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Abstract 28 
The Gridpoint Statistical Interpolation data assimilation (DA) system was developed for the 29 
four-size bin sectional Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) 30 
aerosol mechanism in the Weather Research and Forecasting-Chemistry (WRF-Chem) model. 31 
The forward and tangent linear operators for the aerosol optical depth (AOD) analysis were 32 
derived from WRF-Chem aerosol optical code. We applied three-dimensional variational DA 33 
to assimilate the multi-wavelength AOD, ambient aerosol scattering coefficient, and aerosol 34 
absorption coefficient, measured by the sun-sky photometer, nephelometer, and aethalometer, 35 
respectively. These were undertaken during a dust observation field campaign at Kashi in 36 
northwestern China in April 2019. The results showed that the DA analyses decreased the 37 
model aerosols' low biases; however, it had some deficiencies. Assimilating the surface 38 
particle concentration increased the coarse particles in the dust episodes, but AOD, and the 39 
coefficients for aerosol scattering and absorption, were still lower than those observed. 40 
Assimilating aerosol scattering coefficient separately from AOD improved the two optical 41 
quantities. However, it caused an overestimation of the particle concentrations at the surface. 42 
Assimilating the aerosol absorption coefficient yielded the highest positive bias in the surface 43 
particle concentration, aerosol scattering coefficient, and AOD. The positive biases in the DA 44 
analysis were caused by the forward operator underestimating aerosol mass scattering and 45 
absorption efficiency. As a compensation, the DA system increased particle concentrations 46 
excessively to fit the observed optical values. The best overall improvements were obtained 47 
from the simultaneous assimilation of the surface particle concentration and AOD. The 48 
assimilation did not substantially change the aerosol chemical fractions. After DA, the clear-49 
sky aerosol radiative forcing at Kashi was –10.4 Wm–2 at the top of the atmosphere, which 50 
was 55% higher than the radiative forcing value before DA.  51 
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1. Introduction 52 
Data assimilation (DA) blends the information from observations with a priori background 53 
fields from deterministic models to obtain an optimal analysis (Wang et al., 2001; Bannister, 54 
2017). With lagged emission inventories and unsatisfactory model chemistry mechanisms, 55 
there are notable discrepancies between model aerosols and observed levels (He et al., 2017; 56 
Chen L. et al., 2019). The DA technology incorporates aerosol measurements into the models 57 
to optimize emissions (Peng et al., 2017; Ma et al., 2019) and cyclically updates the 58 
background fields in forecasts. This technology effectively improves the air quality forecasts 59 
in China (Bao et al., 2019; Cheng et al., 2019; Feng et al., 2018; Hong et al., 2020; Liu et al., 60 
2011; Pang et al., 2018; Peng et al., 2018; Xia et al., 2019a, 2019b). 61 
 62 
Variational DA minimizes the distant scalar function that measures the misfit between model 63 
states and a set of observations in each assimilation window. An effective variational DA 64 
requires appropriate tangent linear and adjoint operators, which describe the gradient or 65 
sensitivity of the observed parameter to the control variable (Wang et al., 2001; Bannister 66 
2017). The operator is highly dependent on the types of assimilated observations and the 67 
selection of control variables; it is also sometimes dependent on the aerosol mechanism. For 68 
PM2.5 (particulate matter with a dynamic radius less than 2.5 µm) DA, the tangent linear 69 
operator is the ratio of the PM2.5 concentration to each aerosol composition (Pagowski et al., 70 
2010). For the aerosol optical depth (AOD) DA, the operator is generated through Mie theory 71 
(Liu et al., 2011; Saide et al., 2013). With the development of aerosol mechanisms and the 72 
growing body of novel aerosol observations from ground-based networks and satellites, 73 
appropriate tangent linear and adjoint operators are in demand. 74 
 75 
The community gridpoint statistical interpolation (GSI) system (Wu et al., 2002; Purser et al., 76 
2003a, 2003b) is often used to modify regional aerosol simulations with three-dimensional 77 
variational (3D-Var) DA. The official GSI (version 3.7 in this study) can incorporate 78 
observations of surface particulate matter concentration and AOD to constrain the aerosols 79 
simulated within the aerosol mechanism of Goddard Chemistry Aerosol Radiation and 80 
Transport (GOCART, Liu et al., 2011; Pagowski et al., 2014). The tangent linear operator and 81 
adjoint operator for AOD were determined using the Community Radiative Transfer Model 82 
(CRTM). The official GSI version incorporated the Moderate Resolution Imaging 83 
Spectroradiometer (MODIS) AOD in East Asia (Liu et al., 2011) and revealed the 84 
simultaneous DA effects of PM2.5 and AOD in the continental United States (Schwartz et al., 85 
2012). This GSI identified DA effects that weakened during the succeeding model's running 86 
as the model error grew (Jiang et al., 2013) and assessed the radiative forcing of the aerosols 87 
released by wildfires (Chen et al., 2014). This version was also utilized to improve air quality 88 
forecasts in China by assimilating a variety of satellite AOD data retrieved from the 89 
Geostationary Ocean Color Imager (Pang et al., 2018), Visible Infrared Imaging Radiometer 90 
Suite (Pang et al., 2018); Advanced Himawari-8 Imager (Xia et al., 2019a), and the Fengyun-91 
3A/medium-resolution spectral imager (Bao et al., 2019; Xia et al., 2019b). 92 
 93 
The GOCART mechanism cannot simulate nitrate and secondary organic aerosols (SOA), and 94 
the GOCART aerosol size distribution uses a bulk assumption for radiative transfer 95 
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calculation. Strictly speaking, the lack of aerosol components violates the model states' 96 
unbiased requirements in the DA system. Lack of size-segregated aerosols may introduce a 97 
bias in the calculation of aerosol optics. The official GSI can assimilate the surface particle 98 
concentration from the aerosol mechanism apart from GOCART, but its AOD DA is tightly 99 
bound with the GOCART aerosols. If one wished to use GSI to assimilate AOD for the other 100 
aerosol mechanisms, a compromise solution was to either integrate the map of the speciated 101 
aerosols of other mechanisms into that of the GOCART aerosols or use a simple observation 102 
operator to convert aerosol chemical mass concentrations to AOD. For example, Tang et al. 103 
(2017) used the official GSI to assimilate MODIS AOD with the aerosols from the 104 
Community Multi-scale Air Quality Model (CMAQ). They incorporated the map of the 54 105 
aerosol components of CMAQ into the five CRTM aerosols and repartitioned each CMAQ 106 
aerosol's mass increments according to the ratios of aerosol chemical components in the 107 
background field. This repartitioning is called the “ratio approach.” Cheng et al. (2019) 108 
assimilated the lidar extinction coefficient profiles measured in Beijing to modify the Weather 109 
Research and Forecasting-Chemistry (WRF-Chem) Model for Simulating Aerosol 110 
Interactions and Chemistry (MOSAIC) aerosols. They used the ratio approach to map eight 111 
MOSAIC aerosols based on five GOCART aerosols. This mapping strategy is readily 112 
implemented but introduces inconsistent size-segregated aerosol information (e.g., 113 
hygroscopicity and extinction efficiency) between the aerosol model and the DA system. 114 
Kumar et al. (2019) analyzed the CMAQ aerosols by assimilating MODIS AOD with GSI. 115 
Their forward operator converted aerosol chemical composition into AOD based on the well-116 
known IMPROVE aerosol extinction model (Malm and Hand, 2007). The IMPROVE model 117 
predicts AOD with a linear combination of aerosol chemical masses, with the hydrophilic 118 
particles multiplied by a tuning factor associated with relative humidity. Since building a DA 119 
system for a new aerosol mechanism is quite technical, the official GSI for the GOCART 120 
aerosols is a primary choice for recent aerosol DA studies (Bao et al., 2019; Xia et al., 2019; 121 
Hong et al., 2020). 122 
 123 
Because of the shortcomings, the official GSI has been extended to cooperate with other 124 
aerosol mechanisms in WRF-Chem. The MOSAIC mechanism in WRF-Chem simulates 125 
aerosol mass and number concentrations in either four- or eight-size bins. This sectional 126 
aerosol mechanism involves nitrate chemistry and can simulate SOA with the volatility basis 127 
set scheme. Li et al. (2013) developed a 3D-Var scheme for assimilating the surface PM2.5 and 128 
speciated aerosol chemical concentrations for the WRF-Chem MOSACI aerosols. Zang et al. 129 
(2016) applied this scheme to incorporate aircraft speciated aerosols in California. They 130 
proved that the assimilation of aircraft profile extended the DA benefit to aerosol forecast. 131 
Saide et al. (2013) proposed a revised GSI version that performed variational DA for the 132 
MOSAIC aerosols. The authors generated the adjoint operator code with the automatic 133 
differentiation tool (ADT), TAPENADE v3.6. The ADT used the chain rule of derivative 134 
calculus on the AOD source code in WRF-Chem. They assimilated multi-source AOD data 135 
with the MOSAIC aerosols over the continental United States and found that incorporating 136 
multi-wavelength fine-mode AOD redistributed the aerosols’ particulate mass concentration 137 
in sizes. Their GSI system also assimilated Korean ground-based and geostationary satellite 138 
AOD datasets to improve local aerosol simulations (Saide et al., 2014, 2020). Pang et al. 139 
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(2020) developed the official GSI to work with the Modal Aerosol Dynamics Model for 140 
Europe with the Secondary Organic Aerosol Model (MADE/SORGAM) aerosols in WRF-141 
Chem. They used the WRF-Chem AOD code as the forward operator to calculate the essential 142 
aerosol optical properties and employed the CRTM adjoint operator. Because aerosols were 143 
externally mixed in CRTM, their scheme abandoned the aerosol internal mixture in WRF-144 
Chem but computed the AOD of each aerosol component separately. 145 
 146 
This study provides a solution to improve the GSI 3D-Var DA system's capability for the 147 
sectional MOSAIC aerosols in WRF-Chem. We designed the tangent linear operator code for 148 
AOD DA based on the WRF-Chem intrinsic aerosol optical subroutine (Fast et al., 2006). The 149 
operator code is programmed based on the analytical equations of the tangent linear model for 150 
AOD. As our revised GSI does not use the CRTM module, it avoids the problem of needing 151 
to eliminate WRF-Chem aerosols characteristics (e.g., aerosol mixture state and size 152 
distribution) to meet the CRTM input requirements. The forward and tangent linear operators 153 
are coordinated and written in a single subroutine, coupled to the GSI at the place of invoking 154 
CRTM for the AOD calculation. In addition to AOD DA, our tangent linear operator has two 155 
variants to assimilate the aerosol scattering and absorption coefficients, measured using a 156 
nephelometer and aethalometer, respectively. 157 
 158 
This study verifies our revised GSI system's effectiveness by incorporating multi-wavelength 159 
aerosol optical observations that were measured during an international field campaign, the 160 
Dust Aerosol Observation-Kashi, in April 2019 at Kashi city, neighboring the Taklamakan 161 
Desert, northwestern China. This desert is the second largest globally and is the primary 162 
source of dust aerosols in East Asia. The dust from the desert affects the nearby Tibetan 163 
Plateau (Ge et al., 2014; Jia et al., 2015; Zhao et al., 2020), air quality and climate in East 164 
Asia (Huang et al., 2014), and the biogeochemical cycles in the western Pacific Ocean (Calil 165 
et al., 2011). A successful DA analysis will help improve the local air quality forecast and 166 
enhance our understanding of local dust storms' environmental impacts. The remainder of this 167 
paper is organized as follows. Section 2 describes the revised GSI system, the experimental 168 
design, and the observed data. Section 3 presents the DA results when assimilating different 169 
observations. Section 4 discusses the impact of DA on aerosol chemical composition and 170 
aerosol direct radiative forcing. Finally, Section 5 provides the conclusions and limitations 171 
that need further research. 172 
 173 
2. Methodology and Data 174 
2.1 Forecast Model 175 
The background aerosol fields were simulated using the WRF-Chem model version 4.0 (Grell 176 
et al., 2005; Fast et al., 2006). The model configurations included the Purdue Lin 177 
microphysics scheme (Chen and Sun, 2002), the unified Noah land surface model (Tewari et 178 
al., 2004), the Yonsei University scheme for planetary boundary layer meteorological 179 
conditions (Hong et al., 2006), and the rapid radiative transfer model for general circulation 180 
models (RRTMG) scheme for shortwave and longwave radiation (Iacono et al., 2008). The 181 
gas-phase chemistry was simulated using the carbon bond mechanism (Zaveri and Peters, 182 
1999), including aqueous-phase chemistry. The aerosol chemistry was simulated using the 183 
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MOSAIC mechanism (Zaveri et al., 2008), which simulated sulfate, nitrate, ammonium, black 184 
carbon (BC), organic carbon (OC), sodium, calcium, chloride, carbonate, and other inorganic 185 
matter (OIN, e.g., trace metals and silica). The experiments did not simulate SOA to 186 
accelerate model integration. The influence of ignoring SOA was assumed to be small 187 
because of low anthropogenic and biogenic emissions in the desert's vicinity. The dust 188 
emission was simulated using the GOCART dust scheme (Ginoux et al., 2001; Zhao et al., 189 
2010), and the dust mass was included in the OIN concentration. We performed the MOSAIC 190 
aerosol simulations with four-size bins (0.039–0.156 µm, 0.156–0.625 μm, 0.625–2.500 μm, 191 
and 2.5–10.0 μm dry diameters). The sectional aerosol data in the hourly model output were 192 
the aerosol dry mass mixing ratios of chemical compositions, aerosol number concentration, 193 
and aerosol water content. The aerosol compositions included hydrophilic particulates (i.e., 194 
SO4

2–, NO3
–, NH4

+, Cl–, Na+) and hydrophobic particulates (i.e., BC, OC, and OIN). 195 
According to the Mie theory, we used the spherical particulate assumption and computed the 196 
aerosol optics. The aerosol compositions were internally mixed in each size bin and were 197 
externally mixed between the size bins. The internal mixing refractive index was the volume-198 
weighted mean complex refractive index of each composition. The WRF-Chem model 199 
computed the aerosol optics at 300, 400, 600, and 999 nm and interpolated the aerosol optical 200 
parameters (AOD, SSA, asymmetry factor) to eleven shortwave lengths with Ångström 201 
exponents for the radiative transfer calculation. 202 
 203 
2.2 Assimilation System 204 
The revised GSI DA system is based on the official GSI (https://dtcenter.org/community-205 
code/gridpoint-statistical-interpolation-gsi, Wu et al., 2002; Liu et al., 2011; Schwartz et al., 206 
2012; Pagowski et al., 2014) version 3.7. The 3D-Var DA minimizes the cost function: 207 
 208 

𝐽(𝐱) =
1
2
(𝐱 − 𝐱!)"𝐁#$(𝐱 − 𝐱!) +

1
2
(𝐻(𝐱) − 𝐲)"𝐑#$(𝐻(𝐱) − 𝐲) 209 

(1) 210 
 211 

where x is the state vector composed of the model control variables; the subscript b denotes 212 
that x is the background state vector; y is the vector of the observations; H is the forward 213 
operator or observation operator that transfers the gridded control variables into the observed 214 
quantities at the observation locations; and B and R are the background and observation error 215 
covariance matrices, respectively. 216 
 217 
The official GSI version only works with the GOCART aerosols for assimilating the surface-218 
layer PM2.5 and PM10 (denoted as PMx in the context) concentrations and the 550 nm MODIS 219 
AOD. Our revised GSI system assimilates PMx concentrations, multi-wavelength aerosol 220 
scattering/absorption coefficients, and AOD. Figure 1 shows the workflow of our DA system. 221 
According to the AOD calculation in WRF-Chem, we can either choose the aerosol number 222 
concentration (option 1) or aerosol mass concentration (option 2) as control variables. Li et al. 223 
(2020) describes option 1. This study selects option 2 and describes it in the following 224 
subsections. 225 
 226 
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Figure 1 
 227 
2.2.1 Control Variables 228 
The control variables were the mass mixing ratio of each aerosol composition per size bin, 229 
which corresponded to the WRF-Chem output data. This set differed from previous studies 230 
that lumped aerosols per size bin as control variables (Li et al., 2013; Pagowski et al., 2014). 231 
The control variables were six aerosol mass mixing ratios of SO4

2–, NH4
+, NO3

–, OC, BC, and 232 
OIN per size bin, a total of which were twenty-four for the four-size bin simulations. They 233 
substantially contributed to the total aerosol mass concentrations. Chlorine and sodium had 234 
minuscule background concentrations and remained the background values. In Kashi’s case 235 
near the desert, the OIN was predominant, accounting for 62% of PM2.5 and 82% of PM10. 236 
 237 
Our design of the control variables was different from the AOD assimilation in Saide et al. 238 
(2013), with theirs being the natural logarithm of the total mass mixing ratio per size bin, 239 
multiplied by the thickness of the model layer. This multiplication of layer thickness 240 
prevented many modifications for the high model layers, where aerosols were low in 241 
concentrations. The logarithmic transformation decreased the extensive value range in the 242 
control variables caused by multiplication. However, since the AOD value is often smaller 243 
than one, their transformation leads to a significant negative logarithm value and an 244 
unconstrained DA system. To handle this disadvantage, Saide et al. (2013) introduced two 245 
weak constraints in the cost function to cut off the user-defined “extraordinarily high” and 246 
“extraordinarily low” concentrations. They repartitioned the total mass per size bin's 247 
increments for the composition of each aerosol using the ratio approach. In this study, neither 248 
the logarithmic transformation nor the multiplication using layer thickness was set. Our 249 
control variable was restricted to the WRF-Chem output variable, and the DA system changed 250 
the composition of each aerosol per size bin, depending on the aerosol background errors. 251 
 252 
Consistent with Pang et al. (2020), aerosol water content (AWC) was not one of the control 253 
variables in our GSI. Otherwise, the AWC might have increased as a mathematical artifact, 254 
contrary to the physical constraints imposed by the loading of hydrophilic particles. The 255 
AWC was diagnosed in each outer loop according to the analyzed aerosol mass concentration 256 
and the background relative humidity, using the WRF-Chem’s hygroscopic growth scheme 257 
coupled into the revised GSI. 258 
 259 
2.2.2 Tangent Linear Operator for PMx 260 
The PM10 is the sum of all aerosol dry mass concentrations over the size bins, and the sum of 261 
the first three is the PM2.5 (Chen et al., 2019; Wang et al., 2020). The tangent linear operator 262 
for PMx is the gradient of the PMx concentration to the aerosol chemical mass concentration 263 
per size bin: 264 

 265 
𝛿[𝑃𝑀%]
𝛿3𝐶&'(,*5

, 𝑘 = 1,… , 𝑛+,-' 266 

(2) 267 
 268 
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where nsize is the number of size bins and is equal to four in this study; [.] denotes the mass 269 
concentration (µg m–3 for PMx); Caer, k is the aerosol mass mixing ratio (µg kg–1) of SO4

2–, 270 
NO3

–, NH4
+, OC, BC, and OIN at the k-th size bin. Because we did not multiply the chemical 271 

mass with a scaling factor to represent some unknown compositions in the summation of 272 
PMx, Eq (2) always equals one. It means that we equally distribute the PMx increment to 273 
each aerosol composition per size bin. The PM2.5 and PM10 are assimilated in the same way. 274 
When the observed fine and coarse particle concentrations are assimilated simultaneously, we 275 
assimilate the concentrations of PM2.5 and the coarse particulate (PM10-PM2.5). 276 
 277 
2.2.3 Forward Operator for Aerosol Optics in WRF-Chem 278 
We used the original forward operator in WRF-Chem for the aerosol optical parameters (Fast 279 
et al., 2006). AOD is calculated as a function of wavelength according to Mie theory. The 280 
columnar AOD 𝜏 is the sum of layer AOD across the nz model layers: 281 
 282 

𝜏 =;𝜏-

.!

-/$

=; ; 𝑒'%0,-,* ∙ 𝑛-,* ∙ 𝐻-

."#!$

*/$

.!

-/$

 283 

(3) 284 
 285 

where eext,z,k is the extinction cross section of a single mixing particle in the k-th size bin at the 286 
z-th model layer, nz,k is the aerosol number concentration, and Hz is the layer thickness. At the 287 
surface, the ambient aerosol scattering (Esca) and absorbing (Eabs) coefficients that are 288 
measured by the nephelometer and aethalometer, respectively, are represented as 289 
 290 

𝐸+1& = ; 𝑒+1&,$,* ∙ 𝑛$,*

."#!$

*/$

 291 

𝐸&!+ = ; 𝑒&!+,$,* ∙ 𝑛$,*

."#!$

*/$

 292 

(4) 293 
 294 

where esca,1,k and eabs,1,k are the scattering and absorption cross section of a particle at the 295 
surface. There is a relationship: 296 
 297 
𝑒'%0,-,* = 𝑒+1&,-,* + 𝑒&!+,-,* 298 

(5) 299 
 300 
The extinction cross section eext,z,k of a wet particle with radius rwet,z,k is: 301 

    302 
𝑒'%0,-,* = 𝑝'%0,-,* ∙ 𝜋 ∙ 𝑟2'0,-,*3  303 

(6) 304 
 305 
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where pext,z,k is the extinction efficiency, given the desired mixing refractive indexes and the 306 
wet particle radius. The pext,z,k is attained through the Chebyshev polynomial interpolation:  307 
 308 

𝑝'%0,-,* = exp	{ ; 𝑐14(𝑗) ∙ 𝑐'%0,-,*(𝑗)

.%&$'

5/$

} 309 

(7) 310 
where cch is the coefficient of ncoef order Chebyshev polynomials, cext,z,k is the polynomial 311 
value for the particle's extinction efficiency, which is an internal mixture of all aerosol 312 
compositions (i.e., the control variables plus chlorine, sodium, and AWC). The radius is in a 313 
logarithmic transform in the AOD subroutine code to handle the broad particle size range 314 
from 0.039 µm to 10 µm. The exponential function in Eq. (7) transforms the logarithm radius 315 
back to the normal radius. The aerosol number concentration nz,k, and the aerosol dry (wet) 316 
mass concentration mi,z,k have a linkage through the dry (wet) particle radius rdry,z,k (rwet,z,k) and 317 
the aerosol density 𝜌,: 318 
 319 

𝑛-,* = ;
𝑚,,-,*

𝜌,

.($)_+$,

,

∙
3

4𝜋 ∙ 𝑟2'0,-,*6 = ;
𝑚,,-,*

𝜌,
∙

3
4𝜋 ∙ 𝑟7(8,-,*6

.-,._+$,

,

 320 

(8) 321 
 322 
Both the dry and wet particle radius appear in the tangent linear operator. The difference 323 
between the second and the third terms in Eq (8) is whether aerosol water content is counted. 324 
nwet_aer is the number of aerosol chemical composition plus aerosol water content (nwet_aer= 325 
ndry_aer+1). 326 
 327 
2.2.4 Tangent Linear Operator Developed for AOD 328 
As per the forward operator in Eq. (3) in WRF-Chem, we developed the tangent linear 329 
operator for AOD, which requires the derivative of 𝜏 in Eq. (3) to the aerosol dry mass 330 
concentration (aerosol water content is not a control variable), mi,z,k: 331 
 332 
𝛿𝜏

𝛿𝑚,,-,*
=

𝛿𝜏-
𝛿𝑚,,-,*

=
𝛿𝑒'%0,-,* ∙ 𝑛-,* ∙ 𝐻-

𝛿𝑚,,-,*
+
𝑒'%0,-,* ∙ 𝛿𝑛-,* ∙ 𝐻-

𝛿𝑚,,-,*
+
𝑒'%0,-,* ∙ 𝑛-,* ∙ 𝛿𝐻-

𝛿𝑚,,-,*
 333 

(9) 334 
 335 
The first term on the righthand side of Eq. (9) indicates the change in AOD as the perturbation 336 
of extinction cross section. According to Eq. (6), considering that the particle radius is 337 
constant, 𝛿𝑒'%0,-,* is represented as: 338 
 339 
𝛿𝑒'%0,-,* = 𝛿𝑝'%0,-,* ∙ 𝜋 ∙ 𝑟2'0,-,*3  340 

(10) 341 
 342 
where 𝛿𝑐14(𝑗) = 0 assuming that the particle radius is constant. This assumption simplifies 343 
the tangent linear operator and is also employed in Saide et al. (2013). 344 
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 345 
Equation (10) is expanded with the derivative of Eq. (7): 346 
 347 

𝛿𝑝'%0,-,* = 𝑝'%0,-,* ∙ { ; 𝑐14(𝑗) ∙ 𝛿𝑐'%0,-,*(𝑗)

.%&$'

5/$

} 348 

(11) 349 
By expanding 𝛿𝑐'%0,-,* in Eq. (11), we have: 350 

 351 
𝛿𝑐'%0,-,*(𝑗) = 𝛿𝑤99 ∙ 𝐸'%0,99(𝑗) + 𝛿𝑤9$ ∙ 𝐸'%0,9$(𝑗) + 𝛿𝑤$9 ∙ 𝐸'%0,$9(𝑗) + 𝛿𝑤$$ ∙ 𝐸'%0,$$(𝑗) 352 

 (12) 353 
 354 
The four parameters of Eext indicate the extinction efficiencies in the Mie lookup table 355 
surrounding the point with the desired mixing refractive indexes and the wet particle radius. 356 
The interpolation weights 𝛿𝑤 are determined as: 357 
 358 
𝛿𝑤99 = (𝑣 − 1)𝛿𝑢 + (𝑢 − 1)𝛿𝑣									𝛿𝑤9$ = (1 − 𝑣)𝛿𝑢 − 𝑢𝛿𝑣 359 
𝛿𝑤$9 = (1 − 𝑢)𝛿𝑣 − 𝑣𝛿𝑢																					𝛿𝑤$$ = 𝑢𝛿𝑣 + 𝑣𝛿𝑢 360 

(13) 361 
 362 

where 363 
     364 

𝑢 =
𝑅:,% − 𝑅;<2
𝑅=> − 𝑅;<2

									𝛿𝑢 =
𝛿𝑅:,%

𝑅=> − 𝑅;<2
 365 

𝑣 =
𝐼:,% − 𝐼;<2
𝐼=> − 𝐼;<2

												𝛿𝑣 =
𝛿𝐼:,%

𝐼=> − 𝐼;<2
 366 

(14) 367 
 368 

In Eq. (14), Rmix and Imix are the aerosol volume-weighted mean real and imaginary parts of 369 
complex refractive indices, respectively. Rup (Iup) and Rlow (Ilow) are the nearest upper and 370 
lower limits for Rmix (Imix) in the Mie table. Considering Vwet,z,k is the volume of all aerosol dry 371 
masses plus aerosol water content, the real and imaginary parts, and their derivatives are: 372 
 373 

𝑅:,%,-,* = ; 𝑅, ∙
𝑚,,-,*

𝜌, ∙ 𝑉2'0,-,*

.($)_+$,

,

											𝛿𝑅:,%,-,* =
𝑅,

𝜌, ∙ 𝑉2'0,-,*
∙ 𝛿𝑚,,-,* 374 

𝐼:,%,-,* = ; 𝐼, ∙
𝑚,,-,*

𝜌, ∙ 𝑉2'0,-,*

.($)_+$,

,

															𝛿𝐼:,%,-,* =
𝐼,

𝜌, ∙ 𝑉2'0,-,*
∙ 𝛿𝑚,,-,* 375 

(15)  376 
     377 

where 378 

𝑉2'0,-,* = ;
𝑚,,-,*

𝜌,

.($)_+$,

,

 379 
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(16) 380 
 381 
Put Eq. (12), Eq. (13) into Eq. (11) leads to: 382 

 383 
𝛿𝑝'%0,-,* = 3(𝑣 − 1)𝛼+1&,99 + (1 − 𝑣)𝛼+1&,9$ − 𝑣𝛼+1&,$9 + 𝑣𝛼+1&,$$5𝛿𝑢 + 384 
																					3(𝑢 − 1)𝛼&!+,99 − 𝑢𝛼&!+,9$ + (1 − 𝑢)𝛼&!+,$9 + 𝑢𝛼&!+,$$5𝛿𝑣 385 

(17) 386 
where 387 

𝛼+1&,99 = 𝑝+1&,$,* ∙ ; 𝑐14(𝑗) ∙ 𝐸+1&,99(𝑗)

.%&$'

5/$

											𝛼+1&,9$ = 𝑝+1&,$,* ∙ ; 𝑐14(𝑗) ∙ 𝐸+1&,9$(𝑗)

.%&$'

5/$

 388 

𝛼+1&,$9 = 𝑝+1&,$,* ∙ ; 𝑐14(𝑗) ∙ 𝐸+1&,$9(𝑗)

.%&$'

5/$

											𝛼+1&,$$ = 𝑝+1&,$,* ∙ ; 𝑐14(𝑗) ∙ 𝐸+1&,$$(𝑗)

.%&$'

5/$

 389 

𝛼&!+,99 = 𝑝&!+,$,* ∙ ; 𝑐14(𝑗) ∙ 𝐸&!+,99(𝑗)

.%&$'

5/$

												𝛼&!+,9$ = 𝑝&!+,$,* ∙ ; 𝑐14(𝑗) ∙ 𝐸&!+,9$(𝑗)

.%&$'

5/$

 390 

𝛼&!+,$9 = 𝑝&!+,$,* ∙ ; 𝑐14(𝑗) ∙ 𝐸&!+,$9(𝑗)

.%&$'

5/$

												𝛼&!+,$$ = 𝑝&!+,$,* ∙ ; 𝑐14(𝑗) ∙ 𝐸&!+,$$(𝑗)

.%&$'

5/$

 391 

 392 
(18) 393 

 394 
The subscripts of sca and abs in Eq. (17) and (18) denote “scattering” and “absorption” , 395 
respectively. The first term on the righthand side of Eq. (9) is determined using Eq. (10) and 396 
Eq. (17). The second term on the righthand side of Eq. (9) indicates the linkage of the aerosol 397 
number and mass concentrations. It is the derivative of the dry particle in Eq. (8) by assuming 398 
a constant radius: 399 
 400 

𝛿𝑛-,* =
3 ∙ 𝛿𝑚,,-,*

4𝜋 ∙ 𝑟78(,-,*6 ∙ 𝜌,
 401 

(19) 402 
 403 
The third term on the righthand side of Eq. (9) contains the layer thickness's derivative to the 404 
concentrations in this layer. It indicates that the light attenuation length is based on per unit 405 
concentration, which can be intuitively represented by the ratio of layer thickness to the 406 
aerosol mass concentration in this layer. Putting Eq. (10) and Eq. (19) into Eq. (9), we have 407 
the original formula of the tangent linear operator for AOD for the aerosol dry mass 408 
concentration: 409 
 410 

 411 
𝛿𝜏

𝛿𝑚,,-,*
=

𝛿𝜏-
𝛿𝑚,,-,*

=
𝛿𝑒'%0,-,* ∙ 𝑛-,* ∙ 𝐻-

𝛿𝑚,,-,*
+
𝑒'%0,-,* ∙ 𝛿𝑛-,* ∙ 𝐻-

𝛿𝑚,,-,*
+
𝑒'%0,-,* ∙ 𝑛-,* ∙ 𝛿𝐻-

𝛿𝑚,,-,*
=	412 
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{[(𝑣 − 1)𝛼+1&,99 + (1 − 𝑣)𝛼+1&,9$ − 𝑣𝛼+1&,$9 + 𝑣𝛼+1&,$$] ∙
𝜋 ∙ 𝑟2'0,-,*3 ∙ 𝑅, ∙ 𝑛-,* ∙ 𝐻-

𝜌, ∙ 𝑉2'0,-,* ∙ V𝑅=>,-,* − 𝑅;<2,-,*W
413 

+	414 

3(𝑢 − 1)𝛼&!+,99 − 𝑢𝛼&!+,9$ + (1 − 𝑢)𝛼&!+,$9 + 𝑢𝛼&!+,$$5 ∙
𝜋 ∙ 𝑟2'0,-,*3 ∙ 𝐼, ∙ 𝑛-,* ∙ 𝐻-

𝜌, ∙ 𝑉2'0,-,* ∙ V𝐼=>,-,* − 𝐼;<2,-,*W
+	415 

3𝑒'%0,-,* ∙ 𝐻-
4𝜋 ∙ 𝑟7(8,-,*6 ∙ 𝜌,

+
𝑒'%0,-,* ∙ 𝑛-,* ∙ 𝐻-

𝑚,,-,*
} ∙ 𝛽 416 

 417 
(20) 418 

 419 
where 𝛽 changes the mass unit from µg kg–1 to µg m–3. The last righthand term in Eq. (20) 420 
may not have a quick convergence in the DA outer loops because the aerosol mass 421 
concentration mi,z,k in the denominator often has a low bias, introducing an error into the 422 
operator. The error is further amplified by the layer thickness Hz in the numerator. Thus, Eq. 423 
(20) cannot lead to a stable analysis. For this reason, we changed the tangent linear operator to 424 
account for the columnar mean aerosol extinction coefficient, which is described as follows: 425 
 426 
𝛿(𝑒'%0 ∙ 𝑛)YYYYYYYYYYYY
𝛿𝑚,,-,*

=
𝐻-
∑𝐻-

∙
𝛿V𝑒'%0,-,* ∙ 𝑛-,*W

𝛿𝑚,,-,*
=

𝐻-
∑𝐻-

∙ [
𝛿𝑒'%0,-,* ∙ 𝑛-,*

𝛿𝑚,,-,*
+
𝑒'%0,-,* ∙ 𝛿𝑛-,*

𝛿𝑚,,-,*
] =	427 

{[(𝑣 − 1)𝛼+1&,99 + (1 − 𝑣)𝛼+1&,9$ − 𝑣𝛼+1&,$9 + 𝑣𝛼+1&,$$] ∙
𝜋 ∙ 𝑟2'0,-,*3 ∙ 𝑅, ∙ 𝑛-,*

𝜌, ∙ 𝑉2'0,-,* ∙ V𝑅=>,-,* − 𝑅;<2,-,*W
428 

+	429 

3(𝑢 − 1)𝛼&!+,99 − 𝑢𝛼&!+,9$ + (1 − 𝑢)𝛼&!+,$9 + 𝑢𝛼&!+,$$5 ∙
𝜋 ∙ 𝑟2'0,-,*3 ∙ 𝐼, ∙ 𝑛-,*

𝜌, ∙ 𝑉2'0,-,* ∙ V𝐼=>,-,* − 𝐼;<2,-,*W
+	430 

3𝑒'%0,-,*
4𝜋 ∙ 𝑟7(8,-,*6 ∙ 𝜌,

} ∙ 𝛽 ∙
𝐻-
∑𝐻-

 431 

 432 
(21) 433 

 434 
In Eq. (21), the operator is based on the extinction coefficient at each layer, weighted by the 435 
layer thickness normalized to the total model layer thickness. Correspondingly, the AOD 436 
observations and AOD observation error are divided by the total layer thickness at the 437 
observation location. Note that the dry (rdry,z,k) and wet (rwet,z,k) particle radiuses are both 438 
present in Eq (21). Because aerosol water content is not a control variable, rdry,z,k is used in Eq 439 
(19) and appears in Eq (21). Aerosol water content participates in the computation of internal 440 
mixing refractive indexes, and rwet,z,k is also present in Eq (21). Equation (21) is the final 441 
tangent linear operator for AOD DA in this study. 442 
 443 
2.2.5 Tangent Linear Operator Developed for Surface Aerosol Attenuation Coefficients 444 
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The aerosol scattering and absorption coefficients measured by the nephelometer and 445 
aethalometer, respectively, are similar to the aerosol extinction coefficient at the surface in 446 
Eq. (21). Neither of the two coefficients addresses the layer thickness. The operator for the 447 
aerosol scattering coefficient measured by a nephelometer is described as follows: 448 
 449 
𝛿(𝑒!"#,%,& ∙ 𝑛%,&)

𝛿𝑚',%,&
= {[(𝑣 − 1)𝛼!"#,(( + (1 − 𝑣)𝛼!"#,(% − 𝑣𝛼!"#,%( + 𝑣𝛼!"#,%%]451 

∙
𝜋 ∙ 𝑟)*+,%,&, ∙ 𝑅' ∙ 𝑛%,&

𝜌' ∙ 𝑉)*+,%,& ∙ 6𝑅-.,%,& − 𝑅/0),%,&7
+

3𝑒!"#,%,&
4𝜋 ∙ 𝑟123,%,&4 ∙ 𝜌'

} ∙ 𝛽	452 

 (22) 450 
      453 

The symbols have the same meaning as before, and the subscript one in Eq. (22) denotes the 454 
surface layer. The operator for the aerosol absorption coefficient measured by an aethalometer 455 
is 456 
 457 
𝛿(𝑒#5!,%,& ∙ 𝑛%,&)

𝛿𝑚',%,&
= {[(𝑢 − 1)𝛼#5!,(( − 𝑢𝛼#5!,(% + (1 − 𝑢)𝛼#5!,%( + 𝑢𝛼#5!,%%]459 

∙
𝜋 ∙ 𝑟)*+,%,&, ∙ 𝐼' ∙ 𝑛%,&

𝜌' ∙ 𝑉)*+,%,& ∙ 6𝐼-.,%,& − 𝐼/0),%,&7
+

3𝑒#5!,%,&
4𝜋 ∙ 𝑟123,%,&4 ∙ 𝜌'

} ∙ 𝛽	460 

 (23) 458 
 461 
As shown in the operators, the aerosol mass concentrations' gradients rely on the aerosol 462 
number concentration; meanwhile, the number concentration is estimated according to the 463 
mass concentration and the particle radius. The two concentrations are intertwined in the DA 464 
system, indicating the operator's nonlinearity. This nonlinearity is handled with a succeeding 465 
minimization of the cost function within the GSI. The cost function is first minimized with the 466 
number concentration in the background field, and the number concentration is updated with 467 
the first analyzed aerosol mass concentrations. In the second minimization, the first analysis's 468 
number concentration constructs a new operator value, resulting in a new analysis of mass 469 
concentrations. This iterative process is denoted as the “outer loop,” which is repeated several 470 
times to attain the final analysis (Massart et al., 2010). We set ten maximum iterations in the 471 
experiments. The cost function in most analyses reaches the minimum in two or three outer 472 
loops. The WRF-Chem AOD code is coupled into the GSI subroutine at the place of invoking 473 
CRTM. The tangent linear operators of Eq. (21), Eq. (22), and Eq. (23) are simultaneously 474 
determined in the subroutines, which are cyclically invoked in the outer loops. 475 
 476 
2.2.6 Aerosol Complex Refractive Indexes in GSI 477 
Table S1 in the supplementary document shows the complex refractive indexes for each 478 
aerosol chemical composition in the revised GSI. The refractive indexes are for eleven 479 
wavelengths, including four for CE318, three for nephelometer, three for aethalometer, and 480 
one for 550 nm MODIS AOD (not assimilated in this study). The real parts of refractive 481 
indexes of sulfate, nitrate, and ammonium are similar and refer to Toon et al.'s (1976) data. 482 
The real part is 1.53 at 440 nm and decreases to 1.52 at 1020 nm. The refractive indexes of 483 
OC and BC are constant across the wavelengths, being 1.55–0.001i for OC (Chen and Bond, 484 
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2010) and 1.95–0.79i for BC (Bond and Berstrom, 2006). The dust refractive index's real part 485 
is a constant value of 1.54 (Zhao et al., 2010). The dust refractive index's imaginary part 486 
depends on the dust mineralogy, size distribution, and shape associated with the dust sources. 487 
Cheng et al. (2006) reported the desert dust refractive index in winter and spring at 488 
Dunhuang, a city adjacent to the Taklamakan desert's northeast side. Their imaginary part 489 
value was approximately in the ranges of 0.0008 to 0.0028 at 440 nm, 0.0006 to 0.0030 at 670 490 
nm, 0.0005 to 0.0036 at 870 nm, and 0.0005 to 0.0040 at 1020 nm (See Figure 9 in their 491 
paper). Di Biagio et al. (2019) retrieved the dust’s imaginary part in the Taklimakan desert's 492 
north edge (41.83°N, 85.88°E). Their dust imaginary part decreased from 0.0018±0.0008 at 493 
370 nm to 0.0005±0.0002 at 950 nm, much lower than the generic values in climate models. 494 
The imaginary part's retrieval uncertainty is related to the iron oxide in dust samples, the 495 
cutoff coarse particle size (<10 µm in Di Biagio et al., 2019), and the spherical particle 496 
assumption applied in the retrieval algorithm. Here, we admit the high uncertainty and use the 497 
imaginary part following the generic model values (Table S1), which are higher than the 498 
upper data limits of Di Biagio et al. (2019) and are close to the values of Cheng et al. (2006). 499 
The desert dust has a stronger absorption at shortwave wavelengths. The refractive index of a 500 
wavelength without exact literature data uses the nearby wavelength’s data in the literature. 501 
Aerosol density is necessitated to compute aerosol optical parameters in the AOD forward 502 
operator and construct our tangent linear operator. The supplement also shows the aerosol 503 
density (Table S2) that follows the data in Barnard et al. (2010). 504 
 505 
2.3 Background Error Covariance (BEC) 506 
Many aerosol DA studies used the National Meteorological Center (NMC) method (Parrish 507 
and Derber, 1992) to model the BEC matrix. The NMC method uses long-term archived 508 
weather data created in forecast cycles. It computes the statistical differences between two 509 
forecasts with different leading lengths (e.g., 24 h and 48 h), but which are valid at the same 510 
time. The NMC method is workable because solving global weather forecasts is an initial 511 
value problem of mathematical physics. A slight difference in the initial atmospheric state 512 
would lead to a substantially different prediction because of the chaos in the atmosphere. 513 
However, a regional model is a boundary value problem (Giorgi and Mearns, 1999). As the 514 
regional model runs, the influence of the initial conditions becomes weak, while lateral 515 
boundary conditions always take effect. The reanalysis data that drive the paring regional 516 
model simulations are similar and leads to a limited difference between the paring 517 
simulations. The NMC method’s BEC would therefore underestimate the aerosol error in 518 
WRF-Chem. Kumar et al. (2019) assimilated AOD in the contiguous United States based on 519 
the NMC method's BEC. They perturbed the background emissions by adding the gridded 520 
mean differences of four emission inventories. Their BEC accounting for meteorology and 521 
emissions uncertainties reduced the AOD bias by 38%, superior to 10% bias reduction, 522 
counting the meteorology uncertainty alone. 523 
 524 
Some aerosol DA studies have created background error variance using the ensemble 525 
simulations by randomly disturbing model lateral boundary conditions and surface emissions 526 
(Peng et al., 2017; Ma et al., 2020). The ensemble experiments better represent the model 527 
error but significantly increase the computational burden. Here, we used the variance of the 528 
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background hourly aerosol concentrations in April to represent the background error variance. 529 
The rationale of this approach is that the Tarim Basin acts as a “dust reservoir” and traps dust 530 
particles for a period before the dust being carried long-distance by wind (Fan et al., 2020). 531 
The model bias in dust concentration is correlated with aerosol concentration variation as the 532 
weather fluctuates. The model bias is small on clear days when the aerosol concentration is 533 
low. The bias is large when the concentration is high on heavily-polluted days. The mean 534 
aerosol concentration correlated positively with the aerosol variation. Using aerosol 535 
concentration variance to represent the aerosol error prioritizes DA modification of aerosols 536 
having high background mean concentrations. It was similar to the way in Sič et al. (2016), 537 
which set a percentage of the first guess field for the background error variance. 538 
 539 
We calculated the background error statistics, including the aerosol standard deviation and the 540 
horizontal and vertical correlation length scales, using the GENerate the Background Errors 541 
(GEN-BE) software (Descombes et al., 2015), based on the one-month hourly aerosol 542 
concentrations in WRF-Chem. We obtained the statistics of four static BECs for the four DA 543 
analysis hours (i.e., 0000, 0600, 1200, and 1800 UTC), respectively. The DA procedures for 544 
the four analysis times a day in April 2019 repeatedly use the background error statistics at 545 
the corresponding analysis time. 546 
 547 
A usual strategy to enrich the samples of model results for the error statistics is to gather 548 
model grid points with similar atmosphere characteristics, referred to as “binning.” The 549 
statistics are spatially averaged over the binned grid points. The GEN_BE default strategy for 550 
GSI is latitude-binning, which creates a latitude-dependent error correlation function (Figure 551 
2a). The latitude binning is generally used for latitude flow dependency and works for large 552 
and global domains (Wu et al., 2002). However, we found that using the latitude-binning 553 
strategy overestimated the PMx concentration when assimilating aerosol optical observations. 554 
One reason for this overestimation was related to the model's low bias in particle extinction 555 
efficiency, as discussed in Section 3.3. Another plausible reason is related to the background 556 
model error's vertical profile. The maximum dust error in the desert occurred at the surface 557 
(Figure 2e) because of the local dust emissions, while the maximum error at Kashi was at the 558 
dust transporting layer above the surface (Figure 2d). Owing to the Taklamakan Desert's vast 559 
extent, the latitude-binning suppressed the local error characteristics at Kashi and led to a 560 
vertical error profile (Figure 2c) similar to that over the desert (Figure 2e). 561 
 562 
For this reason, we used the standard deviation of the control variable at each model grid to 563 
replace the latitude-binning standard deviation. The horizontal and vertical correlation length 564 
scales were calculated based on the latitude-binning data. Figure 3 shows the background 565 
error statistics generated by the GEN_BE software, which provided the input to the GSI. The 566 
OIN component showed high background errors in the third and fourth particle sizes at the 567 
transporting layer above the surface (Figure 3f). The aerosol compositions related to 568 
anthropogenic emissions (i.e., sulfate, nitrate, ammonium, OC, and BC, referred to here as 569 
‘anthropogenic aerosols’) that had maximum errors in the second particle size, with the 570 
greatest vertical error at the surface. The background error for OIN composition was a factor 571 
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of 2–3 higher than that for anthropogenic aerosols because of the high background dust 572 
concentration. 573 
 574 
The horizontal and vertical correlation length scales determine the range of observation 575 
innovations spreading from the observation locations. The horizontal influences had small 576 
changes in altitude within the lowest 15 model layers (below a height of ~5 km above 577 
ground), indicating that the dust transport layer was well-mixed in the lower atmosphere. This 578 
deep dust layer was consistent with Meng et al. (2019). They showed that the dust in spring 579 
was vertically mixed in a thick boundary layer to a height of 3–5 km in the Tarim Basin. The 580 
vertical correlation length scales first increased from low values at the surface to high values 581 
at ~2.5 km in height (for the 8–9 layers), indicating upward aerosol flux in windy days. The 582 
vertical correlation length scale quickly decreased from the maximum value with a further 583 
altitude rise. The maximum correlation length above the ground indicates a laminar air motion 584 
during the dust storm. 585 
 586 
Because the background model error per size bin is independent, the DA modification of an 587 
aerosol concentration would be quite large in a single size bin with the maximum background 588 
error (e.g., the OIN in the fourth particle size). To avoid the excessive accumulation of 589 
increment, we added a one-dimensional recursive filter for the background covariances of 590 
control variables across the size bins, with a correlation length scale of four bin units. 591 
 592 

Figure 2, Figure 3 
 593 
2.4 Observational Data and Errors 594 
The Dust Aerosol Observation–Kashi field campaign was performed at Kashi from 0000 595 
UTC 25 March to 0000 UTC 1 May 2019. The site was placed in the Kashi campus of the 596 
Aerospace Information Research Institute, Chinese Academy of Sciences (39.50°N, 75.93°E; 597 
Li et al., 2018), about 4 km in the northwest to the Kashi city. The site aerosol observations 598 
included: (1) the multi-wavelength AOD measured by the sun-sky photometer (Cimel 599 
CE318); (2) the multi-wavelength aerosol scattering and absorption coefficients at the surface, 600 
measured with a nephelometer (Aurora 3000) and aethalometer (Magee AE-33), respectively; 601 
and (3) the hourly PM2.5 and PM10 observations, measured with a METONE BAM-1020 602 
continuous particulate monitor. All the instruments were deployed at the roof of a three 603 
stories height building on the campus. Please refer to Li et al. (2020) for more details about 604 
the field campaign. 605 
 606 
Table 1 summarizes the observation periods, the aerosol optical data's wavelengths, and the 607 
observation errors. The multi-wavelength data of each type of optical observation were 608 
assimilated simultaneously. The observation errors of PMx are handled in the conventional 609 
way (Schwartz et al., 2012; Chen et al., 2019), which contains the measurement error (e1) and 610 
the representation error (e2). The measurement error is the sum of a baseline error of 1.5 µg 611 
m–3 and 0.75% of the observed PMx concentration. The representation error is the 612 
measurement error multiplied by the half-squared ratio of the grid spacing to the scale 613 
distance. The scale distance denotes the site representation in GSI and has four default values 614 
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of 2, 3, 4, and 10 km, corresponding to the urban, unknown, suburban, and rural sites. We 615 
used 3 km for the scale distance in this study. As we had a single site in Kashi, it is difficult to 616 
estimate the site representation error. Since the DA analysis was based on the inner model 617 
domain with a horizontal resolution of 5 km, close to the site distance to the Kashi urban area, 618 
we assumed the aerosol optical measurement had good representativeness of the model grid. 619 
The observation error of CE318 AOD took the AERONET AOD uncertainty of 0.01 in cloud-620 
free conditions (Holben et al., 1998). The AOD observational error was further divided by the 621 
total model layer thickness in GSI. It is difficult to determine instrumental errors in 622 
nephelometers and aethalometers, and we set their instrumental errors to 10 Mm–1, equivalent 623 
to the magnitude of the Rayleigh extinction coefficient. The observational errors were 624 
uncorrelated, with R being a diagonal matrix. 625 
 626 

Table 1 
 627 
2.5 Experimental Design 628 
The WRF-Chem simulations were configured in a two-nested domain centered at 82.9 °E, 629 
41.5 °N. The coarse domain was a 120×100 (west-east × north-south) grid with a horizontal 630 
resolution of 20 km covering the Taklamakan Desert, and the fine domain was an 81×61 grid 631 
with a resolution of 5 km, focusing on Kashi and environs (Figure 4a). Both domains had 41 632 
vertical levels extending from the surface to 50 hPa. The lowest model layer at the site was 633 
approximately 25-meter height from the ground. The two domains were two-way coupled. 634 
The coarse domain covered the entire dust emission source, providing dust transport fluxes at 635 
the fine domain's lateral boundaries. The aerosol radiative effect was set to provide feedback 636 
on the meteorology. The indirect effect of aerosols was not set in the experiments. Initial and 637 
lateral boundary meteorological conditions for WRF-Chem were the one-degree resolution of 638 
the National Centers for Environmental Prediction Final Analysis data created by the Global 639 
Forecast System model. The meteorological lateral boundary conditions for the coarse domain 640 
were updated every six hours and were linearly interpolated between the updates in WRF-641 
Chem. We did not set the chemical boundary conditions for the coarse domain. The 642 
Multiresolution Emission Inventory of China (MEIC) for 2010 (www.meicmodel.org) 643 
provided anthropogenic emission levels. The yearly emission differences in 2010-2019 may 644 
bias the aerosol chemical simulation, but this bias is hard to be quantified as lack of aerosol 645 
chemical observations in this city. As the significant pollutant at Kashi is dust, we just ignore 646 
the model uncertainties due to the yearly differences in anthropogenic emission inventories. 647 
The biogenic emission levels were estimated online using the Model of Emissions of Gases 648 
and Aerosols from Nature (Guenther et al., 2006). Wildfire emissions were not set in the 649 
experiments. 650 
 651 
We conducted a one-month WRF-Chem simulation for April 2019, starting at 0000 UTC on 652 
27 March and discarding the first five days for spin-up. The revised GSI system modified the 653 
aerosols in the fine domain at 0000, 0600, 1200, and 1800 UTC each day starting from 0000 654 
UTC 1 April until the end of the month. We assimilated the observations four times a day 655 
because the reanalyzed meteorological data were available for the four-time slices, facilitating 656 
the model restarting from the DA analyses. The hourly PMx observations were assimilated at 657 
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the exact time of analysis. The observed AOD and aerosol scattering/absorption coefficients 658 
were assimilated when they fell within 3 hours before the time of analysis. Table 2 shows the 659 
DA experiments, in which the multi-wavelength AOD (440 nm, 675 nm, 870 nm, and 1020 660 
nm) in DA_AOD, the aerosol scattering coefficients (450 nm, 525 nm, and 635 nm) in 661 
DA_Esca, and the aerosol absorption coefficients (470 nm, 520 nm, and 660 nm) in DA_Eabs 662 
were assimilated simultaneously in each experiment. The literal meanings of the experimental 663 
names denote the observations that were assimilated. To study the impact of DA on aerosol 664 
direct radiative forcing (ADRF), we modified the WRF-Chem code to calculate the shortwave 665 
irradiance with and without aerosols at each model integration step. The modified WRF-666 
Chem model restarted from each DA analysis and ran to the next analysis time. Each running 667 
performed the radiation transfer calculation twice, and each calculation saw the aerosols and 668 
clean air, respectively. The irradiance difference between the two pairing calls was aerosol 669 
radiative forcing. Section 4.2 shows the DA effects on the clear-sky ADRF values. 670 
 671 

Table 2, Figure 4 
 672 
3. Results 673 
3.1 Evaluation of Control Experiment 674 
Table 2 shows the monthly mean values and correlations between the observed data and the 675 
model results. The statistical values were based on the pairing data between the model results 676 
and the observations. Figures 6 show the surface PMx concentrations, aerosol scattering 677 
coefficients, and AOD when assimilating the observations at 0000, 0600, 1200, and 1800 678 
UTC each day in April. 679 
 680 
Kashi is in the junction between the Tian Shan Mountains to the west and the Taklamakan 681 
Desert to the east (Figure 5a). In the Tarim Basin, the prevailing surface wind is easterly or 682 
northeasterly, which raises dust levels and carries the particles westward (Figure 5b). An 683 
intense dust storm hit the city at noon on 24 April 2019, with a peak PM10 concentration 684 
exceeding 3,000 µg m–3. The dust storm traveled across the northern part of the desert and 685 
carried the dust particles to Kashi and the mountainous area (Figure 5c, d). A few mild dust 686 
storms occurred at Kashi on April 3–5, April 8–11, and April 14–17, and the maximum PM10 687 
concentrations were in the range of 400–600 µgm–3. The time series of PM2.5, aerosol 688 
scattering/absorption coefficient, and AOD showed patterns similar to those for PM10 (Figure 689 
6). 690 
 691 
WRF-Chem captured the main dust episodes but significantly underestimated the aerosols at 692 
Kashi (Table 2). The monthly mean background concentrations of PM2.5 and PM10 were 17% 693 
and 41% lower than the observed values, respectively, with a low correlation (R < 0.3). The 694 
simulated dust storm on 24 April was a mild dust event and had a maximum PM10 of ~300 µg 695 
m–3, one-tenth of the observed value. The model underestimates the aerosol 696 
scattering/absorption coefficients and AOD by 40–70%. 697 
 698 
The OIN component accounted for the model bias in PM10 on dusty days. Zhao et al. (2020) 699 
proposed that the GOCART scheme reproduced dust emission fluxes under weak wind 700 
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erosion conditions but underestimated the emissions in conditions of strong wind erosion. We 701 
did not assimilate meteorology. The model bias in the surface wind could introduce an error 702 
in dust emission and a bias in the number of dust particles entering the city. In the non-dust 703 
days with the PM10 lower than the 25th percentile PM10 in April, the model PM2.5 on average 704 
accounted for 60% of the observed data levels. The PM2.5 low bias could be due to the lack of 705 
SOA chemistry in our experiments and the low emission bias in the residential sector, a major 706 
source of anthropogenic emissions for PM2.5, BC, and OC in the developing western area. The 707 
residential sector accounts for 36–82% of the primary particle emissions, according to the 708 
MEIC emission inventory (Li et al., 2017), and is the primary source of uncertainty in 709 
anthropogenic emissions inventories in China. 710 
 711 

Figure 5 
 712 
3.2 Assimilating PM2.5 and PM10 Concentrations 713 
Simultaneous assimilation of the observed PMx (DA_PMx) improved both the fine and 714 
coarse particle concentrations, with a substantial increase in the third and fourth particle sizes 715 
of the OIN composition (Figure 8f). The analyzed monthly mean PM10 increased to 329.3 µg 716 
m–3, with a high correlation of 0.99. The analyzed monthly mean PM2.5 was improved to 89.3 717 
µg m–3, although it was still lower than the observed levels, with a high correlation of 0.89. 718 
The low bias in PM2.5 and the high bias in PM10 in the analyses were mainly in the dust storm 719 
on 24–25 April (Figure 6a, d). 720 
 721 
Applying the inter-size bin correlation length caused the interlinked analyses of PM2.5 and 722 
PM10. In the desert area, the coarse and fine dust is readily affected by BEC's magnitude of 723 
the fourth size-bin OIN (oin_a04). We performed a few sensitivity tests decreasing the BEC 724 
of oin_a04 by 10% each time until the BEC was 30% of its original value. The magnitude of 725 
30% of oin_a04 was comparable to the magnitude of the third size-bin (oin_a03) OIN’s 726 
background error. As shown in Table S3, because the oin_a04’s BEC reduction relaxes the 727 
constraint on the coarse particle, the PM10 bias becomes more negative along with the 728 
decrease in on_a04’s BEC. The PM2.5 bias meanwhile becomes more positive. 729 
Correspondingly, the ratio of PM2.5 to PM10 was increased to 0.33 with 30% of oin_a04’s 730 
BEC, higher than the observed value of 0.28. According to these experiments, the original 731 
BEC of oin_a04 is a reasonable tradeoff. The inter-size bin correlation length tunes the cross 732 
size-bin modifications and also affects the analyses of PM2.5 and PM10. The experiment's 733 
correlation length is a little bit arbitrary, but we found that our DA analyses were not very 734 
sensitive to the inter-size bin correlation length. 735 
 736 
According to our BEC modeling strategy, the DA system preferentially modified the coarse 737 
particle concentrations because of the coarse particles’ high background model error. 738 
Intuitionally, our modification that mainly focused on the highest concentration of coarse 739 
particles was reasonable. It decreased the model biases by raising the heaviest loading 740 
aerosols. As a result, the ratio of PM2.5 to PM10 decreased from 0.39 in the background to 0.27 741 
in DA_PMx, approaching the observed ratio of 0.28. Such improvement was consistent with 742 
the correction required to the model desert dust in literature. Kok et al. (2011) found that 743 
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regional and global circulation models underestimate the fraction of emitted coast dust (>~5 744 
µm), overestimates the fraction of fine dust (<2µm diameter). Adebiyi and Kok (2020) 745 
claimed that too rapid deposition of coarse dust out of the atmosphere accounts for the 746 
missing coarse dust in models. According to Kashi’s AOD between 440 nm and 1020 nm, the 747 
observed Ångström exponent (AE) was 0.18, while the background value was 0.54 (Table 3), 748 
showing too many fine particles in the background field. DA_PMx reduced the AE value to 749 
0.30, a little improvement but not sufficient. 750 
 751 
As the particle concentration increased, the 635 nm aerosol scattering coefficient in DA_PMx 752 
moderately increased to 170.4 Mm–1, still lower than the observed level of 231.5 Mm–1, with a 753 
high correlation of 0.89. The scattering AE was 1.32 in the background and decreased to 0.96 754 
(Table 3), indicating a more reasonable wavelength dependence of the coarse particles’ 755 
scattering in the analysis. The analyzed 660 nm absorption coefficient had a small 756 
improvement, which was 15.8 Mm–1, 67% lower than observed levels, with a correlation of 757 
0.42. There was no improvement in absorption AE, which increased to 1.84 in DA_PMx, far 758 
higher than the observation value of 1.65. The analyzed 870 nm AOD showed a monthly 759 
mean value of 0.38 in DA_PMx, 42% lower than observed levels, with a low correlation of 760 
0.35. 761 
 762 
Figure 9a shows the diurnal concentrations of PM10 in the analyses in April. The observed 763 
PM10 showed a substantial variation at 1800 UTC, the local midnight. This substantial 764 
nocturnal variation was partly owing to the dust storm that started on 24 April and ended the 765 
next day. This midnight variation was also related to a nocturnal low-level jet. Ge et al. 766 
(2016) pointed out a nocturnal low-level jet at the height of 100–400 m, with a wind speed of 767 
4–10 m s–1 throughout the year in the Tarim Basin. They stressed that the low-level jet broke 768 
down in the morning, transporting its momentum toward the surface, and increased dust 769 
emissions. The nocturnal low-level jet increased the possibility of dust particles moving 770 
towards the city at night, causing a high PM10 variation at 1800 UTC. The diurnal changes in 771 
the DA analyses followed the observed levels but had higher mean values. 772 
 773 
3.3 Assimilating AOD 774 
Assimilating AOD (DA_AOD) improved the monthly mean of 870 nm AOD to 0.59, 775 
approaching the observed value of 0.66, with a high correlation of 0.98 (Figure 6h). The 776 
monthly mean PM2.5 was improved to 92.6 µg m–3, quite close to the observed level of 91 µg 777 
m–3, but the analyzed PM10 was 541.7 µg m–3, 68% higher than the observed value. The DA 778 
system improved the AOD at the price of deteriorating the data quality of surface coarse 779 
particle concentrations. Such surface particle overestimations have been reported in previous 780 
studies (Liu et al., 2011; Ma et al., 2020; Saide et al., 2020). As a result, the ratio of PM2.5 to 781 
PM10 reduced to 0.17 in DA_AOD, which was too far compared with the observed ratio of 782 
0.28. The overestimation of aerosol mass concentration also inclines to raise 783 
scattering/absorption coefficients. The analyzed 635 nm scattering coefficient in DA_AOD 784 
increased to 222.6 Mm–1, slightly lower than the observed value. The analyzed 660 nm 785 
absorption coefficient slightly increased to 17.0 Mm–1, 64% lower than the observed value. 786 
 787 
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The scattering and absorption AE values in DA_AOD had the responses as those in 788 
DA_PMx. As shown in Table 3, the scattering AE decreased to 0.44 in DA_AOD, which was 789 
slightly better than the AE value of 0.96 in DA_PMx. On the contrary, the absorption AE 790 
increased to 1.97 in DA_AOD, far deviating from the observed value. The analysis fit to the 791 
aerosol scattering overwhelmed the fit to the aerosol absorption. The AE based on AOD was 792 
reduced to –0.01 in DA_AOD, in line with the decrease in DA_PMx, but the reduction in 793 
DA_AOD was much lower than the observation value of 0.18. 794 
 795 
Table 4 shows the ratios of the AOD and aerosol scattering/absorption coefficients to the 796 
surface PM10 concentrations. The ratio of AOD to PM10 in the background model result was 797 
one-third of the observed levels. The observed mass scattering coefficient (Esca/PM10) was 798 
1.05 Mm–1 µg–1 m3, while the background value was only 0.65 Mm–1 µg–1 m3. DA_AOD 799 
did not eliminate the low bias but lowered the ratio to 0.51 Mm–1 µg–1 m3. The same thing 800 
occurred for Eabs/PM10, which was 0.09 in the background and 0.05 in DA_AOD, much 801 
lower than the observed value of 0.25. Figure 10 shows these mean ratios at the other 802 
wavelengths. The low bias in AOD/PM10 was comparable at each wavelength with a slightly 803 
stronger low bias in short wavelengths (Figure 10a). The ratios’ low biases indicated the low 804 
scattering and absorption efficiencies, and the DA system overestimated the PM10 to fit the 805 
observed AOD data. 806 
 807 
We computed the surface single scattering albedo (SSAsrf) with the 525 nm scattering 808 
coefficient and 520 nm absorption coefficient. We did not use the Ångström exponent to 809 
interpolate the scattering/absorption coefficients to a similar wavelength because the AE itself 810 
had a large model bias even after DA (Table 3). The observed SSAsrf value was 0.78, 811 
indicating an emphatic absorption particle, probably due to the mixture of anthropogenic 812 
black carbon and natural desert dust in the local air. The model background SSAsrf was 0.86. 813 
The DA analyses gave even higher SSAsrf (0.88 to 0.9). 814 
 815 
The low bias in mass scattering/absorption efficiency is related to the aerosol optical module 816 
based on Mie theory in WRF-Chem. First, the simulations used four-size bin particle 817 
segregation. This coarse size representation aggregated many aerosols in the accumulation 818 
mode (Figure 8f). Because small particles have a strong light attenuation capability, according 819 
to the Mie theory, too many coarse particles would not effectively increase the AOD. Saide et 820 
al. (2020) linked the aerosol optics to the size bin representation (from 4 to 16 bins) for hazes 821 
in South Korea. They showed that WRF-Chem underestimated the dry aerosol extinction, and 822 
the underestimation could be relieved when using a finer size bin than four. Okada and Kai 823 
(2004) found that the dust particle radius in the Taklamakan Desert was in the range of 0.1–4 824 
µm, indicating the dominant fine-mode particles in the desert. 825 
 826 
Second, the dust particles are irregular in shape (Okada and Kai, 2004), while the spherical 827 
particle is a common assumption for the aerosol optics in the Mie theory in current models, 828 
which is an essential source of uncertainty in the forward operator of WRF-Chem when the 829 
assumption of spherical particles for dust fails. The irregular morphology has a significant 830 
influence on the dust simulation. Okada et al. (2001) found that the aspect ratio (the ratio of 831 
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the longest dimension to its orthogonal width) of the mineral dust particles (0.1-6 µm) in 832 
China's arid regions exhibited a median of 1.4. Dubovik et al. (2006) suggested the aspect 833 
ratio of ~1.5 and higher in desert dust plumes. Kok et al. (2017) found that the dust’ sphericity 834 
assumption underestimated dust extinction efficiency by ~20–60% for the dust particle larger 835 
than 1µm. Tian et al. (2020) found that using a dust ellipsoid model could increase the 836 
concentration of coarse dust particle (5-10 µm) by ~5% in eastern china and ~10% in the 837 
Taklimakan area because of the decrease in gravitational settling, comparing with the 838 
simulations with dust sphericity model. Nevertheless, the aspect ratio of the spheroid dust is 839 
uncertain. Even after applying the spheroidal approximation, Soorbas et al. (2015) found that 840 
the model underestimated 550 nm aerosol scattering and backscattering values by 49% and 841 
11% because of the uncertainties in particle’s axial ratio, complex refractive index, and the 842 
particle size distribution. To date, the assumption of spherical particles has been widespread 843 
in models (including WRF-Chem) for computational efficiency. The impact of dust 844 
morphology on DA deserves further investigation. 845 
 846 
To reduce the overestimate in PMx concentrations, we set the gridded standard deviation in 847 
place of the latitude-binning standard deviation, as discussed in Section 2.3. Figure 11 shows 848 
the analyzed vertical profiles of PMx concentrations. Higher PM10 concentrations were shown 849 
in the low atmosphere than at the surface for the assimilation experiments. These vertical 850 
error profiles decreased the surface PM10 particles and increased the PM2.5/PM10 ratio. The 851 
BEC tuning was not sufficient to increase the mass extinction efficiency to the observed 852 
value. The mass extinction efficiency in the analysis was almost equivalent to the background 853 
value (Table 4). Finer aerosol size representation and a better advanced aerosol optical 854 
calculation for dust could be considered solutions. 855 
 856 
Assimilating the AOD seems to increase the diurnal variation in the DA analyses, but this 857 
variation was not conclusive since different amounts of AOD data for DA at 0000, 0600, and 858 
1200 UTC. The AOD data were not always available as the data quality control (i.e., cloud 859 
screening). There was a higher increase in the concentration at noon (0600 UTC) (Figure 9b), 860 
corresponding to a few high AOD during mild dust episodes at that hour. The DA system had 861 
to raise the PM10 to fit the observed high AOD values. Because the CE318 AOD was only 862 
available in the daytime, no DA analysis was performed at 1800 UTC. Also, due to the 863 
limited AOD data, assimilating AOD did not substantially increase the correlation of PMx. 864 
The analyzed PM2.5 and PM10 still had low correlations with the observed levels 865 
(R=0.31~0.35). 866 
 867 
3.4 Assimilating Aerosol Scattering Coefficient 868 
Assimilating the aerosol scattering coefficient (DA_Esca) yielded overall analyses similar to 869 
the phenomenon in DA_AOD. The analyzed 635 nm scattering coefficient (192.1 Mm–1) was 870 
lower than the observation (231.5 Mm–1), with a high correlation of 0.97. The low biases were 871 
smaller at short wavelengths (Figure 10b). The wavelength-dependent biases indicated that 872 
the current DA system cannot eliminate the bias at each wavelength simultaneously. The 873 
analyzed monthly mean AOD was 0.53, better than the AOD of 0.38 when assimilating PMx. 874 
However, the surface particle concentrations were overestimated (i.e., positive biases by 14% 875 
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for PM2.5 and 37% for PM10), with a substantial increase in the coarse particle of OIN. 876 
Overestimations appeared during a few mild dust episodes (Figure 7d). It indicated that WRF-877 
Chem underestimated the dust scattering efficiency, in accordance with the low bias in the 878 
ratio of the scattering coefficient to PM10 (0.52 Mm–1 µg–1 m3; Table 4). Thus, the DA 879 
system overfitted the PMx concentration to approach the observed scattering coefficient. The 880 
diurnal PM10 in the analysis was similar to the assimilation of PMx, showing a maximum 881 
improvement and a robust nocturnal variation at 1800 UTC (Figure 9c). Assimilating the 882 
scattering coefficient failed to improve the absorption coefficient. The monthly mean 883 
absorption coefficient was 16.5 Mm–1, 65% lower than the observed value. The AE responses 884 
in DA_Esca followed those in DA_AOD. The AE values were overfitted (–0.15) for AOD, 885 
slightly improved (0.19) for the scattering coefficient, and got a worse larger (1.95) for 886 
absorption coefficient. 887 
 888 
3.5 Assimilating Aerosol Absorption Coefficient 889 
In contrast to the above results, assimilating the absorption coefficient (DA_Eabs) 890 
deteriorated all the analyses other than the absorption coefficient. The analyses showed 891 
substantial daily variations, and strong positive biases appeared in the dust episodes (Figure 892 
7). The PM2.5 was overestimated by a factor of three, and the PM10 was overestimated by a 893 
factor of four. The increases occurred each hour (Figure 9d). Because of the constant ratio 894 
between mass and number concentration, the particle number concentration increased. As a 895 
result, the aerosol scattering coefficient was overfitted to 612.2 Mm–1, higher than the 896 
observed levels by a factor of three. The monthly mean AOD improbably rose to 1.73. 897 
Nevertheless, the absorption coefficient (40 Mm–1) was improved to the observed level (47.4 898 
Mm–1). The AE responses were similar to the results in DA_AOD, showing an overfitted (–899 
0.01) for AOD, a little better value for the scattering (0.48), and a worse larger for the 900 
absorption (2.01). 901 
 902 
Improving the absorption coefficient at the cost of PM10 overestimation indicates the model 903 
biases in the representation of the particle mixture and the other absorbing particles (e.g., 904 
black carbon, brown carbon, and aged dust). The leading absorption aerosol in WRF-Chem is 905 
BC, which had the maximum absorption and hence the maximum DA modification in the 906 
second size (0.156–0.625 μm; Figure 8e). Because the BC had a small background 907 
concentration, the BC showed a small DA improvement (<1.5 µg m–3) and did not largely 908 
enhance the particle absorption. Meanwhile, the coarse dust particle concentration was 909 
primarily increased but did not have a strong absorption as BC. As a result, the model lowered 910 
the absorption coefficient's ratio to PM10 by order of magnitude (0.05; Table 4). Because of 911 
the observed absorption coefficient constraint, the DA system dramatically overestimated the 912 
particle concentrations and induced too much higher aerosol scattering coefficient and AOD. 913 
The overestimated PM10 lowered the mass scattering and absorption efficiencies. The mass 914 
absorption efficiency was much lower at a short wavelength (Figure 10c), opposing the lower 915 
bias at a long-wavelength for the mass scattering efficiency (Figure 10b). The low biases were 916 
dependent on the wavelength, indicating an elaborate tuning that simultaneously eliminates 917 
the wavelength-dependent bias. It requires the DA system, for example, to add aerosol 918 
number concentration as an additional control variable and specify complex refractive index 919 
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at each wavelength more precisely. The WRF-Chem aerosol simulation uses a high number of 920 
size bin representation is also helpful. 921 
 922 
As the strong positive biases in PMx were concerned, the scattering coefficient's 923 
overestimation was higher than that of the absorption coefficient in DA_Eabs (Table 2). As a 924 
result, DA_Eabs gave the highest SSArf (0.9; Table 3) in all DA experiments, opposite to our 925 
expectation that the assimilation of absorption coefficient should decrease the positive bias in 926 
SSA. 927 
 928 
To understand the DA_Eabs’s failure, we performed a few sensitivity experiments by 929 
changing the imaginary part of the dust refractive index on 1200UTC on April 9. The dust’s 930 
imaginary part that we set in the experiments covers the retrieved value range of imaginary 931 
index for typical desert dust as shown in Di Biagio et al. (2019). The results are presented in 932 
the supplementary table S4a and S4b. The sensitivity experiments show that a high imaginary 933 
part of the dust refractive index decreases the aerosol absorption coefficient (Table S4b). This 934 
paradox is due to the BC’s reduction. Specifically, a high imaginary part increases coarse 935 
dust's absorption efficiency and decreases the coarse dust number concentration (num_a04; 936 
Table S4a). This reduction led to less fine aerosol number concentrations (e.g., num_a02) 937 
because of the inter-size bin correlation. BC is abundant in the second and third size bins, and 938 
its imaginary part of the refractive index is two orders of magnitude higher than dust. Less BC 939 
caused a weak absorption coefficient. On the contrary, the low dust imaginary part would not 940 
largely increase dust numbers in the coarse size bin because the DA system also attempts to 941 
increase BC in the fine particles to enhance the absorption coefficient. In an extreme case 942 
with zero value of imaginary part of dust, the improvement of absorption coefficient 943 
exclusively relies on BC; the num_a02 is increased by order of magnitude (Table S4a), and 944 
660 nm Eabs rose to 92.5 Mm–1 (Table S4b), much higher than the observed level. 945 
 946 
At Kashi, BC has a low background concentration and low background error. The innovation 947 
of BC was limited. Thus, tuning the imaginary part of dust’s complex refractive index would 948 
not significantly change the SSAsrf value (0.89 to 0.92). Excluding the contribution from OIN 949 
in PM10, the scattering coefficient was associated with sulfate. The sulfate’s background error 950 
was higher than the BC’s by order of magnitude. The DA system prioritized sulfate 951 
modification even when assimilating absorption coefficient, resulting in a smaller BC mass 952 
fraction in PM10 (Figure 12f) and a high SSAsrf of 0.90. 953 
 954 
We did another set of sensitivity experiments by increasing the original BC’s BEC per size 955 
bin. As shown in the supplementary Table S5, increasing the BC’s BECs would not much 956 
deteriorate the absorption coefficient and significantly decrease the positive biases in PMx, 957 
AOD, and scattering coefficient; the SSAsrf approached the observation. Increasing BC’s 958 
BECs by a factor of seven (DA_Eabs_BC*7) shows the best analyses. This experiment 959 
suppressed the positive biases without decreasing the absorption coefficient's accuracy 960 
(Figure 7), and the BC mass fraction increased (Figure 12g). The absorption AE decreased to 961 
1.41 (Table 3). Although the decrease was small, this change was opposite to the increase in 962 
the absorption AE in the other DA experiments. Nevertheless, the disadvantage of the 963 
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enlargement of BC’BEC is noticeable. The simultaneous assimilation of scattering and 964 
absorption coefficient is not convergent as well as before. After four outer loops and each 965 
with 50 inner iterations, the analyzed absorption coefficient in DA_Eabs_BC*7 was still 966 
higher than the observed value by 47% (Figure S1j). These results indicate a low bias in BC’s 967 
background concentration that violates the prerequisite unbiased condition for the control 968 
variable in Eq (1), and this background bias is too large to be consumed in BEC. 969 
 970 
3.6 Assimilating Multi-source Observations 971 
Assimilating an individual observation improves the corresponding model parameter (i.e., 972 
PM2.5, PM10, Esca, Eabs, and AOD) but may worsen other parameters. The reasons for the 973 
inconsistent improvements are relevant to the aerosol model itself. These are: (1) the model 974 
parameters have opposite signs in biases (e.g., one model parameter has a positive bias while 975 
another has a negative bias); (2) the model biases have vast differences in magnitude (e.g., a 976 
good fit of a parameter may lead to another’s overfit) and the different biases in magnitude 977 
cannot be reconciled because the forward operator is inaccurate to represent the linkage 978 
between aerosol mass and aerosol optics (e.g., lower particle mass extinction efficiency). 979 
 980 
In our case, simultaneous assimilation of the scattering and absorption coefficients 981 
(DA_Esca_Eabs) resulted in the analyses when assimilating the scattering coefficient alone 982 
(DA_Esca), and the inferior analysis in DA_Eabs vanished. This was because incorporating 983 
the scattering coefficient constrained the aerosol number concentrations. DA_PMxAOD 984 
substantially improved the AE for AOD, with an analyzed value of 0.17, consistent with the 985 
observed value of 0.18 (Table 3). The scattering AE was somewhat improved (0.79), though it 986 
was still far from the observed value of –0.43. The absorption AE (1.89) was worse than the 987 
background (1.77), far deviating from the observed value of 1.65. Among the DA 988 
experiments, simultaneous assimilation of PMx and AOD (DA_PMxAOD) gave the best DA 989 
results, in which all the analyses except the absorption coefficient were not significantly 990 
different in the month mean values from the observations. Simultaneous assimilation of all 991 
observations (DA_PMx_Esca_Eabs_AOD) did not substantially improve the analyses 992 
compared with DA_PMxAOD because the surface coefficients and AOD had overlapped 993 
information of the light attenuation. A redundant information source did not introduce extra 994 
constraints on the DA system. 995 
 996 

Table 3, 4; Figure 6, 7, 8, 9, 10 
 997 
3.7 Vertical Profiles of Aerosol Concentrations 998 
Figure 11 shows the vertical concentration profiles of PM2.5 and PM10. The DA system 999 
increased the aerosol concentrations up to a height of 4 km, consistent with previous studies 1000 
on the Taklamakan Desert. Meng et al. (2019) simulated a deep dust layer thickness in spring, 1001 
with a 3–5 km depth. Ge et al. (2014) analyzed the Cloud-Aerosol Lidar Orthogonal 1002 
Polarization data in 2006–2012 in the desert. They showed that dust could be lifted to 5 km 1003 
above the Tarim Basin and even higher along the northern slope of the Tibetan Plateau. 1004 
Among our DA experiments, the vertical PM10 concentration increased quickly in the lowest 1005 
three model layers and maintained high values at heights of less than 3 km. This vertical 1006 
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profile corresponded to the background vertical error profile, reflecting the deep dust 1007 
transporting layer. The PM2.5 vertical profiles showed a rapid reduction with an increase in 1008 
altitude. The figure clearly shows that DA_PMx improved the PM2.5 and PM10 better, whereas 1009 
DA_AOD preferentially adjusted the coarse particles and overestimated the PM10. Also 1010 
shown in the figure are the vertical profiles normalized to their own respective surface 1011 
particulate concentrations. The assimilations added a larger fraction of the mass in these 1012 
layers and adjusted the shapes of the PM10 profiles within 3 km above the ground (Figure 1013 
11d). 1014 
 1015 

Figure 11 
 1016 
4. Discussions 1017 
4.1 DA Impact on Aerosol Chemical Composition 1018 
Due to the control variable design, our DA system modifies each aerosol's chemical 1019 
composition according to the BEC values. The PM10 chemical fractions remain close to their 1020 
background values (Figure 12). As discussed in section 3.5, the assimilation of the aerosol 1021 
absorption coefficient alone (DA_Eabs) increased the sulfate fraction. Sulfate was the 1022 
predominant anthropogenic aerosol at Kashi and had a high background error value. The DA 1023 
system prioritized sulfate modification and prevented a rise in the BC fraction in DA_Eabs. 1024 
For the enlarged BC’s BEC in DA_Eabs_BC*7, the BC mass fraction showed the largest 1025 
increase. The magnitude of the background error determines the analyzed aerosol chemical 1026 
fraction. The total aerosol quantities' assimilation cannot eliminate the intrinsic bias in aerosol 1027 
composition. Accurate aerosol chemistry and optical modules are crucial to attaining better 1028 
background aerosol chemical data for DA analysis (Saide et al., 2020). 1029 
 1030 

Figure 12 
 1031 
4.2 DA Impact on Aerosol Direct Radiative Forcing 1032 
Table 5 shows the instantaneous clear-sky ADRF in the background data and the analyses of 1033 
DA_PMx and DA_PMxAOD. The DA effect gradually faded away after restarting the model 1034 
run. Because AOD and the surface particle concentrations had different DA frequencies, we 1035 
focused on the instantaneous radiative forcing values one hour after assimilating AOD data in 1036 
the two DA experiments to ensure that the comparison was based on similar analysis times. 1037 
The immediate data after DA also show the effective DA effects. 1038 
 1039 
Aerosol redistributes the energy between the land and the atmosphere. The atmosphere gains 1040 
more shortwave energy as the dust and black carbon particle absorption; the warming 1041 
atmosphere emits more longwave energy as it absorbs shortwave energy. The change in 1042 
energy budget at the surface is correspondingly the opposite of that in the atmosphere. As 1043 
shown in Table 5, the enhancements in surface cooling forcings were slightly stronger than 1044 
those of atmospheric warming. The difference between the surface forcing and atmospheric 1045 
forcing is the ADRF at the top of the atmosphere (TOA). When assimilating the surface 1046 
particle concentrations, the TOA ADRF enhanced by 21% in the shortwave, 100% in the 1047 
longwave, and 18% in the net forcing values, and when assimilating the AOD, enhanced by 1048 
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34%, 67%, and 32%, respectively. At Kashi, the total net (shortwave plus longwave) clear-1049 
sky ADRF with assimilating surface particles and AOD were –10.4 Wm–2 at the TOA, +20.8 1050 
Wm–2 within the atmosphere, and –31.2 Wm–2 at the surface, and enhanced by 55%, 48%, and 1051 
50% respectively, compared to the background ADRF values.  1052 
 1053 
It is noteworthy that the ADRF estimation remains uncertain even after DA. The AOD 1054 
observation is only sporadically available because of cloud screening in retrieval data. The 1055 
DA experiments cannot eliminate the low bias in AOD in WRF-Chem. The ADRF values in 1056 
the DA experiments are likely to be weaker than the plausible aerosol radiative forcing at 1057 
Kashi. Neither DA experiment lowers SSAsrf to approach the observation. Penner et al. 1058 
(2001) claimed that under average conditions, an SSA less than ~0.85 tends to lead to net 1059 
warming. The observed SSAsrf (0.78) indicates likely aerosol warming forcing at Kashi, 1060 
while WRF-Chem and the DA analyses tend to impose aerosol cooling forcing. The ADRF 1061 
uncertainty is associated with the background aerosols. WRF-Chem simulates aerosol size up 1062 
to 10 µm, whereas larger particles (>10 µm) exhibit substantial absorption relative to 1063 
scattering in the visible wavelength (Kok et al., 2017). Anthropogenic emission inventories 1064 
need an update for the year 2019, reducing the potential low bias in BC concentration. 1065 
Additionally, the revised GSI does not consider the change in particle effective radius per size 1066 
bin when calculating the aerosol number concentration in each outer loop. Low absorption 1067 
cross section raises aerosol number concentration as compensation, increasing aerosol 1068 
scattering coefficient too much. If our tangent operator considered the change in particle 1069 
effective radius per size bin, we could use aerosol mass and number concentration as control 1070 
variables simultaneously. The DA system would have higher flexibility to balance the particle 1071 
radius and number concentration and improve the absorption coefficient. All these need 1072 
further research in the future. 1073 
 1074 
5. Conclusions 1075 
This study described our revised GSI DA system for assimilating observed aerosol data for 1076 
the four-size bin sectional MOSAIC aerosol mechanism in WRF-Chem. The DA system has 1077 
new design tangent linear operators for the multi-wavelength AOD, aerosol scattering, and 1078 
absorption coefficients measured by the sun-sky radiometer, nephelometer, and aethalometer, 1079 
respectively. We examined the DA system for Kashi city in northwestern China by 1080 
assimilating the multi-wavelength aerosol optical measurements gathered by the Dust Aerosol 1081 
Observation–Kashi field campaign of April 2019 and the concurrent hourly measurements of 1082 
surface PM2.5 and PM10 concentrations. 1083 
 1084 
Our DA system includes two main aspects. Firstly, the control variable is the aerosol chemical 1085 
composition per size bin corresponding to the WRF-Chem output data. This design allows 1086 
modifying the composition of each aerosol based on their background error covariances. The 1087 
number of control variables could be reduced by intentionally excluding a few aerosol 1088 
compositions in a specific case if these compositions had low concentrations (e.g., chlorine 1089 
and sodium in this study). Second, the DA system incorporates the observed AOD by 1090 
assimilating the column mean aerosol extinction coefficient. This transfer avoids handling 1091 
sensitivity from light attenuation length to the aerosol mass concentration in the tangent linear 1092 
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operator, which is difficult to be accurately estimated and introduces significant errors in the 1093 
operator. The tangent linear operator for AOD has two variants that can incorporate 1094 
nephelometer and aethalometer measurements at the surface. 1095 
 1096 
The most abundant aerosol at Kashi in April 2019 was dust. The WRF-Chem model captured 1097 
the main dust episodes but underestimated the monthly mean concentrations of PM2.5 and 1098 
PM10 by 17% and 41%, respectively. The model failed to capture the peak concentrations 1099 
from a dust storm on 24 April. The aerosol scattering/absorption coefficients and AOD in the 1100 
background data showed strong low biases and weak correlations with the observed levels. 1101 
The DA systems effectively assimilate the surface particle concentrations, aerosol scattering 1102 
coefficients, and AOD. Some deficiencies in the DA analysis were related to the forward 1103 
model bias in transferring the aerosol mass concentrations to the aerosol optical parameter. 1104 
Simultaneous assimilation of the PM2.5 and PM10 concentrations improved the model aerosol 1105 
concentrations, with significant increases in the coarse particles; meanwhile, the analyzed 1106 
AOD was 42% lower than observed levels. The assimilation of AOD significantly improved 1107 
the AOD but overestimated the surface PM10 concentration by 68%. Assimilating the aerosol 1108 
scattering coefficient improved the scattering coefficient in the analysis but overestimated the 1109 
surface PM10 concentration by 37%. Therefore, it seems that WRF-Chem underestimated the 1110 
aerosol extinction efficiency. As a compensation, the DA system overestimated the aerosol 1111 
concentration to fit the observed optical values, yielding overly high particle concentrations. 1112 
 1113 
A notable problem was the assimilation of the absorption coefficient, which greatly 1114 
overestimated the monthly mean values by a factor of four in PM10. The aerosol absorption 1115 
coefficient was improved but was still 16% lower than observed values. The failure of DA 1116 
analysis when assimilating the absorption coefficient is associated with many factors, 1117 
including the biases of the model in aerosol particle mixture and aged dust, the uncertainties 1118 
in the imaginary part of dust complex refractive index, the uncertain background error of BC, 1119 
and the likely low bias in anthropogenic emissions. The most effective DA is the 1120 
simultaneous assimilation of surface particle concentration and AOD, which provides the best 1121 
overall DA analysis. 1122 
 1123 
Our control variables' design allowed the DA system to adjust the aerosol chemical 1124 
compositions individually. However, the analyzed anthropogenic aerosol chemical fractions 1125 
were almost equivalent to the background chemical fractions. The reason is that the 1126 
hydrophilic aerosols have equivalent or comparable refractive indices and hygroscopic 1127 
parameters in the forward operator; they, therefore, have comparable tangent linear operator 1128 
values when assimilating the aerosol optical data. It may be possible to separate the chemical 1129 
compositions based on their background errors. The model anthropogenic aerosols were low 1130 
at Kashi, probably due to the anthropogenic emissions' low biases. The low background 1131 
concentrations led to low background errors and few increments for all chemical 1132 
compositions. As a result, the chemical fractions of the anthropogenic aerosols remained close 1133 
to their background values. 1134 
 1135 
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When assimilating surface particles and AOD, the instantaneous clear-sky ADRF (shortwave 1136 
plus longwave) at Kashi were –10.4 Wm–2 at the TOA, +20.8 Wm–2 within the atmosphere, 1137 
and –31.2 Wm–2 at the surface, respectively. Since the DA analyses still underestimated the 1138 
AOD value and overestimated SSA, the aerosol radiative forcing values assimilating the 1139 
observations were underestimated in the atmosphere and the surface. 1140 
 1141 
The limitations that necessitate further research include: 1142 

(1) The desired binning strategy should link the circulation flow and particle emission 1143 
sources. A better hybrid DA coupled with the ensemble Kalman filter will be more effective 1144 
for estimating the aerosol background error. 1145 

(2) The observational error could be elaborated further. The PM10 included the 1146 
anthropogenic coarse particles, which should be separated from the dust originating from the 1147 
desert (Jin et al., 2019). We set the observation errors for PMx and AOD to the conventional 1148 
values. The observational errors of the nephelometer and aethalometer were slightly arbitrary 1149 
in this study, necessitating further consideration. 1150 

(3) The anthropogenic aerosols’ background errors are needed to harmonize better to 1151 
assimilate the aerosol absorption coefficient or absorption AOD. 1152 

(4) The DA system was based on four-size bin MOSAIC aerosols, but it can be extended 1153 
to work with eight-size bin MOSAIC aerosols in WRF-Chem. When assimilating aerosol 1154 
optical data, the DA quality is strongly dependent on the forward model. The responses of our 1155 
DA analysis to the bias and uncertainty in the forward aerosol optical model in WRF-Chem 1156 
need further investigation. 1157 
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 1524 
 1525 
Figure 1. The workflow of aerosol DA in the revised GSI system for the sectional 1526 
MOSAIC aerosols in WRF-Chem. The contents in blue are the portions we 1527 
developed. The arrows in gray indicate the workflow of option 2 which was 1528 
performed in this study to assimilate the aerosol scattering/absorption coefficients. 1529 
Abbreviations: so4, sulfate; nh4, ammonium; oc, organic carbon; bc, black carbon; 1530 
oin, other inorganic matter; awc, aerosol water content; num, aerosol number 1531 
concentration; no3, nitrate; cl, chlorine; na, sodium; Esca, aerosol scattering 1532 
coefficient; Eabs, aerosol absorption coefficient. 1533 
  1534 
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 1535 
 1536 
Figure 2. Schematic diagram of the binning strategy for modeling background error 1537 
covariance matrix on (a) the latitude binning data or (b) the gridded data; and the 1538 
vertical profiles of standard deviations (µg kg–1) of the fourth size-bin OIN 1539 
component concentration at 0600UTC over a few mild dust episodes in April 2019 (c) 1540 
on average over the latitude bins, (d) at Kashi city grid and (e) at the Taklimakan 1541 
desert grid (i.e., 1.5 degrees east to the Kashi city). 1542 
  1543 
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  1544 
 1545 
Figure 3. Background error standard deviations at Kashi grid (std, a-f, µg kg–1), 1546 
horizontal correlation length scales (hls, g-l, km), and vertical correlation length 1547 
scales (vls, m-r, km) at 0000 UTC in April 2019 for the sectional sulfate (SO4), 1548 
nitrate (NO3), ammonium (NH4), organic aerosol (OC), black carbon (BC), and other 1549 
inorganic aerosols (OIN, including dust) in the model domain 2. The horizontal and 1550 
vertical correlation length were computed based on the latitude bins with a half degree 1551 
width. 1552 
 1553 
  1554 
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 1555 
 1556 
Figure 4. Topography in China (a) and the model domains with the grid resolution of 1557 
20 km (b) and 5 km (c) in WRF-Chem. 1558 
  1559 
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 1560 
 1561 
Figure 5. Monthly mean PM10 concentration (µg m–3) and the streamlines of the 10-m 1562 
wind (m s–1) in April (a, b) and their daily mean anomalies (c, d) during a dust storm 1563 
on 24 April to the monthly mean values. Only the streamlines at the topographical 1564 
height lower than 2500 meters are shown for clarity. The rectangles in figures (b) and 1565 
(d) denote the fine model domain 2, which was the geographical range in the figures 1566 
(a) and (c). The black points indicate the Kashi city. 1567 
 1568 
 1569 
  1570 
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 1571 
 1572 
Figure 6. Comparison of PM2.5 (µg m–3; a-c), PM10 (µg m–3; d-f), 870 nm AOD (g-i), 1573 
635 nm aerosol scattering coefficient (Esca, Mm–1; j-l), and 660 nm aerosol 1574 
absorption coefficient (Eabs, Mm–1; m-o) in the observation (black solid point), the 1575 
background simulation (orange solid point), and the DA analyses (blue line) when 1576 
assimilating the observed PM2.5 and PM10 (DA_PMx), AOD (DA_AOD), and 1577 
simultaneously assimilating PMx and AOD (DA_PMxAOD) at Kashi in April 2019. 1578 
  1579 
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 1580 
 1581 
Figure 7. Comparison of PM2.5 (µg m–3; a-c), PM10 (µg m–3; d-f), 870 nm AOD (g-i), 1582 
635 nm aerosol scattering coefficient (Esca, Mm–1; j-l), and 660 nm aerosol 1583 
absorption coefficient (Eabs, Mm–1; m-o) in the observation (black solid point), the 1584 
background simulation (orange solid point), and the DA analyses (blue line) when 1585 
assimilating the aerosol scattering coefficient (DA_Esca), aerosol absorption 1586 
coefficient (DA_Eabs), and absorption coefficient with the background error of BC 1587 
enlarged by a factor of 7 (DA_Eabs_BC*7) at Kashi in April 2019. 1588 
  1589 
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 1590 

 1591 

 1592 
Figure 8. Mean aerosol concentrations (µg m–3) per size bin in the background 1593 
(NoDA) and the DA analyses when assimilating each individual observation at Kashi 1594 
in April 2019. 1595 
  1596 
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 1597 
 1598 
Figure 9. Surface PM10 concentrations (µg m–3) in the observation (black), 1599 
background simulation (blue) and the DA analyses (red) at 0000, 0600, 1200, 1800 1600 
UTC in April 2019 when assimilating the observations of (a) PMx, (b) AOD, (c) 1601 
aerosol scattering coefficients (Esca), and (d) aerosol absorption coefficient (Eabs), 1602 
respectively. The DA_AOD had no analysis at 18:00 UTC that was local midnight. 1603 
Kashi is 6 hours ahead of UTC (UTC+6). 1604 
  1605 
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 1606 
 1607 
Figure 10. Mean biases in the ratio of AOD to PM10, the mass scattering efficiency 1608 
(Esca/PM10, Mm–1 µg–1 m3), and the mass absorbing efficiency (Eabs/PM10, Mm–1 1609 
µg–1 m3) at Kashi in April 2019. 1610 
  1611 
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 1612 

 1613 
 1614 
Figure 11. Mean vertical profiles of (a) PM2.5 (µg m–3), (b) PM10 (µg m–3) and their 1615 
normalized concentration respect to their own surface concentrations (c, d) at Kashi in 1616 
April 2019. 1617 
 1618 
  1619 
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 1620 

 1621 
 1622 

Figure 12. Mean mass percentage (%) of chemical composition in PM10 excluding the 1623 
OIN component at Kashi in April 2019. 1624 
 1625 
  1626 
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Table 1. The observed surface particle concentration, aerosol scattering coefficient 1627 
(Esca), aerosol absorption coefficient (Eabs), and AOD used for the DA analysis and 1628 
their observational errors. 1629 
 1630 
 Data time range Wavelength (nm) Observation error (e) 
PM2.5 & 
PM10 

(µg m–3) 

Apr 1 – Apr 30  
𝑒 = #𝑒!" + 𝑒"" 

𝑒! = 1.5 + 0.0075 ∙ 𝑃𝑀# 

𝑒" = 0.5 ∙ 𝑒! ∙ -
𝑑

3000 

d: grid spacing in meter 
AOD Mar 29 – Apr 25 440, 675, 870, 1020 e = 0.01/height×108 
Esca (Mm–1) Apr 2 – Apr 30 450, 525, 635 e = 10 
Eabs (Mm–1) Apr 2 – Apr 30 470, 520, 660 e = 10 

 1631 
  1632 
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Table 2. The mean values of the PM2.5 and PM10 concentrations (µg m–3), 635 nm 1633 
aerosol scattering coefficient (Esca, Mm–1), 660 nm aerosol absorption coefficient 1634 
(Eabs, Mm–1) and 870 nm AOD in the background and analysis data and their 1635 
correlation coefficients (in brackets) with the observations at 0000, 0600, 1200, 1800 1636 
UTC at Kashi in April 2019. The underlined number in bold denotes the mean value 1637 
that is not significantly different from the observation, and the dashed line denotes an 1638 
insignificant correlation. Both the statistical tests of the mean difference and 1639 
correlation are conducted at the significance level of 0.05. 1640 
 1641 

DA experiment 
PM2.5 

(µg m–3) 
PM10 

(µg m–3) 
870 nm AOD 635nm Esca 

(Mm–1) 
660nm Eabs 

(Mm–1) 
Observation 91.0 323.2 0.66 231.5 47.4 
Background 75.3 (0.28) 190.7 (0.24) 0.24 (0.60) 123.3 (0.36) 12.9 (0.34) 
      
DA_PMx 89.3 (0.89) 329.3 (0.99) 0.38 (0.35) 170.4 (0.89) 15.8 (0.42) 
DA_AOD 92.6 (0.35) 541.7 (0.31) 0.59 (0.98) 222.6 (0.61) 17.0 (0.26) 
DA_PMxAOD 103.6 (0.61) 372.7 (0.86) 0.59 (0.98) 192.2 (0.86) 16.7 (0.45) 
      
DA_Esca 103.6 (0.67) 442.1 (0.93) 0.53 (0.62) 192.1 (0.97) 16.5 (0.47) 
DA_Eabs 298.8 (0.36) 1281.2 (0.34) 1.73 (----) 612.2 (0.54) 40.0 (0.98) 
DA_Eabs_BC*7 106.7 (0.48) 463.7 (0.45) 0.75 (0.50) 226.2 (0.52) 51.9 (0.90) 

 1642 
  1643 
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Table 3. The Ångström exponent values based on the AOD (440 nm and 1020 nm; 1644 
AEaod), aerosol scattering coefficients (450 nm and 635 nm; AEsca), and aerosol 1645 
absorption coefficients (470 nm and 660 nm; AEabs), and the surface single scattering 1646 
albedo (SSAsrf=Esca525/(Esca525+Eabs520)) at Kashi in April 2019 1647 
 1648 
 440-1020 nm 

AEaod 
450-635 nm 

AEsca 
470-660 nm 

AEabs 
SSAsrf 

Observation 0.18 –0.43 1.65 0.78 
Background 0.54 1.32 1.77 0.86 
     
DA_PMx 0.30 0.96 1.84 0.88 
DA_AOD –0.01 0.44 1.97 0.88 
DA_PMx_AOD 0.17 0.79 1.89 0.89 
     
DA_Esca –0.15 0.19 1.95 0.88 
DA_Eabs –0.01 0.48 2.01 0.90 
DA_Eabs_BC*7 0.33 0.89 1.41 0.82 
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Table 4. The ratios of AOD, aerosol scattering/absorption coefficient to PM10 1651 
concentration (mean ± standard deviation) in the observations, the model background 1652 
data, and the DA analyses. 1653 
 1654 
 Ratios of 870 nm 

AOD to PM10 
(µg–1 m3) 

Ratios of 635 nm 
aerosol scattering 
coefficient (Esca) 

to PM10 
(Mm–1 µg–1 m3) 

Ratios of 660 nm 
aerosol absorption 
coefficient (Eabs) 

to PM10 
(Mm–1 µg–1 m3) 

Observation 0.0030±0.0020 1.05±0.57 0.25±0.22 
Background 0.0013±0.0009 0.65±0.18 0.09±0.05 
    
DA_PMx 0.0013±0.0008 0.61±0.22 0.07±0.05 
DA_AOD 0.0013±0.0011 0.51±0.24 0.05±0.04 
DA_PMxAOD 0.0015±0.0010 0.61±0.24 0.06±0.05 
    
DA_Esca 0.0015±0.0010 0.52±0.21 0.05±0.05 
DA_Eabs 0.0015±0.0010 0.58±0.37 0.05±0.06 
DA_Eabs_BC*7 0.0023±0.0085 0.74±0.51 0.30±0.48 

 1655 
  1656 



 54 

Table 5. The mean instantaneous clear-sky shortwave (SW), longwave (LW) and the 1657 
net (SW+LW) direct radiative forcing (Wm–2) at the top of atmosphere (TOA), in the 1658 
atmosphere (ATM) and at the surface (SRF) in the background and the simulations 1659 
restarted from the analyses of DA_PMx and DA_PMx_AOD at one hour after the 1660 
analysis times of AOD at Kashi in April 2019. 1661 
 1662 
 SW (Wm–2) LW (Wm–2) SW+LW (Wm–2) 
 TOA ATM SRF TOA ATM SRF TOA ATM SRF 
Background -7.0 +17.0 -24.0 +0.3 -2.9 +3.2 -6.7 +14.1 -20.8 
DA_PMx -8.5 +22.7 -31.2 +0.6 -6.3 +6.9 -7.9 +16.4 -24.3 
DA_PMxAOD -11.4 +28.6 -40.0 +1.0 -7.8 +8.8 -10.4 +20.8 -31.2 

 1663 
 1664 


