

1 **Improving the Sectional MOSAIC Aerosols of WRF-Chem with the Revised
2 Gridpoint Statistical Interpolation System and Multi-wavelength Aerosol Optical
3 Measurements: DAO-K Experiment 2019 at Kashi, near the Taklamakan Desert,
4 northwestern China**

5 Wenyuan Chang¹, Ying Zhang², Zhengqiang Li², Jie Chen³, Kaitao Li²

6
7
8
9 ¹ State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry
10 (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,
11 China.

12
13 ² State Environment Protection Key Laboratory of Satellite Remote Sensing, Aerospace
14 Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
15

16 ³ National Meteorological Information Center, China Meteorological Administration, Beijing
17 100081, China
18
19
20
21
22

23 Corresponding authors:
24 Wenyuan Chang (changwy@mail.iap.ac.cn)
25 Zhengqiang Li (lizq@radi.ac.cn)
26
27

28 **Abstract**

29 The Gridpoint Statistical Interpolation data assimilation (DA) system was developed for the
30 four-size bin sectional Model for Simulating Aerosol Interactions and Chemistry (MOSAIC)
31 aerosol mechanism in the Weather Research and Forecasting-Chemistry (WRF-Chem) model.
32 The forward and tangent linear operators for the aerosol optical depth (AOD) analysis were
33 derived from WRF-Chem aerosol optical code. We applied three-dimensional variational DA
34 to assimilate the multi-wavelength AOD, ambient aerosol scattering coefficient, and aerosol
35 absorption coefficient, measured by the sun-sky photometer, nephelometer, and aethalometer,
36 respectively. These were undertaken during a dust observation field campaign at Kashi in
37 northwestern China in April 2019. The results showed that the DA analyses decreased the
38 model aerosols' low biases; however, it had some deficiencies. Assimilating the surface
39 particle concentration increased the coarse particles in the dust episodes, but AOD, and the
40 coefficients for aerosol scattering and absorption, were still lower than those observed.
41 Assimilating aerosol scattering coefficient separately from AOD improved the two optical
42 quantities. However, it caused an overestimation of the particle concentrations at the surface.
43 Assimilating the aerosol absorption coefficient yielded the highest positive bias in the surface
44 particle concentration, aerosol scattering coefficient, and AOD. The positive biases in the DA
45 analysis were caused by the forward operator underestimating aerosol mass scattering and
46 absorption efficiency. As a compensation, the DA system increased particle concentrations
47 excessively to fit the observed optical values. The best overall improvements were obtained
48 from the simultaneous assimilation of the surface particle concentration and AOD. The
49 assimilation did not substantially change the aerosol chemical fractions. After DA, the clear-
50 sky aerosol radiative forcing at Kashi was -10.4 Wm^{-2} at the top of the atmosphere, which
51 was 55% higher than the radiative forcing value before DA.

52 **1. Introduction**

53 Data assimilation (DA) blends the information from observations with *a priori* background
54 fields from deterministic models to obtain an optimal analysis (Wang et al., 2001; Bannister,
55 2017). With lagged emission inventories and unsatisfactory model chemistry mechanisms,
56 there are notable discrepancies between model aerosols and observed levels (He et al., 2017;
57 Chen L. et al., 2019). The DA technology incorporates aerosol measurements into the models
58 to optimize emissions (Peng et al., 2017; Ma et al., 2019) and cyclically updates the
59 background fields in forecasts. This technology effectively improves the air quality forecasts
60 in China (Bao et al., 2019; Cheng et al., 2019; Feng et al., 2018; Hong et al., 2020; Liu et al.,
61 2011; Pang et al., 2018; Peng et al., 2018; Xia et al., 2019a, 2019b).

62
63 Variational DA minimizes the distant scalar function that measures the misfit between model
64 states and a set of observations in each assimilation window. An effective variational DA
65 requires appropriate tangent linear and adjoint operators, which describe the gradient or
66 sensitivity of the observed parameter to the control variable (Wang et al., 2001; Bannister
67 2017). The operator is highly dependent on the types of assimilated observations and the
68 selection of control variables; it is also sometimes dependent on the aerosol mechanism. For
69 PM_{2.5} (particulate matter with a dynamic radius less than 2.5 μm) DA, the tangent linear
70 operator is the ratio of the PM_{2.5} concentration to each aerosol composition (Pagowski et al.,
71 2010). For the aerosol optical depth (AOD) DA, the operator is generated through Mie theory
72 (Liu et al., 2011; Saide et al., 2013). With the development of aerosol mechanisms and the
73 growing body of novel aerosol observations from ground-based networks and satellites,
74 appropriate tangent linear and adjoint operators are in demand.

75
76 The community gridpoint statistical interpolation (GSI) system (Wu et al., 2002; Purser et al.,
77 2003a, 2003b) is often used to modify regional aerosol simulations with three-dimensional
78 variational (3D-Var) DA. The official GSI (version 3.7 in this study) can incorporate
79 observations of surface particulate matter concentration and AOD to constrain the aerosols
80 simulated within the aerosol mechanism of Goddard Chemistry Aerosol Radiation and
81 Transport (GOCART, Liu et al., 2011; Pagowski et al., 2014). The tangent linear operator and
82 adjoint operator for AOD were determined using the Community Radiative Transfer Model
83 (CRTM). The official GSI version incorporated the Moderate Resolution Imaging
84 Spectroradiometer (MODIS) AOD in East Asia (Liu et al., 2011) and revealed the
85 simultaneous DA effects of PM_{2.5} and AOD in the continental United States (Schwartz et al.,
86 2012). This GSI identified DA effects that weakened during the succeeding model's running
87 as the model error grew (Jiang et al., 2013) and assessed the radiative forcing of the aerosols
88 released by wildfires (Chen et al., 2014). This version was also utilized to improve air quality
89 forecasts in China by assimilating a variety of satellite AOD data retrieved from the
90 Geostationary Ocean Color Imager (Pang et al., 2018), Visible Infrared Imaging Radiometer
91 Suite (Pang et al., 2018); Advanced Himawari-8 Imager (Xia et al., 2019a), and the Fengyun-
92 3A/medium-resolution spectral imager (Bao et al., 2019; Xia et al., 2019b).

93
94 The GOCART mechanism cannot simulate nitrate and secondary organic aerosols (SOA), and
95 the GOCART aerosol size distribution uses a bulk assumption for radiative transfer

96 calculation. Strictly speaking, the lack of aerosol components violates the model states' 97 unbiased requirements in the DA system. Lack of size-segregated aerosols may introduce a 98 bias in the calculation of aerosol optics. The official GSI can assimilate the surface particle 99 concentration from the aerosol mechanism apart from GOCART, but its AOD DA is tightly 100 bound with the GOCART aerosols. If one wished to use GSI to assimilate AOD for the other 101 aerosol mechanisms, a compromise solution was to either integrate the map of the speciated 102 aerosols of other mechanisms into that of the GOCART aerosols or use a simple observation 103 operator to convert aerosol chemical mass concentrations to AOD. For example, Tang et al. 104 (2017) used the official GSI to assimilate MODIS AOD with the aerosols from the 105 Community Multi-scale Air Quality Model (CMAQ). They incorporated the map of the 54 106 aerosol components of CMAQ into the five CRTM aerosols and repartitioned each CMAQ 107 aerosol's mass increments according to the ratios of aerosol chemical components in the 108 background field. This repartitioning is called the "ratio approach." Cheng et al. (2019) 109 assimilated the lidar extinction coefficient profiles measured in Beijing to modify the Weather 110 Research and Forecasting-Chemistry (WRF-Chem) Model for Simulating Aerosol 111 Interactions and Chemistry (MOSAIC) aerosols. They used the ratio approach to map eight 112 MOSAIC aerosols based on five GOCART aerosols. This mapping strategy is readily 113 implemented but introduces inconsistent size-segregated aerosol information (e.g., 114 hygroscopicity and extinction efficiency) between the aerosol model and the DA system. 115 Kumar et al. (2019) analyzed the CMAQ aerosols by assimilating MODIS AOD with GSI. 116 Their forward operator converted aerosol chemical composition into AOD based on the well- 117 known IMPROVE aerosol extinction model (Malm and Hand, 2007). The IMPROVE model 118 predicts AOD with a linear combination of aerosol chemical masses, with the hydrophilic 119 particles multiplied by a tuning factor associated with relative humidity. Since building a DA 120 system for a new aerosol mechanism is quite technical, the official GSI for the GOCART 121 aerosols is a primary choice for recent aerosol DA studies (Bao et al., 2019; Xia et al., 2019; 122 Hong et al., 2020).

123 Because of the shortcomings, the official GSI has been extended to cooperate with other 124 aerosol mechanisms in WRF-Chem. The MOSAIC mechanism in WRF-Chem simulates 125 aerosol mass and number concentrations in either four- or eight-size bins. This sectional 126 aerosol mechanism involves nitrate chemistry and can simulate SOA with the volatility basis 127 set scheme. Li et al. (2013) developed a 3D-Var scheme for assimilating the surface PM_{2.5} and 128 speciated aerosol chemical concentrations for the WRF-Chem MOSAIC aerosols. Zang et al. 129 (2016) applied this scheme to incorporate aircraft speciated aerosols in California. They 130 proved that the assimilation of aircraft profile extended the DA benefit to aerosol forecast. 131 Saide et al. (2013) proposed a revised GSI version that performed variational DA for the 132 MOSAIC aerosols. The authors generated the adjoint operator code with the automatic 133 differentiation tool (ADT), TAPENADE v3.6. The ADT used the chain rule of derivative 134 calculus on the AOD source code in WRF-Chem. They assimilated multi-source AOD data 135 with the MOSAIC aerosols over the continental United States and found that incorporating 136 multi-wavelength fine-mode AOD redistributed the aerosols' particulate mass concentration 137 in sizes. Their GSI system also assimilated Korean ground-based and geostationary satellite 138 AOD datasets to improve local aerosol simulations (Saide et al., 2014, 2020). Pang et al. 139

140 (2020) developed the official GSI to work with the Modal Aerosol Dynamics Model for
141 Europe with the Secondary Organic Aerosol Model (MADE/SORGAM) aerosols in WRF-
142 Chem. They used the WRF-Chem AOD code as the forward operator to calculate the essential
143 aerosol optical properties and employed the CRTM adjoint operator. Because aerosols were
144 externally mixed in CRTM, their scheme abandoned the aerosol internal mixture in WRF-
145 Chem but computed the AOD of each aerosol component separately.

146

147 This study provides a solution to improve the GSI 3D-Var DA system's capability for the
148 sectional MOSAIC aerosols in WRF-Chem. We designed the tangent linear operator code for
149 AOD DA based on the WRF-Chem intrinsic aerosol optical subroutine (Fast et al., 2006). The
150 operator code is programmed based on the analytical equations of the tangent linear model for
151 AOD. As our revised GSI does not use the CRTM module, it avoids the problem of needing
152 to eliminate WRF-Chem aerosols characteristics (e.g., aerosol mixture state and size
153 distribution) to meet the CRTM input requirements. The forward and tangent linear operators
154 are coordinated and written in a single subroutine, coupled to the GSI at the place of invoking
155 CRTM for the AOD calculation. In addition to AOD DA, our tangent linear operator has two
156 variants to assimilate the aerosol scattering and absorption coefficients, measured using a
157 nephelometer and aethalometer, respectively.

158

159 This study verifies our revised GSI system's effectiveness by incorporating multi-wavelength
160 aerosol optical observations that were measured during an international field campaign, the
161 Dust Aerosol Observation-Kashi, in April 2019 at Kashi city, neighboring the Taklamakan
162 Desert, northwestern China. This desert is the second largest globally and is the primary
163 source of dust aerosols in East Asia. The dust from the desert affects the nearby Tibetan
164 Plateau (Ge et al., 2014; Jia et al., 2015; Zhao et al., 2020), air quality and climate in East
165 Asia (Huang et al., 2014), and the biogeochemical cycles in the western Pacific Ocean (Calil
166 et al., 2011). A successful DA analysis will help improve the local air quality forecast and
167 enhance our understanding of local dust storms' environmental impacts. The remainder of this
168 paper is organized as follows. Section 2 describes the revised GSI system, the experimental
169 design, and the observed data. Section 3 presents the DA results when assimilating different
170 observations. Section 4 discusses the impact of DA on aerosol chemical composition and
171 aerosol direct radiative forcing. Finally, Section 5 provides the conclusions and limitations
172 that need further research.

173

174 **2. Methodology and Data**

175 **2.1 Forecast Model**

176 The background aerosol fields were simulated using the WRF-Chem model version 4.0 (Grell
177 et al., 2005; Fast et al., 2006). The model configurations included the Purdue Lin
178 microphysics scheme (Chen and Sun, 2002), the unified Noah land surface model (Tewari et
179 al., 2004), the Yonsei University scheme for planetary boundary layer meteorological
180 conditions (Hong et al., 2006), and the rapid radiative transfer model for general circulation
181 models (RRTMG) scheme for shortwave and longwave radiation (Iacono et al., 2008). The
182 gas-phase chemistry was simulated using the carbon bond mechanism (Zaveri and Peters,
183 1999), including aqueous-phase chemistry. The aerosol chemistry was simulated using the

184 MOSAIC mechanism (Zaveri et al., 2008), which simulated sulfate, nitrate, ammonium, black
 185 carbon (BC), organic carbon (OC), sodium, calcium, chloride, carbonate, and other inorganic
 186 matter (OIN, e.g., trace metals and silica). The experiments did not simulate SOA to
 187 accelerate model integration. The influence of ignoring SOA was assumed to be small
 188 because of low anthropogenic and biogenic emissions in the desert's vicinity. The dust
 189 emission was simulated using the GOCART dust scheme (Ginoux et al., 2001; Zhao et al.,
 190 2010), and the dust mass was included in the OIN concentration. We performed the MOSAIC
 191 aerosol simulations with four-size bins (0.039–0.156 μm , 0.156–0.625 μm , 0.625–2.500 μm ,
 192 and 2.5–10.0 μm dry diameters). The sectional aerosol data in the hourly model output were
 193 the aerosol dry mass mixing ratios of chemical compositions, aerosol number concentration,
 194 and aerosol water content. The aerosol compositions included hydrophilic particulates (i.e.,
 195 SO_4^{2-} , NO_3^- , NH_4^+ , Cl^- , Na^+) and hydrophobic particulates (i.e., BC, OC, and OIN).
 196 According to the Mie theory, we used the spherical particulate assumption and computed the
 197 aerosol optics. The aerosol compositions were internally mixed in each size bin and were
 198 externally mixed between the size bins. The internal mixing refractive index was the volume-
 199 weighted mean complex refractive index of each composition. The WRF-Chem model
 200 computed the aerosol optics at 300, 400, 600, and 999 nm and interpolated the aerosol optical
 201 parameters (AOD, SSA, asymmetry factor) to eleven shortwave lengths with Ångström
 202 exponents for the radiative transfer calculation.

203

204 **2.2 Assimilation System**

205 The revised GSI DA system is based on the official GSI ([https://dtcenter.org/community-](https://dtcenter.org/community-code/gridpoint-statistical-interpolation-gsi)
 206 [code/gridpoint-statistical-interpolation-gsi](https://dtcenter.org/community-code/gridpoint-statistical-interpolation-gsi), Wu et al., 2002; Liu et al., 2011; Schwartz et al.,
 207 2012; Pagowski et al., 2014) version 3.7. The 3D-Var DA minimizes the cost function:

208

$$209 J(\mathbf{x}) = \frac{1}{2}(\mathbf{x} - \mathbf{x}_b)^T \mathbf{B}^{-1}(\mathbf{x} - \mathbf{x}_b) + \frac{1}{2}(H(\mathbf{x}) - \mathbf{y})^T \mathbf{R}^{-1}(H(\mathbf{x}) - \mathbf{y}) \quad (1)$$

210

211

212 where \mathbf{x} is the state vector composed of the model control variables; the subscript b denotes
 213 that \mathbf{x} is the background state vector; \mathbf{y} is the vector of the observations; H is the forward
 214 operator or observation operator that transfers the gridded control variables into the observed
 215 quantities at the observation locations; and \mathbf{B} and \mathbf{R} are the background and observation error
 216 covariance matrices, respectively.

217

218 The official GSI version only works with the GOCART aerosols for assimilating the surface-
 219 layer $\text{PM}_{2.5}$ and PM_{10} (denoted as PM_x in the context) concentrations and the 550 nm MODIS
 220 AOD. Our revised GSI system assimilates PM_x concentrations, multi-wavelength aerosol
 221 scattering/absorption coefficients, and AOD. Figure 1 shows the workflow of our DA system.
 222 According to the AOD calculation in WRF-Chem, we can either choose the aerosol number
 223 concentration (option 1) or aerosol mass concentration (option 2) as control variables. Li et al.
 224 (2020) describes option 1. This study selects option 2 and describes it in the following
 225 subsections.

226

Figure 1

227

228 2.2.1 Control Variables

229 The control variables were the mass mixing ratio of each aerosol composition per size bin,
 230 which corresponded to the WRF-Chem output data. This set differed from previous studies
 231 that lumped aerosols per size bin as control variables (Li et al., 2013; Pagowski et al., 2014).
 232 The control variables were six aerosol mass mixing ratios of SO_4^{2-} , NH_4^+ , NO_3^- , OC, BC, and
 233 OIN per size bin, a total of which were twenty-four for the four-size bin simulations. They
 234 substantially contributed to the total aerosol mass concentrations. Chlorine and sodium had
 235 minuscule background concentrations and remained the background values. In Kashi's case
 236 near the desert, the OIN was predominant, accounting for 62% of $\text{PM}_{2.5}$ and 82% of PM_{10} .

238 Our design of the control variables was different from the AOD assimilation in Saide et al.
239 (2013), with theirs being the natural logarithm of the total mass mixing ratio per size bin,
240 multiplied by the thickness of the model layer. This multiplication of layer thickness
241 prevented many modifications for the high model layers, where aerosols were low in
242 concentrations. The logarithmic transformation decreased the extensive value range in the
243 control variables caused by multiplication. However, since the AOD value is often smaller
244 than one, their transformation leads to a significant negative logarithm value and an
245 unconstrained DA system. To handle this disadvantage, Saide et al. (2013) introduced two
246 weak constraints in the cost function to cut off the user-defined “extraordinarily high” and
247 “extraordinarily low” concentrations. They repartitioned the total mass per size bin’s
248 increments for the composition of each aerosol using the ratio approach. In this study, neither
249 the logarithmic transformation nor the multiplication using layer thickness was set. Our
250 control variable was restricted to the WRF-Chem output variable, and the DA system changed
251 the composition of each aerosol per size bin, depending on the aerosol background errors.

253 Consistent with Pang et al. (2020), aerosol water content (AWC) was not one of the control
254 variables in our GSI. Otherwise, the AWC might have increased as a mathematical artifact,
255 contrary to the physical constraints imposed by the loading of hydrophilic particles. The
256 AWC was diagnosed in each outer loop according to the analyzed aerosol mass concentration
257 and the background relative humidity, using the WRF-Chem's hygroscopic growth scheme
258 coupled into the revised GSI.

260 2.2.2 Tangent Linear Operator for PMx

261 The PM_{10} is the sum of all aerosol dry mass concentrations over the size bins, and the sum of
 262 the first three is the $\text{PM}_{2.5}$ (Chen et al., 2019; Wang et al., 2020). The tangent linear operator
 263 for PM_x is the gradient of the PM_x concentration to the aerosol chemical mass concentration
 264 per size bin:

269 where n_{size} is the number of size bins and is equal to four in this study; [.] denotes the mass
 270 concentration ($\mu\text{g m}^{-3}$ for PMx); $C_{aer,k}$ is the aerosol mass mixing ratio ($\mu\text{g kg}^{-1}$) of SO_4^{2-} ,
 271 NO_3^- , NH_4^+ , OC, BC, and OIN at the k -th size bin. Because we did not multiply the chemical
 272 mass with a scaling factor to represent some unknown compositions in the summation of
 273 PMx, Eq (2) always equals one. It means that we equally distribute the PMx increment to
 274 each aerosol composition per size bin. The $\text{PM}_{2.5}$ and PM_{10} are assimilated in the same way.
 275 When the observed fine and coarse particle concentrations are assimilated simultaneously, we
 276 assimilate the concentrations of $\text{PM}_{2.5}$ and the coarse particulate ($\text{PM}_{10}-\text{PM}_{2.5}$).
 277

278 **2.2.3 Forward Operator for Aerosol Optics in WRF-Chem**

279 We used the original forward operator in WRF-Chem for the aerosol optical parameters (Fast
 280 et al., 2006). AOD is calculated as a function of wavelength according to Mie theory. The
 281 columnar AOD τ is the sum of layer AOD across the n_z model layers:
 282

$$283 \quad \tau = \sum_{z=1}^{n_z} \tau_z = \sum_{z=1}^{n_z} \sum_{k=1}^{n_{size}} e_{ext,z,k} \cdot n_{z,k} \cdot H_z \quad (3)$$

286 where $e_{ext,z,k}$ is the extinction cross section of a single mixing particle in the k -th size bin at the
 287 z -th model layer, $n_{z,k}$ is the aerosol number concentration, and H_z is the layer thickness. At the
 288 surface, the ambient aerosol scattering (E_{sca}) and absorbing (E_{abs}) coefficients that are
 289 measured by the nephelometer and aethalometer, respectively, are represented as
 290

$$291 \quad E_{sca} = \sum_{k=1}^{n_{size}} e_{sca,1,k} \cdot n_{1,k}$$

$$292 \quad E_{abs} = \sum_{k=1}^{n_{size}} e_{abs,1,k} \cdot n_{1,k} \quad (4)$$

293 where $e_{sca,1,k}$ and $e_{abs,1,k}$ are the scattering and absorption cross section of a particle at the
 294 surface. There is a relationship:

$$295 \quad e_{ext,z,k} = e_{sca,z,k} + e_{abs,z,k} \quad (5)$$

300 The extinction cross section $e_{ext,z,k}$ of a wet particle with radius $r_{wet,z,k}$ is:

$$303 \quad e_{ext,z,k} = p_{ext,z,k} \cdot \pi \cdot r_{wet,z,k}^2 \quad (6)$$

306 where $p_{ext,z,k}$ is the extinction efficiency, given the desired mixing refractive indexes and the
 307 wet particle radius. The $p_{ext,z,k}$ is attained through the Chebyshev polynomial interpolation:
 308

$$309 \quad p_{ext,z,k} = \exp \left\{ \sum_{j=1}^{n_{coef}} c_{ch}(j) \cdot c_{ext,z,k}(j) \right\} \quad (7)$$

310 where c_{ch} is the coefficient of n_{coef} order Chebyshev polynomials, $c_{ext,z,k}$ is the polynomial
 311 value for the particle's extinction efficiency, which is an internal mixture of all aerosol
 312 compositions (i.e., the control variables plus chlorine, sodium, and AWC). The radius is in a
 313 logarithmic transform in the AOD subroutine code to handle the broad particle size range
 314 from 0.039 μm to 10 μm . The exponential function in Eq. (7) transforms the logarithm radius
 315 back to the normal radius. The aerosol number concentration $n_{z,k}$ and the aerosol dry (wet)
 316 mass concentration $m_{i,z,k}$ have a linkage through the dry (wet) particle radius $r_{dry,z,k}$ ($r_{wet,z,k}$) and
 317 the aerosol density ρ_i :
 318

$$319 \quad n_{z,k} = \sum_i^{n_{wet_aer}} \frac{m_{i,z,k}}{\rho_i} \cdot \frac{3}{4\pi \cdot r_{wet,z,k}^3} = \sum_i^{n_{dry_aer}} \frac{m_{i,z,k}}{\rho_i} \cdot \frac{3}{4\pi \cdot r_{dry,z,k}^3} \quad (8)$$

320 Both the dry and wet particle radius appear in the tangent linear operator. The difference
 321 between the second and the third terms in Eq (8) is whether aerosol water content is counted.
 322 n_{wet_aer} is the number of aerosol chemical composition plus aerosol water content ($n_{wet_aer} =$
 323 $n_{dry_aer} + 1$).

324 2.2.4 Tangent Linear Operator Developed for AOD

325 As per the forward operator in Eq. (3) in WRF-Chem, we developed the tangent linear
 326 operator for AOD, which requires the derivative of τ in Eq. (3) to the aerosol dry mass
 327 concentration (aerosol water content is not a control variable), $m_{i,z,k}$:
 328

$$329 \quad \frac{\delta\tau}{\delta m_{i,z,k}} = \frac{\delta\tau_z}{\delta m_{i,z,k}} = \frac{\delta e_{ext,z,k} \cdot n_{z,k} \cdot H_z}{\delta m_{i,z,k}} + \frac{e_{ext,z,k} \cdot \delta n_{z,k} \cdot H_z}{\delta m_{i,z,k}} + \frac{e_{ext,z,k} \cdot n_{z,k} \cdot \delta H_z}{\delta m_{i,z,k}} \quad (9)$$

330 The first term on the righthand side of Eq. (9) indicates the change in AOD as the perturbation
 331 of extinction cross section. According to Eq. (6), considering that the particle radius is
 332 constant, $\delta e_{ext,z,k}$ is represented as:

$$333 \quad \delta e_{ext,z,k} = \delta p_{ext,z,k} \cdot \pi \cdot r_{wet,z,k}^2 \quad (10)$$

334 where $\delta c_{ch}(j) = 0$ assuming that the particle radius is constant. This assumption simplifies
 335 the tangent linear operator and is also employed in Saide et al. (2013).

345

346 Equation (10) is expanded with the derivative of Eq. (7):

347

$$348 \quad \delta p_{ext,z,k} = p_{ext,z,k} \cdot \left\{ \sum_{j=1}^{n_{coef}} c_{ch}(j) \cdot \delta c_{ext,z,k}(j) \right\} \quad (11)$$

349

350 By expanding $\delta c_{ext,z,k}$ in Eq. (11), we have:

351

$$352 \quad \delta c_{ext,z,k}(j) = \delta w_{00} \cdot E_{ext,00}(j) + \delta w_{01} \cdot E_{ext,01}(j) + \delta w_{10} \cdot E_{ext,10}(j) + \delta w_{11} \cdot E_{ext,11}(j) \quad (12)$$

353

354 The four parameters of E_{ext} indicate the extinction efficiencies in the Mie lookup table surrounding the point with the desired mixing refractive indexes and the wet particle radius.355 The interpolation weights δw are determined as:

356

$$359 \quad \delta w_{00} = (v - 1)\delta u + (u - 1)\delta v \quad \delta w_{01} = (1 - v)\delta u - u\delta v \\ 360 \quad \delta w_{10} = (1 - u)\delta v - v\delta u \quad \delta w_{11} = u\delta v + v\delta u \quad (13)$$

361

362

363 where

364

$$365 \quad u = \frac{R_{mix} - R_{low}}{R_{up} - R_{low}} \quad \delta u = \frac{\delta R_{mix}}{R_{up} - R_{low}} \\ 366 \quad v = \frac{I_{mix} - I_{low}}{I_{up} - I_{low}} \quad \delta v = \frac{\delta I_{mix}}{I_{up} - I_{low}} \quad (14)$$

367

368

369 In Eq. (14), R_{mix} and I_{mix} are the aerosol volume-weighted mean real and imaginary parts of 370 complex refractive indices, respectively. R_{up} (I_{up}) and R_{low} (I_{low}) are the nearest upper and 371 lower limits for R_{mix} (I_{mix}) in the Mie table. Considering $V_{wet,z,k}$ is the volume of all aerosol dry 372 masses plus aerosol water content, the real and imaginary parts, and their derivatives are:

373

$$374 \quad R_{mix,z,k} = \sum_i^{n_{wet_aer}} R_i \cdot \frac{m_{i,z,k}}{\rho_i \cdot V_{wet,z,k}} \quad \delta R_{mix,z,k} = \frac{R_i}{\rho_i \cdot V_{wet,z,k}} \cdot \delta m_{i,z,k} \\ 375 \quad I_{mix,z,k} = \sum_i^{n_{wet_aer}} I_i \cdot \frac{m_{i,z,k}}{\rho_i \cdot V_{wet,z,k}} \quad \delta I_{mix,z,k} = \frac{I_i}{\rho_i \cdot V_{wet,z,k}} \cdot \delta m_{i,z,k} \quad (15)$$

376

377

378 where

$$379 \quad V_{wet,z,k} = \sum_i^{n_{wet_aer}} \frac{m_{i,z,k}}{\rho_i}$$

380 (16)

381

382 Put Eq. (12), Eq. (13) into Eq. (11) leads to:

383

384 (17)

385

386 where

387

388

$$\alpha_{sca,00} = p_{sca,1,k} \cdot \sum_{j=1}^{n_{coef}} c_{ch}(j) \cdot E_{sca,00}(j) \quad \alpha_{sca,01} = p_{sca,1,k} \cdot \sum_{j=1}^{n_{coef}} c_{ch}(j) \cdot E_{sca,01}(j)$$

$$\alpha_{sca,10} = p_{sca,1,k} \cdot \sum_{j=1}^{n_{coef}} c_{ch}(j) \cdot E_{sca,10}(j) \quad \alpha_{sca,11} = p_{sca,1,k} \cdot \sum_{j=1}^{n_{coef}} c_{ch}(j) \cdot E_{sca,11}(j)$$

$$\alpha_{abs,00} = p_{abs,1,k} \cdot \sum_{j=1}^{n_{coef}} c_{ch}(j) \cdot E_{abs,00}(j) \quad \alpha_{abs,01} = p_{abs,1,k} \cdot \sum_{j=1}^{n_{coef}} c_{ch}(j) \cdot E_{abs,01}(j)$$

$$\alpha_{abs,10} = p_{abs,1,k} \cdot \sum_{j=1}^{n_{coef}} c_{ch}(j) \cdot E_{abs,10}(j) \quad \alpha_{abs,11} = p_{abs,1,k} \cdot \sum_{j=1}^{n_{coef}} c_{ch}(j) \cdot E_{abs,11}(j)$$

392

393 (18)

394

395

The subscripts of *sca* and *abs* in Eq. (17) and (18) denote “scattering” and “absorption”, respectively. The first term on the righthand side of Eq. (9) is determined using Eq. (10) and Eq. (17). The second term on the righthand side of Eq. (9) indicates the linkage of the aerosol number and mass concentrations. It is the derivative of the dry particle in Eq. (8) by assuming a constant radius:

400

401

$$\delta n_{z,k} = \frac{3 \cdot \delta m_{i,z,k}}{4\pi \cdot r_{dry,z,k}^3 \cdot \rho_i} \quad (19)$$

402

403

404

The third term on the righthand side of Eq. (9) contains the layer thickness's derivative to the concentrations in this layer. It indicates that the light attenuation length is based on per unit concentration, which can be intuitively represented by the ratio of layer thickness to the aerosol mass concentration in this layer. Putting Eq. (10) and Eq. (19) into Eq. (9), we have the original formula of the tangent linear operator for AOD for the aerosol dry mass concentration:

410

411

412

$$\frac{\delta \tau}{\delta m_{i,z,k}} = \frac{\delta \tau_z}{\delta m_{i,z,k}} = \frac{\delta e_{ext,z,k} \cdot n_{z,k} \cdot H_z}{\delta m_{i,z,k}} + \frac{e_{ext,z,k} \cdot \delta n_{z,k} \cdot H_z}{\delta m_{i,z,k}} + \frac{e_{ext,z,k} \cdot n_{z,k} \cdot \delta H_z}{\delta m_{i,z,k}} =$$

$$\begin{aligned}
413 \quad & \{[(v-1)\alpha_{sca,00} + (1-v)\alpha_{sca,01} - v\alpha_{sca,10} + v\alpha_{sca,11}] \cdot \frac{\pi \cdot r_{wet,z,k}^2 \cdot R_i \cdot n_{z,k} \cdot H_z}{\rho_i \cdot V_{wet,z,k} \cdot (R_{up,z,k} - R_{low,z,k})} \\
414 \quad & + \\
415 \quad & [(u-1)\alpha_{abs,00} - u\alpha_{abs,01} + (1-u)\alpha_{abs,10} + u\alpha_{abs,11}] \cdot \frac{\pi \cdot r_{wet,z,k}^2 \cdot I_i \cdot n_{z,k} \cdot H_z}{\rho_i \cdot V_{wet,z,k} \cdot (I_{up,z,k} - I_{low,z,k})} + \\
416 \quad & \frac{3e_{ext,z,k} \cdot H_z}{4\pi \cdot r_{dry,z,k}^3 \cdot \rho_i} + \frac{e_{ext,z,k} \cdot n_{z,k} \cdot H_z}{m_{i,z,k}} \} \cdot \beta \\
417 \quad & \\
418 \quad & \\
419 \quad & \text{where } \beta \text{ changes the mass unit from } \mu\text{g kg}^{-1} \text{ to } \mu\text{g m}^{-3}. \text{ The last righthand term in Eq. (20)} \\
420 \quad & \text{may not have a quick convergence in the DA outer loops because the aerosol mass} \\
421 \quad & \text{concentration } m_{i,z,k} \text{ in the denominator often has a low bias, introducing an error into the} \\
422 \quad & \text{operator. The error is further amplified by the layer thickness } H_z \text{ in the numerator. Thus, Eq.} \\
423 \quad & \text{(20) cannot lead to a stable analysis. For this reason, we changed the tangent linear operator to} \\
424 \quad & \text{account for the columnar mean aerosol extinction coefficient, which is described as follows:} \\
425 \quad & \\
426 \quad & \\
427 \quad & \frac{\delta(\overline{e_{ext} \cdot n})}{\delta m_{i,z,k}} = \frac{H_z}{\sum H_z} \cdot \frac{\delta(e_{ext,z,k} \cdot n_{z,k})}{\delta m_{i,z,k}} = \frac{H_z}{\sum H_z} \cdot \left[\frac{\delta e_{ext,z,k} \cdot n_{z,k}}{\delta m_{i,z,k}} + \frac{e_{ext,z,k} \cdot \delta n_{z,k}}{\delta m_{i,z,k}} \right] = \\
428 \quad & \{[(v-1)\alpha_{sca,00} + (1-v)\alpha_{sca,01} - v\alpha_{sca,10} + v\alpha_{sca,11}] \cdot \frac{\pi \cdot r_{wet,z,k}^2 \cdot R_i \cdot n_{z,k}}{\rho_i \cdot V_{wet,z,k} \cdot (R_{up,z,k} - R_{low,z,k})} \\
429 \quad & + \\
430 \quad & [(u-1)\alpha_{abs,00} - u\alpha_{abs,01} + (1-u)\alpha_{abs,10} + u\alpha_{abs,11}] \cdot \frac{\pi \cdot r_{wet,z,k}^2 \cdot I_i \cdot n_{z,k}}{\rho_i \cdot V_{wet,z,k} \cdot (I_{up,z,k} - I_{low,z,k})} + \\
431 \quad & \frac{3e_{ext,z,k}}{4\pi \cdot r_{dry,z,k}^3 \cdot \rho_i} \} \cdot \beta \cdot \frac{H_z}{\sum H_z} \\
432 \quad & \\
433 \quad & \\
434 \quad & \text{In Eq. (21), the operator is based on the extinction coefficient at each layer, weighted by the} \\
435 \quad & \text{layer thickness normalized to the total model layer thickness. Correspondingly, the AOD} \\
436 \quad & \text{observations and AOD observation error are divided by the total layer thickness at the} \\
437 \quad & \text{observation location. Note that the dry } (r_{dry,z,k}) \text{ and wet } (r_{wet,z,k}) \text{ particle radiiuses are both} \\
438 \quad & \text{present in Eq (21). Because aerosol water content is not a control variable, } r_{dry,z,k} \text{ is used in Eq} \\
439 \quad & \text{(19) and appears in Eq (21). Aerosol water content participates in the computation of internal} \\
440 \quad & \text{mixing refractive indexes, and } r_{wet,z,k} \text{ is also present in Eq (21). Equation (21) is the final} \\
441 \quad & \text{tangent linear operator for AOD DA in this study.} \\
442 \quad & \\
443 \quad & \\
444 \quad & \text{2.2.5 Tangent Linear Operator Developed for Surface Aerosol Attenuation Coefficients}
\end{aligned} \tag{20}$$

445 The aerosol scattering and absorption coefficients measured by the nephelometer and
 446 aethalometer, respectively, are similar to the aerosol extinction coefficient at the surface in
 447 Eq. (21). Neither of the two coefficients addresses the layer thickness. The operator for the
 448 aerosol scattering coefficient measured by a nephelometer is described as follows:
 449

$$451 \frac{\delta(e_{sca,1,k} \cdot n_{1,k})}{\delta m_{i,1,k}} = \{[(v - 1)\alpha_{sca,00} + (1 - v)\alpha_{sca,01} - v\alpha_{sca,10} + v\alpha_{sca,11}] \\ 452 \cdot \frac{\pi \cdot r_{wet,1,k}^2 \cdot R_i \cdot n_{1,k}}{\rho_i \cdot V_{wet,1,k} \cdot (R_{up,1,k} - R_{low,1,k})} + \frac{3e_{sca,1,k}}{4\pi \cdot r_{dry,1,k}^3 \cdot \rho_i}\} \cdot \beta \\ 450 \quad \quad \quad (22)$$

453
 454 The symbols have the same meaning as before, and the subscript one in Eq. (22) denotes the
 455 surface layer. The operator for the aerosol absorption coefficient measured by an aethalometer
 456 is
 457

$$459 \frac{\delta(e_{abs,1,k} \cdot n_{1,k})}{\delta m_{i,1,k}} = \{[(u - 1)\alpha_{abs,00} - u\alpha_{abs,01} + (1 - u)\alpha_{abs,10} + u\alpha_{abs,11}] \\ 460 \cdot \frac{\pi \cdot r_{wet,1,k}^2 \cdot I_i \cdot n_{1,k}}{\rho_i \cdot V_{wet,1,k} \cdot (I_{up,1,k} - I_{low,1,k})} + \frac{3e_{abs,1,k}}{4\pi \cdot r_{dry,1,k}^3 \cdot \rho_i}\} \cdot \beta \\ 458 \quad \quad \quad (23)$$

461
 462 As shown in the operators, the aerosol mass concentrations' gradients rely on the aerosol
 463 number concentration; meanwhile, the number concentration is estimated according to the
 464 mass concentration and the particle radius. The two concentrations are intertwined in the DA
 465 system, indicating the operator's nonlinearity. This nonlinearity is handled with a succeeding
 466 minimization of the cost function within the GSI. The cost function is first minimized with the
 467 number concentration in the background field, and the number concentration is updated with
 468 the first analyzed aerosol mass concentrations. In the second minimization, the first analysis's
 469 number concentration constructs a new operator value, resulting in a new analysis of mass
 470 concentrations. This iterative process is denoted as the "outer loop," which is repeated several
 471 times to attain the final analysis (Massart et al., 2010). We set ten maximum iterations in the
 472 experiments. The cost function in most analyses reaches the minimum in two or three outer
 473 loops. The WRF-Chem AOD code is coupled into the GSI subroutine at the place of invoking
 474 CRTM. The tangent linear operators of Eq. (21), Eq. (22), and Eq. (23) are simultaneously
 475 determined in the subroutines, which are cyclically invoked in the outer loops.
 476

477 2.2.6 Aerosol Complex Refractive Indexes in GSI

478 Table S1 in the supplementary document shows the complex refractive indexes for each
 479 aerosol chemical composition in the revised GSI. The refractive indexes are for eleven
 480 wavelengths, including four for CE318, three for nephelometer, three for aethalometer, and
 481 one for 550 nm MODIS AOD (not assimilated in this study). The real parts of refractive
 482 indexes of sulfate, nitrate, and ammonium are similar and refer to Toon et al.'s (1976) data.
 483 The real part is 1.53 at 440 nm and decreases to 1.52 at 1020 nm. The refractive indexes of
 484 OC and BC are constant across the wavelengths, being $1.55 - 0.001i$ for OC (Chen and Bond,

485 2010) and $1.95-0.79i$ for BC (Bond and Berstrom, 2006). The dust refractive index's real part
486 is a constant value of 1.54 (Zhao et al., 2010). The dust refractive index's imaginary part
487 depends on the dust mineralogy, size distribution, and shape associated with the dust sources.
488 Cheng et al. (2006) reported the desert dust refractive index in winter and spring at
489 Dunhuang, a city adjacent to the Taklamakan desert's northeast side. Their imaginary part
490 value was approximately in the ranges of 0.0008 to 0.0028 at 440 nm, 0.0006 to 0.0030 at 670
491 nm, 0.0005 to 0.0036 at 870 nm, and 0.0005 to 0.0040 at 1020 nm (See Figure 9 in their
492 paper). Di Biagio et al. (2019) retrieved the dust's imaginary part in the Taklimakan desert's
493 north edge (41.83°N , 85.88°E). Their dust imaginary part decreased from 0.0018 ± 0.0008 at
494 370 nm to 0.0005 ± 0.0002 at 950 nm, much lower than the generic values in climate models.
495 The imaginary part's retrieval uncertainty is related to the iron oxide in dust samples, the
496 cutoff coarse particle size ($<10\text{ }\mu\text{m}$ in Di Biagio et al., 2019), and the spherical particle
497 assumption applied in the retrieval algorithm. Here, we admit the high uncertainty and use the
498 imaginary part following the generic model values (Table S1), which are higher than the
499 upper data limits of Di Biagio et al. (2019) and are close to the values of Cheng et al. (2006).
500 The desert dust has a stronger absorption at shortwave wavelengths. The refractive index of a
501 wavelength without exact literature data uses the nearby wavelength's data in the literature.
502 Aerosol density is necessitated to compute aerosol optical parameters in the AOD forward
503 operator and construct our tangent linear operator. The supplement also shows the aerosol
504 density (Table S2) that follows the data in Barnard et al. (2010).
505

506 **2.3 Background Error Covariance (BEC)**

507 Many aerosol DA studies used the National Meteorological Center (NMC) method (Parrish
508 and Derber, 1992) to model the BEC matrix. The NMC method uses long-term archived
509 weather data created in forecast cycles. It computes the statistical differences between two
510 forecasts with different leading lengths (e.g., 24 h and 48 h), but which are valid at the same
511 time. The NMC method is workable because solving global weather forecasts is an initial
512 value problem of mathematical physics. A slight difference in the initial atmospheric state
513 would lead to a substantially different prediction because of the chaos in the atmosphere.
514 However, a regional model is a boundary value problem (Giorgi and Mearns, 1999). As the
515 regional model runs, the influence of the initial conditions becomes weak, while lateral
516 boundary conditions always take effect. The reanalysis data that drive the paring regional
517 model simulations are similar and leads to a limited difference between the paring
518 simulations. The NMC method's BEC would therefore underestimate the aerosol error in
519 WRF-Chem. Kumar et al. (2019) assimilated AOD in the contiguous United States based on
520 the NMC method's BEC. They perturbed the background emissions by adding the gridded
521 mean differences of four emission inventories. Their BEC accounting for meteorology and
522 emissions uncertainties reduced the AOD bias by 38%, superior to 10% bias reduction,
523 counting the meteorology uncertainty alone.

524 Some aerosol DA studies have created background error variance using the ensemble
525 simulations by randomly disturbing model lateral boundary conditions and surface emissions
526 (Peng et al., 2017; Ma et al., 2020). The ensemble experiments better represent the model
527 error but significantly increase the computational burden. Here, we used the variance of the

529 background hourly aerosol concentrations in April to represent the background error variance.
530 The rationale of this approach is that the Tarim Basin acts as a “dust reservoir” and traps dust
531 particles for a period before the dust being carried long-distance by wind (Fan et al., 2020).
532 The model bias in dust concentration is correlated with aerosol concentration variation as the
533 weather fluctuates. The model bias is small on clear days when the aerosol concentration is
534 low. The bias is large when the concentration is high on heavily-polluted days. The mean
535 aerosol concentration correlated positively with the aerosol variation. Using aerosol
536 concentration variance to represent the aerosol error prioritizes DA modification of aerosols
537 having high background mean concentrations. It was similar to the way in Sič et al. (2016),
538 which set a percentage of the first guess field for the background error variance.
539

540 We calculated the background error statistics, including the aerosol standard deviation and the
541 horizontal and vertical correlation length scales, using the GENerate the Background Errors
542 (GEN-BE) software (Descombes et al., 2015), based on the one-month hourly aerosol
543 concentrations in WRF-Chem. We obtained the statistics of four static BECs for the four DA
544 analysis hours (i.e., 0000, 0600, 1200, and 1800 UTC), respectively. The DA procedures for
545 the four analysis times a day in April 2019 repeatedly use the background error statistics at
546 the corresponding analysis time.
547

548 A usual strategy to enrich the samples of model results for the error statistics is to gather
549 model grid points with similar atmosphere characteristics, referred to as “binning.” The
550 statistics are spatially averaged over the binned grid points. The GEN_BE default strategy for
551 GSI is latitude-binning, which creates a latitude-dependent error correlation function (Figure
552 2a). The latitude binning is generally used for latitude flow dependency and works for large
553 and global domains (Wu et al., 2002). However, we found that using the latitude-binning
554 strategy overestimated the PM_x concentration when assimilating aerosol optical observations.
555 One reason for this overestimation was related to the model’s low bias in particle extinction
556 efficiency, as discussed in Section 3.3. Another plausible reason is related to the background
557 model error’s vertical profile. The maximum dust error in the desert occurred at the surface
558 (Figure 2e) because of the local dust emissions, while the maximum error at Kashi was at the
559 dust transporting layer above the surface (Figure 2d). Owing to the Taklamakan Desert’s vast
560 extent, the latitude-binning suppressed the local error characteristics at Kashi and led to a
561 vertical error profile (Figure 2c) similar to that over the desert (Figure 2e).
562

563 For this reason, we used the standard deviation of the control variable at each model grid to
564 replace the latitude-binning standard deviation. The horizontal and vertical correlation length
565 scales were calculated based on the latitude-binning data. Figure 3 shows the background
566 error statistics generated by the GEN_BE software, which provided the input to the GSI. The
567 OIN component showed high background errors in the third and fourth particle sizes at the
568 transporting layer above the surface (Figure 3f). The aerosol compositions related to
569 anthropogenic emissions (i.e., sulfate, nitrate, ammonium, OC, and BC, referred to here as
570 ‘anthropogenic aerosols’) that had maximum errors in the second particle size, with the
571 greatest vertical error at the surface. The background error for OIN composition was a factor

572 of 2–3 higher than that for anthropogenic aerosols because of the high background dust
573 concentration.

574

575 The horizontal and vertical correlation length scales determine the range of observation
576 innovations spreading from the observation locations. The horizontal influences had small
577 changes in altitude within the lowest 15 model layers (below a height of ~5 km above
578 ground), indicating that the dust transport layer was well-mixed in the lower atmosphere. This
579 deep dust layer was consistent with Meng et al. (2019). They showed that the dust in spring
580 was vertically mixed in a thick boundary layer to a height of 3–5 km in the Tarim Basin. The
581 vertical correlation length scales first increased from low values at the surface to high values
582 at ~2.5 km in height (for the 8–9 layers), indicating upward aerosol flux in windy days. The
583 vertical correlation length scale quickly decreased from the maximum value with a further
584 altitude rise. The maximum correlation length above the ground indicates a laminar air motion
585 during the dust storm.

586

587 Because the background model error per size bin is independent, the DA modification of an
588 aerosol concentration would be quite large in a single size bin with the maximum background
589 error (e.g., the OIN in the fourth particle size). To avoid the excessive accumulation of
590 increment, we added a one-dimensional recursive filter for the background covariances of
591 control variables across the size bins, with a correlation length scale of four bin units.

592

Figure 2, Figure 3

593

594 **2.4 Observational Data and Errors**

595 The Dust Aerosol Observation–Kashi field campaign was performed at Kashi from 0000
596 UTC 25 March to 0000 UTC 1 May 2019. The site was placed in the Kashi campus of the
597 Aerospace Information Research Institute, Chinese Academy of Sciences (39.50°N, 75.93°E;
598 Li et al., 2018), about 4 km in the northwest to the Kashi city. The site aerosol observations
599 included: (1) the multi-wavelength AOD measured by the sun-sky photometer (Cimel
600 CE318); (2) the multi-wavelength aerosol scattering and absorption coefficients at the surface,
601 measured with a nephelometer (Aurora 3000) and aethalometer (Magee AE-33), respectively;
602 and (3) the hourly PM_{2.5} and PM₁₀ observations, measured with a METONE BAM-1020
603 continuous particulate monitor. All the instruments were deployed at the roof of a three
604 stories height building on the campus. Please refer to Li et al. (2020) for more details about
605 the field campaign.

606

607 Table 1 summarizes the observation periods, the aerosol optical data's wavelengths, and the
608 observation errors. The multi-wavelength data of each type of optical observation were
609 assimilated simultaneously. The observation errors of PM_x are handled in the conventional
610 way (Schwartz et al., 2012; Chen et al., 2019), which contains the measurement error (e_1) and
611 the representation error (e_2). The measurement error is the sum of a baseline error of 1.5 μg
612 m^{-3} and 0.75% of the observed PM_x concentration. The representation error is the
613 measurement error multiplied by the half-squared ratio of the grid spacing to the scale
614 distance. The scale distance denotes the site representation in GSI and has four default values

615 of 2, 3, 4, and 10 km, corresponding to the urban, unknown, suburban, and rural sites. We
616 used 3 km for the scale distance in this study. As we had a single site in Kashi, it is difficult to
617 estimate the site representation error. Since the DA analysis was based on the inner model
618 domain with a horizontal resolution of 5 km, close to the site distance to the Kashi urban area,
619 we assumed the aerosol optical measurement had good representativeness of the model grid.
620 The observation error of CE318 AOD took the AERONET AOD uncertainty of 0.01 in cloud-
621 free conditions (Holben et al., 1998). The AOD observational error was further divided by the
622 total model layer thickness in GSI. It is difficult to determine instrumental errors in
623 nephelometers and aethalometers, and we set their instrumental errors to 10 Mm^{-1} , equivalent
624 to the magnitude of the Rayleigh extinction coefficient. The observational errors were
625 uncorrelated, with \mathbf{R} being a diagonal matrix.
626

Table 1

2.5 Experimental Design

The WRF-Chem simulations were configured in a two-nested domain centered at 82.9°E , 41.5°N . The coarse domain was a 120×100 (west-east \times north-south) grid with a horizontal resolution of 20 km covering the Taklamakan Desert, and the fine domain was an 81×61 grid with a resolution of 5 km, focusing on Kashi and environs (Figure 4a). Both domains had 41 vertical levels extending from the surface to 50 hPa. The lowest model layer at the site was approximately 25-meter height from the ground. The two domains were two-way coupled. The coarse domain covered the entire dust emission source, providing dust transport fluxes at the fine domain's lateral boundaries. The aerosol radiative effect was set to provide feedback on the meteorology. The indirect effect of aerosols was not set in the experiments. Initial and lateral boundary meteorological conditions for WRF-Chem were the one-degree resolution of the National Centers for Environmental Prediction Final Analysis data created by the Global Forecast System model. The meteorological lateral boundary conditions for the coarse domain were updated every six hours and were linearly interpolated between the updates in WRF-Chem. We did not set the chemical boundary conditions for the coarse domain. The Multiresolution Emission Inventory of China (MEIC) for 2010 (www.meicmodel.org) provided anthropogenic emission levels. The yearly emission differences in 2010-2019 may bias the aerosol chemical simulation, but this bias is hard to be quantified as lack of aerosol chemical observations in this city. As the significant pollutant at Kashi is dust, we just ignore the model uncertainties due to the yearly differences in anthropogenic emission inventories. The biogenic emission levels were estimated online using the Model of Emissions of Gases and Aerosols from Nature (Guenther et al., 2006). Wildfire emissions were not set in the experiments.

We conducted a one-month WRF-Chem simulation for April 2019, starting at 0000 UTC on 27 March and discarding the first five days for spin-up. The revised GSI system modified the aerosols in the fine domain at 0000, 0600, 1200, and 1800 UTC each day starting from 0000 UTC 1 April until the end of the month. We assimilated the observations four times a day because the reanalyzed meteorological data were available for the four-time slices, facilitating the model restarting from the DA analyses. The hourly PM_x observations were assimilated at

658 the exact time of analysis. The observed AOD and aerosol scattering/absorption coefficients
659 were assimilated when they fell within 3 hours before the time of analysis. Table 2 shows the
660 DA experiments, in which the multi-wavelength AOD (440 nm, 675 nm, 870 nm, and 1020
661 nm) in DA_AOD, the aerosol scattering coefficients (450 nm, 525 nm, and 635 nm) in
662 DA_Esca, and the aerosol absorption coefficients (470 nm, 520 nm, and 660 nm) in DA_Eabs
663 were assimilated simultaneously in each experiment. The literal meanings of the experimental
664 names denote the observations that were assimilated. To study the impact of DA on aerosol
665 direct radiative forcing (ADRF), we modified the WRF-Chem code to calculate the shortwave
666 irradiance with and without aerosols at each model integration step. The modified WRF-
667 Chem model restarted from each DA analysis and ran to the next analysis time. Each running
668 performed the radiation transfer calculation twice, and each calculation saw the aerosols and
669 clean air, respectively. The irradiance difference between the two pairing calls was aerosol
670 radiative forcing. Section 4.2 shows the DA effects on the clear-sky ADRF values.
671

Table 2, Figure 4

672

673 3. Results

674 3.1 Evaluation of Control Experiment

675 Table 2 shows the monthly mean values and correlations between the observed data and the
676 model results. The statistical values were based on the pairing data between the model results
677 and the observations. Figures 6 show the surface PM_x concentrations, aerosol scattering
678 coefficients, and AOD when assimilating the observations at 0000, 0600, 1200, and 1800
679 UTC each day in April.
680

681 Kashi is in the junction between the Tian Shan Mountains to the west and the Taklamakan
682 Desert to the east (Figure 5a). In the Tarim Basin, the prevailing surface wind is easterly or
683 northeasterly, which raises dust levels and carries the particles westward (Figure 5b). An
684 intense dust storm hit the city at noon on 24 April 2019, with a peak PM₁₀ concentration
685 exceeding 3,000 $\mu\text{g m}^{-3}$. The dust storm traveled across the northern part of the desert and
686 carried the dust particles to Kashi and the mountainous area (Figure 5c, d). A few mild dust
687 storms occurred at Kashi on April 3–5, April 8–11, and April 14–17, and the maximum PM₁₀
688 concentrations were in the range of 400–600 $\mu\text{g m}^{-3}$. The time series of PM_{2.5}, aerosol
689 scattering/absorption coefficient, and AOD showed patterns similar to those for PM₁₀ (Figure
690 6).
691

692 WRF-Chem captured the main dust episodes but significantly underestimated the aerosols at
693 Kashi (Table 2). The monthly mean background concentrations of PM_{2.5} and PM₁₀ were 17%
694 and 41% lower than the observed values, respectively, with a low correlation ($R < 0.3$). The
695 simulated dust storm on 24 April was a mild dust event and had a maximum PM₁₀ of $\sim 300 \mu\text{g m}^{-3}$,
696 one-tenth of the observed value. The model underestimates the aerosol
697 scattering/absorption coefficients and AOD by 40–70%.
698

699 The OIN component accounted for the model bias in PM₁₀ on dusty days. Zhao et al. (2020)
700 proposed that the GOCART scheme reproduced dust emission fluxes under weak wind

erosion conditions but underestimated the emissions in conditions of strong wind erosion. We did not assimilate meteorology. The model bias in the surface wind could introduce an error in dust emission and a bias in the number of dust particles entering the city. In the non-dust days with the PM_{10} lower than the 25th percentile PM_{10} in April, the model $PM_{2.5}$ on average accounted for 60% of the observed data levels. The $PM_{2.5}$ low bias could be due to the lack of SOA chemistry in our experiments and the low emission bias in the residential sector, a major source of anthropogenic emissions for $PM_{2.5}$, BC, and OC in the developing western area. The residential sector accounts for 36–82% of the primary particle emissions, according to the MEIC emission inventory (Li et al., 2017), and is the primary source of uncertainty in anthropogenic emissions inventories in China.

711

Figure 5

712

713 3.2 Assimilating $PM_{2.5}$ and PM_{10} Concentrations

714

Simultaneous assimilation of the observed PM_x (DA_ PM_x) improved both the fine and coarse particle concentrations, with a substantial increase in the third and fourth particle sizes of the OIN composition (Figure 8f). The analyzed monthly mean PM_{10} increased to 329.3 $\mu g m^{-3}$, with a high correlation of 0.99. The analyzed monthly mean $PM_{2.5}$ was improved to 89.3 $\mu g m^{-3}$, although it was still lower than the observed levels, with a high correlation of 0.89. The low bias in $PM_{2.5}$ and the high bias in PM_{10} in the analyses were mainly in the dust storm on 24–25 April (Figure 6a, d).

721

722

Applying the inter-size bin correlation length caused the interlinked analyses of $PM_{2.5}$ and PM_{10} . In the desert area, the coarse and fine dust is readily affected by BEC's magnitude of the fourth size-bin OIN (oin_a04). We performed a few sensitivity tests decreasing the BEC of oin_a04 by 10% each time until the BEC was 30% of its original value. The magnitude of 30% of oin_a04 was comparable to the magnitude of the third size-bin (oin_a03) OIN's background error. As shown in Table S3, because the oin_a04's BEC reduction relaxes the constraint on the coarse particle, the PM_{10} bias becomes more negative along with the decrease in oin_a04's BEC. The $PM_{2.5}$ bias meanwhile becomes more positive.

730

Correspondingly, the ratio of $PM_{2.5}$ to PM_{10} was increased to 0.33 with 30% of oin_a04's BEC, higher than the observed value of 0.28. According to these experiments, the original BEC of oin_a04 is a reasonable tradeoff. The inter-size bin correlation length tunes the cross size-bin modifications and also affects the analyses of $PM_{2.5}$ and PM_{10} . The experiment's correlation length is a little bit arbitrary, but we found that our DA analyses were not very sensitive to the inter-size bin correlation length.

736

737

According to our BEC modeling strategy, the DA system preferentially modified the coarse particle concentrations because of the coarse particles' high background model error. Intuitively, our modification that mainly focused on the highest concentration of coarse particles was reasonable. It decreased the model biases by raising the heaviest loading aerosols. As a result, the ratio of $PM_{2.5}$ to PM_{10} decreased from 0.39 in the background to 0.27 in DA_ PM_x , approaching the observed ratio of 0.28. Such improvement was consistent with the correction required to the model desert dust in literature. Kok et al. (2011) found that

744 regional and global circulation models underestimate the fraction of emitted coast dust ($>\sim 5$
745 μm), overestimates the fraction of fine dust ($<2\mu\text{m}$ diameter). Adebiyi and Kok (2020)
746 claimed that too rapid deposition of coarse dust out of the atmosphere accounts for the
747 missing coarse dust in models. According to Kashi's AOD between 440 nm and 1020 nm, the
748 observed Ångström exponent (AE) was 0.18, while the background value was 0.54 (Table 3),
749 showing too many fine particles in the background field. DA_PMx reduced the AE value to
750 0.30, a little improvement but not sufficient.

751
752 As the particle concentration increased, the 635 nm aerosol scattering coefficient in DA_PMx
753 moderately increased to 170.4 Mm^{-1} , still lower than the observed level of 231.5 Mm^{-1} , with a
754 high correlation of 0.89. The scattering AE was 1.32 in the background and decreased to 0.96
755 (Table 3), indicating a more reasonable wavelength dependence of the coarse particles'
756 scattering in the analysis. The analyzed 660 nm absorption coefficient had a small
757 improvement, which was 15.8 Mm^{-1} , 67% lower than observed levels, with a correlation of
758 0.42. There was no improvement in absorption AE, which increased to 1.84 in DA_PMx, far
759 higher than the observation value of 1.65. The analyzed 870 nm AOD showed a monthly
760 mean value of 0.38 in DA_PMx, 42% lower than observed levels, with a low correlation of
761 0.35.

762
763 Figure 9a shows the diurnal concentrations of PM_{10} in the analyses in April. The observed
764 PM_{10} showed a substantial variation at 1800 UTC, the local midnight. This substantial
765 nocturnal variation was partly owing to the dust storm that started on 24 April and ended the
766 next day. This midnight variation was also related to a nocturnal low-level jet. Ge et al.
767 (2016) pointed out a nocturnal low-level jet at the height of 100–400 m, with a wind speed of
768 4–10 m s^{-1} throughout the year in the Tarim Basin. They stressed that the low-level jet broke
769 down in the morning, transporting its momentum toward the surface, and increased dust
770 emissions. The nocturnal low-level jet increased the possibility of dust particles moving
771 towards the city at night, causing a high PM_{10} variation at 1800 UTC. The diurnal changes in
772 the DA analyses followed the observed levels but had higher mean values.

773

774 **3.3 Assimilating AOD**

775 Assimilating AOD (DA_AOD) improved the monthly mean of 870 nm AOD to 0.59,
776 approaching the observed value of 0.66, with a high correlation of 0.98 (Figure 6h). The
777 monthly mean $\text{PM}_{2.5}$ was improved to $92.6 \mu\text{g m}^{-3}$, quite close to the observed level of $91 \mu\text{g}$
778 m^{-3} , but the analyzed PM_{10} was $541.7 \mu\text{g m}^{-3}$, 68% higher than the observed value. The DA
779 system improved the AOD at the price of deteriorating the data quality of surface coarse
780 particle concentrations. Such surface particle overestimations have been reported in previous
781 studies (Liu et al., 2011; Ma et al., 2020; Saide et al., 2020). As a result, the ratio of $\text{PM}_{2.5}$ to
782 PM_{10} reduced to 0.17 in DA_AOD, which was too far compared with the observed ratio of
783 0.28. The overestimation of aerosol mass concentration also inclines to raise
784 scattering/absorption coefficients. The analyzed 635 nm scattering coefficient in DA_AOD
785 increased to 222.6 Mm^{-1} , slightly lower than the observed value. The analyzed 660 nm
786 absorption coefficient slightly increased to 17.0 Mm^{-1} , 64% lower than the observed value.

787

788 The scattering and absorption AE values in DA_AOD had the responses as those in
789 DA_PMX. As shown in Table 3, the scattering AE decreased to 0.44 in DA_AOD, which was
790 slightly better than the AE value of 0.96 in DA_PMX. On the contrary, the absorption AE
791 increased to 1.97 in DA_AOD, far deviating from the observed value. The analysis fit to the
792 aerosol scattering overwhelmed the fit to the aerosol absorption. The AE based on AOD was
793 reduced to -0.01 in DA_AOD, in line with the decrease in DA_PMX, but the reduction in
794 DA_AOD was much lower than the observation value of 0.18.

795

796 Table 4 shows the ratios of the AOD and aerosol scattering/absorption coefficients to the
797 surface PM₁₀ concentrations. The ratio of AOD to PM₁₀ in the background model result was
798 one-third of the observed levels. The observed mass scattering coefficient (Esca/PM₁₀) was
799 1.05 Mm⁻¹ μg⁻¹ m³, while the background value was only 0.65 Mm⁻¹ μg⁻¹ m³. DA_AOD
800 did not eliminate the low bias but lowered the ratio to 0.51 Mm⁻¹ μg⁻¹ m³. The same thing
801 occurred for Eabs/PM₁₀, which was 0.09 in the background and 0.05 in DA_AOD, much
802 lower than the observed value of 0.25. Figure 10 shows these mean ratios at the other
803 wavelengths. The low bias in AOD/PM₁₀ was comparable at each wavelength with a slightly
804 stronger low bias in short wavelengths (Figure 10a). The ratios' low biases indicated the low
805 scattering and absorption efficiencies, and the DA system overestimated the PM₁₀ to fit the
806 observed AOD data.

807

808 We computed the surface single scattering albedo (SSAsrf) with the 525 nm scattering
809 coefficient and 520 nm absorption coefficient. We did not use the Ångström exponent to
810 interpolate the scattering/absorption coefficients to a similar wavelength because the AE itself
811 had a large model bias even after DA (Table 3). The observed SSAsrf value was 0.78,
812 indicating an emphatic absorption particle, probably due to the mixture of anthropogenic
813 black carbon and natural desert dust in the local air. The model background SSAsrf was 0.86.
814 The DA analyses gave even higher SSAsrf (0.88 to 0.9).

815

816 The low bias in mass scattering/absorption efficiency is related to the aerosol optical module
817 based on Mie theory in WRF-Chem. First, the simulations used four-size bin particle
818 segregation. This coarse size representation aggregated many aerosols in the accumulation
819 mode (Figure 8f). Because small particles have a strong light attenuation capability, according
820 to the Mie theory, too many coarse particles would not effectively increase the AOD. Saide et
821 al. (2020) linked the aerosol optics to the size bin representation (from 4 to 16 bins) for hazes
822 in South Korea. They showed that WRF-Chem underestimated the dry aerosol extinction, and
823 the underestimation could be relieved when using a finer size bin than four. Okada and Kai
824 (2004) found that the dust particle radius in the Taklamakan Desert was in the range of 0.1–4
825 μm, indicating the dominant fine-mode particles in the desert.

826

827 Second, the dust particles are irregular in shape (Okada and Kai, 2004), while the spherical
828 particle is a common assumption for the aerosol optics in the Mie theory in current models,
829 which is an essential source of uncertainty in the forward operator of WRF-Chem when the
830 assumption of spherical particles for dust fails. The irregular morphology has a significant
831 influence on the dust simulation. Okada et al. (2001) found that the aspect ratio (the ratio of

832 the longest dimension to its orthogonal width) of the mineral dust particles (0.1-6 μm) in
833 China's arid regions exhibited a median of 1.4. Dubovik et al. (2006) suggested the aspect
834 ratio of ~ 1.5 and higher in desert dust plumes. Kok et al. (2017) found that the dust' sphericity
835 assumption underestimated dust extinction efficiency by $\sim 20\text{--}60\%$ for the dust particle larger
836 than 1 μm . Tian et al. (2020) found that using a dust ellipsoid model could increase the
837 concentration of coarse dust particle (5-10 μm) by $\sim 5\%$ in eastern china and $\sim 10\%$ in the
838 Taklimakan area because of the decrease in gravitational settling, comparing with the
839 simulations with dust sphericity model. Nevertheless, the aspect ratio of the spheroid dust is
840 uncertain. Even after applying the spheroidal approximation, Soorbas et al. (2015) found that
841 the model underestimated 550 nm aerosol scattering and backscattering values by 49% and
842 11% because of the uncertainties in particle's axial ratio, complex refractive index, and the
843 particle size distribution. To date, the assumption of spherical particles has been widespread
844 in models (including WRF-Chem) for computational efficiency. The impact of dust
845 morphology on DA deserves further investigation.

846
847 To reduce the overestimate in PMx concentrations, we set the gridded standard deviation in
848 place of the latitude-binning standard deviation, as discussed in Section 2.3. Figure 11 shows
849 the analyzed vertical profiles of PMx concentrations. Higher PM₁₀ concentrations were shown
850 in the low atmosphere than at the surface for the assimilation experiments. These vertical
851 error profiles decreased the surface PM₁₀ particles and increased the PM_{2.5}/PM₁₀ ratio. The
852 BEC tuning was not sufficient to increase the mass extinction efficiency to the observed
853 value. The mass extinction efficiency in the analysis was almost equivalent to the background
854 value (Table 4). Finer aerosol size representation and a better advanced aerosol optical
855 calculation for dust could be considered solutions.

856
857 Assimilating the AOD seems to increase the diurnal variation in the DA analyses, but this
858 variation was not conclusive since different amounts of AOD data for DA at 0000, 0600, and
859 1200 UTC. The AOD data were not always available as the data quality control (i.e., cloud
860 screening). There was a higher increase in the concentration at noon (0600 UTC) (Figure 9b),
861 corresponding to a few high AOD during mild dust episodes at that hour. The DA system had
862 to raise the PM₁₀ to fit the observed high AOD values. Because the CE318 AOD was only
863 available in the daytime, no DA analysis was performed at 1800 UTC. Also, due to the
864 limited AOD data, assimilating AOD did not substantially increase the correlation of PMx.
865 The analyzed PM_{2.5} and PM₁₀ still had low correlations with the observed levels
866 ($R=0.31\text{--}0.35$).

867
868 **3.4 Assimilating Aerosol Scattering Coefficient**
869 Assimilating the aerosol scattering coefficient (DA_Esca) yielded overall analyses similar to
870 the phenomenon in DA_AOD. The analyzed 635 nm scattering coefficient (192.1 Mm^{-1}) was
871 lower than the observation (231.5 Mm^{-1}), with a high correlation of 0.97. The low biases were
872 smaller at short wavelengths (Figure 10b). The wavelength-dependent biases indicated that
873 the current DA system cannot eliminate the bias at each wavelength simultaneously. The
874 analyzed monthly mean AOD was 0.53, better than the AOD of 0.38 when assimilating PMx.
875 However, the surface particle concentrations were overestimated (i.e., positive biases by 14%

876 for $\text{PM}_{2.5}$ and 37% for PM_{10}), with a substantial increase in the coarse particle of OIN.
877 Overestimations appeared during a few mild dust episodes (Figure 7d). It indicated that WRF-
878 Chem underestimated the dust scattering efficiency, in accordance with the low bias in the
879 ratio of the scattering coefficient to PM_{10} ($0.52 \text{ Mm}^{-1} \mu\text{g}^{-1} \text{ m}^3$; Table 4). Thus, the DA
880 system overfitted the PMx concentration to approach the observed scattering coefficient. The
881 diurnal PM_{10} in the analysis was similar to the assimilation of PMx, showing a maximum
882 improvement and a robust nocturnal variation at 1800 UTC (Figure 9c). Assimilating the
883 scattering coefficient failed to improve the absorption coefficient. The monthly mean
884 absorption coefficient was 16.5 Mm^{-1} , 65% lower than the observed value. The AE responses
885 in DA_Esca followed those in DA_AOD. The AE values were overfitted (-0.15) for AOD,
886 slightly improved (0.19) for the scattering coefficient, and got a worse larger (1.95) for
887 absorption coefficient.

888

889 **3.5 Assimilating Aerosol Absorption Coefficient**

890 In contrast to the above results, assimilating the absorption coefficient (DA_Eabs)
891 deteriorated all the analyses other than the absorption coefficient. The analyses showed
892 substantial daily variations, and strong positive biases appeared in the dust episodes (Figure
893 7). The $\text{PM}_{2.5}$ was overestimated by a factor of three, and the PM_{10} was overestimated by a
894 factor of four. The increases occurred each hour (Figure 9d). Because of the constant ratio
895 between mass and number concentration, the particle number concentration increased. As a
896 result, the aerosol scattering coefficient was overfitted to 612.2 Mm^{-1} , higher than the
897 observed levels by a factor of three. The monthly mean AOD improbably rose to 1.73.
898 Nevertheless, the absorption coefficient (40 Mm^{-1}) was improved to the observed level (47.4
899 Mm^{-1}). The AE responses were similar to the results in DA_AOD, showing an overfitted ($-$
900 0.01) for AOD, a little better value for the scattering (0.48), and a worse larger for the
901 absorption (2.01).

902

903 Improving the absorption coefficient at the cost of PM_{10} overestimation indicates the model
904 biases in the representation of the particle mixture and the other absorbing particles (e.g.,
905 black carbon, brown carbon, and aged dust). The leading absorption aerosol in WRF-Chem is
906 BC, which had the maximum absorption and hence the maximum DA modification in the
907 second size ($0.156\text{--}0.625 \mu\text{m}$; Figure 8e). Because the BC had a small background
908 concentration, the BC showed a small DA improvement ($<1.5 \mu\text{g m}^{-3}$) and did not largely
909 enhance the particle absorption. Meanwhile, the coarse dust particle concentration was
910 primarily increased but did not have a strong absorption as BC. As a result, the model lowered
911 the absorption coefficient's ratio to PM_{10} by order of magnitude (0.05; Table 4). Because of
912 the observed absorption coefficient constraint, the DA system dramatically overestimated the
913 particle concentrations and induced too much higher aerosol scattering coefficient and AOD.
914 The overestimated PM_{10} lowered the mass scattering and absorption efficiencies. The mass
915 absorption efficiency was much lower at a short wavelength (Figure 10c), opposing the lower
916 bias at a long-wavelength for the mass scattering efficiency (Figure 10b). The low biases were
917 dependent on the wavelength, indicating an elaborate tuning that simultaneously eliminates
918 the wavelength-dependent bias. It requires the DA system, for example, to add aerosol
919 number concentration as an additional control variable and specify complex refractive index

920 at each wavelength more precisely. The WRF-Chem aerosol simulation uses a high number of
921 size bin representation is also helpful.

922
923 As the strong positive biases in PMx were concerned, the scattering coefficient's
924 overestimation was higher than that of the absorption coefficient in DA_Eabs (Table 2). As a
925 result, DA_Eabs gave the highest SSArf (0.9; Table 3) in all DA experiments, opposite to our
926 expectation that the assimilation of absorption coefficient should decrease the positive bias in
927 SSA.

928
929 To understand the DA_Eabs's failure, we performed a few sensitivity experiments by
930 changing the imaginary part of the dust refractive index on 1200UTC on April 9. The dust's
931 imaginary part that we set in the experiments covers the retrieved value range of imaginary
932 index for typical desert dust as shown in Di Biagio et al. (2019). The results are presented in
933 the supplementary table S4a and S4b. The sensitivity experiments show that a high imaginary
934 part of the dust refractive index decreases the aerosol absorption coefficient (Table S4b). This
935 paradox is due to the BC's reduction. Specifically, a high imaginary part increases coarse
936 dust's absorption efficiency and decreases the coarse dust number concentration (num_a04;
937 Table S4a). This reduction led to less fine aerosol number concentrations (e.g., num_a02)
938 because of the inter-size bin correlation. BC is abundant in the second and third size bins, and
939 its imaginary part of the refractive index is two orders of magnitude higher than dust. Less BC
940 caused a weak absorption coefficient. On the contrary, the low dust imaginary part would not
941 largely increase dust numbers in the coarse size bin because the DA system also attempts to
942 increase BC in the fine particles to enhance the absorption coefficient. In an extreme case
943 with zero value of imaginary part of dust, the improvement of absorption coefficient
944 exclusively relies on BC; the num_a02 is increased by order of magnitude (Table S4a), and
945 660 nm Eabs rose to 92.5 Mm⁻¹ (Table S4b), much higher than the observed level.

946
947 At Kashi, BC has a low background concentration and low background error. The innovation
948 of BC was limited. Thus, tuning the imaginary part of dust's complex refractive index would
949 not significantly change the SSArf value (0.89 to 0.92). Excluding the contribution from OIN
950 in PM₁₀, the scattering coefficient was associated with sulfate. The sulfate's background error
951 was higher than the BC's by order of magnitude. The DA system prioritized sulfate
952 modification even when assimilating absorption coefficient, resulting in a smaller BC mass
953 fraction in PM₁₀ (Figure 12f) and a high SSArf of 0.90.

954
955 We did another set of sensitivity experiments by increasing the original BC's BEC per size
956 bin. As shown in the supplementary Table S5, increasing the BC's BECs would not much
957 deteriorate the absorption coefficient and significantly decrease the positive biases in PMx,
958 AOD, and scattering coefficient; the SSArf approached the observation. Increasing BC's
959 BECs by a factor of seven (DA_Eabs_BC*7) shows the best analyses. This experiment
960 suppressed the positive biases without decreasing the absorption coefficient's accuracy
961 (Figure 7), and the BC mass fraction increased (Figure 12g). The absorption AE decreased to
962 1.41 (Table 3). Although the decrease was small, this change was opposite to the increase in
963 the absorption AE in the other DA experiments. Nevertheless, the disadvantage of the

964 enlargement of BC'BEC is noticeable. The simultaneous assimilation of scattering and
965 absorption coefficient is not convergent as well as before. After four outer loops and each
966 with 50 inner iterations, the analyzed absorption coefficient in DA_Eabs_BC*7 was still
967 higher than the observed value by 47% (Figure S1j). These results indicate a low bias in BC's
968 background concentration that violates the prerequisite unbiased condition for the control
969 variable in Eq (1), and this background bias is too large to be consumed in BEC.
970

971 **3.6 Assimilating Multi-source Observations**

972 Assimilating an individual observation improves the corresponding model parameter (i.e.,
973 PM_{2.5}, PM₁₀, Esca, Eabs, and AOD) but may worsen other parameters. The reasons for the
974 inconsistent improvements are relevant to the aerosol model itself. These are: (1) the model
975 parameters have opposite signs in biases (e.g., one model parameter has a positive bias while
976 another has a negative bias); (2) the model biases have vast differences in magnitude (e.g., a
977 good fit of a parameter may lead to another's overfit) and the different biases in magnitude
978 cannot be reconciled because the forward operator is inaccurate to represent the linkage
979 between aerosol mass and aerosol optics (e.g., lower particle mass extinction efficiency).
980

981 In our case, simultaneous assimilation of the scattering and absorption coefficients
982 (DA_Esca_Eabs) resulted in the analyses when assimilating the scattering coefficient alone
983 (DA_Esca), and the inferior analysis in DA_Eabs vanished. This was because incorporating
984 the scattering coefficient constrained the aerosol number concentrations. DA_PMxAOD
985 substantially improved the AE for AOD, with an analyzed value of 0.17, consistent with the
986 observed value of 0.18 (Table 3). The scattering AE was somewhat improved (0.79), though it
987 was still far from the observed value of -0.43. The absorption AE (1.89) was worse than the
988 background (1.77), far deviating from the observed value of 1.65. Among the DA
989 experiments, simultaneous assimilation of PMx and AOD (DA_PMxAOD) gave the best DA
990 results, in which all the analyses except the absorption coefficient were not significantly
991 different in the month mean values from the observations. Simultaneous assimilation of all
992 observations (DA_PMx_Esca_Eabs_AOD) did not substantially improve the analyses
993 compared with DA_PMxAOD because the surface coefficients and AOD had overlapped
994 information of the light attenuation. A redundant information source did not introduce extra
995 constraints on the DA system.
996

Table 3, 4; Figure 6, 7, 8, 9, 10

997

998 **3.7 Vertical Profiles of Aerosol Concentrations**

999 Figure 11 shows the vertical concentration profiles of PM_{2.5} and PM₁₀. The DA system
1000 increased the aerosol concentrations up to a height of 4 km, consistent with previous studies
1001 on the Taklamakan Desert. Meng et al. (2019) simulated a deep dust layer thickness in spring,
1002 with a 3–5 km depth. Ge et al. (2014) analyzed the Cloud-Aerosol Lidar Orthogonal
1003 Polarization data in 2006–2012 in the desert. They showed that dust could be lifted to 5 km
1004 above the Tarim Basin and even higher along the northern slope of the Tibetan Plateau.
1005 Among our DA experiments, the vertical PM₁₀ concentration increased quickly in the lowest
1006 three model layers and maintained high values at heights of less than 3 km. This vertical

profile corresponded to the background vertical error profile, reflecting the deep dust transporting layer. The PM_{2.5} vertical profiles showed a rapid reduction with an increase in altitude. The figure clearly shows that DA_PMx improved the PM_{2.5} and PM₁₀ better, whereas DA_AOD preferentially adjusted the coarse particles and overestimated the PM₁₀. Also shown in the figure are the vertical profiles normalized to their own respective surface particulate concentrations. The assimilations added a larger fraction of the mass in these layers and adjusted the shapes of the PM₁₀ profiles within 3 km above the ground (Figure 11d).

Figure 11

4. Discussions

4.1 DA Impact on Aerosol Chemical Composition

Due to the control variable design, our DA system modifies each aerosol's chemical composition according to the BEC values. The PM₁₀ chemical fractions remain close to their background values (Figure 12). As discussed in section 3.5, the assimilation of the aerosol absorption coefficient alone (DA_Eabs) increased the sulfate fraction. Sulfate was the predominant anthropogenic aerosol at Kashi and had a high background error value. The DA system prioritized sulfate modification and prevented a rise in the BC fraction in DA_Eabs. For the enlarged BC's BEC in DA_Eabs_BC*7, the BC mass fraction showed the largest increase. The magnitude of the background error determines the analyzed aerosol chemical fraction. The total aerosol quantities' assimilation cannot eliminate the intrinsic bias in aerosol composition. Accurate aerosol chemistry and optical modules are crucial to attaining better background aerosol chemical data for DA analysis (Saide et al., 2020).

Figure 12

4.2 DA Impact on Aerosol Direct Radiative Forcing

Table 5 shows the instantaneous clear-sky ADRF in the background data and the analyses of DA_PMx and DA_PMxAOD. The DA effect gradually faded away after restarting the model run. Because AOD and the surface particle concentrations had different DA frequencies, we focused on the instantaneous radiative forcing values one hour after assimilating AOD data in the two DA experiments to ensure that the comparison was based on similar analysis times. The immediate data after DA also show the effective DA effects.

Aerosol redistributes the energy between the land and the atmosphere. The atmosphere gains more shortwave energy as the dust and black carbon particle absorption; the warming atmosphere emits more longwave energy as it absorbs shortwave energy. The change in energy budget at the surface is correspondingly the opposite of that in the atmosphere. As shown in Table 5, the enhancements in surface cooling forcings were slightly stronger than those of atmospheric warming. The difference between the surface forcing and atmospheric forcing is the ADRF at the top of the atmosphere (TOA). When assimilating the surface particle concentrations, the TOA ADRF enhanced by 21% in the shortwave, 100% in the longwave, and 18% in the net forcing values, and when assimilating the AOD, enhanced by

1049 34%, 67%, and 32%, respectively. At Kashi, the total net (shortwave plus longwave) clear-
1050 sky ADRF with assimilating surface particles and AOD were -10.4 Wm^{-2} at the TOA, $+20.8 \text{ Wm}^{-2}$ within the atmosphere, and -31.2 Wm^{-2} at the surface, and enhanced by 55%, 48%, and
1051 50% respectively, compared to the background ADRF values.
1052

1053
1054 It is noteworthy that the ADRF estimation remains uncertain even after DA. The AOD
1055 observation is only sporadically available because of cloud screening in retrieval data. The
1056 DA experiments cannot eliminate the low bias in AOD in WRF-Chem. The ADRF values in
1057 the DA experiments are likely to be weaker than the plausible aerosol radiative forcing at
1058 Kashi. Neither DA experiment lowers SSAsrf to approach the observation. Penner et al.
1059 (2001) claimed that under average conditions, an SSA less than ~ 0.85 tends to lead to net
1060 warming. The observed SSAsrf (0.78) indicates likely aerosol warming forcing at Kashi,
1061 while WRF-Chem and the DA analyses tend to impose aerosol cooling forcing. The ADRF
1062 uncertainty is associated with the background aerosols. WRF-Chem simulates aerosol size up
1063 to $10 \mu\text{m}$, whereas larger particles ($>10 \mu\text{m}$) exhibit substantial absorption relative to
1064 scattering in the visible wavelength (Kok et al., 2017). Anthropogenic emission inventories
1065 need an update for the year 2019, reducing the potential low bias in BC concentration.
1066 Additionally, the revised GSI does not consider the change in particle effective radius per size
1067 bin when calculating the aerosol number concentration in each outer loop. Low absorption
1068 cross section raises aerosol number concentration as compensation, increasing aerosol
1069 scattering coefficient too much. If our tangent operator considered the change in particle
1070 effective radius per size bin, we could use aerosol mass and number concentration as control
1071 variables simultaneously. The DA system would have higher flexibility to balance the particle
1072 radius and number concentration and improve the absorption coefficient. All these need
1073 further research in the future.
1074

1075 **5. Conclusions**

1076 This study described our revised GSI DA system for assimilating observed aerosol data for
1077 the four-size bin sectional MOSAIC aerosol mechanism in WRF-Chem. The DA system has
1078 new design tangent linear operators for the multi-wavelength AOD, aerosol scattering, and
1079 absorption coefficients measured by the sun-sky radiometer, nephelometer, and aethalometer,
1080 respectively. We examined the DA system for Kashi city in northwestern China by
1081 assimilating the multi-wavelength aerosol optical measurements gathered by the Dust Aerosol
1082 Observation–Kashi field campaign of April 2019 and the concurrent hourly measurements of
1083 surface $\text{PM}_{2.5}$ and PM_{10} concentrations.
1084

1085 Our DA system includes two main aspects. Firstly, the control variable is the aerosol chemical
1086 composition per size bin corresponding to the WRF-Chem output data. This design allows
1087 modifying the composition of each aerosol based on their background error covariances. The
1088 number of control variables could be reduced by intentionally excluding a few aerosol
1089 compositions in a specific case if these compositions had low concentrations (e.g., chlorine
1090 and sodium in this study). Second, the DA system incorporates the observed AOD by
1091 assimilating the column mean aerosol extinction coefficient. This transfer avoids handling
1092 sensitivity from light attenuation length to the aerosol mass concentration in the tangent linear

operator, which is difficult to be accurately estimated and introduces significant errors in the operator. The tangent linear operator for AOD has two variants that can incorporate nephelometer and aethalometer measurements at the surface.

The most abundant aerosol at Kashi in April 2019 was dust. The WRF-Chem model captured the main dust episodes but underestimated the monthly mean concentrations of $PM_{2.5}$ and PM_{10} by 17% and 41%, respectively. The model failed to capture the peak concentrations from a dust storm on 24 April. The aerosol scattering/absorption coefficients and AOD in the background data showed strong low biases and weak correlations with the observed levels. The DA systems effectively assimilate the surface particle concentrations, aerosol scattering coefficients, and AOD. Some deficiencies in the DA analysis were related to the forward model bias in transferring the aerosol mass concentrations to the aerosol optical parameter. Simultaneous assimilation of the $PM_{2.5}$ and PM_{10} concentrations improved the model aerosol concentrations, with significant increases in the coarse particles; meanwhile, the analyzed AOD was 42% lower than observed levels. The assimilation of AOD significantly improved the AOD but overestimated the surface PM_{10} concentration by 68%. Assimilating the aerosol scattering coefficient improved the scattering coefficient in the analysis but overestimated the surface PM_{10} concentration by 37%. Therefore, it seems that WRF-Chem underestimated the aerosol extinction efficiency. As a compensation, the DA system overestimated the aerosol concentration to fit the observed optical values, yielding overly high particle concentrations.

A notable problem was the assimilation of the absorption coefficient, which greatly overestimated the monthly mean values by a factor of four in PM_{10} . The aerosol absorption coefficient was improved but was still 16% lower than observed values. The failure of DA analysis when assimilating the absorption coefficient is associated with many factors, including the biases of the model in aerosol particle mixture and aged dust, the uncertainties in the imaginary part of dust complex refractive index, the uncertain background error of BC, and the likely low bias in anthropogenic emissions. The most effective DA is the simultaneous assimilation of surface particle concentration and AOD, which provides the best overall DA analysis.

Our control variables' design allowed the DA system to adjust the aerosol chemical compositions individually. However, the analyzed anthropogenic aerosol chemical fractions were almost equivalent to the background chemical fractions. The reason is that the hydrophilic aerosols have equivalent or comparable refractive indices and hygroscopic parameters in the forward operator; they, therefore, have comparable tangent linear operator values when assimilating the aerosol optical data. It may be possible to separate the chemical compositions based on their background errors. The model anthropogenic aerosols were low at Kashi, probably due to the anthropogenic emissions' low biases. The low background concentrations led to low background errors and few increments for all chemical compositions. As a result, the chemical fractions of the anthropogenic aerosols remained close to their background values.

When assimilating surface particles and AOD, the instantaneous clear-sky ADRF (shortwave plus longwave) at Kashi were -10.4 Wm^{-2} at the TOA, $+20.8 \text{ Wm}^{-2}$ within the atmosphere, and -31.2 Wm^{-2} at the surface, respectively. Since the DA analyses still underestimated the AOD value and overestimated SSA, the aerosol radiative forcing values assimilating the observations were underestimated in the atmosphere and the surface.

The limitations that necessitate further research include:

(1) The desired binning strategy should link the circulation flow and particle emission sources. A better hybrid DA coupled with the ensemble Kalman filter will be more effective for estimating the aerosol background error.

(2) The observational error could be elaborated further. The PM_{10} included the anthropogenic coarse particles, which should be separated from the dust originating from the desert (Jin et al., 2019). We set the observation errors for PMx and AOD to the conventional values. The observational errors of the nephelometer and aethalometer were slightly arbitrary in this study, necessitating further consideration.

(3) The anthropogenic aerosols' background errors are needed to harmonize better to assimilate the aerosol absorption coefficient or absorption AOD.

(4) The DA system was based on four-size bin MOSAIC aerosols, but it can be extended to work with eight-size bin MOSAIC aerosols in WRF-Chem. When assimilating aerosol optical data, the DA quality is strongly dependent on the forward model. The responses of our DA analysis to the bias and uncertainty in the forward aerosol optical model in WRF-Chem need further investigation.

Author contributions

WC developed the DA system, performed the analyses, and wrote the paper. ZL led the field campaign and revised the paper. YZ and KL implemented the observations and the data quality control. YZ helped to design the new tangent linear operator. JC verified the DA system.

Competing interests

The authors declare that they have no conflict of interest.

Code/Data availability

The official GSI code is available at <https://dtcenter.org/community-code/gridpoint-statistical-interpolation-gsi/download>. The revised GSI code is available at https://github.com/wenyuan-chang/GSI_WRF-Chem_MOSAIC. The aerosol measurements at Kashi belong to the Sun-sky radiometer Observation NETwork (SONET), which is accessible at <http://www.sonet.ac.cn/en/index.php>.

Acknowledgments

This work is supported by the National Key Research and Development Program of China (Grant number 2016YFE0201400). We appreciate the two anonymous reviewers' constructive comments that improve the paper.

1180 **References**

1181 Adebiyi, A. A., Kok, J. F.: Climate models miss most of the coarse dust in the atmosphere,
1182 *Sci. Adv.*, 6, 1-10, doi:10.1126/sciadv.aaz9507, 2020.

1183

1184 Bannister, R. N.: A review of operational methods of variational and ensemble-variational
1185 data assimilation, *Q.J.R. Meteorol. Soc.*, 143, 607-633, doi:10.1002/qj.2982, 2017.

1186

1187 Bao, Y., Zhu, L., Guan, Q., Guan, Y., Lu, Q., Petropoulos, G. P., Che H., Ali, g., Dong, Y.,
1188 Tang, Z., Gu, Y., Tang, W., and Hou, Y.: Assessing the impact of Chinese FY-3/MERSI
1189 AOD data assimilation on air quality forecasts: sand dust events in northeast China, *Atmos.*
1190 *Environ.*, 205, 78-89, doi:10.1016/j.atmosenv.2019.02.026, 2019.

1191

1192 Barnard, J. C., Fast, J. D., Paredes-Miranda, G., Arnott, W. P., and Laskin, A.: Technical
1193 Note: Evaluation of the WRF-Chem “Aerosol Chemical to Aerosol Optical Properties”
1194 Module using data from the MILAGRO campaign, *Atmos. Chem. Phys.*, 19, 7325-7340,
1195 doi:10.5194/acp-10-7325-2010, 2010.

1196

1197 Bond, T. C., and Bergstrom, R. W.: Light absorption by carbonaceous particles: an
1198 investigative review, *Aerosol Sci. Tech.*, 40, 27-67, doi:10.1080/02786820500421521, 2006.

1199

1200 Calil, P. H. R., Doney, S. C., Yumimoto, K., Eguchi, K., and Takemura, T.: Episodic
1201 upwelling and dust deposition as bloom triggers in low-nutrient, low-chlorophyll regions, *J.*
1202 *Geophys. Res.*, 116, C06030, doi:10.1029/2010jc006704, 2011.

1203

1204 Chen, Y., and Bond, T. C.: Light absorption by organic carbon from wood combustion,
1205 *Atmos. Chem. Phys.*, 10, 1773-1787, doi:10.5194/acp-10-1773-2010, 2010.

1206

1207 Chen, D., Liu, Z., Schwartz, C. S., Lin, H.-C., Cetola, J. D., Gu, Y., and Xue, L.: The impact
1208 of aerosol optical depth assimilation on aerosol forecasts and radiative effects during a wild
1209 fire event over the United States, *Geosci. Model Dev.*, 7, 2709-2715, doi:10.5194/gmd-7-
1210 2709-2014, 2014.

1211

1212 Chen, L., Gao, Y., Zhang, M., Fu, J. S., Zhu, J., Liao, H., Li, J., Huang, K., Ge, B., Wang, X.,
1213 Lam, Y. F., Lin, C.-Y., Itahashi, S., Nagashima, T., Kajino, M., Yamaji, K., Wang, Z., and
1214 Kurokawa, J.-i.: MICS-Asia III: multi-model comparison and evaluation of aerosol over East
1215 Asia, *Atmos. Chem. Phys.*, 19, 11911-11937, doi:10.5194/acp-19-11911-2019, 2019.

1216

1217 Chen, S.-H., and Sun, W.-Y.: A one-dimensional time dependent cloud model, *J. Meteor. Soc.*
1218 *Japan*, 80, 1, 99-118, doi:10.2151/jmsj.80.99, 2002.

1219

1220 Chen, D., Liu, Z., Ban, J., Zhao, P., and Chen, M.: Retrospective analysis of 2015-2017
1221 wintertime PM_{2.5} in China: response to emission regulations and the role of meteorology,
1222 *Atmos. Chem. Phys.*, 19, 7409-7427, doi:10.5194/acp-19-7409-2019, 2019.

1223

1224 Cheng, T., Wang, H., Xu, Y., Li, H., and Tian, L.: Climatology of aerosol optical properties in
1225 northern China, *Atmos. Environ.*, 40, 1495-1509, doi:10.1016/j.atmosenv.2005.10.047, 2006.

1226

1227 Cheng, X., Liu, Y., Xu, X., You, W., Zang, Z., Gao, L., Chen, Y., Su, D., and Yan, P.: Lidar
1228 data assimilation method based on CRTM and WRF-Chem models and its application in
1229 PM_{2.5} forecasts in Beijing, *Sci. Total Environ.*, 682, 541-552,
1230 doi:10.1016/j.scitotenv.2019.05.186, 2019.

1231

1232 Descombes, G., Auligné, T., Vandenberghe, F., Barker, D. M., and Barré, J.: Generalized
1233 background error covariance matrix model (GEN_BE v2.0), *Geosci. Model Dev.*, 8, 669-696,
1234 doi:10.5194/gmd-8-669-2015, 2015.

1235

1236 Di Biagio, C., Formenti, P., Balkanski, Y., Caponi, L., Cazaunau, M., Pangui, E., Journet, E.,
1237 Nowak, S., Andreae, M. O., Kandler, K., Saeed, T., Piketh, S., Seibert, D., Williams, E., and
1238 Doussin, J.-F.: Complex refractive indices and single-scattering albedo of global dust aerosols
1239 in the shortwave spectrum and relationship to size and iron content, *Atmos. Chem. Phys.*, 19,
1240 15503-15531, doi:10.5194/acp-19-15503-2019, 2019.

1241

1242 Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B. N., Mishchenko, M., Yang, P., Eck, T. F.,
1243 Volten, H., Munoz, O., Veihelmann, B., van der Zande, W. J., Leon, J.-F., Sorokin, M., and
1244 Slutsker, I.: Application of spheroid models to account for aerosol particle nonsphericity in
1245 remote sensing of desert dust, *J. Geophys. Res.*, 111, doi:10.1029/2005JD006619, 2006.

1246

1247 Fan, J., Shang, Y., Chen, Q., Wang, S., Zhang, X., Zhang, L., Zhang, Y., Xu, X., and Jiang,
1248 P.: Investigation of the “dust reservoir effect” of the Tarim Basin using WRF-GOCART
1249 model, *Arab. J. Geosci.*, 13, 214, doi:10.1007/s12517-020-5154-x, 2020.

1250

1251 Fast, J. D., Gustafson, W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C., Chapman, E. G.,
1252 Grell, G. A. Peckham, S. E.: Evolution of ozone, particulates, and aerosol direct radiative
1253 forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol
1254 model, *J. Geophys. Res.-Atmos.*, 111, D21305, doi:10.1029/2005jd006721, 2006.

1255

1256 Feng, S., Jiang, F., Jiang, Z., Wang, H., Cai, Z., and Zhang, L.: Impact of 3DVAR
1257 assimilation of surface PM_{2.5} observations on PM_{2.5} forecasts over China during wintertime,
1258 *Atmos. Environ.*, 187, 34-49, doi:10.1016/j.atmosenv.2018.05.049, 2018.

1259

1260 Ge, J. M., Huang, J. P., Xu, C. P., Qi, Y. L., and Liu, H. Y.: Characteristics of Taklimakan
1261 dust emission and distribution: A satellite and reanalysis field perspective, *J Geophys. Res.*
1262 *Atmos.*, 119, 11772-11783, doi:10.1002/2014jd022280, 2014.

1263

1264 Ge, J. M., Liu, H., Huang, J., and Fu, Q.: Taklimakan desert nocturnal low-level jet:
1265 climatology and dust activity, *Atmos. Chem. Phys.*, 16, 7773-7783, doi:10.5194/acp-16-7773-
1266 2016, 2016.

1267

1268 Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O., and Lin, S.-J.:
1269 Sources and distributions of dust aerosols simulated with the GOCART model, *J. Geophys.*
1270 *Res.*, 106, D17, 20255-20273, doi: 10.1029/2000JD000053, 2001.

1271

1272 Giorgi, F., and Mearns, L. O.: Introduction to special section: Regional climate modeling
1273 revisited, *J. Geophys. Res.*, 104, D6, 6335-6352, doi:10.1029/98JD02072, 1999.

1274

1275 Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and
1276 Eder, B.: Fully coupled “online” chemistry within the WRF model. *Atmos. Environ.*, 39,
1277 6957-7975, doi:10.1016/j.atmosenv.2005.04.027, 2005.

1278

1279 Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of
1280 global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and
1281 Aerosols from Nature), *Atmos. Chem. Phys.*, 6, 3181-3210, doi:10.5194/acp-6-3181-2006,
1282 2006.

1283

1284 He, J., Zhang, Y., Wang, K., Chen, Y., Leung, L. R., Fan, J., Li, M., Zheng, B., Zhang, Q.,
1285 Duan, F., and He, K.: Multi-year application of WRF-CAM5 over East Asia-Part I:
1286 Comprehensive evaluation and formation regimes of O₃ and PM_{2.5}, *Atmos. Environ.*, 165,
1287 122-142, doi:10.1016/j.atmosenv.2017.06.015, 2017.

1288

1289 Holben, B. N., Eck, T. F., Slutsker, I., Tanré D., Buis, J. P., Setzer, A., Vermote, E., Reagan,
1290 J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., and Smirnov, A.: AERONET—
1291 A federated instrument network and data archive for aerosol characterization, *Remote Sens.*
1292 *Environ.*, 66, 1-16, doi:10.1016/s0034-4257(98)00031-5, 1998.

1293

1294 Hong, S.-Y., Noh, Y., Dudhia, J.: A new vertical diffusion package with an explicit treatment
1295 of entrainment processes, *Mon. Wea. Res.*, 134, 2318-2341, doi:10.1175/MWR3199.1, 2006.

1296

1297 Huang, J., Wang, T., Wang, W., Li, Z., and Yan, H.: Climate effects of dust aerosols over
1298 East Asian arid and semiarid regions, *J. Geophys. Res.*, 119, 11398-11416,
1299 doi:10.1002/2014jd021796, 2014.

1300

1301 Hong, J., Mao, F., Min, Q., Pan, Z., Wang, W., Zhang, T., and Gong, W.: Improved PM_{2.5}
1302 predictions of WRF-Chem via the integration of Himawari-8 satellite data and ground
1303 observations, *Environ. Pollut.*, 263, 114451, doi:10.1016/j.envpol.2020.114451, 2020.

1304

1305 Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins,
1306 W. D.: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative
1307 transfer models, *J. Geophys. Res.*, 113, D13103, doi:10.1029/2008JD009944, 2008.

1308

1309 Jia, R., Liu, Y., Chen, B., Zhang, Z., and Huang, J.: Source and transportation of summer dust
1310 over the Tibetan Plateau, *Atmos. Environ.*, 123, 210-219,
1311 doi:10.1016/j.atmosenv.2015.10.038, 2015.

1312
1313 Jiang, Z., Liu, Z., Wang, T., Schwartz, C. S., Lin, H.-C., and Jiang, F.: Probing into the
1314 impact of 3DVAR assimilation of surface PM₁₀ observations over China using process
1315 analysis, *J. Geophys. Res.*, 118, 6738-6749, doi:10.1002/jgrd.50495, 2013.
1316
1317 Jin, J., Lin, H. X., Segers, A., Xie, Y., and Heemink, A.: Machine learning for observation
1318 bias correction with application to dust storm data assimilation, *Atmos. Chem. Phys.*, 19,
1319 10009-10026, doi:10.5194/acp-19-10009-2019.
1320
1321 Kok, J. F.: A scaling theory for the size distribution of emitted dust aerosols suggests climate
1322 models underestimate the size of the global dust cycle, *Proc. Natl. Acad. Sci. U.S.A.*, 108,
1323 1016-1021, doi:10.1073/pnas.1014798108, 2011.
1324
1325 Kok, J. F., Ridley, D. A., Zhou, Q., Miller, R. L., Zhao, C., Heald, C. L., Ward, D. S., Albani,
1326 S., and Haustein, K.: Smaller desert dust cooling effect estimated from analysis of dust size
1327 and abundance, *Nat. Geosci.*, doi:10.1038/ngeo2912, 2017.
1328
1329 Kumar, R., Monache, L. D., Bresch, J., Saide, P. E., Tang, Y., Liu, Z., de Silva, A. M.,
1330 Alessandrini, S., Pfister, G., Edwards, D., Lee, P., and Djalaova, I.: Toward improving short-
1331 term predictions of fine particulate matter over the United States via assimilation of satellite
1332 aerosol optical depth retrievals, *J. Geophys. Res.*, 124, 2753-2773,
1333 doi:10.1029/2018jd029009, 2019.
1334
1335 Li, L., Li, Z., Chang, W., Ou, Y., Goloub, P., Li, C., Li, K., Hu, Q., Wang, J., and Wendisch,
1336 M.: Solar radiative forcing of aerosol particles near the Taklimakan desert during the Dust
1337 Aerosol Observation-Kashi campaign in Spring 2019, *Atmos. Chem. Phys.*, 20, 10845-10864,
1338 doi:10.5194/acp-2020-60, 2020.
1339
1340 Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., Man, H.,
1341 Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a review, *Natl. Sci.*
1342 *Rev.*, 4, 834-866, doi:10.1093/nsr/nwx150, 2017.
1343
1344 Li, Z., Zang, Z., Li, Q. B., Chao, Y., Chen, D., Ye, Z., Liu, Y., and Liou, K. N.: A three-
1345 dimensional variational data assimilation system for multiple aerosol species with
1346 WRF/Chem and an application to PM_{2.5} prediction, *Atmos. Chem. Phys.*, 13, 4265-4278,
1347 doi:10.5194/acp-13-4265-2013, 2013.
1348
1349 Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu, X. F., Zhao, W., Tian,
1350 Q. J., Deng, R. R., Su, X. L., Huang, B., Qiao, Y. L., Cui, W. Y., Hu, Y., Gong, C. L., Wang,
1351 Y. Q., Wang, X. F., Wang, J. P., Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Comprehensive
1352 study of optical, physical, chemical, and radiative properties of total columnar atmospheric
1353 aerosols over China An overview of sun-sky radiometer observation network (SONET)
1354 measurements, *Bull. Amer. Meteorol. Soc.*, 739-755, doi:10.1175/BMAS-D-17-0133.1, 2018.
1355

1356 Liu, Z., Liu, Q., Lin, H.-C., Schwartz, C. S., Lee, Y.-H., and Wang, T.: Three-dimensional
1357 variational assimilation of MODIS aerosol optical depth: Implementation and application to a
1358 dust storm over East Asia, *J. Geophys. Res.*, 116, D23206, doi:10.1029/2011JD016159, 2011.
1359

1360 Ma, C., Wang, T., Mizzi, A. P., Anderson, J. L., Zhuang, B., Xie, M., and Wu, R.:
1361 Multiconstituent data assimilation with WRF-Chem/DART: Potential for adjusting
1362 anthropogenic emissions and improving air quality forecasts over eastern China, *J. Geophys.*
1363 *Res. Atmos.*, 124, 7393-7412, doi:10.1029/2019JD030421, 2019.
1364

1365 Ma, C., Wang, T., Jiang, Z., Wu, H., Zhao, M., Zhuang, B., Li, S., Xie, M., Li, M., Liu, J.,
1366 and Wu, R.: Importance of bias correction in data assimilation of multiple observations over
1367 eastern China using WRF-Chem/DART, *J. Geophys. Res. Atmos.*, 125, e2019JD031465,
1368 doi:10.1029/2019JD031465, 2020.
1369

1370 Malm, W., C., and Hand, J. L.: An examination of the physical and optical properties of
1371 aerosols collected in the IMPROVE program, *Atmos. Environ.*, 41, 16, 3407-3427,
1372 doi:10.1016/j.atmosenv.2006.12.012, 2007.
1373

1374 Massart, S., Pajot, B., Piacentini, A., and Pannekoucke, O.: On the merits of using a 3D-
1375 FGAT assimilation scheme with an outer loop for atmospheric situations governed by
1376 transport, *Mon. Weather Rev.*, 138, 12, 4509-4522, doi:10.1175/2010MWR3237.1, 2010.
1377

1378 Meng, L., Yang, X., Zhao, T., He, Q., Lu, H., Mamtimin, A., Huo, W., Yang, F., and Liu, C.:
1379 Modeling study on three-dimensional distribution of dust aerosols during a dust storm over
1380 the Tarim Basin, Northwest China, *Atmos. Res.*, 218, 285-295,
1381 doi:10.1016/j.atmores.2018.12.006, 2019.
1382

1383 Okada, K., Heintzenberg, J., Kai, K., and Qin, Y.: Shape of atmospheric mineral particles
1384 collected in three Chinese arid-regions, *Geophys. Res. Lett.*, 28, 16, 3123-3126,
1385 doi:10.1029/2000GL012798, 2001.
1386

1387 Okada, K., and Kai, K.: Atmospheric mineral particles collected at Qira in the Taklamakan
1388 Desert, China, *Atmos. Environ.*, 38, 6927-6935, doi:10.1016/j.atmosenv.2004.03.078, 2004.
1389

1390 Pagowski, M., Grell, G. A., McKeen, S. A., Peckham, S. E., and Devenyi, D.: Three-
1391 dimensional variational data assimilation of ozone and fine particulate matter observations:
1392 some results using the Weather Research and Forecasting – Chemistry model and Grid-point
1393 Statistical Interpolation, *Q. J. R. Meteorol. Soc.*, 136, 2014-2024, doi:10.1002/qj.700, 2010.
1394

1395 Pagowski, M., Liu, Z., Grell, G. A., Hu, M., Lin, H.-C., and Schwartz, C. S.: Implementation
1396 of aerosol assimilation in Gridpoint Statistical Interpolation (v.3.2) and WRF-Chem (v.3.4.1),
1397 *Geosci. Model Dev.*, 7, 1621-1627, doi:10.5194/gmd-7-1621-2014, 2014.
1398

1399 Pang, J., Liu, Z., Wang, X., Bresch, J., Ban, J., Chen, D., and Kim, J.: Assimilating AOD
1400 retrievals from GOCI and VIIRS to forecast surface PM_{2.5} episodes over eastern China,
1401 *Atmos. Environ.*, 179, 288-304, doi:10.1016/j.atmosenv.2018.02.011, 2018.

1402

1403 Pang, J., Wang, X., Shao, M., Chen, W., and Chang, M.: Aerosol optical depth assimilation for
1404 a modal aerosol model: Implementation and application in AOD forecasts over East Asia, *Sci.*
1405 *Total Environ.*, 719, 137430, doi:10.1016/j.scitotenv.2020.137430, 2020.

1406

1407 Parrish, D. F., and Derber, J. C.: The National Meteorological Center's spectral statistical-
1408 interpolation analysis system, *Mon. Weather Rev.*, 120, 1747-1763, doi: 10.1175/1520-
1409 0493(1992)120<1747:TNMCSS>2.0.CO;2, 1992.

1410

1411 Peng, Z., Liu, Z., Chen, D., and Ban, J.: Improving PM_{2.5} forecast over China by the joint
1412 adjustment of initial conditions and source emissions with an ensemble Kalman filter, *Atmos.*
1413 *Chem. Phys.*, 17, 4837-4855, doi:10.5194/acp-17-4837-2017, 2017.

1414

1415 Peng, Z., Lei, L., Liu, Z., Sun, J., Ding, A., Ban, J., Chen, D., Kou, X., and Chu, K.: The
1416 impact of multi-species surface chemical observation assimilation on air quality forecasts in
1417 China, *Atmos. Chem. Phys.*, 18, 17387-17404, doi:10.5194/acp-18-17387-2018, 2018.

1418

1419 Penner, J. E., Hegg, D., and Leaitch, R.: Unraveling the role of aerosols in climate change,
1420 *Environ. Sci. Technol.*, 35, 332A-340A, doi:10.1021/es0124414, 2001.

1421

1422 Purser, R. J., Wu, W.-S., Parrish, D. F., and Roberts, N. M.: Numerical aspects of the
1423 application of recursive filters to variational statistical analysis. Part I: spatially homogeneous
1424 and isotropic gaussian covariances, *Mon. Weather Rev.*, 131, 1524-1535, doi: 10.1175//1520-
1425 0493(2003)131<1524:NAOTAO>2.0.CO;2, 2003a.

1426

1427 Purser, R. J., Wu, W.-S., Parrish, D. F., and Roberts, N. M.: Numerical aspects of the
1428 application of recursive filters to variational statistical analysis. Part II: spatially
1429 inhomogeneous and anisotropic general covariances, *Mon. Weather Rev.*, 131, 1536-1548,
1430 doi: 10.1175//2543.1, 2003b.

1431

1432 Saide, P. E., Carmichael, G. R., Liu, Z., Schwartz, C. S., Lin, H. C., da Silva, A. M., and
1433 Hyer, E.: Aerosol optical depth assimilation for a size-resolved sectional model: impacts of
1434 observationally constrained, multi-wavelength and fine mode retrievals on regional scale
1435 analyses and forecasts, *Atmos. Chem. Phys.*, 13, 10425-10444, doi:10.5194/acp-13-10425-
1436 2013, 2013.

1437

1438 Saide, P. E., Kim, J., Song, C. H., Choi, M., Cheng, Y., and Carmichael, G. R.: Assimilation
1439 of next generation geostationary aerosol optical depth retrievals to improve air quality
1440 simulations, *Geophys. Res. Lett.*, 41, 9188-9196, doi:10.1002/2014GL062089, 2014.

1441

1442 Saide, P. E., Gao, M., Lu, Z., Goldberg, D., Streets, D. G., Woo, J.-H., Beyersdorf, A., Corr,
1443 C. A., Thornhill, K. L., Anderson, B., Hair, J. W., Nehrir, A. R., Diskin, G. S., Jimenez, J. L.,
1444 Nault, B. A., Campuzano-Jost, P., Dibb, J., Heim, E., Lamb, K. D., Schwarz, J. P., Perring,
1445 A. E., Kim, J., Choi, M., Holben, B., Pfister, G., Hodzic, A., Carmichael, G. R., Emmons, L.,
1446 and Crawford, J. H.: Understanding and improving model representation of aerosol optical
1447 properties for a Chinese haze event measured during KORUS-AQ, *Atmos. Chem. Phys.*, 20,
1448 6455-6478, doi:10.5194/acp-20-6455-2020, 2020.

1449

1450 Schwartz, C. S., Liu, Z., Lin, H.-C., and McKeen, S. A.: Simultaneous three-dimensional
1451 variational assimilation of surface fine particulate matter and MODIS aerosol optical depth, *J.*
1452 *Geophys. Res.*, 117, D13202, doi:10.1029/2011JD017383, 2012.

1453

1454 Sič, B., Amraoui, L. E., Piacentini, A., Marécal, V., Emili, E., Cariolle, D., Prather, M., and
1455 Attié, J.-L.: Aerosol data assimilation in the chemical transport model MOCAGE during the
1456 TRAQQA/ChArMEx campaign: aerosol optical depth, *Atmos. Chem. Phys.*, 9, 5535-5554,
1457 doi:10.5194/amt-9-5535-2016, 2016.

1458

1459 Sorribas, M., Olmo, F. J., Quirantes, A., Lyamani, H., Gil-Ojeda, M., Alados-Arboledas, L.,
1460 and Horvath, H.: Role of spheroidal particles in closure studies for aerosol microphysical-
1461 optical properties, *Q. J. R. Meteorol. Soc.*, 141, 2700-2707, doi:10.1002/qj.2557, 2015.

1462

1463 Tang, Y., Pagowski, M., Chai, T., Pan, L., Lee, P., Baker, B., Kumar, R., Monache, L. D.,
1464 Tong, D., and Kim, H.-C.: A case study of aerosol data assimilation with the Community
1465 Multi-scale Air Quality Model over the contiguous United States using 3D-Var and optimal
1466 interpolation methods, *Geosci. Model Dev.*, 10, 4743-4758, doi:10.5194/gmd-10-4743-2017,
1467 2017.

1468

1469 Tewari, M., Chen, F., Wang, W., Dudhai, J., LeMone, M. A., Mitchell, K., Ek, M., Gayno,
1470 G., Wegiel, J., and Cuenca, R. H.: Implementation and verification of the unified NOAH land
1471 surface model in the WRF model. 20th conference on weather analysis and forecasting/16th
1472 conference on numerical weather prediction, pp. 11-15, 2004.

1473

1474 Tian, Y., Wang, Z., Pan, X., Li, J., Yang, T., Wang, D., Liu, X., Liu, H., Zhang, Y., Lei, S.,
1475 Sun, Y., Fu, P., Uno, I., and Wang, Z.: Influence of the morphological change in natural
1476 Asian dust during transport: A modeling study for a typical dust event over northern China,
1477 *Sci. Total Environ.*, 10.1016/j.scitotenv.2020.139791, 2020.

1478

1479 Toon, O. B., Pollack, J. B., and Khare, B. N.: The optical constants of several atmospheric
1480 aerosol species: ammonium sulfate, aluminum oxide, and sodium chloride, *J. Geophys. Res.*,
1481 81, 33, doi:10.1029/JC081i033p05733, 1976.

1482

1483 Wang, K.-Y., Lary, D. J., Shallcross D. E., Hall, S. M., and Pyle, J. A.: A review on the use of
1484 the adjoint method in four-dimensional atmospheric-chemistry data assimilation, *Q. J. R.*
1485 *Meteorol. Soc.*, 127, 2181-2204, doi:10.1002/qj.49712757616, 2001.

1486
1487 Wang, D., You, W., Zang, Z., Pan, X., He, H., and Liang, Y.: A three-dimensional variational
1488 data assimilation system for a size-resolved aerosol model: Implementation and application
1489 for particulate matter and gaseous pollutant forecasts across China, *Sci. China-Earth Sci.*, 63,
1490 1366-1380, doi:10.1007/s11430-019-9601-4, 2020.
1491
1492 Wu, W.-S., Purser, r. J., and Parrish, D. F.: three-dimensional variational analysis with
1493 spatially inhomogeneous covariances, *Mon. Weather Rev.*, 130, 12, 2905-2916,
1494 doi: 10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2, 2002.
1495
1496 Xia, X., Min, J., Shen, F., Wang, Y., and Yang, C.: Aerosol data assimilation using data from
1497 Fengyun-3A and MODIS: application to a dust storm over East Asia in 2011, *Adv. Atmos.*
1498 *Sci.*, 36, 1-14, doi:10.1007/s00376-018-8075-9, 2019a.
1499
1500 Xia, X., Min, J., Wang, Y., Shen, F., Yang, C., and Sun, Z.: Assimilating Himawari-8 AHI
1501 aerosol observations with a rapid-update data assimilation system, *Atmos. Environ.*, 215,
1502 116866, doi:10.1016/j.atmosenv.2019.116866, 2019b.
1503
1504 Zang, Z., Li, Z., Pan, X., Hao, Z., and You, W.: Aerosol data assimilation and forecasting
1505 experiments using aircraft and surface observations during CalNex, *Tellus B.*, 68,1, 29812,
1506 doi:10.3402/tellusb.v68.29812, 2016.
1507
1508 Zaveri, R. A., and Peters, L. K.: A new lumped structure photochemical mechanism for large-
1509 scale applications, *J. Geophys. Res.*, 104, 30387-30415, doi:10.1029/1999JD900876, 1999.
1510
1511 Zaveri, R. A., Easter, R. C., Fast, J. D., Peters, L. K.: Model for simulating aerosol
1512 interactions and chemistry (MOSAIC), *J. Geophys. Res.*, 113, D13204,
1513 doi:10.1029/2007JD008782, 2008.
1514
1515 Zhao, C., Liu, X., Leung, L. R., Johnson, B., McFarlane, S. A., Gustafson Jr., W. I., Fast, J.
1516 D., and Easter, R.: The spatial distribution of mineral dust and its shortwave radiative forcing
1517 over North Africa: modeling sensitivities to dust emissions and aerosol size treatments,
1518 *Atmos. Chem. Phys.*, 10, 8821-8838, doi:10.5194/acp-10-8821-2010, 2010.
1519
1520 Zhao, J., Ma, X., Wu, S., and Sha, T.: Dust emission and transport in Northwest China: WRF-
1521 Chem simulation and comparisons with multi-sensor observation, *Atmos. Res.*, 241, 104978,
1522 doi:10.1016/j.atmosres.2020.104978, 2020.
1523

1524

1525

1526 Figure 1. The workflow of aerosol DA in the revised GSI system for the sectional
 1527 MOSAIC aerosols in WRF-Chem. The contents in blue are the portions we
 1528 developed. The arrows in gray indicate the workflow of option 2 which was
 1529 performed in this study to assimilate the aerosol scattering/absorption coefficients.
 1530 Abbreviations: so4, sulfate; nh4, ammonium; oc, organic carbon; bc, black carbon;
 1531 oin, other inorganic matter; awc, aerosol water content; num, aerosol number
 1532 concentration; no3, nitrate; cl, chlorine; na, sodium; Esca, aerosol scattering
 1533 coefficient; Eabs, aerosol absorption coefficient.

1534

1535

1536

1537 Figure 2. Schematic diagram of the binning strategy for modeling background error
 1538 covariance matrix on (a) the latitude binning data or (b) the gridded data; and the
 1539 vertical profiles of standard deviations ($\mu\text{g kg}^{-1}$) of the fourth size-bin OIN
 1540 component concentration at 0600UTC over a few mild dust episodes in April 2019 (c)
 1541 on average over the latitude bins, (d) at Kashi city grid and (e) at the Taklimakan
 1542 desert grid (i.e., 1.5 degrees east to the Kashi city).

1543

1544

● size_1 ● size_2 ● size_3 ● size_4

1545

1546 Figure 3. Background error standard deviations at Kashi grid (std, a-f, $\mu\text{g kg}^{-1}$),
 1547 horizontal correlation length scales (hls, g-l, km), and vertical correlation length
 1548 scales (vls, m-r, km) at 0000 UTC in April 2019 for the sectional sulfate (SO4),
 1549 nitrate (NO3), ammonium (NH4), organic aerosol (OC), black carbon (BC), and other
 1550 inorganic aerosols (OIN, including dust) in the model domain 2. The horizontal and
 1551 vertical correlation length were computed based on the latitude bins with a half degree
 1552 width.

1553

1554

1555

1556

1557 Figure 4. Topography in China (a) and the model domains with the grid resolution of

1558 20 km (b) and 5 km (c) in WRF-Chem.

1559

1560 Figure 5. Monthly mean PM₁₀ concentration ($\mu\text{g m}^{-3}$) and the streamlines of the 10-m
1561 wind (m s^{-1}) in April (a, b) and their daily mean anomalies (c, d) during a dust storm
1562 on 24 April to the monthly mean values. Only the streamlines at the topographical
1563 height lower than 2500 meters are shown for clarity. The rectangles in figures (b) and
1564 (d) denote the fine model domain 2, which was the geographical range in the figures
1565 (a) and (c). The black points indicate the Kashi city.

1566

1567

1568

1569

1570

1571

day

1572

1573 Figure 6. Comparison of PM_{2.5} ($\mu\text{g m}^{-3}$; a-c), PM₁₀ ($\mu\text{g m}^{-3}$; d-f), 870 nm AOD (g-i),
 1574 635 nm aerosol scattering coefficient (Esca, Mm^{-1} ; j-l), and 660 nm aerosol
 1575 absorption coefficient (Eabs, Mm^{-1} ; m-o) in the observation (black solid point), the
 1576 background simulation (orange solid point), and the DA analyses (blue line) when
 1577 assimilating the observed PM_{2.5} and PM₁₀ (DA_PMx), AOD (DA_AOD), and
 1578 simultaneously assimilating PMx and AOD (DA_PMxAOD) at Kashi in April 2019.
 1579

1580
1581
1582 Figure 7. Comparison of PM_{2.5} ($\mu\text{g m}^{-3}$; a-c), PM₁₀ ($\mu\text{g m}^{-3}$; d-f), 870 nm AOD (g-i),
1583 635 nm aerosol scattering coefficient (Esca, Mm^{-1} ; j-l), and 660 nm aerosol
1584 absorption coefficient (Eabs, Mm^{-1} ; m-o) in the observation (black solid point), the
1585 background simulation (orange solid point), and the DA analyses (blue line) when
1586 assimilating the aerosol scattering coefficient (DA_Esca), aerosol absorption
1587 coefficient (DA_Eabs), and absorption coefficient with the background error of BC
1588 enlarged by a factor of 7 (DA_Eabs_BC*7) at Kashi in April 2019.
1589

1590

1591

1592

1593 Figure 8. Mean aerosol concentrations ($\mu\text{g m}^{-3}$) per size bin in the background
1594 (NoDA) and the DA analyses when assimilating each individual observation at Kashi
1595 in April 2019.

1596

1597

1598

1599 Figure 9. Surface PM₁₀ concentrations (μg m⁻³) in the observation (black),
1600 background simulation (blue) and the DA analyses (red) at 0000, 0600, 1200, 1800
1601 UTC in April 2019 when assimilating the observations of (a) PMx, (b) AOD,
1602 aerosol scattering coefficients (Esca), and (d) aerosol absorption coefficient (Eabs),
1603 respectively. The DA_AOD had no analysis at 18:00 UTC that was local midnight.
1604 Kashi is 6 hours ahead of UTC (UTC+6).
1605

1606
1607
1608 Figure 10. Mean biases in the ratio of AOD to PM_{10} , the mass scattering efficiency
1609 ($\text{Esca}/\text{PM}_{10}$, $\text{Mm}^{-1} \mu\text{g}^{-1} \text{m}^3$), and the mass absorbing efficiency ($\text{Eabs}/\text{PM}_{10}$, Mm^{-1}
1610 $\mu\text{g}^{-1} \text{m}^3$) at Kashi in April 2019.
1611

1615 Figure 11. Mean vertical profiles of (a) $\text{PM}_{2.5}$ ($\mu\text{g m}^{-3}$), (b) PM_{10} ($\mu\text{g m}^{-3}$) and their
 1616 normalized concentration respect to their own surface concentrations (c, d) at Kashi in
 1617 April 2019.

1620

1621

1622

1623 Figure 12. Mean mass percentage (%) of chemical composition in PM₁₀ excluding the
1624 OIN component at Kashi in April 2019.

1625

1626

1627 Table 1. The observed surface particle concentration, aerosol scattering coefficient
 1628 (Esca), aerosol absorption coefficient (Eabs), and AOD used for the DA analysis and
 1629 their observational errors.

	Data time range	Wavelength (nm)	Observation error (e)
PM _{2.5} & PM ₁₀ ($\mu\text{g m}^{-3}$)	Apr 1 – Apr 30		$e = \sqrt{e_1^2 + e_2^2}$ $e_1 = 1.5 + 0.0075 \cdot PM_x$ $e_2 = 0.5 \cdot e_1 \cdot \sqrt{\frac{d}{3000}}$ <i>d</i> : grid spacing in meter
AOD	Mar 29 – Apr 25	440, 675, 870, 1020	$e = 0.01/\text{height} \times 10^8$
Esca (Mm^{-1})	Apr 2 – Apr 30	450, 525, 635	$e = 10$
Eabs (Mm^{-1})	Apr 2 – Apr 30	470, 520, 660	$e = 10$

1631

1632

1633 Table 2. The mean values of the $\text{PM}_{2.5}$ and PM_{10} concentrations ($\mu\text{g m}^{-3}$), 635 nm
 1634 aerosol scattering coefficient (Esca, Mm^{-1}), 660 nm aerosol absorption coefficient
 1635 (Eabs , Mm^{-1}) and 870 nm AOD in the background and analysis data and their
 1636 correlation coefficients (in brackets) with the observations at 0000, 0600, 1200, 1800
 1637 UTC at Kashi in April 2019. The underlined number in bold denotes the mean value
 1638 that is not significantly different from the observation, and the dashed line denotes an
 1639 insignificant correlation. Both the statistical tests of the mean difference and
 1640 correlation are conducted at the significance level of 0.05.

1641

DA experiment	PM _{2.5} ($\mu\text{g m}^{-3}$)	PM ₁₀ ($\mu\text{g m}^{-3}$)	870 nm AOD	635nm Esca (Mm^{-1})	660nm Eabs (Mm^{-1})
Observation	91.0	323.2	0.66	231.5	47.4
Background	<u>75.3</u> (0.28)	190.7 (0.24)	0.24 (0.60)	123.3 (0.36)	12.9 (0.34)
DA_PM _x	<u>89.3</u> (0.89)	<u>329.3</u> (0.99)	0.38 (0.35)	170.4 (0.89)	15.8 (0.42)
DA_AOD	<u>92.6</u> (0.35)	541.7 (0.31)	<u>0.59</u> (0.98)	<u>222.6</u> (0.61)	17.0 (0.26)
DA_PMxAOD	<u>103.6</u> (0.61)	<u>372.7</u> (0.86)	<u>0.59</u> (0.98)	<u>192.2</u> (0.86)	16.7 (0.45)
DA_Esca	<u>103.6</u> (0.67)	442.1 (0.93)	<u>0.53</u> (0.62)	<u>192.1</u> (0.97)	16.5 (0.47)
DA_Eabs	298.8 (0.36)	1281.2 (0.34)	1.73 (----)	612.2 (0.54)	<u>40.0</u> (0.98)
DA_Eabs_BC*7	106.7 (0.48)	463.7 (0.45)	<u>0.75</u> (0.50)	<u>226.2</u> (0.52)	<u>51.9</u> (0.90)

1642

1643

1644 Table 3. The Ångström exponent values based on the AOD (440 nm and 1020 nm;
 1645 AEaod), aerosol scattering coefficients (450 nm and 635 nm; AEsca), and aerosol
 1646 absorption coefficients (470 nm and 660 nm; AEabs), and the surface single scattering
 1647 albedo (SSAsrf=Esca525/(Esca525+Eabs520)) at Kashi in April 2019
 1648

	440-1020 nm	450-635 nm	470-660 nm	SSAsrf
	AEaod	AEsca	AEabs	
Observation	0.18	-0.43	1.65	0.78
Background	0.54	1.32	1.77	0.86
DA_PMx	0.30	0.96	1.84	0.88
DA_AOD	-0.01	0.44	1.97	0.88
DA_PMx_AOD	0.17	0.79	1.89	0.89
DA_Esca	-0.15	0.19	1.95	0.88
DA_Eabs	-0.01	0.48	2.01	0.90
DA_Eabs_BC*7	0.33	0.89	1.41	0.82

1649

1650

1651 Table 4. The ratios of AOD, aerosol scattering/absorption coefficient to PM₁₀
 1652 concentration (mean \pm standard deviation) in the observations, the model background
 1653 data, and the DA analyses.

1654

	Ratios of 870 nm AOD to PM ₁₀ ($\mu\text{g}^{-1} \text{m}^3$)	Ratios of 635 nm aerosol scattering coefficient (Esca) to PM ₁₀ ($\text{Mm}^{-1} \mu\text{g}^{-1} \text{m}^3$)	Ratios of 660 nm aerosol absorption coefficient (Eabs) to PM ₁₀ ($\text{Mm}^{-1} \mu\text{g}^{-1} \text{m}^3$)
Observation	0.0030 \pm 0.0020	1.05 \pm 0.57	0.25 \pm 0.22
Background	0.0013 \pm 0.0009	0.65 \pm 0.18	0.09 \pm 0.05
DA_PMx	0.0013 \pm 0.0008	0.61 \pm 0.22	0.07 \pm 0.05
DA_AOD	0.0013 \pm 0.0011	0.51 \pm 0.24	0.05 \pm 0.04
DA_PMXAOD	0.0015 \pm 0.0010	0.61 \pm 0.24	0.06 \pm 0.05
DA_Esca	0.0015 \pm 0.0010	0.52 \pm 0.21	0.05 \pm 0.05
DA_Eabs	0.0015 \pm 0.0010	0.58 \pm 0.37	0.05 \pm 0.06
DA_Eabs_BC*7	0.0023 \pm 0.0085	0.74 \pm 0.51	0.30 \pm 0.48

1655

1656

1657 Table 5. The mean instantaneous clear-sky shortwave (SW), longwave (LW) and the
 1658 net (SW+LW) direct radiative forcing (Wm^{-2}) at the top of atmosphere (TOA), in the
 1659 atmosphere (ATM) and at the surface (SRF) in the background and the simulations
 1660 restarted from the analyses of DA_PMx and DA_PMx_AOD at one hour after the
 1661 analysis times of AOD at Kashi in April 2019.

1662

	SW (Wm^{-2})			LW (Wm^{-2})			SW+LW (Wm^{-2})		
	TOA	ATM	SRF	TOA	ATM	SRF	TOA	ATM	SRF
Background	-7.0	+17.0	-24.0	+0.3	-2.9	+3.2	-6.7	+14.1	-20.8
DA_PMx	-8.5	+22.7	-31.2	+0.6	-6.3	+6.9	-7.9	+16.4	-24.3
DA_PMxAOD	-11.4	+28.6	-40.0	+1.0	-7.8	+8.8	-10.4	+20.8	-31.2

1663

1664