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Abstract. TS1The Gridpoint Statistical Interpolation data
assimilation (DA) system was developed for the four size
bin sectional Model for Simulating Aerosol Interactions and
Chemistry (MOSAIC) aerosol mechanism in the Weather
Research and Forecasting-Chemistry (WRF-Chem) model.5

The forward and tangent linear operators for the aerosol op-
tical depth (AOD) analysis were derived from WRF-Chem
aerosol optical code. We applied three-dimensional varia-
tional DA to assimilate the multi-wavelength AOD, ambient
aerosol scattering coefficient, and aerosol absorption coeffi-10

cient, measured by the sun–sky photometer, nephelometer,
and aethalometer, respectively. These measurements were
undertaken during a dust observation field campaign at Kashi
in northwestern China in April 2019. The results showed that
the DA analyses decreased the model aerosols’ low biases;15

however, it had some deficiencies. Assimilating the surface
particle concentration increased the coarse particles in the
dust episodes, but AOD and the coefficients for aerosol scat-
tering and absorption were still lower than those observed.
Assimilating aerosol scattering coefficient separately from20

AOD improved the two optical quantities. However, it caused
an overestimation of the particle concentrations at the sur-

face. Assimilating the aerosol absorption coefficient yielded
the highest positive bias in the surface particle concentra-
tion, aerosol scattering coefficient, and AOD. The positive bi- 25

ases in the DA analysis were caused by the forward operator
underestimating aerosol mass scattering and absorption effi-
ciency. As compensation, the DA system increased particle
concentrations excessively to fit the observed optical values.
The best overall improvements were obtained from the si- 30

multaneous assimilation of the surface particle concentration
and AOD. The assimilation did not substantially change the
aerosol chemical fractions. After DA, the clear-sky aerosol
radiative forcing at Kashi was −10.4 W m−2 at the top of the
atmosphere, which was 55 % higher than the radiative forc- 35

ing value before DA.

1 Introduction

Data assimilation (DA) blends the information from observa-
tions with a priori background fields from deterministic mod-
els to obtain an optimal analysis (Wang et al., 2001; Bannis- 40

ter, 2017). With lagged emission inventories and unsatisfac-
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2 W. Chang et al.: Improving the sectional MOSAIC aerosolsTS3

tory model chemistry mechanisms, there are notable discrep-
ancies between model aerosols and observed levels (He et al.,
2017; L. Chen et al., 2019). The DA technology incorporates
aerosol measurements into the models to optimize emissions
(Peng et al., 2017; Ma et al., 2019) and cyclically updates the5

background fields in forecasts. This technology effectively
improves the air quality forecasts in China (Bao et al., 2019;
Cheng et al., 2019; Feng et al., 2018; Hong et al., 2020; Liu
et al., 2011; Pang et al., 2018; Peng et al., 2018; Xia et al.,
2019a, b).10

Variational DA minimizes the distant scalar function that
measures the misfit between model states and a set of obser-
vations in each assimilation window. An effective variational
DA requires appropriate tangent linear and adjoint operators,
which describe the gradient or sensitivity of the observed pa-15

rameter to the control variable (Wang et al., 2001; Bannister,
2017). The operator is highly dependent on the types of as-
similated observations and the selection of control variables;
it is also sometimes dependent on the aerosol mechanism.
For PM2.5 (particulate matter with a dynamic radius less than20

2.5 µm) DA, the tangent linear operator is the ratio of the
PM2.5 concentration to each aerosol composition (Pagowski
et al., 2010). For the aerosol optical depth (AOD) DA, the
operator is generated through Mie theory (Liu et al., 2011;
Saide et al., 2013). With the development of aerosol mech-25

anisms and the growing body of novel aerosol observations
from ground-based networks and satellites, appropriate tan-
gent linear and adjoint operators are in demand.

The community Gridpoint Statistical Interpolation (GSI)
system (Wu et al., 2002; Purser et al., 2003a, b) is of-30

ten used to modify regional aerosol simulations with three-
dimensional variational (3D-Var) DA. The official GSI (ver-
sion 3.7 in this study) can incorporate observations of surface
particulate matter concentration and AOD to constrain the
aerosols simulated within the aerosol mechanism of Goddard35

Chemistry Aerosol Radiation and Transport (GOCART; Liu
et al., 2011; Pagowski et al., 2014). The tangent linear opera-
tor and adjoint operator for AOD were determined using the
Community Radiative Transfer Model (CRTM). The official
GSI version incorporated the Moderate Resolution Imaging40

Spectroradiometer (MODIS) AOD in East Asia (Liu et al.,
2011) and revealed the simultaneous DA effects of PM2.5 and
AOD in the continental United States (Schwartz et al., 2012).
This GSI identified DA effects that weakened during the suc-
ceeding model’s running as the model error grew (Jiang et45

al., 2013) and assessed the radiative forcing of the aerosols
released by wildfires (Chen et al., 2014). This version was
also utilized to improve air quality forecasts in China by as-
similating a variety of satellite AOD data retrieved from the
Geostationary Ocean Color Imager (Pang et al., 2018), Vis-50

ible Infrared Imaging Radiometer Suite (Pang et al., 2018);
Advanced Himawari-8 Imager (Xia et al., 2019a), and the
Fengyun-3A/medium-resolution spectral imager (Bao et al.,
2019; Xia et al., 2019b).

The GOCART mechanism cannot simulate nitrate and sec- 55

ondary organic aerosols (SOAs), and the GOCART aerosol
size distribution uses a bulk assumption for radiative trans-
fer calculation. Strictly speaking, the lack of aerosol com-
ponents violates the model states’ unbiased requirements in
the DA system. Lack of size-segregated aerosols may in- 60

troduce a bias in the calculation of aerosol optics. The of-
ficial GSI can assimilate the surface particle concentration
from the aerosol mechanism apart from GOCART, but its
AOD DA is tightly bound with the GOCART aerosols. If one
wished to use GSI to assimilate AOD for the other aerosol 65

mechanisms, a compromise solution was to either integrate
the map of the speciated aerosols of other mechanisms into
that of the GOCART aerosols or use a simple observation
operator to convert aerosol chemical mass concentrations to
AOD. For example, Tang et al. (2017) used the official GSI 70

to assimilate MODIS AOD with the aerosols from the Com-
munity Multi-scale Air Quality Model (CMAQ). They in-
corporated the map of the 54 aerosol components of CMAQ
into the five CRTM aerosols and repartitioned each CMAQ
aerosol’s mass increments according to the ratios of aerosol 75

chemical components in the background field. This reparti-
tioning is called the “ratio approach”. Cheng et al. (2019)
assimilated the lidar extinction coefficient profiles measured
in Beijing to modify the Weather Research and Forecasting-
Chemistry (WRF-Chem) Model for Simulating Aerosol In- 80

teractions and Chemistry (MOSAIC) aerosols. They used
the ratio approach to map eight MOSAIC aerosols based
on five GOCART aerosols. This mapping strategy is read-
ily implemented but introduces inconsistent size-segregated
aerosol information (e.g., hygroscopicity and extinction effi- 85

ciency) between the aerosol model and the DA system. Ku-
mar et al. (2019) analyzed the CMAQ aerosols by assimi-
lating MODIS AOD with GSI. Their forward operator con-
verted aerosol chemical composition into AOD based on the
well-known IMPROVECE2 aerosol extinction model (Malm 90

and Hand, 2007). The IMPROVE model predicts AOD with
a linear combination of aerosol chemical masses, with the
hydrophilic particles multiplied by a tuning factor associated
with relative humidity. Since building a DA system for a new
aerosol mechanism is quite technical, the official GSI for the 95

GOCART aerosols is a primary choice for recent aerosol DA
studies (Bao et al., 2019; Xia et al., 2019TS2 ; Hong et al.,
2020).

Because of the shortcomings, the official GSI has been ex-
tended to cooperate with other aerosol mechanisms in WRF- 100

Chem. The MOSAIC mechanism in WRF-Chem simulates
aerosol mass and number concentrations in either four or
eight size bins. This sectional aerosol mechanism involves
nitrate chemistry and can simulate SOA with the volatil-
ity basis set scheme. Li et al. (2013) developed a 3D-Var 105

scheme for assimilating the surface PM2.5 and speciated
aerosol chemical concentrations for the WRF-Chem MO-
SAIC aerosols. Zang et al. (2016) applied this scheme to
incorporate aircraft speciated aerosols in California. They
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proved that the assimilation of aircraft profile extended the
DA benefit to aerosol forecast. Saide et al. (2013) proposed a
revised GSI version that performed variational DA for the
MOSAIC aerosols. The authors generated the adjoint op-
erator code with the automatic differentiation tool (ADT),5

TAPENADE v3.6. The ADT used the chain rule of derivative
calculus on the AOD source code in WRF-Chem. They as-
similated multi-source AOD data with the MOSAIC aerosols
over the continental United States and found that incorpo-
rating multi-wavelength fine-mode AOD redistributed the10

aerosols’ particulate mass concentration in sizes. Their GSI
system also assimilated Korean ground-based and geosta-
tionary satellite AOD datasets to improve local aerosol sim-
ulations (Saide et al., 2014, 2020). Pang et al. (2020) de-
veloped the official GSI to work with the Modal Aerosol15

Dynamics Model for Europe with the Secondary Organic
Aerosol Model (MADE/SORGAM) aerosols in WRF-Chem.
They used the WRF-Chem AOD code as the forward op-
erator to calculate the essential aerosol optical properties
and employed the CRTM adjoint operator. Because aerosols20

were externally mixed in CRTM, their scheme abandoned
the aerosol internal mixture in WRF-Chem but computed the
AOD of each aerosol component separately.

This study provides a solution to improve the GSI 3D-Var
DA system’s capability for the sectional MOSAIC aerosols25

in WRF-Chem. We designed the tangent linear operator code
for AOD DA based on the WRF-Chem intrinsic aerosol op-
tical subroutine (Fast et al., 2006). The operator code is pro-
grammed based on the analytical equations of the tangent
linear model for AOD. As our revised GSI does not use the30

CRTM module, it avoids the problem of needing to elimi-
nate WRF-Chem aerosols characteristics (e.g., aerosol mix-
ture state and size distribution) to meet the CRTM input re-
quirements. The forward and tangent linear operators are co-
ordinated and written in a single subroutine, coupled to the35

GSI at the place of invoking CRTM for the AOD calcula-
tion. In addition to AOD DA, our tangent linear operator
has two variants to assimilate the aerosol scattering and ab-
sorption coefficients, measured using a nephelometer and an
aethalometer, respectively.40

This study verifies our revised GSI system’s effectiveness
by incorporating multi-wavelength aerosol optical observa-
tions that were measured during an international field cam-
paign, the Dust Aerosol Observation-Kashi, in April 2019 at
Kashi city, neighboring the Taklimakan Desert, northwestern45

China. This desert is the second largest globally and is the
primary source of dust aerosols in East Asia. The dust from
the desert affects the nearby Tibetan Plateau (Ge et al., 2014;
Jia et al., 2015; Zhao et al., 2020), air quality and climate in
East Asia (Huang et al., 2014), and the biogeochemical cy-50

cles in the western Pacific Ocean (Calil et al., 2011). A suc-
cessful DA analysis will help improve the local air quality
forecast and enhance our understanding of local dust storms’
environmental impacts. The remainder of this paper is orga-
nized as follows. Section 2 describes the revised GSI system,55

the experimental design, and the observed data. Section 3
presents the DA results when assimilating different observa-
tions. Section 4 discusses the impact of DA on aerosol chem-
ical composition and aerosol direct radiative forcing. Finally,
Sect. 5 provides the conclusions and limitations that need fur- 60

ther research.

2 Methodology and data

2.1 Forecast model

The background aerosol fields were simulated using the
WRF-Chem model version 4.0 (Grell et al., 2005; Fast et 65

al., 2006). The model configurations included the Purdue
Lin microphysics scheme (Chen and Sun, 2002), the unified
Noah land surface model (Tewari et al., 2004), the Yonsei
University scheme for planetary boundary layer meteorolog-
ical conditions (Hong et al., 2006), and the Rapid Radiative 70

Transfer Model for General Circulation Models (RRTMG)
scheme for shortwave and longwave radiation (Iacono et al.,
2008). The gas-phase chemistry was simulated using the car-
bon bond mechanism (Zaveri and Peters, 1999), including
aqueous-phase chemistry. The aerosol chemistry was simu- 75

lated using the MOSAIC mechanism (Zaveri et al., 2008),
which simulated sulfate, nitrate, ammonium, black carbon
(BC), organic carbon (OC), sodium, calcium, chloride, car-
bonate, and other inorganic matter (OIN; e.g., trace metals
and silica). The experiments did not simulate SOA to ac- 80

celerate model integration. The influence of ignoring SOA
was assumed to be small because of low anthropogenic and
biogenic emissions in the desert’s vicinity. The dust emis-
sion was simulated using the GOCART dust scheme (Gi-
noux et al., 2001; Zhao et al., 2010), and the dust mass was 85

included in the OIN concentration. We performed the MO-
SAIC aerosol simulations with four size bins (0.039–0.156,
0.156–0.625, 0.625–2.500, and 2.5–10.0 µm dry diameters).
The sectional aerosol data in the hourly model output were
the aerosol dry mass mixing ratios of chemical composi- 90

tions, aerosol number concentration, and aerosol water con-
tent. The aerosol compositions included hydrophilic partic-
ulates (i.e., SO2−

4 , NO−3 , NH+4 , Cl−, Na+) and hydrophobic
particulates (i.e., BC, OC, and OIN). According to Mie the-
ory, we used the spherical particulate assumption and com- 95

puted the aerosol optics. The aerosol compositions were in-
ternally mixed in each size bin and were externally mixed be-
tween the size bins. The internal mixing refractive index was
the volume-weighted mean complex refractive index of each
composition. The WRF-Chem model computed the aerosol 100

optics at 300, 400, 600, and 999 nm and interpolated the
aerosol optical parameters (AOD, SSACE3 , asymmetry fac-
tor) to 11 shortwave lengths with Ångström exponents for the
radiative transfer calculation.

Pl
ea

se
no

te
th

e
re

m
ar

ks
at

th
e

en
d

of
th

e
m

an
us

cr
ip

t.

https://doi.org/10.5194/acp-21-1-2021 Atmos. Chem. Phys., 21, 1–28, 2021



4 W. Chang et al.: Improving the sectional MOSAIC aerosols

2.2 Assimilation system

The revised GSI DA system is based on the of-
ficial GSI (https://dtcenter.org/community-code/
gridpoint-statistical-interpolation-gsiTS4 , Wu et al., 2002;
Liu et al., 2011; Schwartz et al., 2012; Pagowski et al., 2014)5

version 3.7. The 3D-Var DA minimizes the cost function:

J (x)=
1
2
(x− xb)

TB−1 (x− xb)

+
1
2
(H (x)− y)TR−1(H (x)− y), (1)

where x is the state vectorTS5 composed of the model control
variables; the subscript b denotes that x is the background
state vector; y is the vector of the observations; H is the10

forward operator or observation operator that transfers the
gridded control variables into the observed quantities at the
observation locations; and B and R are the background and
observation error covariance matrices, respectively.

The official GSI version only works with the GOCART15

aerosols for assimilating the surface-layer PM2.5 and PM10
(denoted as PMxCE4 in the context) concentrations and the
550 nm MODIS AOD. Our revised GSI system assimilates
PMx concentrations, multi-wavelength aerosol scattering or
absorption coefficients, and AOD. Figure 1 shows the work-20

flow of our DA system. According to the AOD calculation in
WRF-Chem, we can either choose the aerosol number con-
centration (option 1) or aerosol mass concentration (option 2)
as control variables. Li et al. (2020) describes option 1. This
study selects option 2 and describes it in the following sub-25

sections.

2.2.1 Control variables

The control variables were the mass mixing ratio of each
aerosol composition per size bin, which corresponded to
the WRF-Chem output data. This set differed from previous30

studies that lumped aerosols per size bin as control variables
(Li et al., 2013; Pagowski et al., 2014). The control variables
were six aerosol mass mixing ratios of SO2−

4 , NH+4 , NO−3 ,
OC, BC, and OIN per size bin, the total of which was 24 for
the four size bin simulations. They substantially contributed35

to the total aerosol mass concentrations. Chlorine and sodium
had minuscule background concentrations and remained the
background values. In Kashi’s case near the desert, the OIN
was predominant, accounting for 62 % of PM2.5 and 82 % of
PM10.40

Our design of the control variables was different from the
AOD assimilation in Saide et al. (2013), with theirs being the
natural logarithm of the total mass mixing ratio per size bin,
multiplied by the thickness of the model layer. This multipli-
cation of layer thickness prevented many modifications for45

the high model layers, where aerosols were low in concen-
trations. The logarithmic transformation decreased the exten-
sive value range in the control variables caused by multipli-
cation. However, since the AOD value is often smaller than 1,

their transformation leads to a significant negative logarithm 50

value and an unconstrained DA system. To handle this disad-
vantage, Saide et al. (2013) introduced two weak constraints
in the cost function to cut off the user-defined “extraordi-
narily high” and “extraordinarily low” concentrations. They
repartitioned the total mass per size bin’s increments for the 55

composition of each aerosol using the ratio approach. In this
study, neither the logarithmic transformation nor the multi-
plication using layer thickness was set. Our control variable
was restricted to the WRF-Chem output variable, and the DA
system changed the composition of each aerosol per size bin, 60

depending on the aerosol background errors.
Consistent with Pang et al. (2020), aerosol water content

(AWC) was not one of the control variables in our GSI. Oth-
erwise, the AWC might have increased as a mathematical
artifact, contrary to the physical constraints imposed by the 65

loading of hydrophilic particles. The AWC was diagnosed in
each outer loop according to the analyzed aerosol mass con-
centration and the background relative humidity, using the
WRF-Chem’s hygroscopic growth scheme coupled to the re-
vised GSI. 70

2.2.2 Tangent linear operator for PMx

The PM10 is the sum of all aerosol dry mass concentrations
over the size bins, and the sum of the first three is the PM2.5
(D. Chen et al., 2019TS6 ; Wang et al., 2020). The tangent
linear operator for PMx is the gradient of the PMx concen- 75

tration to the aerosol chemical mass concentration per size
bin:

δ [PMx]
δ
[
Caer,k

] , k = 1, . . ., nsize, (2)

where nsize is the number of size bins and is equal to 4 in
this study; [.] denotes the mass concentration (µgm−3 for 80

PMx); Caer,k is the aerosol mass mixing ratio (µgkg−1) of
SO2−

4 , NO−3 , NH+4 , OC, BC, and OIN at the kth size bin. Be-
cause we did not multiply the chemical mass with a scaling
factor to represent some unknown compositions in the sum-
mation of PMx, Eq. (2) always equals 1. It means that we 85

equally distribute the PMx increment to each aerosol compo-
sition per size bin. The PM2.5 and PM10 are assimilated in the
same way. When the observed fine- and coarse-particle con-
centrations are assimilated simultaneously, we assimilate the
concentrations of PM2.5 and the coarse particulate (PM10- 90

PM2.5).

2.2.3 Forward operator for aerosol optics in
WRF-Chem

We used the original forward operator in WRF-Chem for the
aerosol optical parameters (Fast et al., 2006). AOD is calcu- 95

lated as a function of wavelength according to Mie theory.
The columnar AOD τ is the sum of layer AOD across the nz
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Figure 1. The workflow of aerosol DA in the revised GSI system for the sectional MOSAIC aerosols in WRF-Chem. The contents in blue
are the portions we developed. The arrows in gray indicate the workflow of option 2, which was performed in this study to assimilate
the aerosol scattering or absorption coefficients. Abbreviations: so4, sulfate; nh4, ammonium; oc, organic carbon; bc, black carbon; oin,
other inorganic matter; awc, aerosol water content; num, aerosol number concentration; no3, nitrate; cl, chlorine; na, sodium; Esca, aerosol
scattering coefficient; Eabs, aerosol absorption coefficient.

model layers:

τ =

nz∑
z=1

τz =

nz∑
z=1

nsize∑
k=1

eext,z,k · nz,k ·Hz, (3)

TS7where eext,z,k is the extinction cross section of a sin-
gle mixing particle in the kth size bin at the zth model
layer, nz,k is the aerosol number concentration, and Hz is the5

layer thickness. At the surface, the ambient aerosol scattering
(Esca) and absorbing (Eabs) coefficients that are measured by
the nephelometer and aethalometer, respectively, are repre-
sented as

Esca =

nsize∑
k=1

esca,1,k · n1,k,

Eabs =

nsize∑
k=1

eabs,1,k · n1,k, (4)10

where esca,1,k and eabs,1,k are the scattering and absorption
cross section of a particle at the surface. There is the follow-
ing relationship:

eext,z,k = esca,z,k + eabs,z,k. (5)

The extinction cross section eext,z,k of a wet particle with15

radius rwet,z,k is

eext,z,k = pext,z,k ·π · r
2
wet,z,k, (6)

where pext,z,k is the extinction efficiency, given the desired
mixing refractive indexes and the wet particle radius. The
pext,z,k is attained through the Chebyshev polynomial inter- 20

polation:

pext,z,k = exp
ncoef∑
j=1

cch (j) · cext,z,k(j), (7)

where cch is the coefficient of ncoef order Chebyshev poly-
nomials, cext,z,k is the polynomial value for the particle’s
extinction efficiency, which is an internal mixture of all 25

aerosol compositions (i.e., the control variables plus chlo-
rine, sodium, and AWC). The radius is in a logarithmic trans-
form in the AOD subroutine code to handle the broad particle
size range from 0.039 to 10 µm. The exponential function in
Eq. (7) transforms the logarithm radius back to the normal ra- 30

dius. The aerosol number concentration nz,k, and the aerosol
dry (wet) mass concentration mi,z,k have a linkage through
the dry (wet) particle radius rdry,z,k (rwet,z,k) and the aerosol
density ρi :

nz,k =

nwet_aer∑
i

mi,z,k

ρi
·

3
4π · r3

wet,z,k
=

ndr_aer∑
i

mi,z,k

ρi
·

3
4π · r3

dry,z,k
. (8) 35
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6 W. Chang et al.: Improving the sectional MOSAIC aerosols

Both the dry and wet particle radius appear in the tangent
linear operator. The difference between the second and the
third terms in Eq. (8) is whether aerosol water content is
counted. nwet_aer is the number of aerosol chemical compo-
sition plus aerosol water content (nwet_aer = ndr_aer+ 1).5

2.2.4 Tangent linear operator developed for AOD

As per the forward operator in Eq. (3) in WRF-Chem, we de-
veloped the tangent linear operator for AOD, which requires
the derivative of τ in Eq. (3) to the aerosol dry mass con-
centration (aerosol water content is not a control variable),10

mi,z,k:

δτ

δmi,z,k
=

δτz

δmi,z,k
=
δeext,z,k · nz,k ·Hz

δmi,z,k

+
eext,z,k · δnz,k ·Hz

δmi,z,k
+
eext,z,k · nz,k · δHz

δmi,z,k
. (9)

The first term on the righthand side of Eq. (9) indicates the
change in AOD as the perturbation of extinction cross sec-
tion. According to Eq. (6), considering that the particle radius15

is constant, δeext,z,k is represented as

δeext,z,k = δpext,z,k ·π · r
2
wet,z,k, (10)

where δcch (j)= 0 assuming that the particle radius is con-
stant. This assumption simplifies the tangent linear operator
and is also employed in Saide et al. (2013).20

Equation (10) is expanded with the derivative of Eq. (7):

δpext,z,k = pext,z,k · {

ncoef∑
j=1

cch(j) · δcext,z,k(j). (11)

By expanding δcext,z,k in Eq. (11), we have

δcext,z,k (j)= δw00 ·Eext,00 (j)+ δw01

·Eext,01 (j)+ δw10 ·Eext,10 (j)+ δw11 ·Eext,11 (j) . (12)

The four parameters of Eext indicate the extinction effi-25

ciencies in the Mie lookup table surrounding the point with
the desired mixing refractive indexes and the wet particle ra-
dius. The interpolation weights δw are determined as

δw00 = (v− 1)δu+ (u− 1)δv,

δw01 = (1− v)δu− uδv,
δw10 = (1− u)δv− vδu,
δw11 = uδv+ vδu, (13)

where30

u=
Rmix−Rlow

Rup−Rlow
δu=

δRmix

Rup−Rlow
,

v =
Imix− Ilow

Iup− Ilow
δv =

δImix

Iup− Ilow
. (14)

In Eq. (14),Rmix and Imix are the aerosol volume-weighted
mean real and imaginary parts of complex refractive indices,
respectively. Rup (Iup) and Rlow(Ilow) are the nearest upper
and lower limits for Rmix (Imix) in the Mie table. Consid- 35

ering Vwet,z,k is the volume of all aerosol dry masses plus
aerosol water content, the real and imaginary parts and their
derivatives are

Rmix,z,k =

nwet_aer∑
i

Ri ·
mi,z,k

ρi ·Vwet,z,k
,

δRmix,z,k =
Ri

ρi ·Vwet,z,k
· δmi,z,k,

Imix,z,k =

nwet_aer∑
i

Ii ·
mi,z,k

ρi ·Vwet,z,k
,

δImix,z,k =
Ii

ρi ·Vwet,z,k
· δmi,z,k, (15)

where 40

Vwet,z,k =

nwet_aer∑
i

mi,z,k

ρi
. (16)

Putting Eqs. (12) and (13) into Eq. (11) leads to

δpextz,k =
[
(v− 1)αsca,00+ (1− v)αsca,01

−vαsca,10+ vαsca,11
]
δu+[

(u− 1)αabs,00− uαabs,01+ (1− u)αabs,10

+uαabs,11
]
δv, (17)

where

αsca,00 = psca,1,k ·

ncoef∑
j=1

cch (j) ·Esca,00 (j) ,

αsca,01 = psca,1,k ·

ncoef∑
j=1

cch(j) ·Esca,01(j),

αsca,10 = psca,1,k ·

ncoef∑
j=1

cch (j) ·Esca,10 (j) ,

αsca,11 = psca,1,k ·

ncoef∑
j=1

cch(j) ·Esca,11(j),

αabs,00 = pabs,1,k ·

ncoef∑
j=1

cch (j) ·Eabs,00 (j) ,

αabs,01 = pabs,1,k ·

ncoef∑
j=1

cch(j) ·Eabs,01(j),

αabs,10 = pabs,1,k ·

ncoef∑
j=1

cch (j) ·Eabs,10 (j) ,

αabs,11 = pabs,1,k ·

ncoef∑
j=1

cch(j) ·Eabs,11(j). (18) 45
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The subscripts of sca and abs in Eqs. (17) and (18) denote
“scattering” and “absorption” , respectively. The first term on
the righthand side of Eq. (9) is determined using Eqs. (10)
and (17). The second term on the righthand side of Eq. (9)
indicates the linkage of the aerosol number and mass con-5

centrations. It is the derivative of the dry particle in Eq. (8)
by assuming a constant radius:

δnz,k =
3 · δmi,z,k

4π · r3
dyr,z,k · ρi

. (19)

The third term on the righthand side of Eq. (9) contains the
layer thickness’s derivative to the concentrations in this layer.10

It indicates that the light attenuation length is based on per
unit concentration, which can be intuitively represented by
the ratio of layer thickness to the aerosol mass concentration
in this layer. Putting Eqs. (10) and (19) into Eq. (9), we have
the original formula of the tangent linear operator for AOD15

for the aerosol dry mass concentration:

δτ

δmi,z,k
=

δτz

δmi,z,k
=
δeext,z,k · nz,k ·Hz

δmi,z,k

+
eext,z,k · δnz,k ·Hz

δmi,z,k
+
eext,z,k · nz,k · δHz

δmi,z,k
=

[(v− 1)αsca,00+ (1− v)αsca,01− vαsca,10+ vαsca,11]

·
π · r2

wet,z,k ·Ri · nz,k ·Hz

ρi ·Vwet,z,k ·
(
Rup,z,k −Rlow,z,k

)+[
(u− 1)αabs,00− uαabs,01+ (1− u)αabs,10+ uαabs,11

]
·

π · r2
wet,z,k · Ii · nz,k ·Hz

ρi ·Vwet,z,k ·
(
Iup,z,k − Ilow,z,k

)+
3eext,z,k ·Hz

4π · r3
dry,z,k · ρi

+
eext,z,k · nz,k ·Hz

mi,z,k
·β, (20)

where β changes the mass unit from µgkg−1 to µgm−3. The
last righthand term in Eq. (20) may not have a quick con-
vergence in the DA outer loops because the aerosol mass20

concentration mi,z,k in the denominator often has a low bias,
introducing an error into the operator. The error is further
amplified by the layer thickness Hz in the numerator. Thus,
Eq. (20) cannot lead to a stable analysis. For this reason, we
changed the tangent linear operator to account for the colum-25

nar mean aerosol extinction coefficient, which is described as
follows:

δ(eext · n)

δmi,z,k
=

Hz∑
Hz
·
δ
(
eext,z,k · nz,k

)
δmi,z,k

=
Hz∑
Hz

· [
δeext,z,k · nz,k

δmi,z,k
+
eext,z,k · δnz,k

δmi,z,k
] =

[(v− 1)αsca,00+ (1− v)αsca,01− vαsca,10+ vαsca,11]

·
π · r2

wet,z,k ·Ri · nz,k

ρi ·Vwet,z,k ·
(
Rup,z,k −Rlow,z,k

)+[
(u− 1)αabs,00− uαabs,01+ (1− u)αabs,10+ uαabs,11

]
·

π · r2
wet,z,k · Ii · nz,k

ρi ·Vwet,z,k ·
(
Iup,z,k − Ilow,z,k

)+
3eext,z,k

4π · r3
dry,z,k · ρi

·β ·
Hz∑
Hz
. (21)

In Eq. (21), the operator is based on the extinction coeffi-
cient at each layer, weighted by the layer thickness normal- 30

ized to the total model layer thickness. Correspondingly, the
AOD observations and AOD observation error are divided by
the total layer thickness at the observation location. Note that
the dry (rdry,z,k) and wet (rwet,z,k) particle radiuses are both
present in Eq. (21). Because aerosol water content is not a 35

control variable, rdry,z,k is used in Eq. (19) and appears in
Eq. (21). Aerosol water content participates in the computa-
tion of internal mixing refractive indexes, and rwet,z,k is also
present in Eq. (21). Equation (21) is the final tangent linear
operator for AOD DA in this study. 40

2.2.5 Tangent linear operator developed for surface
aerosol attenuation coefficients

The aerosol scattering and absorption coefficients measured
by the nephelometer and aethalometer, respectively, are sim-
ilar to the aerosol extinction coefficient at the surface in 45

Eq. (21). Neither of the two coefficients addresses the layer
thickness. The operator for the aerosol scattering coefficient
measured by a nephelometer is described as follows:

δ(esca,1,k · n1,k)

δmi,1,k
= {[(v− 1)αsca,00+ (1− v)αsca,01

− vαsca,10+ vαsca,11] ·
π · r2

wet,1,k ·Ri · n1,k

ρi ·Vwet,1,k ·
(
Rup,1,k −Rlow,1,k

)
+

3esca,1,k

4π · r3
dry,1,k · ρi

·β. (22)

The symbols have the same meaning as before, and the sub- 50

script 1 in Eq. (22) denotes the surface layer. The operator for
the aerosol absorption coefficient measured by an aethalome-
ter is
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δ(eabs,1,k · n1,k)

δmi,1,k
= {[(u− 1)αabs,00− uαabs,01

+ (1− u)αabs,10+ uαabs,11]

·
π · r2

wet,1,k · Ii · n1,k

ρi ·Vwet,1,k ·
(
Iup,1,k − Ilow,1,k

)
+

3eabs,1,k

4π · r3
dry,1,k · ρi

·β. (23)

As shown in the operators, the aerosol mass concentrations’
gradients rely on the aerosol number concentration; mean-
while, the number concentration is estimated according to
the mass concentration and the particle radius. The two con-5

centrations are intertwined in the DA system, indicating the
operator’s nonlinearity. This nonlinearity is handled with a
succeeding minimization of the cost function within the GSI.
The cost function is first minimized with the number concen-
tration in the background field, and the number concentration10

is updated with the first analyzed aerosol mass concentra-
tions. In the second minimization, the first analysis’s number
concentration constructs a new operator value, resulting in a
new analysis of mass concentrations. This iterative process is
denoted as the “outer loop”, which is repeated several times15

to attain the final analysis (Massart et al., 2010). We set 10
maximum iterations in the experiments. The cost function
in most analyses reaches the minimum in two or three outer
loops. The WRF-Chem AOD code is coupled to the GSI sub-
routine at the place of invoking CRTM. The tangent linear20

operators of Eqs. (21), (22), and (23) are simultaneously de-
termined in the subroutines, which are cyclically invoked in
the outer loops.

2.2.6 Aerosol complex refractive indexes in GSI

Table S1 in the Supplement shows the complex refractive in-25

dexes for each aerosol chemical composition in the revised
GSI. The refractive indexes are for 11 wavelengths, includ-
ing 4 for CE318, 3 for the nephelometer, 3 for the aethalome-
ter, and 1 for 550 nm MODIS AOD (not assimilated in this
study). The real parts of refractive indexes of sulfate, nitrate,30

and ammonium are similar and refer to Toon et al.’s (1976)
data. The real part is 1.53 at 440 nm and decreases to 1.52 at
1020 nm. The refractive indexes of OC and BC are constant
across the wavelengths, being 1.55–0.001i for OC (Chen and
Bond, 2010) and 1.95–0.79i for BC (Bond and Berstrom,35

2006). The dust refractive index’s real part is a constant
value of 1.54 (Zhao et al., 2010). The dust refractive index’s
imaginary part depends on the dust mineralogy, size distri-
bution, and shape associated with the dust sources. Cheng et
al. (2006) reported the desert dust refractive index in winter40

and spring at Dunhuang, a city adjacent to the Taklimakan
desert’s northeast side. Their imaginary part value was ap-
proximately in the ranges of 0.0008 to 0.0028 at 440 nm,

0.0006 to 0.0030 at 670 nm, 0.0005 to 0.0036 at 870 nm,
and 0.0005 to 0.0040 at 1020 nm (see Fig. 9 in their paper). 45

Di Biagio et al. (2019) retrieved the dust’s imaginary part
in the Taklimakan desert’s north edge (41.83◦ N, 85.88◦ E).
Their dust imaginary part decreased from 0.0018± 0.0008
at 370 nm to 0.0005± 0.0002 at 950 nm, much lower than
the generic values in climate models. The imaginary part’s 50

retrieval uncertainty is related to the iron oxide in dust sam-
ples, the cutoff coarse-particle size (< 10 µm in Di Biagio et
al., 2019), and the spherical particle assumption applied in
the retrieval algorithm. Here, we admit the high uncertainty
and use the imaginary part following the generic model val- 55

ues (Table S1 in the Supplement), which are higher than the
upper data limits of Di Biagio et al. (2019) and are close
to the values of Cheng et al. (2006). The desert dust has a
stronger absorption at shortwave wavelengths. The refractive
index of a wavelength without exact literature data uses the 60

nearby wavelength’s data in the literature. Aerosol density
is necessitated to compute aerosol optical parameters in the
AOD forward operator and construct our tangent linear op-
erator. The Supplement also shows the aerosol density (Ta-
ble S2) that follows the data in Barnard et al. (2010). 65

2.3 Background error covariance (BEC)

Many aerosol DA studies used the National Meteorological
Center (NMC) method (Parrish and Derber, 1992) to model
the BEC matrix. The NMC method uses long-term archived
weather data created in forecast cycles. It computes the sta- 70

tistical differences between two forecasts with different lead-
ing lengths (e.g., 24 and 48 h) but which are valid at the same
time. The NMC method is workable because solving global
weather forecasts is an initial value problem of mathematical
physics. A slight difference in the initial atmospheric state 75

would lead to a substantially different prediction because of
the chaos in the atmosphere. However, a regional model is
a boundary value problem (Giorgi and Mearns, 1999). As
the regional model runs, the influence of the initial condi-
tions becomes weak, while lateral boundary conditions al- 80

ways take effect. The reanalysis data that drive the paring
regional model simulations are similar and lead to a lim-
ited difference between the paring simulations. The NMC
method’s BEC would therefore underestimate the aerosol er-
ror in WRF-Chem. Kumar et al. (2019) assimilated AOD in 85

the contiguous United States based on the NMC method’s
BEC. They perturbed the background emissions by adding
the gridded mean differences of four emission inventories.
Their BEC accounting for meteorology and emissions uncer-
tainties reduced the AOD bias by 38 %, superior to 10 % bias 90

reduction, counting the meteorology uncertainty alone.
Some aerosol DA studies have created background error

variance using the ensemble simulations by randomly dis-
turbing model lateral boundary conditions and surface emis-
sions (Peng et al., 2017; Ma et al., 2020). The ensemble ex- 95

periments represent the model error better but significantly
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increase the computational burden. Here, we used the vari-
ance of the background hourly aerosol concentrations in
April to represent the background error variance. The ratio-
nale of this approach is that the Tarim Basin acts as a “dust
reservoir” and traps dust particles for a period before the dust5

is carried long-distance by wind (Fan et al., 2020). The model
bias in dust concentration is correlated with aerosol concen-
tration variation as the weather fluctuates. The model bias is
small on clear days when the aerosol concentration is low.
The bias is large when the concentration is high on heav-10

ily polluted days. The mean aerosol concentration correlated
positively with the aerosol variation. Using aerosol concen-
tration variance to represent the aerosol error prioritizes DA
modification of aerosols having high background mean con-
centrations. It was similar to the way in Sič et al. (2016),15

which set a percentage of the first guess field for the back-
ground error variance.

We calculated the background error statistics, including
the aerosol standard deviation and the horizontal and verti-
cal correlation length scales, using the GENerate the Back-20

ground Errors (GEN-BE) software (Descombes et al., 2015),
based on the 1-month hourly aerosol concentrations in WRF-
Chem. We obtained the statistics of four static BECs for
the four DA analysis hours (i.e., 00:00, 06:00, 12:00, and
18:00 UTC), respectively. The DA procedures for the four25

analysis times a day in April 2019 repeatedly use the back-
ground error statistics at the corresponding analysis time.

A usual strategy to enrich the samples of model results for
the error statistics is to gather model grid points with simi-
lar atmosphere characteristics, referred to as “binning.” The30

statistics are spatially averaged over the binned grid points.
The GEN_BE default strategy for GSI is latitude binning,
which creates a latitude-dependent error correlation function
(Fig. 2a). The latitude binning is generally used for latitude
flow dependency and works for large and global domains35

(Wu et al., 2002). However, we found that using the latitude-
binning strategy overestimated the PMx concentration when
assimilating aerosol optical observations. One reason for this
overestimation was related to the model’s low bias in particle
extinction efficiency, as discussed in Sect. 3.3. Another plau-40

sible reason is related to the background model error’s ver-
tical profile. The maximum dust error in the desert occurred
at the surface (Fig. 2e) because of the local dust emissions,
while the maximum error at Kashi was at the dust transport-
ing layer above the surface (Fig. 2d). Owing to the Takli-45

makan Desert’s vast extent, the latitude binning suppressed
the local error characteristics at Kashi and led to a vertical
error profile (Fig. 2c) similar to that over the desert (Fig. 2e).

For this reason, we used the standard deviation of the
control variable at each model grid to replace the latitude-50

binning standard deviation. The horizontal and vertical cor-
relation length scales were calculated based on the latitude-
binning data. Figure 3 shows the background error statistics
generated by the GEN_BE software, which provided the in-
put to the GSI. The OIN component showed high background55

errors in the third and fourth particle sizes at the transport-
ing layer above the surface (Fig. 3f). The aerosol compo-
sitions related to anthropogenic emissions (i.e., sulfate, ni-
trate, ammonium, OC, and BC, referred to here as “anthro-
pogenic aerosols”) that had maximum errors in the second 60

particle size, with the greatest vertical error at the surface.
The background error for OIN composition was a factor of
2–3 higher than that for anthropogenic aerosols because of
the high background dust concentration.

The horizontal and vertical correlation length scales deter- 65

mine the range of observation innovations spreading from the
observation locations. The horizontal influences had small
changes in altitude within the lowest 15 model layers (below
a height of ∼ 5 km above ground), indicating that the dust
transport layer was well-mixed in the lower atmosphere. This 70

deep dust layer was consistent with Meng et al. (2019). They
showed that the dust in spring was vertically mixed in a thick
boundary layer to a height of 3–5 km in the Tarim Basin. The
vertical correlation length scales first increased from low val-
ues at the surface to high values at ∼ 2.5 km in height (for 75

the eight to nine layers), indicating upward aerosol flux in
windy days. The vertical correlation length scale quickly de-
creased from the maximum value with a further altitude rise.
The maximum correlation length above the ground indicates
a laminar air motion during the dust storm. 80

Because the background model error per size bin is in-
dependent, the DA modification of an aerosol concentration
would be quite large in a single size bin with the maximum
background error (e.g., the OIN in the fourth particle size).
To avoid the excessive accumulation of increment, we added 85

a one-dimensional recursive filter for the background covari-
ances of control variables across the size bins, with a corre-
lation length scale of four bin units.

2.4 Observational data and errors

The Dust Aerosol Observation–Kashi field campaign was 90

performed at Kashi from 00:00 UTC 25 March to 00:00 UTC
1 May 2019. The site was located at the Kashi campus
of the Aerospace Information Research Institute, Chinese
Academy of Sciences (39.50◦ N, 75.93◦ E; Li et al., 2018),
about 4 km northwest of Kashi city. The site aerosol ob- 95

servations included (1) the multi-wavelength AOD mea-
sured by the sun–sky photometer (Cimel CE318); (2) the
multi-wavelength aerosol scattering and absorption coeffi-
cients at the surface, measured with a nephelometer (Au-
rora 3000) and aethalometer (Magee AE-33), respectively; 100

and (3) the hourly PM2.5 and PM10 observations, measured
with a METONE BAM-1020 continuous particulate monitor.
All the instruments were deployed at the roof of a three-story
building on the campus. Please refer to Li et al. (2020) for
more details about the field campaign. 105

Table 1 summarizes the observation periods, the aerosol
optical data’s wavelengths, and the observation errors. The
multi-wavelength data of each type of optical observation
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Figure 2. Schematic diagram of the binning strategy for modeling background error covariance matrix on (a) the latitude-binning data
or (b) the gridded data; and the vertical profiles of standard deviations (µgkg−1) of the fourth size bin OIN component concentration at
06:00 UTC over a few mild dust episodes in April 2019 (c) on average over the latitude bins, (d) at Kashi city grid, and (e) at the Taklimakan
desert grid (i.e., 1.5◦ east of Kashi city).

Figure 3. Background error standard deviations at Kashi grid (std, a–f, µgkg−1), horizontal correlation length scales (hls, g–l, km), and
vertical correlation length scales (vls, m–r, km) at 00:00 UTC in April 2019 for the sectional sulfate (SO4), nitrate (NO3), ammonium
(NH4), organic aerosol (OC), black carbon (BC), and other inorganic aerosols (OIN, including dust) in model domain 2. The horizontal and
vertical correlation length were computed based on the latitude bins with a half degree width.
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were assimilated simultaneously. The observation errors of
PMx are handled in the conventional way (Schwartz et al.,
2012; Chen et al., 2019), which contains the measurement
error (e1) and the representation error (e2). The measurement
error is the sum of a baseline error of 1.5 µgm−3 and 0.75 %5

of the observed PMx concentration. The representation error
is the measurement error multiplied by the half-squared ratio
of the grid spacing to the scale distance. The scale distance
denotes the site representation in GSI and has four default
values of 2, 3, 4, and 10 km, corresponding to the urban, un-10

known, suburban, and rural sites. We used 3 km for the scale
distance in this study. As we had a single site in Kashi, it
is difficult to estimate the site representation error. Since the
DA analysis was based on the inner model domain with a
horizontal resolution of 5 km, close to the site distance to15

the Kashi urban area, we assumed the aerosol optical mea-
surement had good representativeness of the model grid. The
observation error of CE318 AOD took the AERONET AOD
uncertainty of 0.01 in cloud-free conditions (Holben et al.,
1998). The AOD observational error was further divided by20

the total model layer thickness in GSI. It is difficult to deter-
mine instrumental errors in nephelometers and aethalome-
ters, and we set their instrumental errors to 10 Mm−1, equiv-
alent to the magnitude of the Rayleigh extinction coefficient.
The observational errors were uncorrelated, with R being a25

diagonal matrix.

2.5 Experimental design

The WRF-Chem simulations were configured in a two-
nested domain centered at 41.5 ◦ N, 82.9 ◦ E. The coarse do-
main was a 120× 100 (west–east × north–south) grid with30

a horizontal resolution of 20 km covering the Taklimakan
Desert, and the fine domain was an 81× 61 grid with a res-
olution of 5 km, focusing on Kashi and environs (Fig. 4a).
Both domains had 41 vertical levels extending from the sur-
face to 50 hPa. The lowest model layer at the site was approx-35

imately 25 m height from the ground. The two domains were
two-way coupled. The coarse domain covered the entire dust
emission source, providing dust transport fluxes at the fine
domain’s lateral boundaries. The aerosol radiative effect was
set to provide feedback on the meteorology. The indirect ef-40

fect of aerosols was not set in the experiments. Initial and
lateral boundary meteorological conditions for WRF-Chem
were the 1◦ resolution of the National Centers for Environ-
mental Prediction Final Analysis data created by the Global
Forecast System model. The meteorological lateral bound-45

ary conditions for the coarse domain were updated every 6 h
and were linearly interpolated between the updates in WRF-
Chem. We did not set the chemical boundary conditions for
the coarse domain. The Multiresolution Emission Inventory
of China (MEIC) for 2010 (http://www.meicmodel.orgTS8 )50

provided anthropogenic emission levels. The yearly emis-
sion differences in 2010–2019 may bias the aerosol chemical
simulation, but this bias is hard to quantify due to a lack of

aerosol chemical observations in this city. As the significant
pollutant at Kashi is dust, we just ignore the model uncertain- 55

ties due to the yearly differences in anthropogenic emission
inventories. The biogenic emission levels were estimated on-
line using the Model of Emissions of Gases and Aerosols
from Nature (Guenther et al., 2006). Wildfire emissions were
not set in the experiments. 60

We conducted a 1-month WRF-Chem simulation for
April 2019, starting at 00:00 UTC on 27 March and discard-
ing the first 5 d for spin-up. The revised GSI system modi-
fied the aerosols in the fine domain at 00:00, 06:00, 12:00,
and 18:00 UTC each day starting from 00:00 UTC 1 April 65

until the end of the month. We assimilated the observations
four times a day because the reanalyzed meteorological data
were available for the four time slices, facilitating the model
restarting from the DA analyses. The hourly PMx observa-
tions were assimilated at the exact time of analysis. The ob- 70

served AOD and aerosol scattering or absorption coefficients
were assimilated when they fell within 3 h before the time
of analysis. Table 2 shows the DA experiments, in which
the multi-wavelength AOD (440, 675, 870, and 1020 nm) in
DA_AOD, the aerosol scattering coefficients (450, 525, and 75

635 nm) in DA_Esca, and the aerosol absorption coefficients
(470, 520, and 660 nm) in DA_Eabs were assimilated simul-
taneously in each experiment. The literal meanings of the ex-
perimental names denote the observations that were assimi-
lated. To study the impact of DA on aerosol direct radiative 80

forcing (ADRF), we modified the WRF-Chem code to cal-
culate the shortwave irradiance with and without aerosols
at each model integration step. The modified WRF-Chem
model restarted from each DA analysis and ran to the next
analysis time. Each running performed the radiation transfer 85

calculation twice, and each calculation saw the aerosols and
clean air, respectively. The irradiance difference between the
two pairing calls was aerosol radiative forcing. Section 4.2
shows the DA effects on the clear-sky ADRF values.

3 Results 90

3.1 Evaluation of control experiment

Table 2 shows the monthly mean values and correlations
between the observed data and the model results. The sta-
tistical values were based on the pairing data between the
model results and the observations. Figure 6 show the sur- 95

face PMx concentrations, aerosol scattering coefficients, and
AOD when assimilating the observations at 00:00, 06:00,
12:00, and 18:00 UTC each day in April.

Kashi is in the junction between the Tian Shan to the west
and the Taklimakan Desert to the east (Fig. 5a). In the Tarim 100

Basin, the prevailing surface wind is easterly or northeast-
erly, which raises dust levels and carries the particles west-
ward (Fig. 5b). An intense dust storm hit the city at noon
on 24 April 2019, with a peak PM10 concentration exceed-
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Table 1. The observed surface particle concentration, aerosol scattering coefficient (Esca), aerosol absorption coefficient (Eabs), and AOD
used for the DA analysis and their observational errors.

Data time range Wavelength (nm) Observation error (e)

PM2.5 & PM10(µgm−3) 1–30 Apr e =

√
e2

1 + e
2
2

e1 = 1.5+0.0075·PMx

e2 = 0.5 · e1 ·
√

d
3000

d: grid spacing in meter
AOD 29 Mar–25 Apr 440, 675, 870, 1020 e = 0.01/height× 108

Esca (Mm−1) 2–30 Apr 450, 525, 635 e = 10
Eabs (Mm−1) 2–30 Apr 470, 520, 660 e = 10

Figure 4. Topography in China (a) and the model domains with the grid resolution of 20 km (b) and 5 km (c) in WRF-Chem.

ing 3000 µgm−3. The dust storm traveled across the northern
part of the desert and carried the dust particles to Kashi and
the mountainous area (Fig. 5c, d). A few mild dust storms
occurred at Kashi on 3–5, 8–11, and 14–17 April, and the
maximum PM10 concentrations were in the range of 400–5

600 µgm−3. The time series of PM2.5, aerosol scattering or
absorption coefficient, and AOD showed patterns similar to
those for PM10 (Fig. 6).

WRF-Chem captured the main dust episodes but sig-
nificantly underestimated the aerosols at Kashi (Table 2).10

The monthly mean background concentrations of PM2.5 and
PM10 were 17 % and 41 % lower than the observed values,
respectively, with a low correlation (R< 0.3). The simulated
dust storm on 24 April was a mild dust event and had a max-

imum PM10 of ∼ 300 µgm−3, 1/10 of the observed value. 15

The model underestimates the aerosol scattering or absorp-
tion coefficients and AOD by 40 %–70 %.

The OIN component accounted for the model bias in PM10
on dusty days. Zhao et al. (2020) proposed that the GOCART
scheme reproduced dust emission fluxes under weak wind 20

erosion conditions but underestimated the emissions in con-
ditions of strong wind erosion. We did not assimilate me-
teorology. The model bias in the surface wind could intro-
duce an error in dust emission and a bias in the number of
dust particles entering the city. In the non-dust days with 25

the PM10 lower than the 25th percentile PM10 in April, the
model PM2.5 on average accounted for 60 % of the observed
data levels. The PM2.5 low bias could be due to the lack

Atmos. Chem. Phys., 21, 1–28, 2021 https://doi.org/10.5194/acp-21-1-2021
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Table 2. The mean values of the PM2.5 and PM10 concentrations (µgm−3), 635 nm aerosol scattering coefficient (Esca, Mm−1), 660 nm
aerosol absorption coefficient (Eabs, Mm−1), and 870 nm AOD in the background and analysis data and their correlation coefficients (in
brackets) with the observations at 00:00, 06:00, 12:00, and 18:00 UTC at Kashi in April 2019. The bold numbers denoteTS9 the mean value
that is not significantly different from the observation, and the dashed lineCE5 denotes an insignificant correlation. Both the statistical tests
of the mean difference and correlation are conducted at the significance level of 0.05.

DA experiment PM2.5 (µgm−3) PM10 (µgm−3) 870 nm AOD 635 nm Esca (Mm−1) 660 nm Eabs (Mm−1)

Observation 91.0 323.2 0.66 231.5 47.4
Background 75.3 (0.28) 190.7 (0.24) 0.24 (0.60) 123.3 (0.36) 12.9 (0.34)

DA_PMx 89.3 (0.89) 329.3 (0.99) 0.38 (0.35) 170.4 (0.89) 15.8 (0.42)
DA_AOD 92.6 (0.35) 541.7 (0.31) 0.59 (0.98) 222.6 (0.61) 17.0 (0.26)
DA_PMxAOD 103.6 (0.61) 372.7 (0.86) 0.59 (0.98) 192.2 (0.86) 16.7 (0.45)

DA_Esca 103.6 (0.67) 442.1 (0.93) 0.53 (0.62) 192.1 (0.97) 16.5 (0.47)
DA_Eabs 298.8 (0.36) 1281.2 (0.34) 1.73 (–) 612.2 (0.54) 40.0 (0.98)
DA_Eabs_BC*7 106.7 (0.48) 463.7 (0.45) 0.75 (0.50) 226.2 (0.52) 51.9 (0.90)

of SOA chemistry in our experiments and the low emission
bias in the residential sector, a major source of anthropogenic
emissions for PM2.5, BC, and OC in the developing western
area. The residential sector accounts for 36 %–82 % of the
primary particle emissions, according to the MEIC emission5

inventory (Li et al., 2017), and is the primary source of un-
certainty in anthropogenic emissions inventories in China.

3.2 Assimilating PM2.5 and PM10 concentrations

Simultaneous assimilation of the observed PMx (DA_PMx)
improved both the fine- and coarse-particle concentrations,10

with a substantial increase in the third and fourth parti-
cle sizes of the OIN composition (Fig. 8f). The analyzed
monthly mean PM10 increased to 329.3 µgm−3, with a high
correlation of 0.99. The analyzed monthly mean PM2.5 was
improved to 89.3 µg m−3, although it was still lower than the15

observed levels, with a high correlation of 0.89. The low bias
in PM2.5 and the high bias in PM10 in the analyses were
mainly in the dust storm on 24–25 April (Fig. 6a, d).

Applying the inter-size bin correlation length caused the
interlinked analyses of PM2.5 and PM10. In the desert area,20

the coarse and fine dust is readily affected by BEC’s magni-
tude of the fourth size bin OIN (oin_a04). We performed a
few sensitivity tests decreasing the BEC of oin_a04 by 10 %
each time until the BEC was 30 % of its original value. The
magnitude of 30 % of oin_a04 was comparable to the magni-25

tude of the third size bin (oin_a03) OIN’s background error.
As shown in Table S3, because the oin_a04’s BEC reduction
relaxes the constraint on the coarse particle, the PM10 bias
becomes more negative along with the decrease in on_a04’s
BEC. The PM2.5 bias meanwhile becomes more positive.30

Correspondingly, the ratio of PM2.5 to PM10 was increased to
0.33 with 30 % of oin_a04’s BEC, higher than the observed
value of 0.28. According to these experiments, the original
BEC of oin_a04 is a reasonable tradeoff. The inter-size bin
correlation length tunes the cross size bin modifications and35

also affects the analyses of PM2.5 and PM10. The experi-
ment’s correlation length is a little bit arbitrary, but we found
that our DA analyses were not very sensitive to the inter-size
bin correlation length.

According to our BEC modeling strategy, the DA system 40

preferentially modified the coarse-particle concentrations be-
cause of the coarse particles’ high background model error.
Intuitionally, our modification that mainly focused on the
highest concentration of coarse particles was reasonable. It
decreased the model biases by raising the heaviest aerosol 45

loadingsCE6 . As a result, the ratio of PM2.5 to PM10 de-
creased from 0.39 in the background to 0.27 in DA_PMx,
approaching the observed ratio of 0.28. Such improvement
was consistent with the correction required for the model
desert dust in literature. Kok et al. (2011) found that regional 50

and global circulation models underestimate the fraction of
emitted coast dust (>∼ 5 µmTS10 ) and overestimate the frac-
tion of fine dust (< 2 µm diameter). Adebiyi and Kok (2020)
claimed that too rapid a deposition of coarse dust out of the
atmosphere accounts for the missing coarse dust in models. 55

According to Kashi’s AOD between 440 nm and 1020 nm,
the observed Ångström exponent (AE) was 0.18, while the
background value was 0.54 (Table 3), showing too many fine
particles in the background field. DA_PMx reduced the AE
value to 0.30, a small improvement but not sufficient. 60

As the particle concentration increased, the 635 nm
aerosol scattering coefficient in DA_PMx moderately in-
creased to 170.4 Mm−1, still lower than the observed level
of 231.5 Mm−1, with a high correlation of 0.89. The scat-
tering AE was 1.32 in the background and decreased to 65

0.96 (Table 3), indicating a more reasonable wavelength de-
pendence of the coarse particles’ scattering in the analy-
sis. The analyzed 660 nm absorption coefficient had a small
improvement, which was 15.8 Mm−1, 67 % lower than ob-
served levels, with a correlation of 0.42. There was no im- 70

provement in absorption AE, which increased to 1.84 in
DA_PMx, far higher than the observation value of 1.65. The
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14 W. Chang et al.: Improving the sectional MOSAIC aerosols

Figure 5. Monthly mean PM10 concentration (µgm−3) and the streamlines of the 10 m wind (m s−1) in April (a, b) and their daily mean
anomalies (c, d) during a dust storm on 24 April to the monthly mean values. Only the streamlines at the topographical height lower than
2500 m are shown for clarity. The rectangles in panels (b) and (d) denote the fine model domain 2, which was the geographical range in
panels (a) and (c). The black points indicate Kashi city.

analyzed 870 nm AOD showed a monthly mean value of 0.38
in DA_PMx, 42 % lower than observed levels, with a low
correlation of 0.35.

Figure 9a shows the diurnal concentrations of PM10 in the
analyses in April. The observed PM10 showed a substantial5

variation at 18:00 UTC, the local midnight. This substantial
nocturnal variation was partly owing to the dust storm that
started on 24 April and ended the next day. This midnight
variation was also related to a nocturnal low-level jet. Ge et
al. (2016) pointed out a nocturnal low-level jet at the height10

of 100–400 m, with a wind speed of 4–10 m s−1 throughout
the year in the Tarim Basin. They stressed that the low-level
jet broke down in the morning, transporting its momentum
toward the surface, and increased dust emissions. The noc-

turnal low-level jet increased the possibility of dust particles 15

moving towards the city at night, causing a high PM10 vari-
ation at 18:00 UTC. The diurnal changes in the DA analyses
followed the observed levels but had higher mean values.

3.3 Assimilating AOD

Assimilating AOD (DA_AOD) improved the monthly mean 20

of 870 nm AOD to 0.59, approaching the observed value of
0.66, with a high correlation of 0.98 (Fig. 6h). The monthly
mean PM2.5 was improved to 92.6 µgm−3, quite close to
the observed level of 91 µgm−3, but the analyzed PM10 was
541.7 µgm−3, 68 % higher than the observed value. The DA 25

system improved the AOD at the price of deteriorating the
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Figure 6. Comparison of PM2.5 (µgm−3; a–c), PM10 (µgm−3; d–f), 870 nm AOD (g–i), 635 nm aerosol scattering coefficient (Esca, Mm−1;
j–l), and 660 nm aerosol absorption coefficient (Eabs, Mm−1; m–o) in the observation (black solid points), the background simulation
(orange solid points), and the DA analyses (blue line) when assimilating the observed PM2.5 and PM10 (DA_PMx), AOD (DA_AOD), and
simultaneously assimilating PMx and AOD (DA_PMxAOD) at Kashi in April 2019.

data quality of surface coarse-particle concentrations. Such
surface particle overestimations have been reported in pre-
vious studies (Liu et al., 2011; Ma et al., 2020; Saide et
al., 2020). As a result, the ratio of PM2.5 to PM10 reduced
to 0.17 in DA_AOD, which was too far compared with the5

observed ratio of 0.28. The overestimation of aerosol mass
concentration also tendedCE7 to raise scattering or absorp-
tion coefficients. The analyzed 635 nm scattering coefficient
in DA_AOD increased to 222.6 Mm−1, slightly lower than
the observed value. The analyzed 660 nm absorption coeffi-10

cient slightly increased to 17.0 Mm−1, 64 % lower than the
observed value.

The scattering and absorption AE values in DA_AOD had
the responses as those in DA_PMx. As shown in Table 3,
the scattering AE decreased to 0.44 in DA_AOD, which was 15

slightly better than the AE value of 0.96 in DA_PMx. By
contrast, the absorption AE increased to 1.97 in DA_AOD,
deviating greatly from the observed value. The analysis fit
to the aerosol scattering overwhelmed the fit to the aerosol
absorption. The AE based on AOD was reduced to −0.01 20

in DA_AOD, in line with the decrease in DA_PMx, but the
reduction in DA_AOD was much lower than the observation
value of 0.18.

https://doi.org/10.5194/acp-21-1-2021 Atmos. Chem. Phys., 21, 1–28, 2021



16 W. Chang et al.: Improving the sectional MOSAIC aerosols

Figure 7. Comparison of PM2.5 (µgm−3; a–c), PM10 (µgm−3; d–f), 870 nm AOD (g–i), 635 nm aerosol scattering coefficient (Esca, Mm−1;
j–l), and 660 nm aerosol absorption coefficient (Eabs, Mm−1; m–o) in the observation (black solid points), the background simulation (orange
solid points), and the DA analyses (blue line) when assimilating the aerosol scattering coefficient (DA_Esca), aerosol absorption coefficient
(DA_Eabs), and absorption coefficient with the background error of BC enlarged by a factor of 7 (DA_Eabs_BC*7) at Kashi in April 2019.

Table 4 shows the ratios of the AOD and aerosol scattering
or absorption coefficients to the surface PM10 concentrations.
The ratio of AOD to PM10 in the background model result
was one-third of the observed levels. The observed mass scat-
tering coefficient (Esca /PM10) was 1.05 Mm−1 µg−1 m3,5

while the background value was only 0.65 Mm−1 µg−1 m3.
DA_AOD did not eliminate the low bias but lowered the
ratio to 0.51 Mm−1 µg−1 m3. The same thing occurred for
Eabs /PM10, which was 0.09 in the background and 0.05
in DA_AOD, much lower than the observed value of 0.25.10

Figure 10 shows these mean ratios at the other wavelengths.
The low bias in AOD /PM10 was comparable at each wave-

length with a slightly stronger low bias in short wavelengths
(Fig. 10a). The ratios’ low biases indicated the low scatter-
ing and absorption efficiencies, and the DA system overesti- 15

mated the PM10 to fit the observed AOD data.
We computed the surface single-scattering albedo

(SSAsrfTS11 ) with the 525 nm scattering coefficient and
520 nm absorption coefficient. We did not use the Ångström
exponent to interpolate the scattering or absorption coef- 20

ficients to a similar wavelength because the AE itself had
a large model bias even after DA (Table 3). The observed
SSAsrf value was 0.78, indicating an emphatic absorption
particle, probably due to the mixture of anthropogenic black
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Figure 8. Mean aerosol concentrations (µgm−3) per size bin in the background (NoDA) and the DA analyses when assimilating each
individual observation at Kashi in April 2019.

Figure 9. Surface PM10 concentrations (µgm−3) in the observation (black), background simulation (blue), and the DA analyses (red) at
00:00, 06:00, 12:00, and 18:00 UTC in April 2019 when assimilating the observations of (a) PMx, (b) AOD, (c) aerosol scattering coefficients
(Esca), and (d) aerosol absorption coefficient (Eabs), respectively. The DA_AOD had no analysis at 18:00 UTC that was local midnight. Kashi
is 6 h ahead of UTC (UTC+6).

https://doi.org/10.5194/acp-21-1-2021 Atmos. Chem. Phys., 21, 1–28, 2021
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Table 3. The Ångström exponent values based on the AOD (440 and 1020 nm; AEaod), aerosol scattering coefficients
(450 and 635 nm; AEsca), aerosol absorption coefficients (470 and 660 nm; AEabs), and the surface single-scattering albedo
(SSAsrf=Esca525/(Esca525+Eabs520)) at Kashi in April 2019.

440–1020 nm AEaod 450–635 nm AEsca 470–660 nm AEabs SSAsrf

Observation 0.18 −0.43 1.65 0.78
Background 0.54 1.32 1.77 0.86

DA_PMx 0.30 0.96 1.84 0.88
DA_AOD −0.01 0.44 1.97 0.88
DA_PMx_AOD 0.17 0.79 1.89 0.89

DA_Esca −0.15 0.19 1.95 0.88
DA_Eabs −0.01 0.48 2.01 0.90
DA_Eabs_BC*7 0.33 0.89 1.41 0.82

Figure 10. Mean biases in the ratio of AOD to PM10, the mass scattering efficiency (Esca /PM10, Mm−1 µg−1 m3), and the mass absorbing
efficiency (Eabs /PM10, Mm−1 µg−1 m3) at Kashi in April 2019.

carbon and natural desert dust in the local air. The model
background SSAsrf was 0.86. The DA analyses gave an even
higher SSAsrf (0.88 to 0.9).

The low bias in mass scattering or absorption efficiency is
related to the aerosol optical module based on Mie theory in5

WRF-Chem. First, the simulations used four size bin particle
segregation. This coarse size representation aggregated many
aerosols in the accumulation mode (Fig. 8f). Because small
particles have a strong light attenuation capability, accord-
ing to Mie theory, too many coarse particles would not effec-10

tively increase the AOD. Saide et al. (2020) linked the aerosol
optics to the size bin representation (from 4 to 16 bins) for
hazes in South Korea. They showed that WRF-Chem under-
estimated the dry aerosol extinction, and the underestimation
could be relieved when using a finer size bin than four. Okada15

and Kai (2004) found that the dust particle radius in the Tak-
limakan Desert was in the range of 0.1–4 µm, indicating the
dominant fine-mode particles in the desert.

Second, the dust particles are irregular in shape (Okada
and Kai, 2004), while the spherical particle is a common as-20

sumption for the aerosol optics in Mie theory in current mod-
els, which is an essential source of uncertainty in the forward
operator of WRF-Chem when the assumption of spherical

particles for dust fails. The irregular morphology has a sig-
nificant influence on the dust simulation. Okada et al. (2001) 25

found that the aspect ratio (the ratio of the longest dimen-
sion to its orthogonal width) of the mineral dust particles
(0.1–6 µm) in China’s arid regions exhibited a median of 1.4.
Dubovik et al. (2006) suggested the aspect ratio of ∼ 1.5 and
higher in desert dust plumes. Kok et al. (2017) found that 30

the dust’ sphericity assumption underestimated dust extinc-
tion efficiency by ∼ 20 %–60 % for the dust particle larger
than 1 µm. Tian et al. (2020) found that using a dust ellip-
soid model could increase the concentration of coarse dust
particle (5–10 µm) by ∼ 5 % in eastern China and ∼ 10 % in 35

the Taklimakan area because of the decrease in gravitational
settling, compared with the simulations with dust spheric-
ity model. Nevertheless, the aspect ratio of the spheroid dust
is uncertain. Even after applying the spheroidal approxima-
tion, Soorbas et al. (2015)TS12 found that the model under- 40

estimated 550 nm aerosol scattering and backscattering val-
ues by 49 % and 11 % because of the uncertainties in a par-
ticle’s axial ratio, complex refractive index, and the particle
size distribution. To date, the assumption of spherical parti-
cles has been widespread in models (including WRF-Chem) 45
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Figure 11. Mean vertical profiles of (a) PM2.5 (µgm−3), (b) PM10
(µg m−3), and their normalized concentration respect to their own
surface concentrations (c, d) at Kashi in April 2019.

for computational efficiency. The impact of dust morphology
on DA deserves further investigation.

To reduce the overestimate in PMx concentrations, we
set the gridded standard deviation in place of the latitude-
binning standard deviation, as discussed in Sect. 2.3. Fig-5

ure 11 shows the analyzed vertical profiles of PMx concen-
trations. Higher PM10 concentrations were shown in the low
atmosphere than at the surface for the assimilation exper-
iments. These vertical error profiles decreased the surface
PM10 particles and increased the PM2.5 /PM10 ratio. The10

BEC tuning was not sufficient to increase the mass extinc-
tion efficiency to the observed value. The mass extinction
efficiency in the analysis was almost equivalent to the back-
ground value (Table 4). Finer aerosol size representation and
a more advanced aerosol optical calculation for dust could be15

considered as solutions.
Assimilating the AOD seems to increase the diurnal varia-

tion in the DA analyses, but this variation was not conclusive
since there were different amounts of AOD data for DA at
00:00, 06:00, and 12:00 UTC. The AOD data were not al-20

ways available as the data quality control (i.e., cloud screen-
ing). There was a higher increase in the concentration at noon
(06:00 UTC) (Fig. 9b), corresponding to a few high AODs
during mild dust episodes at that hour. The DA system had
to raise the PM10 to fit the observed high AOD values. Be-25

cause the CE318 AOD was only available in the daytime, no

DA analysis was performed at 18:00 UTC. Also, due to the
limited AOD data, assimilating AOD did not substantially in-
crease the correlation of PMx. The analyzed PM2.5 and PM10
still had low correlations with the observed levels (R = 0.31– 30

0.35).

3.4 Assimilating aerosol scattering coefficient

Assimilating the aerosol scattering coefficient (DA_Esca)
yielded overall analyses similar to the phenomenon
in DA_AOD. The analyzed 635 nm scattering coeffi- 35

cient (192.1 Mm−1) was lower than the observation
(231.5 Mm−1), with a high correlation of 0.97. The low
biases were smaller at short wavelengths (Fig. 10b). The
wavelength-dependent biases indicated that the current DA
system cannot eliminate the bias at each wavelength simulta- 40

neously. The analyzed monthly mean AOD was 0.53, better
than the AOD of 0.38 when assimilating PMx. However, the
surface particle concentrations were overestimated (i.e., pos-
itive biases by 14 % for PM2.5 and 37 % for PM10), with a
substantial increase in the coarse particles of OIN. Overesti- 45

mations appeared during a few mild dust episodes (Fig. 7d).
It indicated that WRF-Chem underestimated the dust scatter-
ing efficiency, in accordance with the low bias in the ratio of
the scattering coefficient to PM10 (0.52 Mm−1 µg−1 m3; Ta-
ble 4). Thus, the DA system overfitted the PMx concentration 50

to approach the observed scattering coefficient. The diurnal
PM10 in the analysis was similar to the assimilation of PMx,
showing a maximum improvement and a robust nocturnal
variation at 18:00 UTC (Fig. 9c). Assimilating the scatter-
ing coefficient failed to improve the absorption coefficient. 55

The monthly mean absorption coefficient was 16.5 Mm−1,
65 % lower than the observed value. The AE responses in
DA_Esca followed those in DA_AOD. The AE values were
overfitted (−0.15) for AOD, slightly improved (0.19) for the
scattering coefficient, and got much larger (1.95) for absorp- 60

tion coefficient.

3.5 Assimilating aerosol absorption coefficient

In contrast to the above results, assimilating the absorp-
tion coefficient (DA_Eabs) deteriorated all the analyses other
than the absorption coefficient. The analyses showed sub- 65

stantial daily variations, and strong positive biases appeared
in the dust episodes (Fig. 7). The PM2.5 was overestimated
by a factor of 3, and the PM10 was overestimated by a fac-
tor of 4. The increases occurred each hour (Fig. 9d). Be-
cause of the constant ratio between mass and number con- 70

centration, the particle number concentration increased. As
a result, the aerosol scattering coefficient was overfitted to
612.2 Mm−1, higher than the observed levels by a factor of
3. The monthly mean AOD improbably rose to 1.73. Never-
theless, the absorption coefficient (40 Mm−1) was improved 75

to the observed level (47.4 Mm−1). The AE responses were
similar to the results in DA_AOD, showing an overfitting
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Table 4. The ratios of AOD, aerosol scattering or absorption coefficient to PM10 concentration (mean± standard deviation) in the observa-
tions, the model background data, and the DA analyses.

Ratios of 870 nm Ratios of 635 nm aerosol scattering Ratios of 660 nm aerosol absorption
AOD to PM10 coefficient (Esca) to PM10 coefficient (Eabs) to PM10

(µg−1 m3) (Mm−1 µg−1 m3) (Mm−1 µg−1 m3)

Observation 0.0030± 0.0020 1.05± 0.57 0.25± 0.22
Background 0.0013± 0.0009 0.65± 0.18 0.09± 0.05

DA_PMx 0.0013± 0.0008 0.61± 0.22 0.07± 0.05
DA_AOD 0.0013± 0.0011 0.51± 0.24 0.05± 0.04
DA_PMxAOD 0.0015± 0.0010 0.61± 0.24 0.06± 0.05

DA_Esca 0.0015± 0.0010 0.52± 0.21 0.05± 0.05
DA_Eabs 0.0015± 0.0010 0.58± 0.37 0.05± 0.06
DA_Eabs_BC*7 0.0023± 0.0085 0.74± 0.51 0.30± 0.48

(−0.01) for AOD, a slightly better value for the scattering
(0.48), and a much larger valueCE8 for the absorption (2.01).

Improving the absorption coefficient at the cost of PM10
overestimation indicates the model biases in the represen-
tation of the particle mixture and the other absorbing par-5

ticles (e.g., black carbon, brown carbon, and aged dust). The
leading absorption aerosol in WRF-Chem is BC, which had
the maximum absorption and hence the maximum DA mod-
ification in the second size (0.156–0.625 µm; Fig. 8e). Be-
cause the BC had a small background concentration, the BC10

showed a small DA improvement (< 1.5 µgm−3) and did
not greatly enhance the particle absorption. Meanwhile, the
coarse dust particle concentration was primarily increased
but did not have a strong absorption as BC. As a result, the
model lowered the absorption coefficient’s ratio to PM10 by 115

order of magnitude (0.05; Table 4). Because of the observed
absorption coefficient constraint, the DA system dramati-
cally overestimated the particle concentrations and induced
too much higher aerosol scattering coefficient and AOD. The
overestimated PM10 lowered the mass scattering and absorp-20

tion efficiencies. The mass absorption efficiency was much
lower at a short wavelength (Fig. 10c), opposing the lower
bias at a long wavelength for the mass scattering efficiency
(Fig. 10b). The low biases were dependent on the wave-
length, indicating an elaborate tuning that simultaneously25

eliminates the wavelength-dependent bias. It requires the DA
system, for example, to add aerosol number concentration as
an additional control variable and specify complex refractive
index at each wavelength more precisely. The WRF-Chem
aerosol simulation uses a high number of size bin represen-30

tation is also helpful.
As the strong positive biases in PMx were concerned, the

scattering coefficient’s overestimation was higher than that of
the absorption coefficient in DA_Eabs (Table 2). As a result,
DA_Eabs gave the highest SSArfCE9 (0.9; Table 3) in all DA35

experiments, the opposite of our expectation that the assim-
ilation of absorption coefficient should decrease the positive
bias in SSA.

To understand the DA_Eabs’s failure, we performed a few
sensitivity experiments by changing the imaginary part of the 40

dust refractive index on 12:00 UTC on 9 April. The dust’s
imaginary part that we set in the experiments covers the re-
trieved value range of imaginary index for typical desert dust
as shown in Di Biagio et al. (2019). The results are presented
in the Supplement Table S4a and b. The sensitivity exper- 45

iments show that a high imaginary part of the dust refrac-
tive index decreases the aerosol absorption coefficient (Ta-
ble S4b). This paradox is due to the BC’s reduction. Specif-
ically, a high imaginary part increases coarse dust’s absorp-
tion efficiency and decreases the coarse dust number concen- 50

tration (num_a04; Table S4a). This reduction led to less fine
aerosol number concentrations (e.g., num_a02) because of
the inter-size bin correlation. BC is abundant in the second
and third size bins, and its imaginary part of the refractive
index is 2 orders of magnitude higher than dust. Less BC 55

caused a weak absorption coefficient. By contrast, the low
dust imaginary part would not greatly increase dust numbers
in the coarse size bin because the DA system also attempts
to increase BC in the fine particles to enhance the absorp-
tion coefficient. In an extreme case with a zero value for the 60

imaginary part of dust, the improvement of absorption co-
efficient exclusively relies on BC; the num_a02 is increased
by 1 order of magnitude (Table S4a), and 660 nm Eabs rose
to 92.5 Mm−1 (Table S4b), much higher than the observed
level. 65

At Kashi, BC has a low background concentration and low
background error. The innovation of BC was limited. Thus,
tuning the imaginary part of dust’s complex refractive in-
dex would not significantly change the SSAsrf value (0.89
to 0.92). Excluding the contribution from OIN in PM10, the 70

scattering coefficient was associated with sulfate. The sul-
fate’s background error was higher than the BC’s by 1 order
of magnitude. The DA system prioritized sulfate modifica-
tion even when assimilating the absorption coefficient, re-
sulting in a smaller BC mass fraction in PM10 (Fig. 12f) and 75

a high SSAsrf of 0.90.
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Figure 12. Mean mass percentage (%) of chemical composition in PM10 excluding the OIN component at Kashi in April 2019.

We did another set of sensitivity experiments by increas-
ing the original BC’s BEC per size bin. As shown in the
Supplement Table S5, increasing the BC’s BECs would not
much deteriorate the absorption coefficient and significantly
decrease the positive biases in PMx, AOD, and scattering co-5

efficient; the SSAsrf approached the observation. Increasing
BC’s BECs by a factor of 7 (DA_Eabs_BC*7TS13 ) shows
the best analyses. This experiment suppressed the positive
biases without decreasing the absorption coefficient’s accu-
racy (Fig. 7), and the BC mass fraction increased (Fig. 12g).10

The absorption AE decreased to 1.41 (Table 3). Although the
decrease was small, this change was the opposite of the in-
crease in the absorption AE in the other DA experiments.
Nevertheless, the disadvantage of the enlargement of BC’s
BEC is noticeable. The simultaneous assimilation of scat-15

tering and absorption coefficient is not as convergent as be-
foreCE10 . After four outer loops each with 50 inner iterations,
the analyzed absorption coefficient in DA_Eabs_BC*7 was
still higher than the observed value by 47 % (Fig. S1j). These
results indicate a low bias in BC’s background concentration20

that violates the prerequisite unbiased condition for the con-
trol variable in Eq. (1), and this background bias is too large
to be consumed in BEC.

3.6 Assimilating multi-source observations

Assimilating an individual observation improves the cor-25

responding model parameter (i.e., PM2.5, PM10, Esca,
EabsTS14 , and AOD) but may worsen other parameters. The
reasons for the inconsistent improvements are relevant to the
aerosol model itself. These are that (1) the model parameters
have opposite signs in biases (e.g., one model parameter has30

a positive bias while another has a negative bias) and (2) the
model biases have vast differences in magnitude (e.g., a good
fit of a parameter may lead to another’s overfit) and the dif-
ferent biases in magnitude cannot be reconciled because the
forward operator is inaccurate in representing the linkage be- 35

tween aerosol mass and aerosol optics (e.g., lower particle
mass extinction efficiency).

In our case, simultaneous assimilation of the scatter-
ing and absorption coefficients (DA_Esca_Eabs) resulted
in the analyses when assimilating the scattering coefficient 40

alone (DA_Esca), and the inferior analysis in DA_Eabs
vanished. This was because incorporating the scattering
coefficient constrained the aerosol number concentrations.
DA_PMxAOD substantially improved the AE for AOD, with
an analyzed value of 0.17, consistent with the observed value 45

of 0.18 (Table 3). The scattering AE was somewhat improved
(0.79), although it was still far from the observed value of
−0.43. The absorption AE (1.89) was worse than the back-
ground (1.77), far deviating from the observed value of 1.65.
Among the DA experiments, simultaneous assimilation of 50

PMx and AOD (DA_PMxAOD) gave the best DA results, in
which all the analyses except the absorption coefficient were
not significantly different in the monthly mean values from
the observations. Simultaneous assimilation of all observa-
tions (DA_PMx_Esca_Eabs_AOD) did not substantially im- 55

prove the analyses compared with DA_PMxAOD because
the surface coefficients and AOD had overlapping informa-
tion on the light attenuation. A redundant information source
did not introduce extra constraints on the DA system.
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3.7 Vertical profiles of aerosol concentrations

Figure 11 shows the vertical concentration profiles of PM2.5
and PM10. The DA system increased the aerosol concentra-
tions up to a height of 4 km, consistent with previous studies
on the Taklimakan Desert. Meng et al. (2019) simulated a5

deep dust layer thickness in spring, with a 3–5 km depth. Ge
et al. (2014) analyzed the Cloud-Aerosol Lidar Orthogonal
Polarization data in 2006–2012 in the desert. They showed
that dust could be lifted to 5 km above the Tarim Basin and
even higher along the northern slope of the Tibetan Plateau.10

Among our DA experiments, the vertical PM10 concentration
increased quickly in the lowest three model layers and main-
tained high values at heights of less than 3 km. This vertical
profile corresponded to the background vertical error profile,
reflecting the deep dust transporting layer. The PM2.5 vertical15

profiles showed a rapid reduction with an increase in altitude.
The figure clearly shows that DA_PMx improved the PM2.5
and PM10 better, whereas DA_AOD preferentially adjusted
the coarse particles and overestimated the PM10. Also shown
in the figure are the vertical profiles normalized to their own20

respective surface particulate concentrations. The assimila-
tions added a larger fraction of the mass in these layers and
adjusted the shapes of the PM10 profiles within 3 km above
the ground (Fig. 11d).

4 Discussions25

4.1 DA impact on aerosol chemical composition

Due to the control variable design, our DA system modi-
fies each aerosol’s chemical composition according to the
BEC values. The PM10 chemical fractions remain close to
their background values (Fig. 12). As discussed in Sect. 3.5,30

the assimilation of the aerosol absorption coefficient alone
(DA_Eabs) increased the sulfate fraction. Sulfate was the
predominant anthropogenic aerosol at Kashi and had a high
background error value. The DA system prioritized sulfate
modification and prevented a rise in the BC fraction in35

DA_Eabs. For the enlarged BC’s BEC in DA_Eabs_BC*7,
the BC mass fraction showed the largest increase. The mag-
nitude of the background error determines the analyzed
aerosol chemical fraction. The total aerosol quantities’ as-
similation cannot eliminate the intrinsic bias in aerosol com-40

position. Accurate aerosol chemistry and optical modules are
crucial to attaining better background aerosol chemical data
for DA analysis (Saide et al., 2020).

4.2 DA impact on aerosol direct radiative forcing

Table 5 shows the instantaneous clear-sky ADRF in45

the background data and the analyses of DA_PMx and
DA_PMxAOD. The DA effect gradually faded away after
restarting the model run. Because AOD and the surface parti-
cle concentrations had different DA frequencies, we focused

on the instantaneous radiative forcing values 1 h after assim- 50

ilating AOD data in the two DA experiments to ensure that
the comparison was based on similar analysis times. The im-
mediate data after DA also show the effective DA effects.

Aerosol redistributes the energy between the land and the
atmosphere. The atmosphere gains more shortwave energy as 55

the dust and black carbon particle absorption; the warming
atmosphere emits more longwave energy as it absorbs short-
wave energy. The change in energy budget at the surface is
correspondingly the opposite of that in the atmosphere. As
shown in Table 5, the enhancements in surface cooling forc- 60

ings were slightly stronger than those of atmospheric warm-
ing. The difference between the surface forcing and atmo-
spheric forcing is the ADRF at the top of the atmosphere
(TOA). When assimilating the surface particle concentra-
tions, the TOA ADRF were enhanced by 21 % in the short- 65

wave, 100 % in the longwave, and 18 % in the net forcing
values, and when assimilating the AOD, enhanced by 34 %,
67 %, and 32 %, respectively. At Kashi, the total net (short-
wave plus longwave) clear-sky ADRF with assimilating sur-
face particles and the AOD were −10.4 W m−2 at the TOA, 70

+20.8 W m−2 within the atmosphere, and −31.2 W m−2 at
the surface, and they were enhanced by 55 %, 48 %, and 50 %
respectively, compared to the background ADRF values.

It is noteworthy that the ADRF estimation remains uncer-
tain even after DA. The AOD observation is only sporadi- 75

cally available because of cloud screening in retrieval data.
The DA experiments cannot eliminate the low bias in AOD
in WRF-Chem. The ADRF values in the DA experiments
are likely to be weaker than the plausible aerosol radiative
forcing at Kashi. Neither DA experiment lowers SSAsrf to 80

approach the observation. Penner et al. (2001) claimed that
under average conditions, an SSA less than ∼ 0.85 tends to
lead to net warming. The observed SSAsrf (0.78) indicates
likely aerosol warming forcing at Kashi, while WRF-Chem
and the DA analyses tend to impose aerosol cooling forcing. 85

The ADRF uncertainty is associated with the background
aerosols. WRF-Chem simulates aerosol size up to 10 µm,
whereas larger particles (> 10 µm) exhibit substantial ab-
sorption relative to scattering in the visible wavelength (Kok
et al., 2017). Anthropogenic emission inventories need an up- 90

date for the year 2019, reducing the potential low bias in BC
concentration. Additionally, the revised GSI does not con-
sider the change in particle effective radius per size bin when
calculating the aerosol number concentration in each outer
loop. The low absorption cross section raises aerosol number 95

concentration as compensation, increasing the aerosol scat-
tering coefficient too much. If our tangent operator consid-
ered the change in particle effective radius per size bin, we
could use aerosol mass and number concentration as control
variables simultaneously. The DA system would have higher 100

flexibility to balance the particle radius and number concen-
tration and improve the absorption coefficient. All these need
further research in the future.
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Table 5. The mean instantaneous clear-sky shortwave (SW), longwave (LW), and the net (SW+LW) direct radiative forcing (W m−2) at the
top of the atmosphere (TOA), in the atmosphere (ATM) and at the surface (SRF) in the background and the simulations restarted from the
analyses of DA_PMx and DA_PMx_AOD at 1 h after the analysis times of AOD at Kashi in April 2019.

SW (W m−2) LW (W m−2) SW+LW (W m−2)

TOA ATM SRF TOA ATM SRF TOA ATM SRF

Background −7.0 +17.0 −24.0 +0.3 −2.9 +3.2 −6.7 +14.1 −20.8
DA_PMx −8.5 +22.7 −31.2 +0.6 −6.3 +6.9 −7.9 +16.4 −24.3
DA_PMxAOD −11.4 +28.6 −40.0 +1.0 −7.8 +8.8 −10.4 +20.8 −31.2

5 Conclusions

This study described our revised GSI DA system for assim-
ilating observed aerosol data for the four size bin sectional
MOSAIC aerosol mechanism in WRF-Chem. The DA sys-
tem has new design tangent linear operators for the multi-5

wavelength AOD, aerosol scattering, and absorption coeffi-
cients measured by the sun–sky radiometer, nephelometer,
and aethalometer, respectively. We examined the DA sys-
tem for Kashi city in northwestern China by assimilating
the multi-wavelength aerosol optical measurements gathered10

by the Dust Aerosol Observation–Kashi field campaign of
April 2019 and the concurrent hourly measurements of sur-
face PM2.5 and PM10 concentrations.

Our DA system includes two main aspects. Firstly, the
control variable is the aerosol chemical composition per size15

bin corresponding to the WRF-Chem output data. This de-
sign allows modifying the composition of each aerosol based
on their background error covariances. The number of con-
trol variables could be reduced by intentionally excluding a
few aerosol compositions in a specific case if these compo-20

sitions have low concentrations (e.g., chlorine and sodium in
this study). Second, the DA system incorporates the observed
AOD by assimilating the column mean aerosol extinction co-
efficient. This transfer avoids handling sensitivity from light
attenuation length to the aerosol mass concentration in the25

tangent linear operator, which is difficult to accurately esti-
mate and which introduces significant errors in the operator.
The tangent linear operator for AOD has two variants that can
incorporate nephelometer and aethalometer measurements at
the surface.30

The most abundant aerosol at Kashi in April 2019 was
dust. The WRF-Chem model captured the main dust episodes
but underestimated the monthly mean concentrations of
PM2.5 and PM10 by 17 % and 41 %, respectively. The model
failed to capture the peak concentrations from a dust storm35

on 24 April. The aerosol scattering or absorption coefficients
and AOD in the background data showed strong low bi-
ases and weak correlations with the observed levels. The DA
systems effectively assimilate the surface particle concentra-
tions, aerosol scattering coefficients, and AOD. Some defi-40

ciencies in the DA analysis were related to the forward model
bias in transferring the aerosol mass concentrations to the

aerosol optical parameter. Simultaneous assimilation of the
PM2.5 and PM10 concentrations improved the model aerosol
concentrations, with significant increases in the coarse par- 45

ticles; meanwhile, the analyzed AOD was 42 % lower than
observed levels. The assimilation of AOD significantly im-
proved the AOD but overestimated the surface PM10 con-
centration by 68 %. Assimilating the aerosol scattering co-
efficient improved the scattering coefficient in the analy- 50

sis but overestimated the surface PM10 concentration by
37 %. Therefore, it seems that WRF-Chem underestimated
the aerosol extinction efficiency. As compensation, the DA
system overestimated the aerosol concentration to fit the ob-
served optical values, yielding overly high particle concen- 55

trations.
A notable problem was the assimilation of the absorption

coefficient, which greatly overestimated the monthly mean
values by a factor of 4 in PM10. The aerosol absorption coef-
ficient was improved but was still 16 % lower than observed 60

values. The failure of DA analysis when assimilating the ab-
sorption coefficient is associated with many factors, includ-
ing the biases of the model in aerosol particle mixture and
aged dust, the uncertainties in the imaginary part of dust
complex refractive index, the uncertain background error of 65

BC, and the likely low bias in anthropogenic emissions. The
most effective DA is the simultaneous assimilation of sur-
face particle concentration and AOD, which provides the best
overall DA analysis.

Our control variables’ design allowed the DA system to 70

adjust the aerosol chemical compositions individually. How-
ever, the analyzed anthropogenic aerosol chemical fractions
were almost equivalent to the background chemical fractions.
The reason is that the hydrophilic aerosols have equivalent or
comparable refractive indices and hygroscopic parameters in 75

the forward operator; they, therefore, have comparable tan-
gent linear operator values when assimilating the aerosol op-
tical data. It may be possible to separate the chemical com-
positions based on their background errors. The model an-
thropogenic aerosols were low at Kashi, probably due to the 80

anthropogenic emissions’ low biases. The low background
concentrations led to low background errors and few incre-
ments for all chemical compositions. As a result, the chemi-
cal fractions of the anthropogenic aerosols remained close to
their background values. 85
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When assimilating surface particles and AOD, the in-
stantaneous clear-sky ADRFs (shortwave plus longwave) at
Kashi were −10.4 W m−2 at the TOA, +20.8 W m−2 within
the atmosphere, and −31.2 W m−2 at the surface. Since the
DA analyses still underestimated the AOD value and overes-5

timated SSA, the aerosol radiative forcing values assimilat-
ing the observations were underestimated in the atmosphere
and the surface.

The limitations that necessitate further research include
the following points:10

1. The desired binning strategy should link the circulation
flow and particle emission sources. A better hybrid DA
coupled with the ensemble Kalman filter will be more
effective for estimating the aerosol background error.

2. The observational error could be elaborated further.15

The PM10 included the anthropogenic coarse particles,
which should be separated from the dust originating
from the desert (Jin et al., 2019). We set the observa-
tion errors for PMx and AOD to the conventional val-
ues. The observational errors of the nephelometer and20

aethalometer were slightly arbitrary in this study, ne-
cessitating further consideration.

3. The anthropogenic aerosols’ background errors are
needed to harmonize better to assimilate the aerosol ab-
sorption coefficient or absorption AOD.25

4. The DA system was based on four size bin MOSAIC
aerosols, but it can be extended to work with eight size
bin MOSAIC aerosols in WRF-Chem. When assimi-
lating aerosol optical data, the DA quality is strongly
dependent on the forward model. The responses of our30

DA analysis to the bias and uncertainty in the forward
aerosol optical model in WRF-Chem need further inves-
tigation.
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