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Abstract 28 
The Gridpoint Statistical Interpolation data assimilation (DA) system was developed for the 29 
four-size bin sectional Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) 30 
aerosol mechanism in the Weather Research and Forecasting-Chemistry (WRF-Chem) model. 31 
The forward and adjoint operators for the aerosol optical depth (AOD) analysis were derived 32 
from WRF-Chem aerosol optical code. We applied three-dimensional variational DA to 33 
assimilate the multi-wavelength AOD, ambient aerosol scattering coefficient, and aerosol 34 
absorption coefficient, measured by the sun-sky photometer, nephelometer, and aethalometer, 35 
respectively. These were undertaken during a dust observation field campaign at Kashi in 36 
northwestern China in April 2019. The results showed that the DA analyses decreased the low 37 
biases in the model aerosols; however, it had had some deficiencies. Assimilating the surface 38 
particle concentration increased the coarse particles in the dust episodes, but AOD, and the 39 
coefficients for aerosol scattering and absorption, were still lower than observed values. 40 
Assimilating aerosol scattering coefficient separately from AOD improved the two optical 41 
quantities. However, it caused an overestimation of the particle concentrations at the surface. 42 
Assimilating the aerosol absorption coefficient yielded the highest positive bias in the surface 43 
particle concentration, aerosol scattering coefficient, and AOD. The positive biases in the DA 44 
analysis were caused by the forward operator underestimating particle scattering and 45 
absorption efficiency. As a compensation, the DA system increased particle concentrations 46 
excessively so as to fit the observed optical values. The best overall improvements were 47 
obtained from the simultaneous assimilation of the surface particle concentration and AOD. 48 
The assimilation did not substantially change the aerosol chemical fractions. After DA, the 49 
clear-sky aerosol radiative forcing at Kashi was –10.5 Wm–2 at the top of the atmosphere, 50 
which was 46% higher than the background radiative forcing value.  51 
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1. Introduction 52 
Data assimilation (DA) blends the information from observations with a priori background 53 
fields from deterministic models to obtain an optimal analysis (Wang et al., 2001; Bannister, 54 
2017). With lagged emission inventories and unsatisfactory model chemistry mechanisms, 55 
there are notable discrepancies between model aerosols and observed levels (He et al., 2017; 56 
Chen L. et al., 2019). The DA technology incorporates aerosol measurements into the models 57 
to optimize emissions (Peng et al., 2017; Ma et al., 2019), and cyclically updates the 58 
background fields in forecasts. This effectively improves the air quality forecasts in China 59 
(Bao et al., 2019; Cheng et al., 2019; Feng et al., 2018; Hong et al., 2020; Liu et al., 2011; 60 
Pang et al., 2018; Peng et al., 2018; Xia et al., 2019a, 2019b). 61 
 62 
Variational DA minimizes the distant scalar function measuring the misfit between model 63 
states and a set of observations in each assimilation window. An effective variational DA 64 
requires an appropriate adjoint operator (or Jacobian matrix), which describes the gradient or 65 
sensitivity of the observed parameter to the control variable (Wang et al., 2001; Bannister 66 
2017). The adjoint operator is highly dependent on the types of assimilated observations and 67 
the selection of control variables; it is also sometimes dependent on the aerosol mechanism. 68 
For PM2.5 (particulate matter with dynamic radius less than 2.5 µm) DA, the adjoint operator 69 
is the ratio of the PM2.5 concentration to composition of each aerosol (Pagowski et al., 2010). 70 
For the aerosol optical depth (AOD) DA, the adjoint operator is generated through Mie theory 71 
(Liu et al., 2011; Saide et al., 2013). With the development of aerosol mechanisms and the 72 
growing body of novel aerosol observations from ground-based networks and satellites, an 73 
appropriate adjoint operator is in demand. 74 
 75 
The community gridpoint statistical interpolation (GSI) system (Wu et al., 2002; Purser et al., 76 
2003a, 2003b) is often used to modify regional aerosol simulations with three-dimensional 77 
variational (3D-Var) DA. The official GSI (version 3.7 in this study) can incorporate 78 
observations of surface particulate matter concentration and AOD to constrain the aerosols 79 
simulated within the aerosol mechanism of Goddard Chemistry Aerosol Radiation and 80 
Transport (GOCART, Liu et al., 2011; Pagowski et al., 2014). The tangent linear operator and 81 
adjoint operator for AOD were determined using the Community Radiative Transfer Model 82 
(CRTM). This GSI version incorporating the Moderate Resolution Imaging 83 
Spectroradiometer (MODIS) AOD in East Asia (Liu et al., 2011), revealed the simultaneous 84 
DA effects of PM2.5 and AOD in the continental United States (Schwartz et al., 2012). This 85 
GIS was used to identify DA effects that weakened during running of the succeeding model 86 
as the model error grew (Jiang et al., 2013), and assessed the radiative forcing of the aerosols 87 
released by wildfires (Chen et al., 2014). This version of GSI was also utilized to improve air 88 
quality forecasts in China by assimilating a variety of satellite AOD data retrieved from: the 89 
Geostationary Ocean Color Imager (Pan et al., 2018); Visible Infrared Imaging Radiometer 90 
Suite (Pang et al., 2018); Advanced Himawari-8 Imager (Xia et al., 2019a); and the Fengyun-91 
3A/medium-resolution spectral imager (Bao et al., 2019; Xia et al., 2019b). 92 
 93 
Despite its capabilities, the GOCART mechanism is unable to simulate nitrate and secondary 94 
organic aerosols (SOA), and the GOCART aerosol size distribution uses a bulk assumption 95 
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for radiative transfer calculation. Strictly speaking, the lack of aerosol components violates 96 
the unbiased requirements for the model states in the DA system. Lack of size-segregated 97 
aerosols may introduce a bias in the calculation of optical aerosols. The official GSI can 98 
assimilate the surface particle concentration from the aerosol mechanism apart from 99 
GOCART (Zang et al., 2016), but its AOD DA is tightly bound with the GOCART aerosols. 100 
If one wished to use GSI to assimilate AOD for the other aerosol mechanisms, a compromise 101 
solution was to integrate the map of the speciated aerosols of other mechanisms into that of 102 
the GOCART aerosols. For example, Tang et al. (2017) used the official GSI to assimilate 103 
MODIS AOD with the aerosols from the Community Multi-scale Air Quality Model 104 
(CMAQ). They incorporated the map of the 54 aerosol components of CMAQ into the five 105 
CRTM aerosols and repartitioned the mass increments of each CMAQ aerosol according to 106 
the ratio of aerosol chemical components in the background field. This repartitioning is called 107 
the “ratio approach.” Cheng et al. (2019) assimilated the lidar extinction coefficient profiles 108 
measured in Beijing to modify the Weather Research and Forecasting-Chemistry (WRF-109 
Chem) Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) aerosols. They 110 
used the ratio approach to map eight MOSAIC aerosols based on five GOCART aerosols. 111 
This mapping strategy is readily implemented but introduces inconsistent size-segregated 112 
aerosol information (e.g., hygroscopicity and extinction efficiency) between the aerosol 113 
model and the DA system. Because building a GSI system for a new aerosol mechanism is 114 
quite technical, the official GSI for the GOCART aerosols is still a primary choice for recent 115 
aerosol DA studies (Bao et al., 2019; Xia et al., 2019; Hong et al., 2020). 116 
 117 
Because of the shortcomings, the official GSI has been extended to cooperate with other 118 
aerosol mechanisms in WRF-Chem. The MOSAIC mechanism in WRF-Chem simulates 119 
aerosol mass and number concentrations in either four- or eight-size bins. This sectional 120 
aerosol mechanism involves nitrate chemistry and can simulate SOA with the volatility basis 121 
set scheme. Saide et al. (2013) proposed a revised GSI version that performed variational DA 122 
for the MOSAIC aerosols. The authors generated the adjoint operator code with the automatic 123 
differentiation tool (ADT), TAPENADE v3.6. The ADT used the chain rule of derivative 124 
calculus on the AOD source code in WRF-Chem. They assimilated multi-source AOD data 125 
with the MOSAIC aerosols over continental United States and found that incorporating multi-126 
wavelength fine-mode AOD redistributed the aerosols’ particulate mass concentration sizes. 127 
The revised GSI system assimilated Korean ground-based and geostationary satellite AOD 128 
datasets to improve local aerosol simulations (Saide et al., 2014, 2020). Pang et al. (2020) 129 
developed the official GSI to work with the Modal Aerosol Dynamics Model for Europe with 130 
the Secondary Organic Aerosol Model (MADE/SORGAM) aerosols in WRF-Chem. The 131 
authors used the WRF-Chem AOD code as the forward operator to calculate the essential 132 
aerosol optical properties, which were then inputted to the CRTM adjoint operator. Because 133 
aerosols were externally mixed in CRTM, the setting of the internal mixture per size bin in 134 
WRF-Chem was not taken into account, and the AOD of each aerosol component was 135 
calculated separately. 136 
 137 
This study provides a solution to improve the capability of the GSI 3D-Var DA system for the 138 
sectional MOSAIC aerosols in WRF-Chem. We designed the adjoint operator code for AOD 139 
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DA based on the WRF-Chem intrinsic aerosol optical subroutine (Fast et al., 2006), that is, 140 
without using the ADT. The adjoint code is programmed based on the analytical equations of 141 
the linear tangent model for AOD. As our revised GSI does not use the CRTM module, it 142 
avoids the problem of needing to eliminate WRF-Chem aerosols characteristics (e.g., aerosol 143 
mixture state and size distribution) to meet the CRTM input requirements. The forward and 144 
adjoint operators are coordinated, since they are derived from the same WRF-Chem code, and 145 
are written in a single subroutine, which is coupled to the GSI at the place of invoking CRTM 146 
for the AOD calculation. In addition to AOD DA, our adjoint operator has two variants to 147 
assimilate the aerosol scattering and absorption coefficients, measured using a nephelometer 148 
and aethalometer, respectively. 149 
 150 
This study verifies the effectiveness of our revised GSI system by incorporating multi-151 
wavelength aerosol optical observations that were measured during an international field 152 
campaign, the Dust Aerosol Observation-Kashi, in April 2019 at Kashi city, neighboring the 153 
Taklamakan Desert, northwestern China. This desert is the second largest globally, and is the 154 
primary source of dust aerosols in East Asia. The dust from the desert affects the nearby 155 
Tibetan Plateau (Ge et al., 2014; Jia et al., 2015; Zhao et al., 2020), air quality and climate in 156 
East Asia (Huang et al., 2014), and the biogeochemical cycles in the western Pacific Ocean 157 
(Calil et al., 2011). A successful DA analysis will help improve the local air quality forecast 158 
and enhance our understanding of the environmental impacts of local dust storms. The 159 
remainder of this paper is organized as follows. Section 2 describes the revised GSI system, 160 
the experimental design, and the observed data. Section 3 presents the DA results when 161 
assimilating different observations. Section 4 discusses the impact of DA on aerosol chemical 162 
composition and aerosol direct radiative forcing. Finally, Section 5 provides the conclusions 163 
and limitations that need further research. 164 
 165 
2. Methodology and Data 166 
2.1 Forecast Model 167 
The background aerosol fields were simulated using the WRF-Chem model version 4.0 (Grell 168 
et al., 2005; Fast et al., 2006). The model configurations included the Purdue Lin 169 
microphysics scheme (Chen and Sun, 2002), the unified Noah land surface model (Tewari et 170 
al., 2004), the Yonsei University scheme for planetary boundary layer meteorological 171 
conditions (Hong et al., 2006), and the rapid radiative transfer model for general circulation 172 
models (RRTMG) scheme for shortwave and longwave radiation (Iacono et al., 2008). The 173 
gas-phase chemistry was simulated using the carbon bond mechanism (Zaveri and Peters, 174 
1999), including aqueous-phase chemistry. The aerosol chemistry was simulated using the 175 
MOSAIC mechanism (Zaveri et al., 2008), which simulated sulfate, nitrate, ammonium, black 176 
carbon (BC), organic carbon (OC), sodium, calcium, chloride, carbonate, and other inorganic 177 
matter (OIN, e.g., trace metals and silica). SOA was excluded from our experiments to 178 
accelerate model integration. Although ignoring that SOA biased the model, the influence was 179 
assumed to be small, based on low anthropogenic and biogenic emissions in the vicinity of the 180 
desert. We performed the MOSAIC aerosol simulations with four-size bins (0.039–0.156 µm, 181 
0.156–0.625 μm, 0.625–2.500 μm, and 2.5–10.0 μm dry diameters). The sectional aerosol 182 
data in the hourly model output were the aerosol dry mass mixing ratios of chemical 183 
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compositions, aerosol number concentration, and aerosol water content. The aerosol 184 
compositions included hydrophilic particulates (i.e., SO4

2–, NO3
–, NH4

+, Cl–, Na+) and 185 
hydrophobic particulates (i.e., BC, OC, and OIN). The dust emission was simulated using the 186 
GOCART dust scheme (Ginoux et al., 2001). The dust mass was included in the OIN 187 
concentration determination and aerosol optical calculation. The aerosol compositions were 188 
externally mixed between the size bins and internally mixed in each size bin. The internal 189 
mixing refractive index was the volume-weighted mean refractive index of each composition. 190 
 191 
2.2 Assimilation System 192 
The revised GSI DA system is based on the official GSI (https://dtcenter.org/community-193 
code/gridpoint-statistical-interpolation-gsi, Wu et al., 2002; Liu et al., 2011; Schwartz et al., 194 
2012; Pagowski et al., 2014) version 3.7. The 3D-Var DA minimizes the cost function: 195 
 196 

𝐽(𝐱) =
1
2
(𝐱 − 𝐱!)"𝐁#$(𝐱 − 𝐱!) +

1
2
(𝐻(𝐱) − 𝐲)"𝐑#$(𝐻(𝐱) − 𝐲) 197 

(1) 198 
 199 

where x is the state vector composed of the model control variables; the subscript b denotes 200 
that x is the background state vector; y is the vector of the observations; H is the forward 201 
operator or observation operator that transfers the gridded control variables into the observed 202 
quantities at the observation locations; and B and R are the background and observation error 203 
covariance matrices, respectively. 204 
 205 
The official GSI version only works with the GOCART aerosols for assimilating the surface-206 
layer PM2.5 and PM10 (denoted as PMx in the context) concentrations, and the 550 nm MODIS 207 
AOD. Our revised GSI system assimilates PMx concentrations, multi-wavelength aerosol 208 
scattering/absorption coefficients, and AOD. Figure 1 shows the workflow of our DA system. 209 
According to the AOD calculation in WRF-Chem, we can either choose the aerosol number 210 
concentration (option 1), or aerosol mass concentration (option 2) as control variables. Option 211 
1 is described in Li et al. (2020). In this study, we selected option 2, which is described in the 212 
following subsections. 213 
 214 

Figure 1 
 215 
2.2.1 Control Variables 216 
The control variables in this study were the mass mixing ratio of composition of each aerosol 217 
per size bin, which corresponded to the WRF-Chem output data only. This set therefore 218 
differed from previous studies that lumped aerosols per size bin as control variables. The 219 
lumped aerosols avoided the burdensome task of specifying the background error statistics for 220 
numerous aerosols (Li et al., 2013; Pagowski et al. 2014). Although our control variables 221 
could have been further optimized, here we designed the control variable using only those that 222 
substantially contributed to the total mass concentrations. In the case of Kashi situated near 223 
the desert, the OIN was predominant, accounting for ~99% of the total particle mass 224 
concentrations. The control variable could thus have exclusively comprised the OIN. 225 
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However, because we were curious about the response of aerosol chemical fractions in the 226 
DA constraint, we set the control variables of five aerosol mass mixing ratios of SO4

2–, NH4
+, 227 

OC, BC, and OIN per size bin. Nitrate, chlorine, and sodium had miniscule background 228 
concentrations and remained the background values in the DA analysis. There were twenty 229 
control variables in total for the four-size bin simulations, and the time cost for the DA 230 
calculation for these variables was acceptable. 231 
 232 
Our design of the control variables was different from the AOD assimilation in Saide et al. 233 
(2013), with theirs being the natural logarithm of the total mass mixing ratio per size bin, 234 
multiplied by the thickness of the model layer. As the high model layer had a significant layer 235 
thickness with low aerosol concentrations, the multiplication offset the opposite effects of 236 
increasing layer thickness versus decreasing concentrations with increase in altitude. This 237 
prevented the addition of many modifications for the high model layers, where aerosols were 238 
low in concentration. The logarithmic transformation was used to decrease the extensive 239 
value range in the control variables caused by multiplication. Since the AOD value is often 240 
smaller than one, this leads to a significant negative logarithm value and a relatively 241 
unconstrained DA system. Saide et al. (2013) introduced two weak constraints in their cost 242 
function to cut off the user-defined “extraordinarily high” and “extraordinarily low” 243 
concentrations. However, neither the logarithmic transformation, nor the multiplication using 244 
layer thickness was set in our DA system. Saide et al. (2013) repartitioned the increments of 245 
the total mass per size bin for composition of each aerosol, with the background aerosol 246 
chemical mass fractions. Our control variable was restricted to the WRF-Chem output 247 
variable, and the DA system changed the composition of each aerosol per size bin, depending 248 
on the aerosol background errors. 249 
 250 
Consistent with the set by Pang et al. (2020), aerosol water content (AWC) was not one of the 251 
control variables in our GSI. Otherwise, the AWC might have increased contrary to the 252 
physical constraints for the loading of hydrophilic particles, and simply as a mathematical 253 
artefact. The AWC was diagnosed according to the analyzed aerosol mass concentration and 254 
the background relative humidity. The hygroscopic growth was calculated using the WRF-255 
Chem code coupled with the revised GSI. 256 
 257 
2.2.2 Adjoint Operator for PMx 258 
The adjoint operator for PMx is the gradient of the PMx concentration to the aerosol chemical 259 
mass concentration per size bin: 260 

 261 
𝛿[𝑃𝑀%]
𝛿3𝐶&'(,*5

, 𝑘 = 1,… , 𝑛+,-' 262 

(2) 263 
 264 

where nsize is the number of size bins and is equal to four in this study; [.] denotes the mass 265 
concentration (µg m–3 for PMx); Caer, k is the aerosol mass mixing ratio (µg kg–1) of SO4

2–, 266 
NH4

+, OC, BC, and OIN at the k-th size bin. The threshold of aerosol mass mixing ratio that 267 
yields the non-zero adjoint operator is 0.01 µg kg–1. The PM2.5 and PM10 are assimilated in the 268 
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same way. When the fine and coarse particles are assimilated simultaneously, we assimilate 269 
the concentration of PM2.5 and the coarse particulate (PM10-PM2.5). 270 
 271 
2.2.3 Forward Operator for AOD in WRF-Chem 272 
We used the original forward operator in WRF-Chem for the aerosol optical parameters (Fast 273 
et al., 2006). AOD is calculated as a function of wavelength according to Mie theory. The 274 
columnar AOD 𝜏 is the sum of layer AOD across the nz model layers: 275 
 276 

𝜏 =;𝜏-

.!

-/$

=; ; 𝑒'%0,-,* ∙ 𝑛-,* ∙ 𝐻-

."#!$

*/$

.!

-/$

 277 

(3) 278 
 279 

where eext,z,k is the extinction cross section of a single mixing particle in the k-th size bin at the 280 
z-th model layer, nz,k is the aerosol number concentration, and Hz is the layer thickness. The 281 
extinction cross section eext,z,k of a wet particle with radius rwet,z,k is: 282 

    283 
𝑒'%0,-,* = 𝑝'%0,-,* ∙ 𝜋 ∙ 𝑟1'0,-,*2  284 

(4) 285 
 286 
where pext,z,k is the extinction coefficient, given the desired mixing refractive indexes and the 287 
wet particle radius. The pext,z,k is attained through the Chebyshev polynomial interpolation:  288 
 289 

𝑝'%0,-,* = exp	{ ; 𝑐34(𝑗) ∙ 𝑐'%0,-,*(𝑗)

.%&$'

5/$

} 290 

(5) 291 
where cch is the coefficient of ncoef order Chebyshev polynomials, cext,z,k is the polynomial 292 
value for the extinction efficiency of the particle, which is an internal mixture of all aerosol 293 
compositions (i.e., the control variables plus nitrate, chlorine, sodium, and AWC). The radius 294 
in the AOD subroutine code is in a logarithmic transform to handle the broad particle size 295 
range from 0.039 µm to 10 µm. The exponential function in Eq. (5) transforms the logarithm 296 
radius back to the normal radius. The aerosol number concentration nz,k, and the aerosol dry 297 
(wet) mass concentration mi,z,k have a linkage through the dry (wet) particle radius rdry,z,k 298 
(rwet,z,k) and the density 𝜌, of each aerosol chemical composition: 299 
 300 

𝑛-,* = ;
𝑚,,-,*

𝜌,

.($)_+$,

,

∙
3

4𝜋 ∙ 𝑟1'0,-,*6 = ;
𝑚,,-,*

𝜌,
∙

3
4𝜋 ∙ 𝑟7(8,-,*6

.-,._+$,

,

 301 

(6) 302 
 303 
2.2.4 Adjoint Operator Developed for AOD 304 
As per the forward operator in Eq. (3) in WRF-Chem, we developed the adjoint operator for 305 
AOD, which requires the derivative of 𝜏 in Eq. (3) to the mass concentration, mi,z,k: 306 
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 307 
𝛿𝜏

𝛿𝑚,,-,*
=

𝛿𝜏-
𝛿𝑚,,-,*

=
𝛿𝑒'%0,-,* ∙ 𝑛-,* ∙ 𝐻-

𝛿𝑚,,-,*
+
𝑒'%0,-,* ∙ 𝛿𝑛-,* ∙ 𝐻-

𝛿𝑚,,-,*
+
𝑒'%0,-,* ∙ 𝑛-,* ∙ 𝛿𝐻-

𝛿𝑚,,-,*
 308 

(7) 309 
 310 
The first term on the righthand side of Eq. (7) indicates the change in AOD as the perturbation 311 
of extinction cross section. According to Eq. (4), considering that the particle radius is 312 
constant, 𝛿𝑒'%0,-,* is represented as: 313 
 314 
𝛿𝑒'%0,-,* = 𝛿𝑝'%0,-,* ∙ 𝜋 ∙ 𝑟1'0,-,*2  315 

(8) 316 
 317 
where,𝛿𝑐ℎ(𝑗) = 0 assuming that the particle radius is constant. Equation (8) is expanded with 318 
the derivative of Eq. (5): 319 
 320 

𝛿𝑝'%0,-,* = 𝑝'%0,-,* ∙ { ; 𝑐34(𝑗) ∙ 𝛿𝑐'%0,-,*(𝑗)

.%&$'

5/$

} 321 

(9) 322 
By expanding 𝛿𝑐'%0,-,* in Eq. (9), we have: 323 

 324 
𝛿𝑐'%0,-,*(𝑗) = 𝛿𝑤99 ∙ 𝐸'%0,99(𝑗) + 𝛿𝑤9$ ∙ 𝐸'%0,9$(𝑗) + 𝛿𝑤$9 ∙ 𝐸'%0,$9(𝑗) + 𝛿𝑤$$ ∙ 𝐸'%0,$$(𝑗) 325 

 (10) 326 
 327 
where the four parameters of Eext indicate the extinction efficiencies in the Mie table 328 
surrounding the point with the desired mixing refractive indexes, and the wet particle radius. 329 
The changes in interpolation weights 𝛿𝑤 are determined as: 330 
 331 
𝛿𝑤99 = (𝑣 − 1)𝛿𝑢 + (𝑢 − 1)𝛿𝑣									𝛿𝑤9$ = (1 − 𝑣)𝛿𝑢 − 𝑢𝛿𝑣 332 
𝛿𝑤$9 = (1 − 𝑢)𝛿𝑣 − 𝑣𝛿𝑢																					𝛿𝑤$$ = 𝑢𝛿𝑣 + 𝑣𝛿𝑢 333 

(11) 334 
 335 

where 336 
     337 

𝑢 =
𝑅:,% − 𝑅;<1
𝑅=> − 𝑅;<1

									𝛿𝑢 =
𝛿𝑅:,%

𝑅=> − 𝑅;<1
 338 

𝑣 =
𝐼:,% − 𝐼;<1
𝐼=> − 𝐼;<1

												𝛿𝑣 =
𝛿𝐼:,%

𝐼=> − 𝐼;<1
 339 

(12) 340 
 341 

In Eq. (12), Rmix and Imix are the aerosol volume-weighted mean real and imaginary refractive 342 
indices, respectively. Rup (Iup) and Rlow (Ilow) are the nearest upper and lower limits for Rmix 343 
(Imix) in the Mie table. Considering Vwet,z,k is the volume of all aerosol masses, the real and 344 
imaginary indices and their derivatives are: 345 
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 346 

𝑅:,%,-,* = ; 𝑅, ∙
𝑚,,-,*

𝜌, ∙ 𝑉1'0,-,*

.($)_+$,

,

											𝛿𝑅:,%,-,* =
𝑅,

𝜌, ∙ 𝑉1'0,-,*
∙ 𝛿𝑚,,-,* 347 

𝐼:,%,-,* = ; 𝐼, ∙
𝑚,,-,*

𝜌, ∙ 𝑉1'0,-,*

.($)_+$,

,

															𝛿𝐼:,%,-,* =
𝐼,

𝜌, ∙ 𝑉1'0,-,*
∙ 𝛿𝑚,,-,* 348 

(13)  349 
     350 

where 351 

𝑉1'0,-,* = ;
𝑚,,-,*

𝜌,

.($)_+$,

,

 352 

(14) 353 
 354 
Put Eq. (10), Eq. (11) into Eq. (9) leads to: 355 

 356 
𝛿𝑝-,* = [(𝑣 − 1)𝛼99 + (1 − 𝑣)𝛼9$ − 𝑣𝛼$9 + 𝑣𝛼$$]𝛿𝑢 + 357 
																[(𝑢 − 1)𝛼99 − 𝑢𝛼9$ + (1 − 𝑢)𝛼$9 + 𝑢𝛼$$]𝛿𝑣 358 

(15) 359 
where 360 

𝛼99 = 𝑝'%0,-,* ∙ ; 𝑐34(𝑗) ∙ 𝐸'%0,99(𝑗)

.%&$'

5/$

											𝛼9$ = 𝑝'%0,-,* ∙ ; 𝑐34(𝑗) ∙ 𝐸'%0,9$(𝑗)

.%&$'

5/$

 361 

𝛼$9 = 𝑝'%0,-,* ∙ ; 𝑐34(𝑗) ∙ 𝐸'%0,$9(𝑗)

.%&$'

5/$

											𝛼$$ = 𝑝'%0,-,* ∙ ; 𝑐34(𝑗) ∙ 𝐸'%0,$$(𝑗)

.%&$'

5/$

 362 

(16) 363 
 364 
The first term on the righthand side of Eq. (7) is determined using Eq. (8) and Eq. (15). The 365 
second term on the righthand side of Eq. (7) indicates the linkage of the aerosol number and 366 
mass concentrations. It is the derivative of Eq. (6) by assuming a constant radius: 367 
 368 

𝛿𝑛-,* =
3 ∙ 𝛿𝑚,,-,*

4𝜋 ∙ 𝑟78(,-,*6 ∙ 𝜌,
 369 

(17) 370 
 371 
The third term on the righthand side of Eq. (7) contains the derivative of the layer thickness to 372 
the concentrations in this layer. This indicates that the light attenuation length based on per 373 
unit concentration, which can be intuitively represented by the ratio of layer thickness to the 374 
aerosol mass concentration in this layer. Putting Eq. (8) and Eq. (17) into Eq. (7), we have the 375 
original formula of the adjoint operator for AOD for the aerosol mass concentration: 376 
 377 

 378 
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𝛿𝜏
𝛿𝑚,,-,*

=
𝛿𝜏-

𝛿𝑚,,-,*
=
𝛿𝑒'%0,-,* ∙ 𝑛-,* ∙ 𝐻-

𝛿𝑚,,-,*
+
𝑒'%0,-,* ∙ 𝛿𝑛-,* ∙ 𝐻-

𝛿𝑚,,-,*
+
𝑒'%0,-,* ∙ 𝑛-,* ∙ 𝛿𝐻-

𝛿𝑚,,-,*
=	379 

{[(𝑣 − 1)𝛼99 + (1 − 𝑣)𝛼9$ − 𝑣𝛼$9 + 𝑣𝛼$$] ∙
𝜋 ∙ 𝑟1'0,-,*2 ∙ 𝑅, ∙ 𝑛-,* ∙ 𝐻-

𝜌, ∙ 𝑉-,* ∙ W𝑅=>,-,* − 𝑅;<1,-,*X
+	380 

[(𝑢 − 1)𝛼99 − 𝑢𝛼9$ + (1 − 𝑢)𝛼$9 + 𝑢𝛼$$] ∙
𝜋 ∙ 𝑟1'0,-,*2 ∙ 𝐼, ∙ 𝑛-,* ∙ 𝐻-

𝜌, ∙ 𝑉-,* ∙ W𝐼=>,-,* − 𝐼;<1,-,*X
+	381 

3𝑒'%0,-,* ∙ 𝐻-
4𝜋 ∙ 𝑟7(8,-,*6 ∙ 𝜌,

+
𝑒'%0,-,* ∙ 𝑛-,* ∙ 𝐻-

𝑚,,-,*
} ∙ 𝛽 382 

 383 
(18) 384 

 385 
where 𝛽 is the factor that changes the unit of mass from µg kg–1 to µg m–3. The last righthand 386 
term in Eq. (18) may not have a quick convergence in the DA outer loops because the aerosol 387 
mass concentration mi,z,k in the denominator often has a low bias, which introduces an error 388 
into the adjoint operator. The error is amplified by the layer thickness Hz in the numerator. 389 
Thus, the adjoint operator of Eq. (18) cannot lead to a stable analysis. For this reason, we 390 
changed the adjoint operator to account for the columnar mean aerosol extinction coefficient 391 
which is described as follows: 392 
 393 
𝛿(𝑒'%0 ∙ 𝑛)ZZZZZZZZZZZZ
𝛿𝑚,,-,*

=
𝐻-
∑𝐻-

∙
𝛿W𝑒'%0,-,* ∙ 𝑛-,*X

𝛿𝑚,,-,*
=

𝐻-
∑𝐻-

∙ [
𝛿𝑒'%0,-,* ∙ 𝑛-,*

𝛿𝑚,,-,*
+
𝑒'%0,-,* ∙ 𝛿𝑛-,*

𝛿𝑚,,-,*
] =	394 

{[(𝑣 − 1)𝛼99 + (1 − 𝑣)𝛼9$ − 𝑣𝛼$9 + 𝑣𝛼$$] ∙
𝜋 ∙ 𝑟1'0,-,*2 ∙ 𝑅, ∙ 𝑛-,*

𝜌, ∙ 𝑉-,* ∙ W𝑅=>,-,* − 𝑅;<1,-,*X
+	395 

[(𝑢 − 1)𝛼99 − 𝑢𝛼9$ + (1 − 𝑢)𝛼$9 + 𝑢𝛼$$] ∙
𝜋 ∙ 𝑟1'0,-,*2 ∙ 𝐼, ∙ 𝑛-,*

𝜌, ∙ 𝑉-,* ∙ W𝐼=>,-,* − 𝐼;<1,-,*X
+	396 

3𝑒'%0,-,*
4𝜋 ∙ 𝑟7(8,-,*6 ∙ 𝜌,

} ∙ 𝛽 ∙
𝐻-
∑𝐻-

 397 

 398 
(19) 399 

 400 
In Eq. (19), the operator is based on the extinction coefficient at each layer, weighted by the 401 
layer thickness normalized to the total model layer thickness. Correspondingly, the AOD 402 
observations and AOD observation error are divided by the total layer thickness at the 403 
observation location. Equation (19) is the final adjoint operator for AOD DA in this study. 404 
 405 
2.2.5 Adjoint Operator Developed for Surface Aerosol Attenuation Coefficients 406 
The aerosol scattering and absorption coefficients measured by the nephelometer and 407 
aethalometer, respectively, are similar to the aerosol extinction coefficient at the surface in 408 
Eq. (19). Neither of the two coefficients address the layer thickness. The adjoint operator for 409 
the aerosol scattering coefficient measured by nephelometer is described as follows: 410 
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 411 
𝛿(𝑒!"#,%,& ∙ 𝑛%,&)

𝛿𝑚',%,&
= {[(𝑣 − 1)𝛼(( + (1 − 𝑣)𝛼(% − 𝑣𝛼%( + 𝑣𝛼%%] ∙

𝜋 ∙ 𝑟)*+,%,&, ∙ 𝑅' ∙ 𝑛%,&
𝜌' ∙ 𝑉%,& ∙ 6𝑅-.,%,& − 𝑅/0),%,&7

413 

+
3𝑒!"#,%,&

4𝜋 ∙ 𝑟123,%,&4 ∙ 𝜌'
} ∙ 𝛽	414 

 (20) 412 
 415 

𝛼99 = 𝑝+3&,$,* ∙ ; 𝑐34(𝑗) ∙ 𝐸+3&,99(𝑗)

.%&$'

5/$

											𝛼9$ = 𝑝+3&,$,* ∙ ; 𝑐34(𝑗) ∙ 𝐸+3&,9$(𝑗)

.%&$'

5/$

 416 

𝛼$9 = 𝑝+3&,$,* ∙ ; 𝑐34(𝑗) ∙ 𝐸+3&,$9(𝑗)

.%&$'

5/$

											𝛼$$ = 𝑝+3&,$,* ∙ ; 𝑐34(𝑗) ∙ 𝐸+3&,$$(𝑗)

.%&$'

5/$

 417 

 418 
(21) 419 

      420 
The adjoint operator for the aerosol absorption coefficient measured by aethalometer is 421 
 422 
𝛿(𝑒#5!,%,& ∙ 𝑛%,&)

𝛿𝑚',%,&
= {[(𝑢 − 1)𝛼(( − 𝑢𝛼(% + (1 − 𝑢)𝛼%( + 𝑢𝛼%%] ∙

𝜋 ∙ 𝑟)*+,%,&, ∙ 𝐼' ∙ 𝑛%,&
𝜌' ∙ 𝑉%,& ∙ 6𝐼-.,%,& − 𝐼/0),%,&7

424 

+
3𝑒#5!,%,&

4𝜋 ∙ 𝑟123,%,&4 ∙ 𝜌'
} ∙ 𝛽	425 

 (22) 423 
 426 

𝛼99 = 𝑝&!+,$,* ∙ ; 𝑐34(𝑗) ∙ 𝐸&!+,99(𝑗)

.%&$'

5/$

												𝛼9$ = 𝑝&!+,$,* ∙ ; 𝑐34(𝑗) ∙ 𝐸&!+,9$(𝑗)

.%&$'

5/$

 427 

𝛼$9 = 𝑝&!+,$,* ∙ ; 𝑐34(𝑗) ∙ 𝐸&!+,$9(𝑗)

.%&$'

5/$

												𝛼$$ = 𝑝&!+,$,* ∙ ; 𝑐34(𝑗) ∙ 𝐸&!+,$$(𝑗)

.%&$'

5/$

 428 

 429 
(23) 430 

 431 
where the symbols have the same meaning as before. The subscript one denotes the surface 432 
layer, while. sca and abs denote “scattering” and “absorption,” respectively. 433 
 434 
As shown in the adjoint operators, the gradients of the aerosol mass concentrations rely on the 435 
aerosol number concentration; meanwhile, the number concentration is estimated according to 436 
the mass concentration and the particle radius. The two concentrations are intertwined in the 437 
DA system, indicating the nonlinearity of the adjoint operator. This nonlinearity is handled 438 
with a succeeding minimization of the cost function within the GSI. That is, the cost function 439 
is first minimized with the number concentration in the background field, and the number 440 
concentration is updated with the first analyzed aerosol mass concentrations. In the second 441 
minimization, the number concentration assessed in the first analysis constructs a new adjoint 442 
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operator value, resulting in a new analysis of mass concentrations. This iterative process is 443 
denoted as the “outer loop,” which is repeated several times to attain the final analysis 444 
(Massart et al., 2010). We used ten iterations to handle the nonlinearity in the adjoint 445 
operator. The WRF-Chem AOD code is coupled into the GSI subroutine at the place of 446 
invoking CRTM. The AOD and the adjoint operators of Eq. (19), Eq. (20), and Eq. (22) are 447 
simultaneously determined in a single subroutine, which is cyclically invoked in the outer 448 
loops within the GSI. 449 
 450 
2.3 Background Error Covariance (BEC) 451 
Many aerosol DA studies used the National Meteorological Center (NMC) method (Parrish 452 
and Derber, 1992) to model the BEC matrix. The NMC method uses long-term archived 453 
weather data that are created in the forecast cycles. It computes the statistical differences 454 
between two forecasts with different leading lengths (e.g., 24 h and 48 h), but which are valid 455 
at the same time. The NMC method is workable because solving global weather forecasts is 456 
an initial value problem of mathematical physics. That is, a slight difference in the initial 457 
atmospheric state would lead to a substantially different prediction, because of the chaos in 458 
the atmosphere. However, a regional model is a boundary value problem. Meteorological 459 
reanalysis data drive the regional chemistry simulation, and the driving data quality affects the 460 
simulation (Giorgi and Mearns, 1999). The WRF-Chem simulations in the NMC method only 461 
reflected the influences of using different initial conditions. As the model runs, the influence 462 
of the initial conditions becomes weak, while the influence of lateral boundary conditions 463 
always takes effect. Because the same reanalysis data drive the paring regional model 464 
simulations, the following lateral boundary conditions for the simulations of the two leading-465 
lengths are similar. This leads to a limited regional model difference when using the NMC 466 
method. We speculate that the NMC method cannot fully represent the model biases in 467 
emission inventories and model chemistry, and it underestimates the aerosol error in WRF-468 
Chem. 469 
 470 
Some aerosol DA studies have created background error variance using the ensemble 471 
simulations by randomly disturbing model lateral boundary conditions and surface emissions 472 
(Peng et al., 2017; Ma et al., 2020). The ensemble experiments better represent the model 473 
error, but significantly increase the computational burden. Here, we used the standard 474 
deviation of hourly aerosol concentrations in April in the background field (first guess field) 475 
to represent the background error variance. The rationale of this approach is that the Tarim 476 
Basin acts as a “dust reservoir” and traps dust particles for a period, before being carried long-477 
distance by wind (Fan et al., 2020). The model bias in dust dominates the model aerosol error, 478 
and is correlated with the aerosol variation as the weather fluctuates. The model bias is small 479 
on clear days when the aerosol concentration is low. Conversely, the bias is large when the 480 
mean concentration is high: that is, on heavily-polluted days. Because the mean aerosol 481 
concentration correlated positively with the aerosol variation, we used the standard deviation 482 
of aerosol concentration to represent the background aerosol error. This approach was similar 483 
to Sič et al. (2016), who set a percentage of the first guess field for the background error 484 
variance. Our approach prioritizes DA modification of aerosols which have high background 485 
mean concentrations. 486 
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 487 
We calculated the statistics of the background error, including the aerosol standard deviation 488 
and the horizontal and vertical correlation length scales, using the GENerate the Background 489 
Errors (GEN-BE) software (Descombes et al., 2015), based on the one-month hourly aerosol 490 
concentrations in WRF-Chem. We obtained the statistics of four static BECs for the four DA 491 
analysis hours (i.e., 00:00, 06:00, 12:00, and 18:00 UTC), respectively. The DA procedures 492 
for the April 2019 data repeatedly use the statistics of the background error at the 493 
corresponding analysis time. A usual strategy to enrich the samples of model results for 494 
calculating the statistics is to gather model grid points with similar characteristics of the 495 
atmosphere, referred to as “binning.” The statistics are spatially averaged over the binned grid 496 
points. The default strategy in the GEN_BE for GSI is latitude-binning, which creates a 497 
latitude-dependent error correlation function (Figure 2a). The latitude binning is generally 498 
used for latitude flow dependency and works for large and global domains (Wu et al., 2002). 499 
However, we found that using the latitude-binning strategy overestimated the surface PMx 500 
concentration when assimilating aerosol optical observations. One reason for this was related 501 
to the model bias in particle extinction efficiency, as discussed in Section 3.3. Another 502 
plausible reason is related to the vertical profile of the background model error. The 503 
maximum dust error occurred at the surface of the desert (Figure 2e) because of the local dust 504 
emission sources, but the maximum error at Kashi was at the dust transporting layer above the 505 
surface (Figure 2d). Owing to the vast extent of the Taklamakan Desert, the latitude-binning 506 
suppressed the local error characteristics at Kashi, and led to a vertical error profile (Figure 507 
2c) similar to that over the desert (Figure 2e). 508 
 509 
For this reason, we used the standard deviation of the control variable for the OIN component 510 
at each model grid to replace the latitude-binning standard deviation. The standard deviation 511 
for the other compositions and the horizontal and vertical correlation length scales were 512 
calculated based on the latitude-binning data. Figure 3 shows the background error statistics 513 
generated by the GEN_BE software, which provided the input to the GSI. Anthropogenic 514 
aerosol compositions showed vertical error profiles, greatest at the surface (Figures 3a-d). The 515 
OIN component showed high background errors in the third and fourth particle sizes at the 516 
transporting layer above the surface (Figure 3e). The aerosol compositions related to 517 
anthropogenic emissions (i.e., sulfate, ammonium, OC, and BC, referred to here as 518 
‘anthropogenic aerosols’) had maximum errors in the second particle size. The background 519 
error for OIN composition was higher than that for anthropogenic aerosols by a factor of two 520 
or three, because of the high background dust concentration in the city. 521 
 522 
The horizontal and vertical correlation length scales determine the range of observation 523 
innovations spreading from the observation locations. The horizontal influences had small 524 
changes in altitude within the lowest 15 model layers (below a height of ~5 km) (Figures 3f-525 
j), indicating that the dust transport layer was well-mixed in the lower atmosphere. This deep 526 
dust layer was consistent with the dust simulation by Meng et al. (2019). They showed that 527 
the dust in spring was vertically mixed in a thick boundary layer to a height of 3–5 km in the 528 
Tarim Basin. The vertical correlation length scales first increased from low values at the 529 
surface, to high values at ~2.5 km in height (for the 8–9 layers), indicating that strong winds 530 
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yielded intense aerosol upward flux. The vertical correlation length scale quickly decreased 531 
from the maximum value, with further increase in altitude corresponding to the large particle 532 
gradient at the upper edge of the transporting layer. The latter was associated with laminar air 533 
motion during the dust storm. 534 
 535 
The background model errors were independent of particle size, which would have tended to 536 
accumulate the DA modification in a single size bin that had the maximum background error 537 
(e.g., the OIN in the fourth particle size). To avoid excessive accumulation of increments in a 538 
single size bin, we added a one-dimensional recursive filter for the background covariances of 539 
control variables across the size bins within the GSI. The inter-size bin correlation length 540 
scale was two bin units, as per the setting of Saide et al. (2013). 541 
 542 

Figure 2, Figure 3 
 543 
2.4 Observational Data and Errors 544 
The Dust Aerosol Observation–Kashi field campaign was performed at Kashi from 545 
00:00UTC 25 March to 00:00 UTC 1 May 2019. The aerosol observations used for our DA 546 
analysis included: (1) the multi-wavelength AOD measured by the sun-sky photometer 547 
(Cimel CE318); (2) the multi-wavelength aerosol scattering and absorption coefficients at the 548 
surface, measured with a nephelometer (Aurora 3000) and aethalometer (Magee AE-33), 549 
respectively, during the campaign; and (3) the routine hourly PM2.5 and PM10 observations 550 
measured by the China National Environmental Monitoring Center. Please refer to Li et al. 551 
(2020) for more details about the field campaign. 552 
 553 
Table 1 summarizes the observation periods, the wavelengths of the aerosol optical data, and 554 
the observation errors. The multi-wavelength data of each type of observation were 555 
assimilated simultaneously. The observation errors of PMx consisted of the measurement error 556 
(e1) and the representative error (e2). The observation error of AOD was a constant value of 557 
0.01, which was further divided by the total model layer thickness in GSI. It is difficult to 558 
determine instrumental errors in nephelometers and aethalometers, and we empirically set 559 
their instrumental errors to 10 Mm–1, equivalent to the magnitude of the Rayleigh extinction 560 
coefficient. The observational errors were uncorrelated, with R being a diagonal matrix. 561 
 562 

Table 1 
 563 
2.5 Experimental Design 564 
The WRF-Chem simulations were configured in a two-nested domain centered at 82.9 °E, 565 
41.5 °N. The coarse domain was a 120×100 (west-east × north-south) grid with a horizontal 566 
resolution of 20 km that covered the Taklamakan Desert, and the fine domain was an 81×61 567 
grid with a resolution of 5 km, focusing on Kashi and environs (Figure 4a). Both domains had 568 
41 vertical levels extending from the surface to 50 hPa. The two domains were two-way 569 
coupled. The parent domain covered the entire dust emission source, providing dust transport 570 
fluxes at the lateral boundaries of the fine domain. The aerosol radiative effect was set to 571 
provide feedback on the meteorology. The indirect effect of aerosols was not set in the 572 
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experiments. Initial and lateral boundary meteorological conditions for WRF-Chem were the 573 
one-degree resolution of the National Centers for Environmental Prediction Final Analysis 574 
data created by the Global Forecast System model. The meteorological lateral boundary 575 
conditions for the coarse domain were updated every six hours, and were linearly interpolated 576 
between the updates in WRF-Chem. We did not set the chemical boundary conditions for the 577 
coarse domain. The Multiresolution Emission Inventory of China (MEIC) for 2010 578 
(www.meicmodel.org) provided anthropogenic emission levels. The biogenic emission levels 579 
were estimated online using the Model of Emissions of Gases and Aerosols from Nature 580 
(Guenther et al., 2006). Wildfire emissions were not set in the experiments. 581 
 582 
We conducted a one-month WRF-Chem simulation for April 2019, starting at 00:00 UTC 27 583 
March and discarding the first five days for spin-up. The revised GSI system modified the 584 
aerosols in the fine domain at 00:00, 06:00, 12:00, and 18:00 UTC on each day, starting from 585 
00:00 UTC 1 April until the end of the month. We assimilated the observations four times a 586 
day because the reanalyzed meteorological data were available for the four time slices, which 587 
facilitated the model restarting from the DA analyses. The hourly PMx observations were 588 
assimilated at the exact time of analysis. The observed AOD and aerosol scattering/absorption 589 
coefficients were assimilated when they fell within ±3 h, centered at the time of analysis. 590 
Table 2 shows the DA experiments. The literal meanings of the experimental names denote 591 
the observations that were individually or simultaneously assimilated. To study the impact of 592 
DA on aerosol direct radiative forcing (ADRF), we restarted the WRF-Chem model from 593 
each DA analysis, which then ran to the next analysis time. Each running performed the 594 
radiation transfer calculation both with, and without aerosols, respectively. The irradiance 595 
difference between the two pairing calls was aerosol radiative forcing. Section 4.2 shows the 596 
DA effects on the clear-sky ADRF values.  597 
 598 

Table 2, Figure 4 
 599 
3. Results 600 
3.1 Evaluation of Control Experiment 601 
Table 2 shows the monthly mean values and correlations between the observed data and the 602 
model results. The statistical values were based on the pairing data between the model results 603 
and the observations. Figures 6–9 show the surface PMx concentrations, aerosol scattering, 604 
absorption coefficients, and AOD when assimilating the observations at 00:00, 06:00, 12:00, 605 
and 18:00 UTC each day in April. 606 
 607 
Kashi is in the junction between the Tian Shan Mountains to the west and the Taklamakan 608 
Desert to the east (Figure 5a). In the Tarim Basin, the prevailing surface wind is easterly or 609 
northeasterly, which raises dust levels and carries the particles westward (Figure 5b). An 610 
intense dust storm hit the city at noon on 24 April 2019, with a peak PM10 concentration 611 
exceeding 3,000 µg m–3. The dust storm travelled across the northern part of the desert and 612 
carried the dust particles to Kashi and the mountainous area (Figure 5c, d). A few mild dust 613 
storms occurred at Kashi on April 3–5, April 8–11, and April 14–17 (Figure 6b), and the 614 
maximum PM10 concentrations were in the range of 400–600 µgm–3. The time series of PM2.5, 615 
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aerosol scattering/absorption coefficient, and AOD showed patterns, similar to those for PM10 616 
(Figure 6). 617 
 618 
WRF-Chem captured the main dust episodes, but significantly underestimated the aerosols at 619 
Kashi (Table 2). The background monthly mean concentrations of PM2.5 and PM10 were half 620 
of the observed values, with a low correlation (R < 0.3). The simulated dust storm on 24 April 621 
was a mild dust event and had a maximum PM10 of ~300 µg m–3, one-tenth of the observed 622 
value. The model lowered the aerosol scattering/absorption coefficients and AOD by 50–623 
90%. 624 
 625 
The OIN component accounted for the model bias in PM10 on dusty days. Zhao et al. (2020) 626 
proposed that the GOCART scheme reproduced dust emission fluxes under conditions of 627 
weak wind erosion but underestimated the emissions in conditions of strong wind erosion. We 628 
did not assimilate meteorology. The model bias in the surface wind introduces errors in dust 629 
emission, and places bias on the number of dust particles entering the city. In the non-dust 630 
days, for example, on 20 April, the model hourly PM2.5 was 10–50% of the observed data 631 
levels. The simulated anthropogenic aerosols were probably too low to be reasonable for this 632 
city. The residential sector is a major source of anthropogenic emissions, including PM2.5, BC, 633 
and OC, particularly in the developing western area. The latter sector accounts for 36–82% of 634 
these emissions, according to the MEIC emission inventory (Li et al., 2017). The sector is the 635 
primary source of uncertainty in anthropogenic emissions inventories in China. We speculated 636 
that the low bias in anthropogenic emissions could be significant for Kashi, resulting in low 637 
anthropogenic aerosols in the model. 638 
 639 

Figure 5 
 640 
3.2 Assimilating PM2.5 and PM10 Concentrations 641 
Simultaneous assimilation of the observed PMx (DA_PMx) improved both the fine and coarse 642 
particle concentrations, with a substantial improvement in the third and fourth particle sizes of 643 
the OIN composition (Figure 11e). The analyzed monthly mean PM10 increased to 331.2 µg 644 
m–3, with a high correlation of 0.99. The analyzed monthly mean PM2.5 was improved to 70.3 645 
µg m–3, although it was still lower than the observed levels, with a high correlation of 0.86. 646 
The low bias in PM2.5 was mainly in the dust storm on 24–25 April (Figure 6a). This indicates 647 
that the DA system preferentially modified the coarse particle concentrations because the 648 
coarse particles were assigned with a high background model error according to our BEC 649 
modeling strategy. Intuitionally, this modification that mainly focused on the highest 650 
concentration of coarse particles was reasonable. It decreased the model biases by raising the 651 
heaviest loading aerosols. As the particle concentration increased, the aerosol scattering 652 
coefficient increased to 158.9 Mm–1, with a high correlation of 0.86. However, the 653 
improvements in the analyzed absorption coefficients and AOD were insufficient (Figures 6d-654 
e). The analyzed absorption coefficient was 12.2 Mm–1, 85% lower than observed levels, with 655 
a low correlation of 0.33. The analyzed AOD showed a monthly mean value of 0.31, 56% 656 
lower than observed levels, with a low correlation of 0.37. 657 
 658 
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Figure 10 shows the diurnal concentrations of PM10 in the analyses in April. The observed 659 
PM10 showed a substantial variation at 18:00 UTC, the (local midnight). This substantial 660 
nocturnal variation was partly owing to the dust storm that started on 24 April and ended the 661 
next day. This midnight variation was also related to a nocturnal low-level jet. Ge et al. 662 
(2016) pointed out that there was a nocturnal low-level jet at a height of 100–400 m, with a 663 
wind speed of 4–10 m s–1 throughout the year in the Tarim Basin. They stressed that the low-664 
level jet broke down in the morning, transporting its momentum toward the surface, and 665 
increased dust emissions. The nocturnal low-level jet increased the possibility of dust 666 
particles moving towards the city at night, causing a high PM10 variation at 18:00 UTC. The 667 
diurnal changes in the DA analyses followed the observed levels, but had higher mean values 668 
(Figure 10a). 669 
 670 
3.3 Assimilating AOD 671 
Assimilating AOD (DA_AOD) improved the monthly mean AOD to 0.63, with a high 672 
correlation of 0.99 (Figure 7e). The monthly mean PM2.5 was improved to 85.0 µg m–3, quite 673 
close to the observed level, but the analyzed PM10 was 716.9 µg m–3, which was more than 674 
double the observed value. The DA system improved the AOD at the price of deteriorating 675 
the data quality of surface particle concentrations, opposite to the result when assimilating 676 
PMx. Surface particle overestimations have been reported in previous studies (Liu et al., 2011; 677 
Ma et al., 2020; Saide et al., 2020). Ma et al. (2020) assimilated ground-based lidars and 678 
PM2.5 simultaneously in eastern China using the WRF-Chem/DART (Data Assimilation 679 
Research Testbed). They claimed that WRF-Chem underestimated the AOD and low-level 680 
aerosol extinction coefficient because the model had a low bias in relative humidity, which 681 
led to less AWC and lowered the single-particle extinction. As a compensation, the DA 682 
system overestimated the total particle concentration to fit the observed AOD value. In the 683 
arid area of Kashi, PM10 was strongly overestimated when assimilating AOD. We speculate 684 
that WRF-Chem also lowers the dust extinction efficiency. 685 
 686 
Table 3 shows the ratios of the AOD and aerosol scattering/absorption coefficients to the 687 
surface PM10 concentrations in the DA_PMx experiment. The other DA experiments yielded 688 
almost similar results. This shows that the ratio of AOD to PM10 in the background model 689 
result was only one-third of the observed levels. This low ratio indicated a model low bias in 690 
particle scattering/absorption efficiency and imposed the DA system to overestimate the PM10 691 
to fit the observed AOD data. The low bias is related to the aerosol optical module, which is 692 
based on Mie theory in WRF-Chem. First, the simulations used four-size bin particle 693 
segregation. This coarse size representation aggregated many aerosols in the accumulation 694 
mode. Because small particles have a strong of light attenuation capability, according to the 695 
Mie theory, too many coarse particles would not effectively increase the AOD. Saide et al. 696 
(2020) linked the aerosol optics to the size bin representation (from 4 to 16 bins) for hazes in 697 
South Korea. They showed that WRF-Chem underestimated the dry aerosol extinction, and 698 
the underestimation could be relieved when using a finer size bin than four. Okada and Kai 699 
(2004) found that the dust particle radius in the Taklamakan Desert was in the range of 0.1–4 700 
µm, indicating the dominant fine-mode particles in the desert. Using the four-size bin would 701 
simultaneously obtain better analyses of both AOD and PMx. Second, the dust particles are 702 
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irregular in shape (Okada and Kai, 2004), while the spherical particle is a common 703 
assumption for the aerosol optics in the Mie theory in current models, which is an essential 704 
source of uncertainty in the forward operator of WRF-Chem when the assumption of 705 
spherical particles for dust fails. 706 
 707 
Another reason for the low ratio of AOD to PM10 is related to our approach for modeling 708 
BEC. It is important to remember that our BEC represents the possible error effects owing to 709 
model bias in aerosols. The coarse particle accounts for a large mass portion of PMx, and its 710 
bias dominates the model error. However, we cannot say that this background error 711 
assessment is unbiased. As our BEC gave a high background error to the coarse particle for its 712 
sufficient concentration, the DA system tended to increase PM10, which was not as effective 713 
in increasing AOD as PM2.5. If the background error of the coarse particle were too high, the 714 
BEC would falsely lower the ratio of AOD to PM10 in the analysis. 715 
 716 
To reduce the overestimate in PMx concentrations, we set the gridded standard deviation for 717 
the OIN for Kashi in place of the latitude-binning standard deviation, as discussed in Section 718 
2.3. Figure 12 shows the analyzed vertical profiles of PMx concentrations. Higher 719 
concentrations were observed in the low atmosphere than at the surface. These vertical error 720 
profiles decreased the surface particles and tended to increase the ratio, contrary to the effects 721 
of low model bias in particle extinction efficiency and the possible high bias in the BEC 722 
values of coarse particles. For the net effect of the compensation, the ratio in the analysis was 723 
still almost equivalent to the background value (Table 3). That is, our tuned BEC vertical 724 
profile at Kashi, to some extent canceled out the effects of other model error sources (e.g., the 725 
positive bias in the coarse particle of BEC, and the low bias in extinction efficiency) but was 726 
not sufficient to increase the ratio to the observed value. Finer aerosol size representation and 727 
a better advanced aerosol optical calculation for dust are essential solutions. 728 
 729 
Because the DA system overestimated the aerosol number concentration, resulting in a 730 
positive bias in PM10, the analyzed aerosol scattering coefficient was overestimated up to 731 
280.1 Mm–1, 37% higher than the observed value. In contrast, the analyzed absorption 732 
coefficient was 23.1 Mm–1, 72% lower than the observed value. This indicates that WRF-733 
Chem strongly underestimated the single-particle absorption efficiency, and the low bias was 734 
too strong to be compensated by the overestimated aerosol number concentration. 735 
 736 
Assimilating the AOD increased the diurnal variation in the DA analyses. There was a higher 737 
increase in the concentration at noon (06:00 UTC) (Figure 10d). At the hot time of the day, 738 
intense sunlight increased the light extinction by the particles. The DA system had to raise the 739 
PM10 to fit the observed high AOD values. At dawn (00:00 UTC) or dusk (12:00 UTC), when 740 
the sunlight was weak, the DA modifications were small, and the DA increases in the PM10 741 
fell to low levels. However, because the AOD constraint was only available in the daytime 742 
and the AOD DA data were not always available as the data quality control (i.e., cloud 743 
screening), assimilating AOD did not substantially increase the correlation of PMx. The 744 
analyzed PM10 in the DA experiments still had low correlations with the observed levels 745 
(R=0.33~0.35). 746 
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 747 
3.4 Assimilating Aerosol Scattering Coefficient 748 
Assimilating the aerosol scattering coefficient (DA_Esca) yielded overall analyses similar to 749 
the phenomenon in DA_AOD. The aerosol scattering coefficient was reasonably good in the 750 
analysis, with a monthly mean value of 244.6 Mm–1 and a high correlation of 0.97. The 751 
analyzed monthly mean AOD was 0.57, better than the AOD of 0.31 when assimilating PMx. 752 
However, the surface particle concentrations were overestimated (i.e., positive biases by 32% 753 
for PM2.5, and 84% for PM10), with a substantial increase in the coarse particle of OIN. 754 
Overestimations appeared during the mild dust episodes (Figure 6b). This again indicated that 755 
WRF-Chem underestimated the particle scattering efficiency, which was represented by the 756 
ratio of the scattering coefficient to PM10 (Table 3). The DA system thus overfitted the PMx 757 
concentration to approach the observed scattering coefficient. The diurnal PM10 in the 758 
analysis was similar to the assimilation of PMx, showing a maximum improvement and a 759 
robust nocturnal variation at 18:00 UTC. Assimilating the scattering coefficient failed to 760 
improve the absorption coefficient. The monthly mean absorption coefficient was 19.1 Mm–1, 761 
77% lower than the observed value. 762 
 763 
3.5 Assimilating Aerosol Absorption Coefficient 764 
In contrast to the above results, assimilating the absorption coefficient (DA_Eabs) degraded 765 
all the analyses other than the absorption coefficient itself. The analyses showed substantial 766 
daily variations, and strong positive biases appeared in the dust episodes (Figure 7). The 767 
PM2.5 was overestimated by a factor of four, and the PM10 was overestimated by a factor of 768 
six. The increases occurred each hour and enlarged the diurnal variation of PM10 (Figure 10c). 769 
The maximum increase in the mean value was at 06:00 UTC, also because of the strong 770 
noontime heating in the model. As the particle concentration increased, the aerosol scattering 771 
coefficient was overfitted to 849.0 Mm–1, higher than the observed levels by a factor of four. 772 
The monthly mean AOD was improbably up to 1.95. The improvement of the absorption 773 
coefficient (which was 65.1 Mm–1) was insufficient, and was 21% lower than the observed 774 
levels. 775 
 776 
Unlike DA_AOD and DA_Esca, assimilating the absorption coefficient cannot increase the 777 
absorption data at the cost of PM10 overestimation. This DA failure in assimilating the 778 
absorption coefficient indicates the model biases in the representation of the particle mixture 779 
and the other aborting particles (e.g., brown carbon and aged dust). With respect to the current 780 
model, this failure is related to the aerosol absorption represented in WRF-Chem. The leading 781 
absorption aerosol in WRF-Chem is BC. The BC particle in the second size (0.156–0.625 μm) 782 
had the maximum absorption, according to Mie theory, and had the maximum DA 783 
modifications in the second-size bin (Figure 11d). However, because the BC had a small 784 
background concentration, the BC showed a small DA improvement and had small effects on 785 
increasing the particle absorption. Meanwhile, the coarse dust particle concentration was 786 
primarily increased, but the dust particles did not have a strong absorption as BC. As a result, 787 
the model lowered the ratio of the absorption coefficient of PM10 by an order of magnitude 788 
(Table 3). To fit the observed absorption coefficient, the DA system dramatically 789 
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overestimated the particle concentrations, aerosol scattering coefficient, and AOD, but the 790 
analyzed absorption coefficient was still underestimated. 791 
 792 
3.6 Assimilating Multi-source Observations 793 
Assimilating an individual observation improves the corresponding model parameter (i.e., 794 
PM2.5, PM10, Esca, Eabs, and AOD) but may worsen other parameters. The reasons for the 795 
inconsistent improvements are relevant to the aerosol model itself. These are: (1) the model 796 
parameters have opposite signs in biases (e.g., one model parameter has a positive bias while 797 
another has a negative bias); (2) the model biases have vast differences in magnitude (e.g., a 798 
good fit of a parameter may lead to another’s overfit) and the different biases in magnitude 799 
cannot be reconciled through the adjoint operator because the forward operator is inaccurate 800 
(e.g., lower particle extinction efficiency). Therefore, it may not always lead to a better 801 
analysis when assimilating one type of observation. Simultaneous assimilation of the multi-802 
source observations imposes more definite constraints on the DA system and helps to 803 
eliminate significant model biases. 804 
 805 
In our case, simultaneous assimilation of the scattering and absorption coefficients 806 
(DA_Esca_Eabs) resulted in the analyses when assimilating the scattering coefficient alone 807 
(DA_Esca), and the inferior analysis in DA_Eabs vanished. This was because incorporating 808 
the scattering coefficient constrained the aerosol number concentrations, which also benefited 809 
from incorporating the observed absorption coefficient. Compared with the analysis 810 
assimilating the PMx alone (DA_PMx), assimilating the two aerosol attenuation coefficients 811 
(DA_Esca_Eabs) better reproduced the AOD, but overestimated the surface particle 812 
concentrations. In Figures 8–9, there were extremely high values on 28 April 2019, because 813 
the scattering coefficient was missing at that time, during which the DA system assimilated 814 
the absorption coefficient alone and worsened the analysis again. Simultaneous assimilation 815 
of the surface particle concentration and the two aerosol attenuation coefficients 816 
(DA_PMx_Esca_Eabs) improved these three assimilated parameters, but still gave a notable 817 
low bias in AOD, 41% lower than the observed levels. Simultaneous assimilation of PMx and 818 
AOD (DA_PMx_AOD) gave the best overall DA results, in which all the analyses except the 819 
absorption coefficient were not significantly different in the month mean values from the 820 
observations. The analyses between DA_PMx_AOD and DA_PMx_Esca_Eabs were 821 
comparable, except that the former additionally increased AOD better. Simultaneous 822 
assimilation of all observations (DA_PMx_Esca_Eabs_AOD) did not substantially improve 823 
the analyses when compared with DA_PMx_AOD because the surface coefficients, and AOD 824 
had overlapped information of the light attenuation. A redundant information source did not 825 
introduce extra constraints on the DA system. All the DA experiments failed to improve the 826 
aerosol absorption coefficient, which always showed strong, low biases (> 76%) and low 827 
correlations (< 0.5) in the analyses, implying room for improvement of our DA system. 828 
 829 

Table 3, 4; Figure 6, 7, 8, 9, 10, 11 
 830 
3.7 Vertical Profiles of Aerosol Concentrations 831 
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Figure 12 shows the vertical concentration profiles of PM2.5 and PM10. The DA system 832 
increased the aerosol concentrations up to a height of 4 km, which is consistent with previous 833 
studies on the Taklamakan Desert. Meng et al. (2019) simulated a deep dust layer thickness in 834 
spring, with a depth of 3–5 km. Ge et al. (2014) analyzed the Cloud-Aerosol Lidar Orthogonal 835 
Polarization data from to 2006–2012 in the desert. They showed that dust could be lifted up to 836 
5 km above the Tarim Basin, and even higher along the northern slope of the Tibetan Plateau. 837 
Among our DA experiments, the analyzed PMx in the lower atmosphere followed PMx at the 838 
surface. The vertical PM10 concentration increased quickly in the lowest three model layers 839 
and maintained high values at heights of less than 3 km. This vertical profile corresponded 840 
well to the background vertical error profile (Figure 3e), reflecting the deep dust transporting 841 
layer. The PM2.5 vertical profiles of showed a rapid reduction with an increase in altitude. The 842 
figure clearly shows that DA_PMx improved the PM10 better than PM2.5, whereas DA_AOD 843 
preferentially adjusted the coarse particles and overestimated the PM10. DA_PMx._AOD 844 
provided the best balance between the adjustments of PM2.5 and PM10. 845 
 846 

Figure 12 
 847 
4. Discussion 848 
4.1 DA Impact on Aerosol Chemical Composition 849 
The maximum concentrations of sulfate, ammonium, BC, and OC in April were 4.1, 1.5, 0.5, 850 
and 1.3 µg m–3, respectively, in the background model data. Although a careful evaluation is 851 
difficult because of the lack of aerosol chemical measurements, we speculated that the 852 
aerosols (other than OIN) were considerably low. Anthropogenic emissions might be biased 853 
for this city. The sources of emissions in residential/developing areas are principally 854 
anthropogenic; yet the residential emission factor for the emission inventory compilation is 855 
highly uncertain compared with the emission factors of power plants, industrial plants, and 856 
vehicles (Li et al., 2017). Chlorine and sodium are selected to represent sea-salt aerosols in 857 
WRF-Chem, yet the two concentrations were at very low concentrations in the model at 858 
Kashi. This was despite the fact that the Taklamakan Desert had many atmospheric halite 859 
particles, which were Cl- and Na-rich and accounted for 10% of the total particles in the 860 
desert (Okada and Kai, 2004).  861 
 862 
For control variable design, our DA system modifies the chemical composition of each 863 
aerosol according to the BEC values. However, all the DA experiments showed that the PM10 864 
chemical fractions remain close to their background values (Figure 13). The low biases cannot 865 
be improved via DA because the aerosol chemical measurements were not available. In 866 
addition, the differences between DA_Esca and DA_Esca_Eabs were quite small (Figure 13c, 867 
e), indicating that assimilating the aerosol absorption coefficient did not enhance particle 868 
absorption (19.1–1 vs. 20.0 Mm–1 in Table 3) in our system. The assimilation of the aerosol 869 
absorption coefficient alone (DA_Eabs) increased the percentage of BC to 7.1%, which was 870 
slightly higher than the 6.5% background BC. The first reason for the small changes in the 871 
aerosol chemical proportions is that the scattering aerosols (i.e., sulfate, nitrate, and 872 
ammonium), use the same refractive index and hygroscopicity parameter in WRF-Chem. 873 
Therefore, the AOD had virtually the same sensitivity to composition of each aerosol, and 874 
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assigned comparable modification to each composition. When assimilating the total quantities 875 
of aerosols (e.g., PM2.5, PM10, and AOD), it is difficult to distinguish different aerosol 876 
chemical contributions. Secondly, DA_Eabs increased the aerosol number concentration; 877 
meanwhile, the rising number concentration increased the scattering aerosols, which 878 
prevented a substantial rise in the BC fraction. Third, the concentrations of anthropogenic 879 
aerosols were lower than anticipated. They had comparable low background errors and could 880 
not be distinguished because of their small differences in BEC values. Overall, it seems that 881 
differences in aerosol chemical composition from assimilating the aerosol optical data are 882 
smaller than the difference in model setting (e.g., using other aerosol chemistry mechanisms, 883 
or using finer aerosol size bins). The assimilation of the total aerosol quantities cannot 884 
eliminate the intrinsic bias in aerosol composition. Thus, accurate aerosol chemistry and 885 
optical modules are crucial to attain a better background aerosol chemical data for DA 886 
analysis (Saide et al., 2020). 887 
 888 

Figure 13 
 889 
4.2 DA Impact on Aerosol Direct Radiative Forcing 890 
Table 4 shows the instantaneous clear-sky ADRF in the background data and the analyses of 891 
DA_PMx and DA_PMx_AOD. After the analyses, the DA effect (various DA frequencies for 892 
assimilating AOD and the surface particle concentrations) gradually faded away after 893 
restarting the model run. We therefore focused on the instantaneous radiative forcing values 894 
one hour after assimilating AOD data. This ensured that the comparison was based on similar 895 
analysis times and showed effective DA effects. As the dust was the predominant component, 896 
the ADRF in this section was closely equivalent to the dust radiative forcing. 897 
 898 
Dust redistributes the energy between the land and the atmosphere. The atmosphere gains 899 
more shortwave energy as the dust particle absorption; the warming atmosphere also emits 900 
more longwave energy as it absorbs shortwave energy. The change in energy budget at the 901 
surface is correspondingly the opposite of that in the atmosphere. As shown in Table 4, the 902 
enhancements in surface cooling forces were slightly stronger than the atmospheric warming 903 
forcings. The differences between the surface forcing and atmospheric forcing indicate the 904 
ADRF at the top of the atmosphere (TOA). The TOA ADRF when assimilating the surface 905 
particle concentrations was enhanced by 12% in the shortwave, 83% in the longwave, and 6% 906 
in the net forcing values, and enhanced by 40%, 55%, and 38%, respectively, when 907 
assimilating the AOD. Apparently, assimilating PMx alone is not sufficient to accurately 908 
estimate the ADRF value. At Kashi, the total net clear-sky ADRF with assimilating surface 909 
particles and AOD were –10.5 Wm–2 at the TOA, +19.5 Wm–2 within the atmosphere, and –910 
30.0 Wm–2 at the surface, respectively, enhanced by 46%, 153%, and 100% respectively, 911 
compared to the background ADRF values. Because the AOD observation is only 912 
sporadically available because of cloud screening in retrieval data, the DA experiments still 913 
cannot eliminate the low bias in AOD in WRF-Chem. The ADRF values in the DA 914 
experiments are still likely to be lower than the plausible aerosol radiative forcing at Kashi. 915 
 916 
5. Conclusions 917 
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This study described our revised GSI DA system for assimilating aerosol observed data for 918 
the four-size bin sectional MOSAIC aerosol mechanism in WRF-Chem. The DA system has 919 
new design adjoint operators for the multi-wavelength AOD, aerosol scattering, and 920 
absorption coefficients measured by the sun-sky radiometer, nephelometer, and aethalometer, 921 
respectively. We examined the DA system for Kashi city in northwestern China by 922 
assimilating the multi-wavelength aerosol optical measurements gathered by the Dust Aerosol 923 
Observation–Kashi field campaign of April 2019 and the concurrent hourly measurements of 924 
surface PM2.5 and PM10 concentrations from the local environmental monitoring sites. 925 
 926 
Our DA system includes two main aspects. Firstly, the control variable is the aerosol chemical 927 
composition per size bin corresponding to the WRF-Chem output data. This design allows the 928 
modification of the composition of each aerosol, based on their background error covariances. 929 
The number of control variables could be reduced by intentionally excluding a few aerosol 930 
compositions in a specific case, if these compositions had low concentrations. Second, the DA 931 
system incorporates the observed AOD by assimilating the column mean aerosol extinction 932 
coefficient. This transfer avoids handling sensitivity from light attenuation length to the 933 
aerosol mass concentration in the adjoint operator, which is difficult to accurately estimate 934 
and introduces significant errors in the operator. The adjoint operator for AOD has two 935 
variants that incorporate nephelometer and aethalometer measurements. 936 
 937 
The most abundant aerosol at Kashi in April 2019 was dust. The WRF-Chem model captured 938 
the main dust episodes, but only simulated half the monthly mean concentrations of PM2.5 and 939 
PM10. Furthermore, the model failed to capture the peak concentrations from a dust storm on 940 
24 April. The aerosol scattering/absorption coefficients and AOD in the background data 941 
showed strong low biases and weak correlations with the observed levels. The DA systems 942 
did, however, effectively assimilate the surface particle concentrations, aerosol scattering 943 
coefficients, and AOD. Some deficiencies in the DA analysis were related to the forward 944 
model bias in transferring the aerosol mass concentrations to the aerosol optical parameter. 945 
Simultaneous assimilation of the PM2.5 and PM10 concentrations improved the model aerosol 946 
concentrations, with significant increases in the coarse particles; meanwhile, the analyzed 947 
AOD was 56% lower than observed levels. The assimilation of AOD significantly improved 948 
the AOD but overestimated the surface PM10 concentration by a factor of at least two. 949 
Assimilating the aerosol scattering coefficient improved the scattering coefficient in the 950 
analysis but overestimated the surface PM10 concentration by 84%. It therefore seems that 951 
WRF-Chem underestimated the particle extinction efficiency. As a compensation, the DA 952 
system overestimated the aerosol concentration to fit the observed optical values, yielding 953 
overly high particle concentrations. 954 
 955 
A notable problem was the assimilation of the absorption coefficient, which greatly 956 
overestimated the monthly mean values by a factor of at least four in the model parameters 957 
and yielded overly strong daily variations for the parameters. The aerosol absorption 958 
coefficient was improved but was still 21% lower than observed values. This defect was also 959 
apparent in the low particle absorption efficiency of WRF-Chem. The biases of the model in 960 
aerosol particle mixture and aged dust as well as the “missing” absorption of brown carbon, 961 

https://doi.org/10.5194/acp-2020-825
Preprint. Discussion started: 14 September 2020
c© Author(s) 2020. CC BY 4.0 License.



 25 

accounted for the bias in absorption efficiency, which would have worsened the DA analysis 962 
when assimilating the absorption coefficient. 963 
 964 
Simultaneous assimilation of the multi-source observations imposes a more definite constraint 965 
and helps improve model parameters. Simultaneously assimilating the scattering and 966 
absorption coefficients eliminated the defect of assimilating the absorption coefficient. It also 967 
provided comparable improvements for assimilating the surface particles and AOD; the latter 968 
additionally improved the AOD analysis. The most effective DA is the simultaneous 969 
assimilation of surface particle concentration and AOD, which provides the best overall DA 970 
analysis. 971 
 972 
Our design of control variables allowed the DA system to adjust the aerosol chemical 973 
compositions individually. However, the analyzed anthropogenic aerosol chemical fractions 974 
were almost equivalent to the background chemical fractions. The reason is that the 975 
hydrophilic aerosols have equivalent or comparable refractive indices and hygroscopic 976 
parameters in the forward operator; they therefore have comparable adjoint operator values 977 
when assimilating the aerosol optical data. It may be possible to separate the chemical 978 
compositions based on their background errors. In our case, the anthropogenic aerosols were 979 
unrealistically low at Kashi, probably owing to the low biases in the anthropogenic emissions. 980 
The low background concentrations led to low background errors and hence few increments 981 
for all chemical compositions. As a result, the chemical fractions of the anthropogenic 982 
aerosols remained close to their background values. 983 
 984 
When assimilating surface particles and AOD, the instantaneous clear-sky ADRF at Kashi 985 
were –10.5 Wm–2 at the TOA, +19.5 Wm–2 within the atmosphere, and –30.0 Wm–2 at the 986 
surface, respectively. Since the DA analyses still lowered the AOD value, the aerosol 987 
radiative forcing values assimilating the observations were also underestimated. 988 
 989 
The limitations that necessitate further research include: 990 

(1) The binning strategy. The desired strategy should link the circulation flow and 991 
particle emission sources. A better hybrid DA coupled with the ensemble Kalman filter will 992 
be more effective for estimating the aerosol background error. 993 

(2) The observational error. This could be elaborated further. The PM10 included the 994 
anthropogenic coarse particles, which should be separated from the dust originating from the 995 
desert (Jin et al., 2019). We set the observation errors for PMx and AOD to the conventional 996 
values. The observational errors of the nephelometer and aethalometer were slightly arbitrary 997 
in this study, necessitating further consideration. 998 

(3) The adjoint operator. This needs to be modified to assimilate the aerosol absorption 999 
coefficient or absorption AOD. 1000 

(4) The DA system. Our revised DA system was based on four-size bin MOSAIC 1001 
aerosols, but it can be extended to work with eight-size bin MOSAIC aerosols in WRF-Chem. 1002 
When assimilating aerosol optical data, the DA quality is strongly dependent on the forward 1003 
model. The responses of our DA analysis to the bias and uncertainty in the forward aerosol 1004 
optical model in WRF-Chem thus need further investigation.  1005 

https://doi.org/10.5194/acp-2020-825
Preprint. Discussion started: 14 September 2020
c© Author(s) 2020. CC BY 4.0 License.



 26 

Author contributions 1006 
WC developed the DA system, preformed the analyses and wrote the paper. ZL led the field 1007 
campaign and revised the paper. YZ and KL implemented the observations and the data 1008 
quality control. YZ helped to design the new adjoint operator. JC verified the DA system. 1009 
 1010 
Competing interests 1011 
The authors declare that they have no conflict of interest. 1012 
 1013 
Code/Data availability 1014 
The official GSI code is available at https://dtcenter.org/community-code/gridpoint-statistical-1015 
interpolation-gsi/download. The aerosol measurements at Kashi belong to the Sun-sky 1016 
radiometer Observation NETwork (SONET) which is accessible at 1017 
http://www.sonet.ac.cn/en/index.php. 1018 
 1019 
Acknowledgments 1020 
This work is supported by the National Key Research and Development Program of China 1021 
(Grant number 2016YFE0201400). 1022 
 1023 
References 1024 
Bannister, R. N.: A review of operational methods of variational and ensemble-variational 1025 
data assimilation, Q.J.R. Meteorol. Soc., 143, 607-633, doi:10.1002/qj.2982, 2017. 1026 
 1027 
Bao, Y., Zhu, L, Guan, Q., Guan, Y., Lu, Q., Petropoulos, G. P., Che H., Ali, g., Dong, Y., 1028 
Tang, Z., Gu, Y., Tang, W., and Hou, Y.: Assessing the impact of Chinese FY-3/MERSI 1029 
AOD data assimilation on air quality forecasts: sand dust events in northeast China, Atmos. 1030 
Environ., 205, 78-89, doi:10.1016/j.atmosenv.2019.02.026, 2019. 1031 
 1032 
Calil, P. H. R., Doney, S. C., Yumimoto, K., Eguchi, K., and Takemura, T.: Episodic 1033 
upwelling and dust deposition as bloom triggers in low-nutrient, low-chlorophyll regions, J. 1034 
Geophys. Res., 116, C06030, doi:10.1029/2010jc006704, 2011. 1035 
 1036 
Chen, D., Liu, Z., Schwartz, C. S., Lin, H.-C., Cetola, J. D., Gu, Y., and Xue, L.: The impact 1037 
of aerosol optical depth assimilation on aerosol forecasts and radiative effects during a wild 1038 
fire event over the United States, Geosci. Model Dev., 7, 2709-2715, doi:10.5194/gmd-7-1039 
2709-2014, 2014. 1040 
 1041 
Chen, L., Gao, Y., Zhang, M., Fu, J. S., Zhu, J., Liao, H., Li, J., Huang, K., Ge, B., Wang, X., 1042 
Lam, Y. F., Lin, C.-Y., Itahashi, S., Nagashima, T., Kajino, M., Yamaji, K., Wang, Z., and 1043 
Kurokawa, J.-i.: MICS-Asia III: multi-model comparison and evaluation of aerosol over East 1044 
Asia, Atmos. Chem. Phys., 19, 11911-11937, doi:10.5194/acp-19-11911-2019, 2019. 1045 
 1046 
Chen, S.-H., and Sun, W.-Y.: A one-dimensional time dependent cloud model, J. Meteor. Soc. 1047 
Japan, 80, 1, 99-118, doi:10.2151/jmsj.80.99, 2002. 1048 
 1049 

https://doi.org/10.5194/acp-2020-825
Preprint. Discussion started: 14 September 2020
c© Author(s) 2020. CC BY 4.0 License.



 27 

Cheng, X., Liu, Y., Xu, X., You, W., Zang, Z., Gao, L., Chen, Y., Su, D., and Yan, P.: Lidar 1050 
data assimilation method based on CRTM and WRF-Chem models and its application in 1051 
PM2.5 forecasts in Beijing, Sci. Total Environ., 682, 541-552, 1052 
doi:10.1016/j.scitotenv.2019.05.186, 2019. 1053 
 1054 
Descombes, G., Auligné, T., Vandenberghe, F., Barker, D. M., and Barré, J.: Generalized 1055 
background error covariance matrix model (GEN_BE v2.0), Geosci. Model Dev., 8, 669-696, 1056 
doi:10.5194/gdm-8-669-2015, 2015. 1057 
 1058 
Fan, J., Shang, Y., Chen, Q., Wang, S., Zhang, X., Zhang, L., Zhang, Y., Xu, X., and Jiang, 1059 
P.: Investigation of the “dust reservoir effect” of the Tarim Basin using WRF-GOCART 1060 
model, Arab. J. Geosci., 13, 214, doi:10.1007/s12517-020-5154-x, 2020. 1061 
 1062 
Fast, J. D., Gustafson, W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C., Chapman, E. G., 1063 
Grell, G. A. Peckham, S. E.: Evolution of ozone, particulates, and aerosol direct radiative 1064 
forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol 1065 
model, J. Geophys. Res.-Atmos., 111, D21305, doi:10.1029/2005jd006721, 2006. 1066 
 1067 
Feng, S., Jiang, F., Jiang, Z., Wang, H., Cai, Z., and Zhang, L.: Impact of 3DVAR 1068 
assimilation of surface PM2.5 observations on PM2.5 forecasts over China during wintertime, 1069 
Atmos. Environ., 187, 34-49, doi:10.1016/j.atmosenv.2018.05.049, 2018. 1070 
 1071 
Ge, J. M., Huang, J. P., Xu, C. P., Qi, Y. L., and Liu, H. Y.: Characteristics of Taklimakan 1072 
dust emission and distribution: A satellite and reanalysis field perspective, J Geophys. Res. 1073 
Atmos., 119, 11772-11783, doi:10.1002/2014jd022280, 2014. 1074 
 1075 
Ge, J. M., Liu, H., Huang, J., and Fu, Q.: Taklimakan desert nocturnal low-level jet: 1076 
climatology and dust activity, Atmos. Chem. Phys., 16, 7773-7783, doi:10.5194/acp-16-7773-1077 
2016, 2016. 1078 
 1079 
Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O., and Lin, S.-J.: 1080 
Sources and distributions of dust aerosols simulated with the GOCART model, J. Geophys. 1081 
Res., 106, D17, 20255-20273, doi: 10.1029/2000JD000053, 2001. 1082 
 1083 
Giorgi, F., and Mearns, L. O.: Introduction to special section: Reginal climate modeling 1084 
revisited, J. Geophys. Res., 104, D6, 6335-6352, doi:10.1029/98JD02072, 1999. 1085 
 1086 
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and 1087 
Eder, B.: Fully coupled “online” chemistry within the WRF model. Atmos. Environ., 39, 1088 
6957-7975, doi:10.1016/j.atmosenv.2005.04.027, 2005. 1089 
 1090 
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of 1091 
global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and 1092 

https://doi.org/10.5194/acp-2020-825
Preprint. Discussion started: 14 September 2020
c© Author(s) 2020. CC BY 4.0 License.



 28 

Aerosols from Nature), Atmos. Chem. Phys., 6, 3181-3210, doi:10.5194/acp-6-3181-2006, 1093 
2006. 1094 
 1095 
He, J., Zhang, Y., Wang, K., Chen, Y., Leung, L. R., Fan, J., Li, M., Zheng, B., Zhang, Q., 1096 
Duan, F., and He, K.: Multi-year application of WRF-CAM5 over East Asia-Part I: 1097 
Comprehensive evaluation and formation regimes of O3 and PM2.5, Atmos. Environ., 165, 1098 
122-142, doi:10.1016/j.amtosenv.2017.06.015, 2017. 1099 
 1100 
Hong, S.-Y., Noh, Y., Dudhia, J.: A new vertical diffusion package with an explicit treatment 1101 
of entrainment processes, Mon. Wea. Res., 134, 2318-2341, doi:10.1175/MWR3199.1, 2006. 1102 
 1103 
Huang, J., Wang, T., Wang, W., Li, Z., and Yan, H.: Climate effects of dust aerosols over 1104 
East Asian arid and semiarid regions, J. Geophys. Res., 119, 11398-11416, 1105 
doi:10.1002/2014jd021796, 2014. 1106 
 1107 
Hong, J., Mao, F., Min, Q., Pan, Z., Wang, W., Zhang, T., and Gong, W.: Improved PM2.5 1108 
predictions of WRF-Chem via the integration of Himawari-8 satellite data and ground 1109 
observations, Environ. Pollut., 263, 114451, doi:10.1016/j.envpol.2020.114451, 2020. 1110 
 1111 
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, 1112 
W. D.: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative 1113 
transfer models, J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944, 2008. 1114 
 1115 
Jia, R., Liu, Y., Chen, B., Zhang, Z., and Huang, J.: Source and transportation of summer dust 1116 
over the Tibetan Plateau, Atmos. Environ., 123, 210-219, 1117 
doi:10.1016/j.atmosenv.2015.10.038, 2015. 1118 
 1119 
Jiang, Z., Liu, Z., Wang, T., Schwartz, C. S., Lin, H.-C., and Jiang, F.: Probing into the 1120 
impact of 3DVAR assimilation of surface PM10 observations over China using process 1121 
analysis, J. Geophys. Res., 118, 6738-6749, doi:10.1002/jgrd.50495, 2013. 1122 
 1123 
Jin, J., Lin, H. X., Segers, A., Xie, Y., and Heemink, A.: Machine learning for observation 1124 
bias correction with application to dust storm data assimilation, Atmos. Chem. Phys., 19, 1125 
10009-10026, doi:10.5194/acp-19-10009-2019. 1126 
 1127 
Li, L., Li, Z., Chang, W., Ou, Y., Goloub, P., Li, C., Li, K., Hu, Q., Wang, J., and Wendisch, 1128 
M.: Solar radiative forcing of aerosol particles near the Taklimakan desert during the Dust 1129 
Aerosol Observation-Kashi campaign in Spring 2019, Atmos. Chem. Phys. Discuss., 1130 
doi:10.5194/acp-2020-60, in review, 2020. 1131 
 1132 
Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., Man, H., 1133 
Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a review, Natl. Sci. 1134 
Rev., 4, 834-866, doi:10.1093/nsr/nwx150, 2017. 1135 
 1136 

https://doi.org/10.5194/acp-2020-825
Preprint. Discussion started: 14 September 2020
c© Author(s) 2020. CC BY 4.0 License.



 29 

Liu, Z., Liu, Q., Lin, H.-C., Schwartz, C. S., Lee, Y.-H., and Wang, T.: Three-dimensional 1137 
variational assimilation of MODIS aerosol optical depth: Implementation and application to a 1138 
dust storm over East Asia, J. Geophys. Res., 116, D23206, doi:10.1029/2011JD016159, 2011. 1139 
 1140 
Li, Z., Zang, Z., Li, Q. B., Chao, Y., Chen, D., Ye, Z., Liu, Y., and Liou, K. N.: A three-1141 
dimensional variational data assimilation system for multiple aerosol species with 1142 
WRF/Chem and an application to PM2.5 prediction, Atmos. Chem. Phys., 13, 4265-4278, 1143 
doi:10.5194/acp-13-4265-2013, 2013. 1144 
 1145 
Ma, C., Wang, T., Mizzi, A. P., Anderson, J. L., Zhuang, B., Xie, M., and Wu, R.: 1146 
Multiconstituent data assimilation with WRF-Chem/DART: Potential for adjusting 1147 
anthropogenic emissions and improving air quality forecasts over eastern China, J. Geophys. 1148 
Res. Atmos., 124, 7393-7412, doi:10.1029/2019JD030421, 2019. 1149 
 1150 
Ma, C., Wang, T., Jiang, Z., Wu, H., Zhao, M., Zhuang, B., Li, S., Xie, M., Li, M., Liu, J., 1151 
and Wu, R.: Importance of bias correction in data assimilation of multiple observations over 1152 
eastern China using WRF-Chem/DART, J. Geophys. Res. Atmos., 125, e2019JD031465, 1153 
doi:10.1029/2019JD031465, 2020. 1154 
 1155 
Massart, S., Pajot, B., Piacentini, A., and Pannekoucke, O.: On the merits of using a 3D-1156 
FGAT assimilation scheme with an outer loop for atmospheric situations governed by 1157 
transport, Mon. Weather Rev., 138, 12, 4509-4522, doi:10.1175/2010MWR3237.1, 2010. 1158 
 1159 
Meng, L, Yang, X., Zhao, T., He, Q., Lu, H., Mamtimin, A., Huo, W., Yang, F., and Liu, C.: 1160 
Modeling study on three-dimensional distribution of dust aerosols during a dust storm over 1161 
the Tarim Basin, Northwest China, Atmos. Res., 218, 285-295, 1162 
doi:10.1016/j.atmores.2018.12.006, 2019. 1163 
 1164 
Okada, K., and Kai, K.: Atmospheric mineral particles collected at Qira in the Taklamakan 1165 
Desert, China, Atmos. Environ., 38, 6927-6935, doi:10.1016/j.atmosenv.2004.03.078, 2004. 1166 
 1167 
Pagowski, M., Grell, G. A., McKeen, S. A., Peckham, S. E., and Devenyi, D.: Three-1168 
dimensional variational data assimilation of ozone and fine particulate matter observations: 1169 
some results using the Weather Research and Forecasting – Chemistry model and Grid-point 1170 
Statistical Interpolation, Q. J. R., Meteorol. Soc., 136, 2014-2024, doi:10.1002/qj.700, 2010. 1171 
 1172 
Pagowski, M., Liu, Z., Grell, G. A., Hu, M., Lin, H.-C., and Schwartz, C. S.: Implementation 1173 
of aerosol assimilation in Gridpoint Statistical Interpolation (v.3.2) and WRF-Chem (v.3.4.1), 1174 
Geosci. Model Dev., 7, 1621-1627, doi:10.5194/gmd-7-1621-2014, 2014. 1175 
 1176 
Pang, J., Liu, Z., Wang, X., Bresch, J., Ban, J., Chen, D., and Kim, J.: Assimilating AOD 1177 
retrievals from GOCI and VIIRS to forecast surface PM2.5 episodes over eastern China, 1178 
Atmos. Environ., 179, 288-304, doi:10.1016/j.atmosenv.2018.02.011, 2018. 1179 
 1180 

https://doi.org/10.5194/acp-2020-825
Preprint. Discussion started: 14 September 2020
c© Author(s) 2020. CC BY 4.0 License.



 30 

Pang, J., Wang, X., Shao, M., Chen, W, and Chang, M.: Aerosol optical depth assimilation for 1181 
a modal aerosol model: Implementation and application in AOD forecasts over East Asia, Sci. 1182 
Total Environ., 719, 137430, doi:10.1016/j.scitotenv.2020.137430, 2020. 1183 
 1184 
Parrish, D. F., and Derber, J. C.: The National Meteorological Center’s spectral statistical-1185 
interpolation analysis system, Mon. Weaterh Rev., 120, 1747-1763, doi: 10.1175/1520-1186 
0493(1992)120<1747:TNMCSS>2.0.CO;2, 1992. 1187 
 1188 
Peng, Z., Liu, Z., Chen, D., and Ban, J.: Improving PM2.5 forecast over China by the joint 1189 
adjustment of initial conditions and source emissions with an ensemble Kalman filter, Atmos. 1190 
Chem. Phys., 17, 4837-4855, doi:10.5194/acp-17-4837-2017, 2017. 1191 
 1192 
Peng, Z., Lei, L., Liu, Z., Sun, J., Ding, A., Ban, J., Chen, D., Kou, X., and Chu, K.: The 1193 
impact of multi-species surface chemical observation assimilation on air quality forecasts in 1194 
China, Atmos. Chem. Phys., 18, 17387-17404, doi:10.5194/acp-18-17387-2018, 2018. 1195 
 1196 
Purser, R. J., Wu, W.-S., Parrish, D. F., and Roberts, N. M.: Numerical aspects of the 1197 
application of recursive filters to variational statistical analysis. Part I: spatially homogeneous 1198 
and isotropic gaussian covariances, Mon. Weather Rev., 131, 1524-1535, doi: 10.1175//1520-1199 
0493(2003)131<1524:NAOTAO>2.0.CO;2, 2003a. 1200 
 1201 
Purser, R. J., Wu, W.-S., Parrish, D. F., and Roberts, N. M.: Numerical aspects of the 1202 
application of recursive filters to variational statistical analysis. Part II: spatially 1203 
inhomogeneous and anisotropic general covariances, Mon. Weather Rev., 131, 1536-1548, 1204 
doi: 10.1175//2543.1, 2003b. 1205 
 1206 
Saide, P. E., Carmichael, G. R., Liu, Z., Schwartz, C. S., Lin, H. C., da Silva, A. M., and 1207 
Hyer, E.: Aerosol optical depth assimilation for a size-resolved sectional model: impacts of 1208 
observationally constrained, multi-wavelength and fine mode retrievals on regional scale 1209 
analyses and forecasts, Atmos. Chem. Phys., 13, 10425-10444, doi:10.5194/acp-13-10425-1210 
2013, 2013. 1211 
 1212 
Saide, P. E., Kim, J., Song, C. H., Choi, M., Cheng, Y., and Carmichael, G. R.: Assimilation 1213 
of next generation geostationary aerosol optical depth retrievals to improve air quality 1214 
simulations, Geophys. Res. Lett., 41, 9188-9196, doi:10.1002/2014GL062089, 2014. 1215 
 1216 
Saide, P. E., Gao, M., Lu, Z., Goldberg, D., Streets, D. G., Woo, J.-H., Beyersdorf, A., Corr, 1217 
C. A., Thornhill, K. L., Anderson, B., Hair, J. W., Nehrir, A. R., Diskin, G. S., Jimenez, J. L., 1218 
Nault, B. A., Campuzano-Jost, P., Dibb, J., Heim, E.,, Lamb, K. D., Schwarz, J. P., Perring, 1219 
A. E., Kim, J., Choi, M., Holben, B., Pfister, G., Hodzic, A., Carmichael, G. R., Emmons, L., 1220 
and Crawford, J. H.: Understanding and improving model representation of aerosol optical 1221 
properties for a Chinese haze event measured during KORUS-AQ, Atmos. Chem. Phys., 20, 1222 
6455-6478, doi:10.5194/acp-20-6455-2020, 2020. 1223 
 1224 

https://doi.org/10.5194/acp-2020-825
Preprint. Discussion started: 14 September 2020
c© Author(s) 2020. CC BY 4.0 License.



 31 

Schwartz, C. S., Liu, Z., Lin, H.-C., and McKeen, S. A.: Simultaneous three-dimensional 1225 
variational assimilation of surface fine particulate patter and MODIS aerosol optical depth, J. 1226 
Geophys. Res., 117, D13202, doi:10.1029/2011JD017383, 2012. 1227 
 1228 
Sič, B., Amraoui, L. E., Piacentini, A., Marécal, V., Emili, E., Cariolle, D., Prather, M., and 1229 
Attié, J.-L.: Aerosol data assimilation in the chemical transport model MOCAGE during the 1230 
TRAQA/ChArMEx campaign: aerosol optical depth, Atmos. Chem. Phys., 9, 5535-5554, 1231 
doi:10.5194/amt-9-5535-2016, 2016. 1232 
 1233 
Tang, Y., Pagowski, M., Chai, T., Pan, L., Lee, P., Baker, B., Kumar, R., Monache, L .D., 1234 
Tong, D., and Kim, H.-C.: A case study of aerosol data assimilation with the Community 1235 
Multi-scale Air Quality Model over the contiguous United States using 3D-Var and optimal 1236 
interpolation methods, Geosci. Model Dev., 10, 4743-4758, doi:10.5194-gmd-10-4743-2017, 1237 
2017. 1238 
 1239 
Tewari, M., Chen, F., Wang, W., Dudhai, J., LeMone, M. A., Mitchell, K., Ek, M., Gayno, 1240 
G., Wegiel, J., and Cuenca, R. H.: Implementation and vertification of the unified NOAH land 1241 
surface model in the WRF model. 20th conference on weather analysis and forecasting/16th 1242 
conference on numerical weather prediction, pp. 11-15. 1243 
 1244 
Wang, K.-Y., Lary, D. J., Shallcross D. E., Hall, S. M., and Pyle, J. A.: A review on the use of 1245 
the adjoint method in four-dimensional atmospheric-chemistry data assimilation, Q. J. R. 1246 
Meteorol. Soc., 127, 2181-2204, doi:10.1002/qj.49712757616, 2001. 1247 
 1248 
Wu, W.-S., Purser, r. J., and Parrish, D. F.: three-dimensional variational analysis with 1249 
spatially inhomogeneous covariances, Mon. Weather Rev., 130, 12, 2905-2916, 1250 
doi: 10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2, 2002. 1251 
 1252 
Xia, X., Min, J., Shen, F., Wang, Y., and Yang, C.: Aerosol data assimilation using data from 1253 
Fengyun-3A and MODIS: application to a dust storm over East Asia in 2011, Adv. Atmos. 1254 
Sci., 36, 1-14, doi:10.1007/s00376-018-8075-9, 2019a. 1255 
 1256 
Xia, X., Min, J., Wang, Y., Shen, F., Yang, C., and Sun, Z.: Assimilating Himawari-8 AHI 1257 
aerosol observations with a rapid-update data assimilation system, Atmos. Environ., 215, 1258 
116866, doi:10.1016/j.atmosenv.2019.116866, 2019b. 1259 
 1260 
Zang, Z., Li, Z., Pan, X., Hao, Z., and You, W.: Aerosol data assimilation and forecasting 1261 
experiments using aircraft and surface observations during CalNex, Tellus B., 68,1, 29812, 1262 
doi:10.3402/tellusb.v68.29812, 2016. 1263 
 1264 
Zaveri, R. A., and Peters, L. K.: A new lumped structure photochemical mechanism for large-1265 
scale applications, J. Geophys. Res., 104, 30387-30415, doi:10.1029/1999JD900876, 1999. 1266 
 1267 

https://doi.org/10.5194/acp-2020-825
Preprint. Discussion started: 14 September 2020
c© Author(s) 2020. CC BY 4.0 License.



 32 

Zaveri, R. A., Easter, R. C., Fast, J. D., Peters, L. K.: Model for simulating aerosol 1268 
interactions and chemistry (MOSAIC), J. Geophys. Res., 113, D13204, 1269 
doi:10.1029/2007JD008782, 2008. 1270 
 1271 
Zhao, J., Ma, X., Wu, S., and Sha, T.: Dust emission and transport in Northwest China: WRF-1272 
Chem simulation and comparisons with multi-sensor observation, Atmos. Res., 241, 104978, 1273 
doi:10.1016/j.atmosres.2020.104978, 2020. 1274 

https://doi.org/10.5194/acp-2020-825
Preprint. Discussion started: 14 September 2020
c© Author(s) 2020. CC BY 4.0 License.



 
 
Figure 1. The workflow of aerosol DA in the revised GSI system for the sectional 
MOSAIC aerosols in WRF-Chem. The contents in blue are the portions we 
developed. The arrows in gray indicate the workflow of option 2 that we did in this 
study. Only option 2 can assimilate the aerosol scattering/absorption coefficients. 
Abbreviations: so4, sulfate; nh4, ammonium; oc, organic carbon; bc, black carbon; 
oin, other inorganic matter; awc, aerosol water content; num, aerosol number 
concentration; no3, nitrate; cl, chlorine; na, sodium; Esca, aerosol scattering 
coefficient; Eabs, aerosol absorption coefficient. 
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Figure 2. Schematic diagram of the binning strategy for modeling background error 
covariance matrix on (a) the latitude binning data or (b) the gridded data; and the 
vertical profiles of standard deviations (µg kg–1) of the coarse OIN component 
concentration at 06:00UTC in April 2019 (c) on average over the latitude bins, (d) at 
Kashi city grid and (e) at the Taklimakan desert grid (i.e., 1.5 degrees east to the Kashi 
city). 
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Figure 3. Background error standard deviations (std, a-e, µg kg–1), horizontal 
correlation length scales (hls, f-j, km), and vertical correlation length scales (vls, k-o, 
km) at 00:00 UTC in April 2019 for the sectional sulfate, ammonium, organic aerosol 
(OC), black carbon (BC), and other inorganic aerosols (OIN, including dust) in the 
model domain 2. All the quantities in figures were the averages over the latitude bins 
with a half degree width, except that figure (e) represented the standard deviation of 
OIN at the Kashi grid. 
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Figure 4. Topography in China (a) and the model domains with the grid resolution of 
20 km (b) and 5 km (c) in WRF-Chem. 
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Figure 5. Monthly mean (a) PM10 concentration (µg m–3) and (b) the streamlines of 
the 10-m wind (m s–1) in April and their daily mean anomalies (c, d) during a dust 
storm on 24 April to the monthly mean values. Only the streamlines at the 
topographical height lower than 2500 meters are shown for clarity. The rectangles in 
figures (b) and (d) denote the fine model domain 2, which was the geographical range 
in the figures (a) and (c). The black points indicate the Kashi city. 
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Figure 6. Comparison of (a) PM2.5 (µg m–3), (b) PM10 (µg m–3), (c) aerosol scattering 
coefficient (Esca, Mm–1), (d) aerosol absorption coefficient (Eabs, Mm–1) and (e) 
AOD in the observation (OBS), the background simulation (NoDA), and the DA 
analyses when assimilating the observed PM2.5 and PM10 (DA_PMx) and aerosol 
scattering coefficients (DA_Esca) at Kashi in April 2019. 
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Figure 7. Comparison of (a) PM2.5 (µg m–3), (b) PM10 (µg m–3), (c) aerosol scattering 
coefficient (Esca, Mm–1), (d) aerosol absorption coefficient (Eabs, Mm–1) and (e) 
AOD in the observation (OBS), the background simulation (NoDA), and the DA 
analyses when assimilating the observed aerosol absorbing coefficients (DA_Eabs) 
and AOD (DA_AOD) at Kashi in April 2019. 
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Figure 8. Comparison of (a) PM2.5 (µg m–3), (b) PM10 (µg m–3), (c) aerosol scattering 
coefficient (Esca, Mm–1), (d) aerosol absorption coefficient (Eabs, Mm–1) and (e) 
AOD in the observation (OBS), the background simulation (NoDA), and the DA 
analyses of DA_Esca_Eabs and DA_Esca_Eabs_PMx at Kashi in April 2019. 
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Figure 9. Comparison of (a) PM2.5 (µg m–3), (b) PM10 (µg m–3), (c) aerosol scattering 
coefficient (Esca, Mm–1), (d) aerosol absorption coefficient (Eabs, Mm–1) and (e) 
AOD in the observation (OBS), the background simulation (NoDA), and the DA 
analyses of DA_PMx_AOD and DA_Esca_Eabs_PMx_AOD at Kashi in April 2019. 
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Figure 10. Surface PM10 concentrations (µg m–3) in the observation (black), 
background simulation (blue) and the DA analyses (red) at 00:00, 06:00, 12:00, 18:00 
UTC in April when assimilating the observations of (a) PMx, (b) aerosol scattering 
coefficients (Esca), (c) aerosol absorption coefficient (Eabs), and (d) AOD, 
respectively. The DA_AOD had no analysis at 18:00 UTC that was local midnight. 
Kashi is 6 hours ahead of UTC (UTC+6). 
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Figure 11. Monthly mean aerosol concentrations (µg m–3) per size bin in the 
background (NoDA) and the DA experiments when assimilating the individual 
observation at Kashi in April 2019. 
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Figure 12. Monthly mean vertical concentration profiles of (a) PM2.5 (µg m–3) and (b) 
PM10 (µg m–3) at Kashi in April 2019. 
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Figure 13. Monthly mean chemical composition in percent (%) in the PM10, excluding 
the OIN component at Kashi in April 2019. 
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Table 1. The observed surface particle concentration, aerosol scattering coefficient (Esca), aerosol 
absorption coefficient (Eabs), and AOD used for the DA analysis and their observational errors. 
 

 Data time range Wavelength (nm) Observation error (e) 
PM2.5 & PM10 

(µg m–3) 
Apr 1 – Apr 30  

 

d: grid spacing in meter 
AOD Mar 29 – Apr 25 440, 675, 870, 1020 e = 0.01/height×108 
Esca (Mm–1) Apr 2 – Apr 30 450, 525, 635 e = 10 
Eabs (Mm–1) Apr 2 – Apr 30 470, 520, 660 e = 10 

 
  

e = e2
1 + e2

2

e1 = 1.5 + 0.75 ⋅ PMx

e2 = 0.5 ⋅ e1 ⋅ d
3000
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Table 2. The monthly mean values of the PM2.5 and PM10 concentrations (µg m–3), 450 nm aerosol 
scattering coefficient (Esca, Mm–1), 470 nm aerosol absorption coefficient (Eabs, Mm–1) and 440 nm 
AOD in the background and analysis data and their correlation values (in brackets) with the 
observations at 00:00, 06:00, 12:00, 18:00 UTC at Kashi in April 2019. The underlined number in 
bold denotes the analysis in the monthly mean value that is not significantly different from the 
observation. The number in the bracket is the significant correlation, and the dashed line denotes an 
insignificant correlation. Both the statistical tests of the mean and correlation are conducted at the 
significance level of 0.05. 
 

DA experiment 
PM2.5 

(µg m–3) 
PM10 

(µg m–3) 
Esca 

(Mm–1) 
Eabs 

(Mm–1) 
AOD 

Observation 91.0 323.2 204.5 81.9 0.70 
Background 53.1 (0.23) 166.9 (-----) 106.5 (0.37) 6.7 (0.33) 0.18 (0.58) 
Analysis      
DA_PMx 70.3 (0.86) 331.2 (0.99) 158.9 (0.86) 12.2 (0.33) 0.31 (0.37) 
DA_AOD 85.0 (0.33) 716.9 (0.35) 280.1 (0.58) 23.1 (0.16) 0.63 (0.99) 
DA_Esca 120.5 (0.93) 596.2 (0.96) 244.6 (0.97) 19.1 (0.48) 0.57 (0.47) 
DA_Eabs 395.1 (0.31) 2l61 (0.31) 849.0 (0.65) 65.1 (0.99) 1.95 (-----) 
      
DA_Esca_Eabs 122.9 (0.92) 604.4 (0.93) 247.7 (0.97) 20.0 (0.46) 0.58 (0.47) 
DA_PMx_Esca_Eabs 101.1 (0.93) 411.2 (0.98) 198.8 (0.92) 15.2 (0.38) 0.41 (0.47) 
DA_PMx_AOD 89.5 (0.51) 408.8 (0.75) 195.8 (0.74) 14.9 (0.32) 0.51 (0.95) 
DA_PMx_Esca_Eabs_AOD 107.9 (0.77) 452.9 (0.94) 216.3 (0.92) 16.2 (0.38) 0.53 (0.93) 
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Table 3. The ratios of AOD, aerosol scattering/absorption coefficient to PM10 concentration (mean 
± standard deviation) in the observations, the model background data, and the DA analysis when 
assimilating surface particle concentrations (DA_PMx). 
 

 Ratios of 440 nm AOD 
to PM10 (µg–1 m3) 

Ratios of 450 nm aerosol 
scattering coefficient to 
PM10 (Mm–1 µg–1 m3) 

Ratios of 470 nm aerosol 
absorption coefficient to 
PM10 (Mm–1 µg–1 m3) 

Observation 0.0033±0.0021 0.91±0.05 0.42±0.36 
Background 0.0011±0.0007 0.68±0.24 0.05±0.02 
Analysis 0.0012±0.0005 0.58±0.21 0.04±0.01 
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Table 4. The mean instantaneous clear-sky shortwave (SW), longwave (LW) and the net (SW+LW) 
direct radiative forcing (Wm–2) at the top of atmosphere (TOA), in the atmosphere (ATM) and at 
the surface (SRF) in the background and the simulations restarted from the analyses of DA_PMx 
and DA_PMx_AOD at one hour after the analysis times of AOD DA at Kashi in April 2019. 
 

 SW (Wm–2) LW (Wm–2) SW+LW (Wm–2) 
 TOA ATM SRF TOA ATM SRF TOA ATM SRF 
Background -7.8 +11.3 -19.1 +0.6 -3.6 +4.2 -7.2 +7.7 -14.9 
DA_PMx -8.7 +21.7 -30.4 +1.1 -7.4 +8.5 -7.6 +14.3 -21.9 
DA_PMx_AOD -12.2 +32.1 -44.3 +1.7 -12.6 +14.3 -10.5 +19.5 -30.0 
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