distinct sources: remotely sensed data and prescribed burn campaigns. While increasing numbers of

satellite observations contribute to a more complete plume climatology (Val Martin et al., 2010), the data is subject to biases

and lacks direct spatiotemporal links to fire behavior (Ichoku et al., 2012). In contrast, field campaigns, such as Prescribed Fire

Combustion and Atmospheric Dynamics Research Experiment (RxCADRE) (Ottmar et al., 2016) and Fire and Smoke Model35

Evaluation Experiment (FASMEE) (Prichard et al., 2019), provide the necessary level of detail for model validation studies.

However, such datasets typically capture a modest range of fire and atmospheric conditions.

Our approach, therefore, is to develop a synthetic plume dataset that addresses the limitations of the available observational

data. As vast majority of smoke plumes remain in or just above the atmospheric boundary layer (ABL) (Val Martin et al.,

2010; Mallia et al., 2018), we use large eddy simulations (LES) to focus on local- and meso- scale plume dynamics. Using40

a coupled model, we simulate a wide range of fire and atmospheric conditions (Sect. 2). Based on this synthetic LES data

(hereafter referred to as "data") we propose a simple energy balance model for predicting plume rise of crosswind integrated

(CWI) smoke from a non-uniform fireline (Sect. 3). We use the synthetic plume dataset to constrain and evaluate our plume rise

parameterization. We then demonstrate with both numerical and prescribed burn data, that within the range of tested conditions

this parameterization offers high speed and accuracy (Sect. 4). Moreover, it provides the means for classifying penetrative vs.45

non-penetrative plumes, which is key for subsequent dispersion modelling (Sofiev et al., 2012; Val Martin et al., 2012).

The proposed approach is geared toward regional smoke modelling frameworks (e.g. BlueSky and BlueSky Canada). Gov-

ernment agencies, air quality managers and fire response teams depend on these operational tools and their accuracy to issue

air quality warnings, evacuation orders and to help mitigate human health impacts. Yet, model evaluation studies suggest that

plume rise estimation remains a weak link within smoke modelling systems (Raffuse et al., 2012; Val Martin et al., 2012;50

Chen et al., 2019). Moreover, existing methods struggle to reliably differentiate which plumes remain in the ABL and which

penetrate it. The broad goal of the work is, therefore, to address some of these challenges and improve the accuracy of plume

rise predictions for regional air quality applications.

2 Development of a Synthetic Plume Dataset

We devise a synthetic plume data set using a coupled fire-atmosphere model WRF-SFIRE, which combines the well-established55

Weather and Research Forecasting Model (WRF) with a semi-emperical fire spread algorithm called SFIRE (Mandel et al.,

2014; Mallia et al., 2020; Coen et al., 2012a; Kochanski et al., 2013; Clements et al., 2006; Kochanski et al., 2019). The model
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allows one to explicitly resolve plume dynamics, while parameterizing fuel combustion. One of the primary advantages of

using WRF-SFIRE is that it supports two-way coupling between the atmosphere and the fire behavior model, allowing it to

capture some of the complex dynamical feedbacks that exist between the fire and the atmosphere (Prichard et al., 2019). Heat60

and moisture fluxes from the simulated burn provide forcing to the atmosphere, affecting local wind flow and thermodynamics.

This in turn influences the modelled fire behavior. The following sections detail the numerical setup of WRF-SFIRE, scope of

the dataset, as well as our approach to defining "ground truth" for model evaluation.

2.1 Numerical Configuration

WRF-SFIRE was configured in idealized large-eddy resolving mode. Much of our numerical setup was adopted from a case65

study of a real prescribed burn as detailed in Moisseeva and Stull (2019), to ensure the simulations represent physical conditions

backed by model evaluation. Due to high computational demands of LES runs, we focused on the local- and meso- scales,

considering only the initial buoyant plume rise of smoke in typical daytime atmospheres. Key parameters varied were ambient

wind, fuel category, vertical potential temperature profile and fireline length, denoted as conditions W,F,R and L, respectively

(detailed further in Sect. 2.2).70

Each 10 km x 20 km domain with 40 m horizontal grid spacing was initialized with uniform ambient west wind W and verti-

cal temperature profile R. Depending on the sounding R, the simulations were performed in either a shallow (3000 m) or a deep

(5000 m) domain, with 51 or 71 hyperbolically stretched vertical levels, respectively. A constant uniform lower boundary sur-

face thermal flux (tke_heat_flux) in the ambient environment and lateral periodic boundary conditions were imposed to produce

a turbulent well-mixed layer. We used full surface initialization (sfc_full_init =.true.), with the lower boundary characteristics75

set to USGS values for land use most closely matching the Anderson fuel category F (Anderson, 1982). The corresponding

surface roughness lengths added various levels of wind shear to each domain to produce a more realistic non-uniform vertical

wind profile during spinup of the environment before the fire was initialized in the LES.

Initial convection in the ambient environment was triggered using a perturbed surface temperature field. On average, a near-

stationary turbulence spectrum was achieved within the first 30 min of run start. The "restart" file generated at the end of one80

hour of spinup was used to initialize the main burn simulation, ensuring the fire was ignited in a well-mixed turbulent ABL.

The fire was initialized over a one-minute interval using a straight line of length L. The ignition line was placed one kilometer

downwind of the western edge of the domain and centered in the north-south direction (sample illustration of this setup can

be found in Appendix A). With a refinement ratio of 10 in each horizontal direction, the fire was simulated on a 4 m sub-grid

mesh.85

The "smoke plume" was modelled with a passive tracer emitted proportionally to the mass and type of fuel burned. The rate

of release was controlled by an assigned emission factor representing PM2.5 for each fuel category, based on values provided

by Prichard et al. (2017) (see namelist.fire_emissions in Supplementary Material).

A summary of key configuration details can be found in Table 1, as well as in sample namelist initialization files provided

as Supplementary Material.90
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Table 1. Key parameters of numerical domain setup.

Simulation Parameter Value/Description

Model version May 24, 2019 (git #ced5955)

Horizontal grid spacing 40 m

Domain size 500 grids cells (east-west) x 250 grids cells (north-south)

Time step 0.1 s

Model top 3000 m (shallow) / 5000 m (deep)

Spinup timing 11:30:00 - 12:30:00

Fire (restart) simulation timing 12:30:00 - 12:50:00 (shallow) / 12:30:00 - 13:00:00 (deep)

Sub-grid scale closure 1.5 TKE (TKE = Turbulence kinetic energy)

Lateral boundary conditions periodic

Surface physics Monin-Obukhov similarity (sf_sfclay_physics = 1)

Land surface model thermal diffusion (sf_surface_physics = 1)

Ambient surface heat flux 240 Wm−2(tke_heat_flux=0.2)

Fire mesh refinement 10

Ignition duration 13:00:10 – 13:01:10

Heat of combustion of dry fuel 16.4e+06 J kg−1

Table 2. Test conditions included in synthetic plume dataset. The count indicates the number of unique values used within the specified

range.

Condition (Tag) Range Count Description

Ambient wind (W) 3 - 12 ms−1 10 Uniform horizontal wind magnitude used to initialize

model spinup

Stability profile (R) R0-R8 9 Atmospheric sounding with variable ABL height, tem-

perature and inversion strength

Fuel (F) 1 - 13 13 Anderson fuel category assigned at lower boundary

Fireline length (L) 1 - 4 km 3 Length of ignition line

Total number of experiments = 140

2.2 Test Conditions

Table 2 summarizes the key parameters that were varied to produce the synthetic dataset. The reason for considering the given

conditions is twofold: these parameters (i) have been widely acknowledged as having a strong impact on plume behavior and

(ii) can be obtained (and provided as input for the parameterization) under real-world scenarios.
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Figure 1. Pre-ignition potential temperature profiles (stability condition R). Colors correspond to initial soundings used for model spinup.

The range of ambient winds tested was bound largely by numerical constraints. Due to cyclic boundary conditions, wind95

speeds higher than 12 ms−1 would require a much larger domain to prevent smoke recirculation. For the lower bound on our

wind condition W, we needed to ensure that sufficient wind speed was maintained to propagate the fire. The spread algorithm

used within the LES applies a correction factor under low wind speed conditions to prevent the fire from extinguishing itself.

While necessary for numerical reasons this effect is not physical, so winds below 3 ms−1 were excluded from our dataset.

We used 9 different atmospheric profiles (R condition) to initialize the model. We varied the following features for each100

initialization:

– initial ABL height (500 m - 1600 m)

– potential temperature lapse rate above inversion (0 K km−1 - 20 K km−1)

– initial ABL temperature (290 K - 300 K)

Following spinup (Sect. 2.1) under variable winds and surface conditions, this produced 9 sets of soundings, shown in Fig.105

1 with ABL depths of approximately 600 m - 2000 m.

We tested all fuel categories available within the model (F condition), and varied the length of the fireline (L condition) be-

tween 1 and 4 km. Weakly buoyant non-penetrative plumes whose smoke remained within the well-mixed ABL were excluded

from the dataset, as their behavior is governed by different physics. A tabulated summary of all combinations included can be

found in Appendix B.110

Note, that varying a single condition while holding the rest constant does not result in a controlled experiment isolating its

impact on plume rise. Because WRF-SFIRE incorporates fire-atmosphere coupling, the problem is not well-constrained. For

example, by varying fuel type F alone, while holding the rest of test conditions constant, we obtain a set of fires with diverse

shapes, sizes, intensities, fireline depths, rates of spread and heat release. This reflects the complexity of non-linear interactions
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that exist between the fire and the atmosphere. As a result, the parameter space captured within our LES dataset is much greater115

then the four conditions described in Table 2.

2.3 Defining Smoke Injection Height

Given non-stationary fire and atmospheric conditions, determining a consistent definition of an equilibrium smoke injection

height is not a trivial task. It requires separating buoyant rise from dispersion, while excluding the effects of initial momentum

overshoot and accounting for the advection due to varying ambient and fire-generated winds.120

A common way of examining vertical distributions of pollutants in the context of air quality is to consider CWI concentra-

tions. This allows to reduce the problem to two dimensions, with plume centerline being defined simply as the CWI concentra-

tion maximum at each location downwind of the source. Theoretically, under stationary conditions there exists an equilibrium

height, around which the centerline eventually oscillates. In reality, as well as in our LES experiments, neither the ambient nor

the fire conditions are stationary. The changing location, shape and intensity of the fire, ABL warming and growth, as well as125

the development of fire-coupled winds and vorticity continually modify the conditions.

As a result, our approach is based on defining a region, where the concentration distribution is quasi-stationary. We consider

the last frame of each simulation for this analysis. Using CWI integrated tracer values, we locate the plume centerline (Fig.

2a). Due to random effects of ABL thermals as well as fluctuations in fire intensity and propagation speed, both centerline

height and concentration can vary near the heat source. These oscillations are naturally suppressed in the stable layers above130

the ABL, as the plume travels downwind and undergoes additional widening and mixing. To obtain the quasi-stationary region

for each individual plume, we first calculate the change in tracer concentration along the centerline. We then use a smoothing

function to reduce the effect of random turbulent oscillations in both the centerline height and the tracer concentration gradient

along the centerline. The downwind region where both of these parameters are not changing rapidly are then then considered

quasi-stationary. Additional details of this filtering method are provided in Appendix C.135

The vertical CWI distribution of tracers are then averaged in the downwind direction over the identified quasi-stationary

regions (shaded in grey on the Fig. 2c) to produce a representative downwind distribution for each plume (Fig. 2d). We define

the "true" injection height zCL as the mean height of smoothed centerline over the averaging region. The resultant dataset of

zCL values is used to constrain and evaluate the proposed smoke injection height parameterization introduced in the following

sections.140

3 Smoke Injection Height Model for Penetrative Wildfire Plumes

A common approach to predicting the final equilibrium centerline height of wildfire smoke is to first estimate the initial

buoyant energy of the hot rising smoke (Briggs, 1975; Sofiev et al., 2012; Anderson et al., 2011). After the smoke plume

entrains surrounding ABL environmental air and cools, the remaining energy is spent doing work to push the cooled smoke

plume up into the statically stable capping inversion.145
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Figure 2. Illustration of the approach to identifying a quasi-stationary downwind region in CWI smoke distribution using a sample LES

experiment. (a) CWI smoke concentrations. Also shown are plume centerline height (dashed), zi (dotted) and CWI fireline intensity (solid red,

secondary axis). (b) Plan view of fire heat flux showing the fireline. (c) Quasi-stationary region (grey shading). Also shown are raw (dotted

purple) and smoothed (solid green) centerline heights and the tracer concentration gradient (solid orange, secondary axis). (d) Representative

downwind smoke distribution. The profile (solid blue line) is obtained by horizontally averaging the CWI smoke concentrations in the quasi-

stationary region (dashed grey in (c)). Also shown are IQR (light blue shading) and the derived smoke injection centerline height zCL (dashed

black).

The relationship between final and initial energies is often rewritten to show that the potential energy per unit mass (PE) of

smoke penetration equals some fraction c1 of initial heat released from the fire. In kinematic units, the initial heat input has

units similar to a kinetic energy per unit mass (KE). The empirical parameter c1 is usually estimated based on concepts of

entrainment into the rising smoke plume (Cushman-Roisin, 2014).

PE = c1KE (1)150

The PE of smoke-plume penetration into the capping inversion can be written as

PE = g′z′ (2)

where the penetration distance z′ of the final equilibrium smoke centerline zCL above reference height zs (near the top of the

well-mixed portion of ABL) is

z′ = zCL − zs (3)155

The static-stability variable g′ for the plume-penetration region is

g′ = g
θCL − θs

θs
= g

θ′

θs
(4)
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where θCL and θs are the potential temperatures of the ambient environment at zCL and zs, respectively, and θCL − θs = θ′.

The KE can be estimated using a velocity scale wf as

KE = 0.5w2
f (5)160

Traditionally, the bulk potential-temperature difference across the smoke-plume penetration region θ′ is expected to be relevant

for only the PE portion of Eq. (1). However, we found from the LES runs for a wide range of fire and environment conditions

that the KE also depends on the same potential temperature difference. This dependence can be expressed in the velocity scale:

wf =
I

ziθ′
(6)165

This velocity scale is related to the fireline intensity parameter I , which is the kinematic heat flux into the atmosphere integrated

across the fireline depth (in units of Km2s−1), and to the mixed-layer depth zi. Note, that I effectively corresponds to the

kinematic form of Byram’s Fireline Intensity (in units of kWm−1).

We speculate that this interesting result is because smoke from a fire does not rise through a passive environment, as is often

assumed for Briggs types of plume entrainment models. Instead, the fire and the environment interact in many complex ways.170

Some of these include: vertical-to-bent-over vortices on the ends of the fire line that rapidly mix environmental air into the

buoyant smoke plume; modulation of fire intensity and fire updrafts by translation of ambient thermals across the fire line;

plumes of enhanced convergence and updraft along the fire line; mass conservation as descending air beneath the extended

smoke plume lowers the local mixed-layer depth; and other factors.

Thus, Eq. (1) becomes175

g′z′ = c2

[
I

ziθ′

]2
(7)

where c2 = 0.5c1.

The above can be rearranged into the following form

zCL − zs = C

[
g (θCL − θs)

θs (zCL − zs)

]− 1
2
{
gI (zCL − zs)

θszi

} 1
3

(8)

where the dimensionless empirical parameter is C ≈ 1. The factors in square and curly brackets with their corresponding180

powers have units of time and velocity, respectively. This relationship is plotted in Fig. 3. It provides quite an acceptable fit to

the data over a wide range of 140 combinations of fire and atmospheric conditions simulated.

Equation (8) suggests that the relevant length and temperature scales (z′,θ′) depend not on the capping inversion strength

alone, or on the tropospheric lapse rate above the capping inversion alone, but on the bulk potential-temperature differences

across the smoke-plume penetration region, zCL−zs. Eq. (8) is implicit, in that the desired plume centerline equilibrium height185

zCL appears in both the left and right sides of the equation. The plume centerline height also defines where θCL is retrieved

from the atmospheric sounding; namely, zCL is implicit in both Eq. (7) and (8). However, for any specific fire and environment
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Figure 3. Comparison of true (as shown in Fig. 2) and modelled (from Eq. (8)) smoke injection heights. Scatter points represent the 140

individual plume experiments within the LES dataset, with colors corresponding to fireline intensity I . Solid black and grey dashed lines

denote linear regression fit and unity, respectively.

conditions, values of zCL are easily found by iteration (see Appendix E). Steps to estimating input parameters required for the

proposed injection model from the LES data are summarized in Appendix D.

Alternatively, for a small sacrifice in accuracy, we can obtain an explicit solution by considering an idealized version of the190

atmospheric profile, consisting of an adiabatic mixed layer, entrainment zone and a stable uniformly stratified free atmosphere

above (Fig. 4). In such case γ is defined as the overall potential temperature gradient of the free atmosphere and zs as the

height corresponding to the intercept of γ and the well mixed portion of the ABL profile. Then, using Eq. (8), zCL can be

found explicitly as:

zCL = C
3
2

[
θs
g

] 1
4
[
I

zi

] 1
2
[
1

γ

] 3
4

+ zs (9)195

4 Results

To assess the accuracy of the proposed smoke injection height parameterization (Eq. (8)), we performed two sets of verification

studies. The first approach is based on using the synthetic plume dataset to perform model evaluation, bias correction and

sensitivity analysis with idealized data. The second portion of this section applies our approach to a case study of a real

prescribed burn (RxCADRE 2012).200

9



000s

s

i

CL

CL

z

z

z
z

0

a

Figure 4. Idealized potential temperature profile θ vs. height with constant stable layer lapse rate γ.

4.1 Numerical Results

Shown in Fig. 3 are "true" and parameterized smoke injection heights. The former is obtained directly from the LES, as per

Sect. 2.3. The latter is determined iteratively using the proposed smoke injection height parameterization (see Appendix E for

implementation details).

Individual prediction errors do not appear to be a function fireline intensity, as indicated by scatter point color in Fig. 3, or205

ambient winds (not shown). While overall the model performance is encouraging, the small discrepancy between the unity and

regression lines suggests a linear bias. This can be remedied by applying bias correction using regression parameters from the

fit shown in Fig. 3. This optimized model produces errors on the order of 20 - 30 m, as suggested by the interquartile range

shown in Fig. 5d. Model bias will be addressed in further detail in Sect. 5.

Given smooth averaged profiles from the synthetic dataset and excluding condition R8 (adiabatic free atmosphere), the210

explicit solution using Eq. (9) offers comparable accuracy to the iterative version for both raw and bias corrected datasets (Fig.

6) . We address the limitations of using the explicit approach in Sect. 5.5.

4.2 Model Sensitivity

To asses how sensitive the smoke injection model performance is to the particular choice of bias correction parameters, we

partition our original plume dataset into training and testing groups through random sampling. We obtain the linear bias215

correction parameters using training data only (80% of runs). We then apply our bias-corrected iterative solution to the test

group (remaining 20% of the runs) and assess model accuracy. Figure 7 summarizes model performance and sensitivity, based
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Figure 5. Performance of the smoke injection height parameterization based on the iterative solution (Eq. (8)). (a) Non-bias corrected model

prediction error (true - modelled zCL ) as a function of zCL. (b) Error statistics for non-bias corrected model. The box and whiskers span

interquartile range (IQR) and 1.5 x IQR, respectively. Median value shown in orange. (c) Bias-corrected model prediction error as a function

of zCL. (d) Error statistics for bias-corrected model.

on 10 trials of sampling with replacement. Consistently high Pearson correlation shown in the trial histogram in Fig. 7c, are

encouraging, and suggest that the particular choice of simulations used in bias correction does not have a strong impact on

model accuracy.220

4.3 Evaluation with Observations

Next, we apply the proposed model to a real-life case-study. We use observational data from the RxCADRE L2G prescribed

burn (Ottmar et al., 2016) and it’s numerical simulation (Moisseeva and Stull, 2019). This case study was selected based on

(i) comprehensive nature of the observational dataset (ii) penetration of the plume above ABL top and (iii) availability of a

completed model validation study, confirming that WRF-SFIRE reasonably captures the smoke plume produced during the225

burn.

Shown in Fig. 8 is the strip headfire pattern used to ignite the grass plot. We estimate the burn’s input fireline intensity

parameter I in two different ways: from raw data collected during the burn as well as from the numerical simulation.

The observations-based value Iobs is derived from the integral heat flux data obtained from the Highly Instrumented Plots

(HIPs) fire behavior package (FBP) sensors (Jimenez and Butler, 2016). We use the provided time-integrated values, averaging230

between all sensors with confirmed fire at the sensor location (as indicated by video footage (Butler et al., 2016)). We then
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Figure 6. Performance of the smoke injection height parameterization based on the explicit solution (Eq. (9)). (a) Non-bias corrected model

prediction error (true - modelled zCL ) as a function of zCL. (b) Error statistics for non-bias corrected model. The box and whiskers span

interquartile range (IQR) and 1.5 x IQR, respectively. Median value shown in orange. (c) Bias-corrected model prediction error as a function

of zCL. (d) Error statistics for bias-corrected model.

obtain the mean value (in kinematic units) of 236 Kms−2 and multiply it by the average measured rate of spread (ROS) of 0.38

ms−1 (Butler et al., 2016) for the same sensors to convert to spatially-integrated heat flux for a single fire line. We assume that

this value is representative of the remaining three firelines, hence:

Iobs = 236 · 0.38 · 4 = 359 (10)235

in units of Km2s−1. Note, that raw data for both heat fluxes and ROS values have extremely large associated uncertainties.

Observed ROS values vary by nearly a factor of two, depending on the measurement technique used. While we have included

only locations with ignition confirmed by video footage in our calculations, heat fluxes still vary up to a factor of four between

sensors.

For comparison, we also obtain an LES-based integrated fireline intensity value ILES . Due to wind shear, as measured by240

the sounding launched prior to the burn (10:00:00 CST), the CWI direction at the surface differs from the one used to estimate

CWI smoke. ILES was, hence, estimated by assuming 125 degree rotation of LES fields, based on the lowest available wind

direction measurement. We use trapezoidal rule to numerically integrate the mean crosswind heat flux along the depth of the

fireline (see Appendix D) and find ILES = 1002 Km2s−1.
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Figure 7. Analysis of model sensitivity to the choice of bias correction parameters. (a) Error distributions for individual trials using inde-

pendent (test) data. (b) Error distribution for all trials using independent (test) data. (c) Sensitivity of R-value (correlation coefficient) for all

trials.

We apply our iterative solution (Eq. (8)) to find two zCL estimates based on Iobs and ILES , and compare them to the245

CWI smoke injection height obtained from the LES. The results are shown in Fig. 9. The parameterized injection heights are

under-predicted by 20 m and 70 m for LES- and observations- derived I values, respectively.

5 Discussion

5.1 Plume Classification

In previous sections we apply an energy balance parameterization to predict the mean smoke injection height zCL of a given250

penetrative plume. For this purpose, only plumes rising above ABL top zi were included in the synthetic plume dataset used
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Figure 8. Long wave infra-red (LWIR) image of L2G lot during ignition (12:32:02 CST) with dashed black lines denoting burn perimeters.
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Figure 9. Model evaluation using a case-study of a real prescribed burn (RxCADRE 2012). CWI smoke concentration profile shown in blue.

"True" zCL obtained directly from LES shown in solid black. Solid orange and dashed red lines correspond to zCL estimates obtained using

the iterative solution of the proposed smoke injection height parameterization (Eq. (8)), based on LES- and observations- derived fireline

intensities, respectively.

to constrain and evaluate the approach (see Table B1). In this section, we step back and consider all performed simulations, to

determine whether the same equations can also be used to classify penetrative vs. non-penetrative plumes.
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The synthetic dataset described in 2.2 consisted of 140 runs and excluded 7 simulations, where the plume remained trapped

in the ABL (see Table B1 and Table 3). We determined this by visual analysis of CWI centerline and smoke fields. The excluded255

plumes typically exhibited oscillatory or irregular centerline behavior (within the ABL, such as shown in the example in Fig.

B1) with little or no smoke injected above zi. For several combinations of fire and atmospheric conditions, however, making

the distinction was challenging. For this reason, we included these "marginally-penetrative" plumes in the dataset.

In real-world applications, classification is a fundamental first step in plume rise parameterization process Sofiev et al.

(2012). A viable automated method for categorizing penetrative vs. non-penetrative plumes requires that the distinction be260

made based on available input parameters, rather then smoke observations (as such are typically not available at the time of

making a forecast).

Conveniently, we can use Eq. (8) to obtain a zCL estimate for any combination of input parameters without prior knowledge

of plume type. It can, hence, be applied as a classifier by requiring that for a penetrative plume

zCL > zi+ (11)265

where zi+ denotes the height of the upper edge of the numerical grid box (or ambient atmospheric sounding) containing zi. In

other words, this definition ensures that zi and zCL are not in the same vertical model level. If this condition is not satisfied,

the plume is assumed to be non-penetrative.

This approach correctly classifies all non-penetrative plumes that had been identified by visual analysis (Table 3). In addition,

several plumes exhibiting marginal behavior are also classified by Eq. (11) to be non-penetrative.270

For the purpose of subsequent dispersion modelling within real-world applications, non-penetrative plumes (i.e. all plumes

listed in Table 3) would be assumed to become uniformly mixed in the vertical within a few convective turnover distanced

downwind of the fire. Turbulent eddies within the ABL produce a well-mixed layer, resulting in relatively homogeneous

vertical distribution of pollutants between the surface and zi. In contrast, for plumes that extend above zi, spanning the ABL,

the entrainment layer, and/or the free troposphere, subsequent dispersion is typically handled by trajectory models.275

5.2 Comparison with Existing Models

The above model evaluation indicates encouraging performance for the proposed smoke injection parameterization (Eq. (8))

at little computational cost. An additional advantage of our method is that it does not require making simplifying assumptions

regarding the shape and heat flux distribution of the fire. This allows us to easily apply our model to complex heat sources,

such as one produced with the strip head fire ignition pattern during the RxCADRE L2G prescribed burn (Fig. 8).280

Unlike most existing plume rise parameterizations (Briggs, 1975; Rio et al., 2010; Freitas et al., 2007) we focus on a CWI

centerline. Our model can be viewed as a "bulk method", having some common ground with the thermodynamic approach used

in the FireWork modelling framework (Anderson et al., 2011; Chen et al., 2019) and the energy balance approach proposed by

Sofiev et al. (2012). More specifically, we make no attempt to predict the full evolution of the rising plume centerline velocity

or temperature before it reaches its equilibrium height. Rather, we focus on the energy balance of the plume over a "penetration285

layer".
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Table 3. Identifying non-penetrative plumes using visual analysis vs. automated classification. Plume name denotes wind condition W, fuel

type F and initial atmospheric profile R.

Plume Visual analysis Automated classification

W5F9R1 X X

W5F1R3 X X

W5F8R3 X X

W5F9R3 X X

W5F1R7 X X

W5F8R7 X X

W5F9R7 X X

W5F1R0 X

W5F1R1 X

W5F8R1 X

W5F10R3 X

W5F11R3 X

W5F1R4 X

W5F11R4 X

Through analysis of the 140 LES experiments for plumes under variable fire and atmospheric conditions, we found that

near-surface and boundary-layer plume dynamics are extraordinarily complex. While some aspects of plume mixing can be

reasonably accounted for by making traditional entrainment assumptions, complicated features resulting from fire-atmosphere

coupling, such as formation of lateral vortices and fireline wind convergence zone, are difficult to parameterize directly. Hence,290

we apply the energy balance approach to a layer well above the surface, starting from a reference height zs close to the top of

the ABL.

As noted in Sect. 3, the implicit functional form of our solution (Eq. (8)) can be interpreted as a characteristic timescale

multiplied by the characteristic velocity scale wf . By rearranging Eq. (7) and substituting Eq. (8) for z′ it can be shown that

the two expressions for wf are equivalent, namely:295

wf =

[
I

ziθ′

]
=

[
gIz′

θszi

] 1
3

(12)

The scaling relationship between vertical plume velocity and cubic root of fire heat has been previously established with both

Rio’s and Freita’s models (Rio et al., 2010; Freitas et al., 2007), although our formulation includes different variables inside

the radical. While both of our forms for wf and both model formulations (the simplified Eq. (7) and the expanded Eq. (8))

are mathematically equivalent, conversion from one form to another requires raising terms to 6th power. This results in large300

prediction errors; hence, for practical applications, the full Eq. (8) should be used.
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Figure 10. Similarity solution for dimensionless groupsH and z, corresponding to the RHS and LHS of Eq. (13), respectively. Scatter points

represent individual LES runs, colored by fireline intensity parameter I .

5.3 Dimensionless Relationship

As discussed in Sect. 3, we can obtain an explicit solution for zCL by making additional assumptions about the vertical profile

of potential temperature above the ABL. This allows us to reduce our Eq. (9) to a similarity relationship with two dimensionless

groups z and H , denoting the left hand side (LHS) and right hand side (RHS) of Eq. (13), respectively. Nondimensional z and305

H are linearly related, as shown in Fig. 10. The simple relationship suggests that our modelling results could fairly easily be

scaled to a wider range of fire and atmospheric conditions, beyond those captured by the synthetic dataset presented in the

paper.

z′

zi︸︷︷︸
z

= C
3
2

[
θs
gγ3

] 1
4
[
I

z3i

] 1
2

︸ ︷︷ ︸
H

(13)

5.4 Model Bias310

The raw, non-bias- corrected form of the model suffers from a positive bias for tall plumes, as suggested by Fig. 5c and 6c.

In other words, zCL is overpredicted for plumes injected high above the ABL. We speculate that this is due to the simplifying

assumption that most of the cooling, mixing, and dilution occurs below the reference level zs in upper portion of the ABL.

As the distance between zs and zCL increases for tall plumes and as the smoke travels further into the free atmosphere,

this assumption becomes increasingly less accurate. Additional radiative cooling and entrainment of ambient air is, therefore,315

unaccounted for, resulting in over-prediction for zCL.
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This issue is largely resolved for our dataset with the applied bias-correction. However, cases with strong shear turbulence

and active smoke mixing above the ABL are still likely to be overestimated.

5.5 Limitations

The most significant limitation of the proposed smoke injection height parameterization is that it applies only to smoke plumes320

with no water vapor condensation. Latent heat effects are not considered. Hence, smoke injection level for extreme pyrocon-

vective events (e.g. flammagenitus clouds (WMO, 2017)) will likely be grossly under-predicted with the given formulation.

Therefore, in its current form, our parameterization is unlikely to be suitable for large-scale applications (e.g. global chemical

transport models). However, it has the potential to improve regional air quality tools (e.g. BlueSky), since wildfire emissions

sources are largely dominated by in- or near- ABL non-condensing smoke plumes (Val Martin et al., 2010, 2018).325

Given the energy-balance formulation of our plume rise parameterization, it may be possible to incorporate latent heat effects

by including an extra PE term in Eg. (1). Similarly to the iterative process for finding a level of neutral buoyancy with Eq. (8)

using potential temperature, it may be possible to predict plume condensation level using ambient humidity profile. However,

a big obstacle to this development is that, to our knowledge, WRF-SFIRE has not been validated for such conditions.

Unlike many existing methods, our parameterization relies on fireline intensity parameter I , rather than average fire heat flux330

values, as input. While this approach offers an advantage for modelling plumes from complex ignition sources (such as shown

in Fig. 8), fireline intensity is difficult to observe in the field.

Another limitation is the inherently implicit form of the full model Eq. (8). While we have not encountered any issues

using an iterative solver to find zCL, atypical (or extremely noisy) ambient atmospheric soundings could potentially affect

convergence. The explicit form (Eq. (9)) derived using the idealizing ambient sounding (Fig. 4) offers a possible solution for335

such cases. However, it fails for weakly stable and adiabatic free atmosphere (eg. condition R8 in Fig. 1), as θs is extrapolated

into lower levels of ABL.

Lastly, the model has been developed and tested only for typical daytime atmospheric conditions. We have not assessed

model performance for stable night-time atmospheric profiles or in the presence of strong vertical windshear.

6 Conclusions340

Plume rise estimation remains one a weak link in our ability to forecast where and how smoke from wildfires travels in the

atmosphere. In this study we present a simple parameterization (Eq. (8)) for predicting CWI smoke-plume centerline height

from a wildfire of an arbitrary shape and intensity. Our approach is based on energy-balance of the plume over a penetration

region. We constrain and evaluate the proposed method using a synthetic LES-derived plume dataset developed for a wide

range of fire and atmospheric conditions.345

Based on the results of cross-evaluation with LES data as well as a real prescribed burn case study, the parameterization

offers reasonable accuracy at little computational cost. We demonstrate that the approach can also be applied as a classifier

to distinguish penetrative and non-penetrative plumes. This information is key for subsequent dispersion modelling, as plume
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AMBIENT WIND→

Figure A1. Numerical domain setup.

behavior is governed by different physics above and below the ABL. The proposed method can be used as a sand-alone

deterministic model or embedded in a host smoke modelling framework.350

We hope that parameterization presented in this study will be of interest to air-quality researchers to provide a low-cost

solution for regional wildfire emissions-modelling applications.

Code availability. S1: WRF-SFIRE sample initialization files (sample_simulation.zip)

Appendix A: Domain Setup

Appendix B: Parameter space of LES dataset355

Table B1 and Table B2 summarize the tested combinations of fire and atmospheric parameters captured by the synthetic plume

dataset. Colored cells correspond to completed simulations. Tall boundary layers of R5 and R6 domains required low winds

(5 ms−1 and below) and high intensity fires (fuel categories 4, 6, 7, 12 and 13) to reach ABL top within the simulation

runtime and/or avoid smoke recirculation. Hence, alternative combinations (white cells in R5 and R6 columns) would require

considerably different domain setup from other runs. For this reason these combinations were not tested. Also, a single run was360

performed for R8 condition (adiabatic free atmosphere) as an extreme case scenario.

Red cells in Tab. B2 highlight simulations that were completed, but subsequently excluded from analysis presented in Sect.

3. This was done based on visual inspection of LES fields. There were two possible reasons for exclusion: (i) the plume reached

the top of the domain or (ii) the plume appeared to be non-penetrative. In the former case, it’s questionable whether the fields

are physical, as the plume could potentially be affected by the absorbing layer near domain top, designed to prevent numerical365

instability. The latter rendered the plume irrelevant for the purpose of analysis presented in Sect. 3. These non-penetrative runs,

however, were included for testing the plume classification method presented in Sect. 5.1.
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Table B1. Combinations of test conditions resulting in penetrative plumes, as captured by the LES datasets. Green cell highlights fireline

length condition (L) runs. Intensity of blue color corresponds to the number of runs for fuel condition (F) represented by the cell. Row ’W5’

is expanded in Table B2 below.

R/W R0 R1 R2 R3 R4 R5*† R6*† R7* R8*

W3 F7 F7 F7 F7 F7 F7 F7 F7

W4 F7 F7 F7 F7 F7L1

F7L2

F7L4

F7 F7 F7

W5 F1 - F12,

excl:F4

F1 - F13,

excl:F9

F1 - F13 F2 - F13,

excl:F8,F9

F1 - F13 F4 F6 F7

F12 F13

F4 F6 F7

F12 F13

F2 - F13,

excl:F8,F9

F7

W6 F7 F7 F7 F7 F7 F7

W7 F7 F7 F7 F7 F7 F7

W8 F7 F7 F7 F7 F7 F7

W9 F7 F7 F7 F7 F7 F7

W10 F7 F7 F7 F7 F7 F7

W11 F7 F7 F7 F7 F7 F7

W12 F7 F7 F7 F7 F7 F7

*Deep domain (5 km). †Extended runtime (30 min).

Figure B1. Fixed aspect ratio plot of CWI smoke from a sample non-penetrative plume (W5F8R3). Plume centerline and zi shown in dashed

and dotted grey, respectively.
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Table B2. Tested combinations of fuel and ABL conditions (all blue and red colored cells).

R/W R0 R1 R2 R3 R4 R5*† R6*† R7* R8*

F1 ABL

plume

ABL

plume

F2

F3

F4 smoke at

domain top

F5

F6

F7

F8 ABL

plume

ABL

plume

F9 ABL

plume

ABL

plume

ABL

plume

F10

F11

F12

F13 smoke at

domain top

*Deep domain (5 km). †Extended runtime (30 min).

Appendix C: Identifying Quasi-Stationarity

We define the quasi-stationary downwind region for each plume based on two factors: the height of the centerline and tracer

concentration gradient along the centerline. Our filter attempts to extract only those portions of the downwind CWI smoke370

distribution, where both of these factors are changing slowly.

First, we remove the effect of random turbulent oscillations by applying a smoothing function (Savitzky-Golay filter provided

by SciPy library with polynomial order set to 3) to both the concentration gradient along the centerline and the centerline height.

We vary the size of the smoothing window as a function of mean ambient wind condition W, such that window_length=

max(W · 10+1,51) grid points.375

The filter then applies the following criteria to extract quasi-stationary regions:

– smoothed tracer concentration along the plume centerline varies by less then 10% of the maximum concentration gradient

– smoothed centerline height varies by less then a 100 m

– the location is downwind of the maximum tracer concentration gradient
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Table D1. Variable descriptions and units used in smoke injection model.

Variable Unit Description

I Km2s−1 fireline integrated heat flux

g ms−2 gravity constant = 9.81

θCL K ambient potential temperature at zCL

θs K ambient potential temperature at zs

zCL m smoke injection height

zi m boundary layer height

zs m reference height

– the location is at least 10 grid points away from the maximum in smoothed and non-smoothed centerline height380

– the location is at least 50 grid points away from the downwind endpoint of the centerline

The above thresholds were determined through an informal sensitivity analysis (not shown), based on the filter’s ability to

effectively identify regions of near-stationary plume centerline height for all simulations in our dataset.

Appendix D: Estimating Model Input Parameters

Summarized in Table D1 are parameters associated with an iterative solution for zCL using Eq. (8). Below is our approach to385

estimating these parameters from LES data.

As noted above, we consider the problem in crosswind direction. Given a three-dimensional fire of an arbitrary shape (eg.

Fig. 2b) and an ambient atmospheric sounding, we first average the fire kinematic heat flux for all ignited cells (where heat

flux > 1 kWm−2) over the crosswind (y) direction at the surface (red line on Fig. 2a). Due to surface wind shear this direction

may differ from the one used for calculating CWI smoke concentrations (as shown in Sect. 4.3). To obtain fireline intensity390

parameter I we numerically integrate the crosswind averaged heat fluxes over the depth of the fireline in the along-wind (x)

direction.

We use pre-ignition potential temperature profile (i.e. the ambient environment upwind of the fire) averaged over the entire

LES domain as an environmental sounding. All model fields are interpolated to have a 20 m vertical increment. zi is defined as

the height of the strongest environmental lapse rate gradient, and zs = 3
4zi, based on informal model sensitivity analysis (not395

shown). The exact choice of zs has little effect on model performance as long as it remains within the upper portion of the

uniform potential temperature well-mixed layer.

The values of θs and θCL are then determined from the pre-ignition sounding for each simulation using the definitions of zs

and zCL (as described in Sect. 2.3).
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Appendix E: Iterative Solution for zCL400

The numerical implementation of our iterative solution using SciPy’s fsolve function (scipy.optimize.fsolve) is as follows. We

rewrite bias corrected Eq. (8) into an input function toSolve as:

toSolve= lambda z : z−B1(zs +C

[
g(T0[int( z

dz )]− θs)

θs(z− zs)

]− 1
2
[
gI(z− zs)

θszi

] 1
3

)−B2 (E1)

where C = 1.005, B1 = 0.924 and B2 = 116.417 are bias correction parameters, T0 is the potential temperature sounding

vector, dz is the vertical step and int() is a standard Python function converting the bracketed value into an integer.405

A possible issue for some solvers is that we are, effectively, iterating over the vertical index of the column vector T0

corresponding to zCL. As the numerical solver attempts to converge on a solution it may query a non-existent index and fail.

We are able to obtain a fast and consistent performance by ensuring we set zi as the initial guess for zCL and by minimizing

the initial step bound option of the solver

zCL = fsolve(toSolve,zi,factor = 0.1) (E2)410
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