The authors appreciate the reviewer's constructive and friendly comments. We have substantially revised the manuscript. New data and figures are present in the main text. A new supplementary document is included in the revision. We reply to the reviewer's comments point by point.

Anonymous Referee #1

Received and published: 19 October 2020

The manuscript presents the development of assimilation of aerosol observations into WRF-Chem using the GSI system using approaches that are different to those used in previous studies. These developments are then tested for a case of assimilating ground-based observations of particle mass concentration, scattering and absorption coefficients, and AOD, performing sensitivity simulations on assimilating datasets independently and jointly. This is done for a single site located in Kashi, representative of dust conditions. This study it's within the scope of ACP and represents good contributions to the field as it develops a tool that could be used by the community and highlights shortcomings in the techniques a and how could they be improved. I think the paper needs a bit more work before it's ready for publication based on the comments below.

My main comments are the following.

- While the WRF-Chem optical properties module assumes Mie theory which is based on particles being spherical, the testing of the tool is focused on dust which are mostly non-spherical particles. This is briefly mentioned in the article, but I would like to see more on the subject, including looking into literature that has explored this topic and discussion on what discrepancies obtained in this study could be explained by this issue. See more on by line comments.

Response: Yes, the spherical dust particle in WRF-Chem introduces uncertainty. We reviewed a few literatures and added a paragraph to discuss the impact of non-spherical particles in section 3.3.

- I believe that what the authors defined as Adjoint operators are really the tangent linear models, i.e., the derivative of the observables with respect to the inputs (aerosol mass). The adjoint operates on perturbations on the observables and outputs the expected perturbations on inputs. Please verify with the literature and correct accordingly.

Response: The author appreciates the reviewer's kindly comment. We have changed the misstatement of "adjoint operator" to "tangent linear operator".

- Assess representation of some intensive properties such as size (e.g., angstrom exponent, ratio of pm2.5 to pm10), single-scattering albedo, and mass scattering efficiency to try to understand mismatches when doing assimilation. A little bit is done but it would be very helpful to expand this topic and use the nomenclature used in the literature. See more on by line comments.

Response: According to this comment, the revised manuscript shows additional assessments of angstrom exponent and SSA (Table 3). A new figure 10 shows the multi-wavelength mass scattering/absorption coefficient. Hope this additional content makes this study more convincible.

- Absorption seems completely biased even after assimilation, this points to issues probably related to underestimation of imaginary refractive index of dust. Look for literature on this depending on the deserts, I believe Chinese deserts tend to have darker (i.e., more absorbing) sands.

Response: We used the generic model value of dust refractive index in the first version manuscript. In the revision, we increased the imaginary part of the dust refractive index, which is higher than the imaginary part of the Taklimakan desert that has been retrieved by Di Biagio et al. (2019). We find that tuning dust DA is not helpful for removing the DA bias in absorption coefficient. We redid a lot of DA experiments and found a negligence of anthropogenic emission in the WRF-Chem simulation. This strong bias in absorption DA is relevant to the low concentration of black carbon (BC) and the low BC's background error. We have rewritten the relevant content in section 3.5.

Di Biagio, C., et al.: Complex refractive indices and single-scattering albedo of global dust aerosols in the shortwave spectrum and relationship to size and iron content, Atmos. Chem. Phys., doi:10.5194/acp-19-15503-2019, 2019.

Comments by line:

103-108. For completion, consider citing and discussing the study by Kumar et al (2019) that also uses GSI with CMAQ but does not use the CRTM as Tang study. This study also provides an alternative way of computing the BEC matrix (other than the NMC method) which you discuss in section 2.3 Response: We added a few words about Kumar et al. (2019) study in the revised introduction and section 2.3.

545-552. Are all of these observations in the same location? If not how far apart are they? How many PM2.5/PM10 sites are used? Also, what's the inlet cutoff size used for the scattering and absorption measurements? This is important to related mass and optical properties properly.

Response: All the observations (PM2.5, PM10, AOD, scattering/absorption coefficient) were carried out at a single site. There was no inlet cutoff for the scattering and absorption measurements. In the revised manuscript:

"The site was placed in the Kashi campus of the Aerospace Information Research Institute, Chinese Academy of Sciences (39.50°N, 75.93°E; Li et al., 2018), about 4 km in the northwest to the Kashi city. ... All the instruments were deployed at the roof of a three stories height building on the campus."

554-561. Could you add justification for the PM2.5/PM10 observation errors stated in Table 1? There is no explanation how the errors were picked. Also, why do you only use representative error for PM2.5/PM0 but not for the other observations? Response: In the revised section 2.4:

"The observation errors of PMx are handled in the conventional way (Schwartz et al., 2012; Chen et al., 2019), which contains the measurement error (e1) and the representative error (e2). The measurement error is the sum of a baseline error of 1.5 μ g m⁻³ and 0.75% of the observed PMx concentration. The representative error is the measurement error multiplied by the half-squared ratio of the grid spacing to

the scale distance. The scale distance denotes the site representation in GSI and has four default values of 2, 3, 4, and 10 km, corresponding to the urban, unknown, suburban, and rural sites. We used 3 km for the scale distance in this study. As we had a single site in Kashi, it is difficult to estimate the site representation error. Since the DA analysis was based on the child model domain with a horizontal resolution of 5 km, close to the site distance to the Kashi urban area, we assumed the aerosol optical measurement had good representativeness of the model grid covering the site. The observation error of CE318 AOD took the AERONET AOD uncertainty of 0.01 in cloud-free conditions (Holben et al., 1998)."

569. Can you add a bit more info on the vertical resolution? For instance, thickness of the 1st level and number of levels within 1km.

Response: In the revised section 2.5:

"Both domains had 41 vertical levels extending from the surface to 50 hPa. The lowest model layer at the site was approximately 25-meter height from the ground."

594-596. Can you clarify if you did 2 simulations every cycle with and without aerosol interacting with radiation, or it was a single simulation with two calls to the radiation code within the same simulation? Response: It was a single simulation with two calls to the radiation code. In the revised section 2.5:

"To study the impact of DA on aerosol direct radiative forcing (ADRF), we modified the WRF-Chem code to calculate the shortwave irradiance with and without aerosols at each model integration step. The modified WRF-Chem model restarted from each DA analysis and ran to the next analysis time. Each running performed the radiation transfer calculation twice, and each calculation saw the aerosols and clean air, respectively. The irradiance difference between the two pairing calls was aerosol radiative forcing."

632-638. You are also missing some processes of potential importance such as secondary organic aerosol formation and heterogeneous sulfate formation influencing low-dust days.

Response: Yes, our simulation did not have SOA, and the heterogenous sulfate formation in WRF-Chem may bias. Nevertheless, we accidently lowered the anthropogenic emissions in the original WRF-Chem simulation. Because of the ambition of haze abatement in China since 2013, the atherogenic emissions had dramatic reductions in 2013-2019. So far as we know, a timely update of emission inventories is not available, and we used the open MEIC emission inventories for the year 2010 when the anthropogenic emissions had peak values. A general way to handle this emission reduction is to scale the historical emissions, which were not appropriately handled in our first manuscript. The anthropogenic emissions that we set for Kashi in the 2019 simulation were too low. As lack of aerosol measurement at Kashi, the low bias was not identified at the first glance. In the revised manuscript, we just ignore the yearly emission differences. We redid all simulations with the MEIC emission inventories for 2010.

The revised model concentrations of PM2.5 and PM10 are almost equivalent to the old data (Figure 1) because dust is the dominant component at Kashi. Besides, the real part of the refractive index of sulfate, nitrate, ammonium, and dust are comparable in the model. Thus, the new results do not change

the conclusion. The new advantage is that the DA bias in absorption coefficient can be somewhat attributed to black carbon when the BC's background error was amplified. We rewrote the DA of the absorption coefficient in section 3.5.

Figure 1. Comparisons of PM2.5 (left) and PM10 (right) in the WRF-Chem simulations with high (y-axis) and low anthropogenic emissions (x-axis) at Kashi in April 2019

645-647. I think a better fit to PM2.5 could be achieved if you relaxed the interbin correlation. It looks like PM10 is fitting pretty well but it's going a bit over the observation, so this is restricting increases in PM2.5 due to the correlation. Since bin 4 is 2.5-10um, in theory, if no interbin correlation was present, PM10 and PM2.5 should be able to fit independently. For this study it would make sense to relax the interbin correlation due to the known issues in dust size distributions (see next comment) Response: Based on lots of experiments, we find that the analyses are not sensitive to the inter-size bin correlation length in this case, though the analyses changed a lot when we turned off the inter-size bin correlation. We find that the magnitude of large background error of coarse dust is more effective in affecting the analysis of PM2.5. Reducing the background error of the fourth size bin OIN (oin_a04) will increase PM2.5 and decrease PM10. We added table S3 in the supplementary document, which shows the PMx response to the different magnitudes of oin_a04's background error.

In the revised section 3.2:

"Applying the inter-size bin correlation length caused the interlinked analyses of $PM_{2.5}$ and PM_{10} . In the desert area, the coarse and fine dust are readily affected by the magnitude of BEC of the fourth size-bin OIN (oin_a04). We intentionally decreased the BEC of oin_a04 by 10% each time to 30% of its original value. The magnitude of 30% of oin_a04 was comparable to the magnitude of the third size-bin (oin_a03) OIN's background error. As shown in Table S3, because the oin_a04's BEC reduction relaxes the constraint on the coarse particle, the PM_{10} bias becomes more negative along with the decrease in on_a04's BEC. Meanwhile, the $PM_{2.5}$ bias becomes more positive. Correspondingly, the ratio of $PM_{2.5}$ to

 PM_{10} was exaggerated to 0.33 with 30% of oin_a04's BEC, higher than the observed value of 0.28. Overall, the original BEC of oin_a04 is a reasonable tradeoff in our DA experiments."

647-652. Literature on dust modeling states that parameterizations tend to overpredict the fine dust and underpredict the coarse dust (see Kok et al., 2011, Adebiyi and Kok 2020). So the joint assimilation of PM2.5 and PM10 could be somewhat correcting for that, which is a additional possible explanation to the behavior explained in these sentences.

Response: Thanks for the hint. We cite the two pieces of literature in the revised section 3.2:

"As a result, the ratio of $PM_{2.5}$ to PM_{10} decreased from 0.39 in the background to 0.27 in DA_PMx , approaching the observed ratio of 0.28. Such improvement was consistent with the correction required to the model desert dust in literature. Kok et al. (2011) found that regional and global circulation models underestimate the fraction of emitted coast dust (>~5 µm), overestimates the fraction of fine dust (<2µm diameter). Adebiyi and Kok (2020) claimed that too rapid deposition of coarse dust out of the atmosphere accounts for the missing coarse dust in models. Similarly, WRF-Chem assimilated too much smaller dust particles than the observed. According to Kashi's AOD between 440 nm and 1020 nm, the observed Ångström exponent (AE) was 0.18 in this case, but the background value was 0.54 (Table 3). DA_PMx reduced the AE value to 0.30, a little improvement but not sufficient."

672-685. Another reason for the discrepancy is related to the size distribution. Are you assimilating multi-wavelength AOD here, right? If so, I would expect some modifications to the size distribution. It looks you are effectively modifying size distr. as the ratio of PM2.5 to PM10 ratio is reduced from 0.31 in the background to 0.11 in the DA_AOD simulation but it might be going a bit too far as the observed ratio is 0.28. You can also check angstrom exponent. You can also explore the point you make at the end related to the dust mass extinction efficiency, you have observations to compute this at the surface. Additionally, there is also potential for your vertical distribution to be off and be generating these issues. You can diagnose this by comparing the ratio of surface extinction vs AOD. It seems the model is overpredicting this ratio, which could mean too much aerosol close to the surface.

Response: In the revised manuscript, we check the PM2.5/PM10 ratio, mass extinction efficiency, angstrom exponent (AE), and SSA. We do not check the ratio of surface extinction and AOD because it requires the interpolation of surface extinction and AOD to similar wavelength. The model has a large bias in AE, resulting in an unreliable interpolation. We rewrote a lot in sections 3.2 and 3.3. Please refer to the revised manuscript.

Related to this point. You are actually already computing mass scattering efficiency (2nd column in Table 3). The background already underpredicts it, and the assimilation makes it worse as you are increasing the coarser fraction. You could explore if there is an underprediction of the dust refractive index. You could look into values provided in the literature for the region studied and compare to what WRF-Chem uses.

Response: We add a supplementary document to give the complex refractive indexes for all aerosols in this study. A part of the table is shown below. We set the dust's refractive index referring to the generic

model values in literature. The imaginary part in our study is higher than the retrieved imaginary part for the Taklimakan desert dust by Di Biagio (2019).

Table S1. Multi-wavelength real and imaginary parts of refractive indexes of aerosol chemical compositions and water in this study (a part of the snapshot of table S1)

(nm)	440	450	470	520	525	550	635	660	675	870	1020
			0.	IN, dust (C	Theng et al.	, 2006; Z	hao et al.,	2010)			
Real						1.53					
Imag	0.003	0.003	0.003	0.0025	0.0025	0.002	0.0015	0.0015	0.0015	0.001	0.001

678-683. I think there is no need for this very long description of the Ma paper as these results are not that relevant to the area study as RH is likely low in the desert and dust aerosols tend to be hydrophobic Response: We have removed the statements in the revision.

690-692. AOD to PM10 ratios depends on many variables. Since you are blaming discrepancies to issues in mass scattering/absorption efficiency it makes more sense to do direct comparissons to this variable as you have in-situ measurements of scattering and absorption

Response: In the revised table 4, we show the ratios of AOD, scattering/absorption coefficient to PM10 per DA experiment. In the revised section 3.3:

"Table 4 shows the ratios of the AOD and aerosol scattering/absorption coefficients to the surface PM_{10} concentrations. The ratio of AOD to PM_{10} in the background model result was one-third of the observed levels. The observed mass scattering coefficient (Esca/PM₁₀) was 1.05 Mm⁻¹ µg⁻¹ m³, while the background value was only 0.65 Mm⁻¹ µg⁻¹ m³. DA_AOD did not eliminate the low bias but enlarged the low bias to 0.51 Mm⁻¹ µg⁻¹ m³. The same thing occurred for Eabs/PM₁₀, which was 0.09 in the background and 0.05 in DA_AOD, much lower than the observed value of 0.25. Figure 10 shows these mean ratios at the other wavelengths. The low bias in AOD/PM₁₀ was comparable at each wavelength. ..."

693-696. You can assess issues with size distribution by using the angstrom exponent. Table 2 and 3. Is there any reason behind using the lower wavelength (440-450nm) for these comparisons? Since the focus of this work is on dust, it would be preferable to compute optical properties for longer wavelengths where coarse aerosols contribute more to the scattering Response: A new table 3 shows the angstrom exponent and SSA. The revised discussion in the main text is based on 870 nm AOD, 635 nm scattering coefficient, and 660 nm absorption coefficient.

702-706. There is extensive literature on how optical properties of dust particles deviate from Mie theory (e.g., Dubovik et al, 2006, Nousiainen et al 2015). It would be good for the authors to reference this work and attempt to explain what could be the implications of using Mie theory, and if those can explain any of the discrepancies found when assimilating multiple datasets in this study.

Response: In the revised section 3.3:

"The irregular morphology had a significant influence on the dust simulation. Okada et al. (2001) found that the aspect ratio (the ratio of the longest dimension to its orthogonal width) of the mineral dust particles (0.1-6 μ m) in China arid regions exhibited a median of 1.4. Dubovik et al. (2006) suggested the aspect ratio of ~1.5 and higher in desert dust plumes. Kok et al. (2017) found that the dust' sphericity assumption underestimated dust extinction efficiency by ~20–60% for the dust particle larger than 1 μ m. Tian et al. (2020) found that using a dust ellipsoid model could increase the concentration of coarse dust particle (5-10 μ m) by ~5% in eastern china and ~10% in the Taklimakan area because of the decrease in gravitational settling, comparing with the simulations with dust sphericity model. Nevertheless, the aspect ratio of the spheroid dust is uncertain. Even after applying the spheroidal approximation, Soorbas et al. (2015) found that the model underestimated 550 nm aerosol scattering and backscattering values by 49% and 11%, respectively, because of the uncertainties in particle axial ratio, complex refractive index, and the particle size distribution. To date, the assumption of spherical particles has been widespread in models (including WRF-Chem) for computational efficiency. Impact of dust morphology to DA deserves a further investigation."

Figure 12. It would help to see an additional panel with these profiles being normalized, so we can more easily assess by how much the assimilation of the different datasets is changing the vertical distribution. Response: The revised figure 12 has additional two panels showing the vertical distributions normalized to the surface PMx concentrations.

730 You know it overestimated PM10, not sure about aerosol number concentration (you would need a different observation for assessing that)

Response: We do not have the surface measurement of aerosol number concentration. The amounts of quality assured retrievals of aerosol columnar volume and effective radius by CE318 are limited in DAO-K (<9 days, 1 to 4 data samples per day). It is difficult to give a robust verification. The original statement describes that the GSI tends to increase the aerosol number in response to the high aerosol mass concentration. We changed the statement to:

"The revised GSI updates aerosol number concentration according to the analyzed aerosol mass concentration and the background ratio between mass and number concentrations. Thus, an overestimation of aerosol mass concentration inclines to raise aerosol number concentration, resulting in high scattering/absorption coefficients."

734. Use single-scattering albedo for this

Response: We add a new table 4 to show the angstrom exponent and SSA. In the revised section 3.3:

"Additionally, we computed the surface single scattering albedo (SSAsrf) with the 525 nm scattering coefficient and 520 nm absorption coefficient. We did not use the Ångström exponent to interpolate the scattering/absorption coefficients to a similar wavelength because the AE itself had a large model bias even after DA (Table 3). The observed SSAsrf value was 0.78, indicating an emphatic absorption particle,

probably due to the mixture of anthropogenic black carbon and natural desert dust in the local air. The model background SSAsrf was 0.86, while the DA analyses gave even higher SSAsrf (0.88 to 0.9)."

738-746. This is a misconception, aerosol light extinction and AOD does not depend on sun light intensity (for instance, you can sample both at night time with different methods). What's going to change with sunlight are the radiative effects. There are likely other reasons to explain this diurnal behavior. Look into the diurnal evolution of your BEC, and also into diurnal evolution of dust reaching the city. Similar misconnection is mentioned in lines 770-771.

Response: In the revised 3.3,

"Assimilating the AOD seems to increase the diurnal variation in the DA analyses, but this variation was not conclusive since there were different amounts of AOD data for DA at 00:00, 06:00, and 12:00. The AOD data were not always available as the data quality control (i.e., cloud screening). There was a higher increase in the concentration at noon (06:00 UTC) (Figure 9b), corresponding to a few high AOD during mild dust episodes at that hour. ..."

The misstatement in the original lines 770-771 has been removed.

960-963. This is probably due to underprediction of dust imaginary refractive index

Response: We set the dust refractive index to refer to the generic model values in literature. The imaginary part in our study is higher than the imaginary part for the Taklimakan desert dust retrieved by Di Biagio (2019). The strong bias in absorption coefficient can be largely removed by tuning the background error of black carbon, though additional disadvantage is introduced. Please refer to the revised section 3.5.

Minor Edits

Fig 5 caption. It reads like a) and b) represent PM10 and winds, respectively, but I think that's not the case. Please revise

Response: The figure caption is changed to

"Figure 5. Monthly mean PM_{10} concentration ($\mu g m^{-3}$) and the streamlines of the 10-m wind ($m s^{-1}$) in April (a, b) and their daily mean anomalies (c, d) ..."

623. Did you mean "underestimates" instead of "lowered"?

Response: changed to "underestimates"

780. Do you mean "particles that absorb radiation" rather than "aborting particles"? Also, I would like black carbon in that list as well.

Response: Corrected.

781-791. I believe primary dust in WRF-Chem is also considered to be a bit absorbing (has a imaginary refractive index above 0). As mentioned in a previous comment, this number might be too low for dust in this region.

Response: In the first version manuscript, the imaginary part of dust was in the range of 0.002 to 0.001. In the revision, we increase the imaginary part to the range of 0.003 to 0.001. Our imaginary part is higher than the imaginary part for the Taklimakan desert dust retrieved by Di Biagio (2019). The strong bias when assimilating the absorption coefficient can be largely removed by tuning the background error of black carbon. Please refer to the revised section 3.5.

802-804. I disagree with this statement. If the model has biases that the assimilation is not able to correct (for instance, inaccurate real and imaginary refractive indexes) then assimilating multiple observation could also create unrealistic modifications to the model. Response: The statements have been removed in the revision.

806-828. I wouldn't put DA_Esca_Eabs as an improvement over DA_Esca, they show pretty much the same results. This means that the absorption observations are not really generating any differences in the results. Also, DA_PMx_AOD matches better the assimilated variables (which off course is expected) and the better agreement with scattering you happened to underpredict it with PM assimilation, and overpredict it with AOD assimilation, so assimilating both yields you something in between. Response: Because of the problem of individual assimilation of the absorption coefficient, we remove the DA results of DA_Esca_Eabs and DA_PMx_Esca_Eabs_AOD and just keep the result of DA_PMx_AOD.

832-834. As mentioned earlier, it would be better to check this using normalized profiles. The background profiles already had aerosols up to 4km, so is likely that the assimilation is just scaling this profile upwards rather than adding a larger fraction of the mass in these layers Response: The revised figure 12 shows the normalized profiles. In the revised section 3.7:

"Also shown in the figure are the vertical profiles normalized to their own respective surface particulate concentrations. The assimilations not only added a larger fraction of the mass in these layers but also adjusted the shapes of the PM_{10} profiles within 3 km above the ground (Figure 11d), following the BEC's vertical correlation length scales (Figure 3r)."

Section 4.1. I don't think this section is very relevant, the aerosols are so dominated by dust and your BEC is constructed in a way dust aerosols will be the ones largely modified. So just briefly mentioning that the composition of these other aerosols doesn't change would do.

Response: We shorten the revised section 4.1 and present the new anthropogenic aerosols' results.

Section 4.2. Might want to discuss in this section how the large underprediction of dust absorption would impact these results.

Response: It is not easy to quantify the ADRF bias due to the weak absorption with a single WRF-Chem experiment. We admit this uncertainty and add a new paragraph in section 4:

"It is noteworthy to say that the ADRF estimation remains uncertain even after DA. The AOD observation is only sporadically available because of cloud screening in retrieval data. The DA experiments cannot

eliminate the low bias in AOD in WRF-Chem. The ADRF values in the DA experiments are likely to be weaker than the plausible aerosol radiative forcing at Kashi. Neither DA experiment lowers SSAsrf to approach the observation. The observed SSAsrf (0.78) indicates likely warming forcing of aerosol at Kashi, while WRF-Chem and the DA analyses impose cooling forcing. The ADRF uncertainty is associated with the background aerosols. WRF-Chem simulates aerosol size up to 10 μ m, whereas larger particles (>10 μ m) exhibit substantial absorption relative to scattering in the visible wavelength (Kok et al., 2017). Anthropogenic emission inventories need an update for the year 2019, which may reduce the potential low bias in BC concentration. Additionally, the revised GSI does not concern the change in particle effective radius per size bin when calculating the aerosol number concentration in each outer loop. Low absorption cross section rises aerosol number concentration as compensation, increasing aerosol scattering coefficient too much. If our tangent operator concerns the change in particle effective radius per size bin, we can use aerosol mass and number concentration as control variables simultaneously. The DA would have a higher degree of freedom to balance the particle radius and number concentration and improve the absorption coefficient. All these need further research in the future." The authors appreciate the reviewer's constructive and friendly comments. We have substantially revised the manuscript. New data and figures are present in the main text. A new supplementary document is included in the revision. We reply to the reviewer's comments point by point.

Anonymous Referee #2

Received and published: 28 October 2020

The study of Chang et al. developed the GSI 3Dvar capability to assimilate AOD, scattering/absorbing coefficients for MOSAIC scheme. A few DA tests (both simultaneously and separately experiments) were conducted for northwestern China and compared with surface observations at Kashi. The authors should have spent great efforts on the system development and presented very comprehensive results.

Based on my current understanding, some more work need to be done to facilitate the readers to understand, including some essential considerations of the DA core details and the clarifications of the texts. In this way, the system would be better under- stand/promoted and readers would be more convinced.

My general comments are as below:

1. Actually GOCART is understood for the better performance of dust simulation and the relevant optical properties had been well verified; while the MOSAIC scheme is thought to be more suitable for anthropogenic emission related simulation, but the optical simulation is rather complex.

Response: Agree. The GOCART dust emission scheme is popular for dust simulation. Here, we applied the GOCART dust scheme to simulate the dust and used the MOSAIC scheme to simulate anthropogenic aerosols.

In this study, the system is developed for MOSAIC but the verification is conducted for a site in desert. This required intensive investigation of the DUST related properties representation in the MOSAIC scheme, for example,

(a) the refractive index of OIN since it is mostly treated as DUST (while there should be distinctive differences between the two);

Response: Yes, the OIN is not equivalent to dust. WRF-Chem has a dust option (dust_opt=13) for simultaneous simulation of dust and anthropogenic aerosols with the GOCART dust scheme and the MOSAIC scheme, respectively. With this option, dust is added to OIN. Surely, this simplification is not perfect, but it did not hinder our verification of the DA system. In fact, even using the GOCART aerosol scheme, WRF-Chem computes aerosol optics with the Mie theory. Improving the dust representation in WRF-Chem needs further code development.

(b) the species partitioning (NO3 is not changed in option 2 which might not be reasonable and lead to unbalanced chemistry partitioning),

Response: NO3 is one of the control variables in the revision. We redid the DA experiments.

(c) the size distribution, (d) the number concentration, since the three factors determining the absorbing and scattering efficiency;

Response: We used multi-wavelength aerosol optical measurements to verify the DA system. The revised manuscript additionally shows the angstrom exponent result in Table 3.

(e) aerosol water content which are not considered but actually may change the optical properties. With very limited observational data to verify the above-mentioned information, the results in this study is really hard to interpret.

Response: Aerosol water content (AWC) is not a control variable in DA but is diagnosed in the GSI system according to the hygroscopic growth scheme, based on the analyzed aerosol dry mass concentrations. This treatment ensures the change in AWC is a physical constraint. Besides, AWC is low in the desert site and does not affect AOD a lot. In the revision, we dig the analyses by studying angstrom exponent, SSA, mass extinction coefficient. Hope the revised manuscript is convincible.

2. Some descriptions about DA core and observational data should be provided. For example, it seemed not only AOD, but also wavelength depended absorbing and scattering efficient were all assimilated, the corresponding observational operators and the errors should be given in more detail. Response: Sorry for the confusion. The observational operators of scattering/absorption coefficient are implicitly involved in the operator of AOD in equation (3). In the revised section 2.2.3, we explicitly

implicitly involved in the operator of AOD in equation (3). In the revised section 2.2.3, we explicitly present the two observational operators in equation (4). We rewrote the statements about observation errors in the revised section 2.4:

"The observation errors of PMx are handled in the conventional way (Schwartz et al., 2012; Chen et al., 2019), which contains the measurement error (e1) and the representative error (e2). The measurement error is the sum of a baseline error of $1.5 \ \mu g \ m-3$ and 0.75% of the observed PMx concentration. The representative error is the measurement error multiplied by the half-squared ratio of the grid spacing to the scale distance. The scale distance denotes the site representation in GSI and has four default values of 2, 3, 4, and 10 km, corresponding to the urban, unknown, suburban, and rural sites. We used 3 km for the scale distance in this study. As we had a single site in Kashi, it is difficult to estimate the site representation of 5 km, close to the site distance to the Kashi urban area, we assumed the aerosol optical measurement had good representativeness of the model grid covering the site. The observation error of CE318 AOD took the AERONET AOD uncertainty of 0.01 in cloud-free conditions (Holben et al., 1998). The AOD observational error was further divided by the total model layer thickness in GSI."

Comments by lines: 1. Line 65 and other places. Adjoint operator, is it referred as TL-AD? Please clarify Response: We corrected the statements to "tangent linear".

2. Line 86 GIS ? Response: Corrected to "GSI"

3. Line 100 Zang et al 2016, acutally a different DA system was used other than GSI in this study. Please check.

Response: We corrected the statements in the revised introduction:

"Li et al. (2013) developed a 3D-Var scheme for assimilating the surface $PM_{2.5}$ and speciated aerosol chemical concentrations for the WRF-Chem MOSACI aerosols. Zang et al. (2016) applied this scheme to incorporate aircraft speciated aerosols in California. They proved that the assimilation of aircraft profile extended the DA benefit to aerosol forecast."

4. Line 181 regarding of the low anthropogenic and biogenic emissions in the desert, why not use GOCART instead?

Response: The research purpose is to introduce the new GSI system to work with the MOSAIC aerosol scheme. We used the GOCART scheme to simulate dust. In the revised section 2.1:

"The dust emission was simulated using the GOCART dust scheme (Ginoux et al., 2001), and the dust mass was included in the OIN concentration. We performed the MOSAIC aerosol simulations with foursize bins (0.039–0.156 μ m, 0.156–0.625 μ m, 0.625–2.500 μ m, and 2.5–10.0 μ m dry diameters) for the anthropogenic aerosols."

5. Line 184-190. Actually the optical properties of NH4SO4, OC, dust, NaCl, H2O are treated as wavelength depended in the model, this information should be investigated and provided. As it seemed that multi-wavelength aerosol scattering and absorption coefficients are assimilated. The uncertainties of the assumption in the model and observational data should be provided.

Response: In the revision, we give the complex refractive index in table S1 in the supplementary document; Section 2.2.6 describes the refractive index; The revised section 2.4 describes the observational errors; the revised section 3.3 and section 4.2 states the uncertainties associated with dust morphology and aerosol radiative forcing. Hope the revisions make the manuscript more complete.

6. Line 228. Why NO3 is not considered? In this case, it may lead to unbalanced chemistry partitioning. Response: Nitrate is a control variable in the revision.

7. Section 2.2.3 It seemed that scattering and absorbing coefficients are also observational assimilated. Please provide details.

Response: The revised section 2.2.3 provides the observation operators of scattering/absorption coefficients.

8. Line 101: are the Mi,z,k in the two terms the same, maybe possibly dry and wet mass concentration respectively? If not, please clarify.

Response: Mi,z,k denotes the aerosol composition. It could be aerosol water content when calculating the internal mixing refractive index. In the revised section 2.2.4,

"Note that the dry $(r_{dry,z,k})$ and wet $(r_{wet,z,k})$ particle radiuses are both present in Eq (21). Because aerosol water content is not a control variable, $r_{dry,z,k}$ is used in Eq (19) and appears in Eq (21). Aerosol water

content participates the computation of internal mixing refractive indexes, and thus $r_{wet,z,k}$ is also present in Eq (21)."

9. Line 315: is rwet related with aerosol water content, considering the hygroscopicity? Any uncertainty by not considering aerosol water content. Please clarify.

Response: r_{wet} is the wet particle radius when aerosol water content (AWC) is counted in the aerosol composition. At the end of the revised section 2.2.1:

"The AWC was diagnosed according to the analyzed aerosol mass concentration and the background relative humidity in each DA outer loop. The hygroscopic growth was calculated using the WRF-Chem code coupled with the revised GSI."

10. Line 352, please clarify mizk as dry or wet mass?

Response: Mi, *z*, *k* denotes the aerosol compositions. It could be aerosol water content when calculating the internal mixing refractive index.

11. Line 367. Any uncertainty by considering constant radius?

Response: It is hard to estimate the uncertainty of this constant radius in this study. Appling this constant radius is to simplify the mathematical derivation of the tangent linear operator for AOD. This simplification was applied by Saide et al. (2013). We hope to remove this assumption in the future and could discuss the relevant uncertainty.

Saide, P. E., Carmichael, G. R., Liu, Z., Schwartz, C. S., Lin, H. C., da Silva, A. M., and Hyer, E.: Aerosol optical depth assimilation for a size-resolved sectional model: impacts of observationally constrained, multi-wavelength and fine mode retrievals on regional scale analyses and forecasts, Atmos. Chem. Phys., 13, 10425-10444, doi:10.5194/acp-13-10425-2013, 2013.

12. Line 703-706. Please dig more on this issue.

Response: We add a paragraph in the revised section 3.3:

"The irregular morphology had a significant influence on the dust simulation. Okada et al. (2001) found that the aspect ratio (the ratio of the longest dimension to its orthogonal width) of the mineral dust particles (0.1-6 μ m) in China arid regions exhibited a median of 1.4. Dubovik et al. (2006) suggested the aspect ratio of ~1.5 and higher in desert dust plumes. Kok et al. (2017) found that the dust' sphericity assumption underestimated dust extinction efficiency by ~20–60% for the dust particle larger than 1 μ m. Tian et al. (2020) found that using a dust ellipsoid model could increase the concentration of coarse dust particle (5-10 μ m) by ~5% in eastern china and ~10% in the Taklimakan area because of the decrease in gravitational settling, comparing with the simulations with dust sphericity model. Nevertheless, the aspect ratio of the spheroid dust is uncertain. Even after applying the spheroidal approximation, Soorbas et al. (2015) found that the model underestimated 550 nm aerosol scattering and backscattering values by 49% and 11%, respectively, because of the uncertainties in particle axial ratio, complex refractive index, and the particle size distribution. To date, the assumption of spherical particles has been widespread in models (including WRF-Chem) for computational efficiency. Impact of dust morphology to DA deserves a further investigation."

13. Line 765. Please investigate the uncertainties of the modeled and observed absorption coefficients. Response: We check the differences in DA analysis as using the different imaginary part of dust refractive index and background error of BC. Please refer to the revised section 3.5.

14. Figure 2. Why the domain averaged standard deviation (c) is significantly larger than that of column averages (d, e)?

Response: The vertical profiles in figure 2(c, d, e) are based on different grids. As shown in Figure 5c, Kashi and the desert point we picked up for figure 2(e) are not on the track of dust storm. Thus, the dust variations at the two points (figure 2d, e) are smaller than the average of binning standard deviation (figure 2c).

15. Figure 3. Why background error standard deviation of the OIN is two magnitudes larger than the other species? Indicating dominating contribution of dust? In this case, is it meaningful to investigate other species changes?

Response: We accidently lowered anthropogenic aerosols in Kashi. The revised simulations correct the emissions and show that the OIN is still the predominant composition, accounting for 62% of $PM_{2.5}$ and 82% of PM_{10} in April. The qualitative conclusion is the same.

16. Table 1. Please explain how the errors are determined?

Response: In the revised section 2.4:

"The measurement error is the sum of a baseline error of $1.5 \ \mu g \ m^{-3}$ and 0.75% of the observed PMx concentration. The representative error is the measurement error multiplied by the half-squared ratio of the grid spacing to the scale distance. The scale distance denotes the site representation in GSI and has four default values of 2, 3, 4, and 10 km, corresponding to the urban, unknown, suburban, and rural sites. We used 3 km for the scale distance in this study. As we had a single site in Kashi, it is difficult to estimate the site representation error. Since the DA analysis was based on the child model domain with a horizontal resolution of 5 km, close to the site distance to the Kashi urban area, we assumed the aerosol optical measurement had good representativeness of the model grid covering the site. The observation error of CE318 AOD took the AERONET AOD uncertainty of 0.01 in cloud-free conditions (Holben et al., 1998). The AOD observational error was further divided by the total model layer thickness in GSI."

1	Improving the Sectional MOSAIC Aerosols of WRF-Chem with the revised
2	Gridpoint Statistical Interpolation System and multi-wavelength aerosol optical
3	measurements: DAO-K experiment 2019 at Kashi, near the Taklamakan Desert,
4	northwestern China
5	
6	Wenyuan Chang ¹ , Ying Zhang ² , Zhengqiang Li ² , Jie Chen ³ , Kaitao Li ²
7	
8	
9	¹ State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry
10	(LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,
11	China.
12	
13	² State Environment Protection Key Laboratory of Satellite Remote Sensing, Aerospace
14	Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
15	
16	³ National Meteorological Information Center, China Meteorological Administration, Beijing
17	100081, China
18	
19	
20	
21	
22	
23	Corresponding authors:
24	Wenyuan Chang (changwy@mail.iap.ac.cn)
25	Zhengqiang Li (lizq@radi.ac.cn)
26	
27	

Deleted: model

29 Abstract

- 30 The Gridpoint Statistical Interpolation data assimilation (DA) system was developed for the
- 31 four-size bin sectional Model for Simulating Aerosol Interactions and Chemistry (MOSAIC)
- 32 aerosol mechanism in the Weather Research and Forecasting-Chemistry (WRF-Chem) model.
- 33 The forward and <u>tangent linear</u> operators for the aerosol optical depth (AOD) analysis were
- 34 derived from WRF-Chem aerosol optical code. We applied three-dimensional variational DA
- 35 to assimilate the multi-wavelength AOD, ambient aerosol scattering coefficient, and aerosol
- 36 absorption coefficient, measured by the sun-sky photometer, nephelometer, and aethalometer,
- 37 respectively. These were undertaken during a dust observation field campaign at Kashi in
- 38 northwestern China in April 2019. The results showed that the DA analyses decreased the low
- 39 biases in the model aerosols; however, it had some deficiencies. Assimilating the surface
- 40 particle concentration increased the coarse particles in the dust episodes, but AOD, and the
- 41 coefficients for aerosol scattering and absorption, were still lower than observed values.
- 42 Assimilating aerosol scattering coefficient separately from AOD improved the two optical
- 43 quantities. However, it caused an overestimation of the particle concentrations at the surface.
- 44 Assimilating the aerosol absorption coefficient yielded the highest positive bias in the surface
- 45 particle concentration, aerosol scattering coefficient, and AOD. The positive biases in the DA
- 46 analysis were caused by the forward operator underestimating <u>aerosol mass</u> scattering and
- 47 absorption efficiency. As a compensation, the DA system increased particle concentrations
- 48 excessively so as to fit the observed optical values. The best overall improvements were
- 49 obtained from the simultaneous assimilation of the surface particle concentration and AOD.
- 50 The assimilation did not substantially change the aerosol chemical fractions. After DA, the
- 51 clear-sky aerosol radiative forcing at Kashi was -10.4 Wm⁻² at the top of the atmosphere,
- 52 which was 55% higher than the background radiative forcing value.

Deleted: adjoint

Deleted: particle

55 1. Introduction

- 56 Data assimilation (DA) blends the information from observations with a priori background
- 57 fields from deterministic models to obtain an optimal analysis (Wang et al., 2001; Bannister,
- 58 2017). With lagged emission inventories and unsatisfactory model chemistry mechanisms,
- 59 there are notable discrepancies between model aerosols and observed levels (He et al., 2017;
- 60 Chen L. et al., 2019). The DA technology incorporates aerosol measurements into the models
- 61 to optimize emissions (Peng et al., 2017; Ma et al., 2019), and cyclically updates the
- 62 background fields in forecasts. This effectively improves the air quality forecasts in China
- 63 (Bao et al., 2019; Cheng et al., 2019; Feng et al., 2018; Hong et al., 2020; Liu et al., 2011;
- 64 Pang et al., 2018; Peng et al., 2018; Xia et al., 2019a, 2019b).
- 65

66 Variational DA minimizes the distant scalar function measuring the misfit between model

- 67 states and a set of observations in each assimilation window. An effective variational DA
- 68 requires an appropriate tangent linear and adjoint operators, which describes the gradient or
- 69 sensitivity of the observed parameter to the control variable (Wang et al., 2001; Bannister
- 70 2017). The operator is highly dependent on the types of assimilated observations and the
- 71 selection of control variables; it is also sometimes dependent on the aerosol mechanism. For
- 72 PM_{2.5} (particulate matter with dynamic radius less than 2.5 µm) DA, the tangent linear
- 73 operator is the ratio of the PM2.5 concentration to composition of each aerosol (Pagowski et
- 74 al., 2010). For the aerosol optical depth (AOD) DA, the operator is generated through Mie
- 75 theory (Liu et al., 2011; Saide et al., 2013). With the development of aerosol mechanisms and
- 76 the growing body of novel aerosol observations from ground-based networks and satellites,
- 77 appropriate tangent linear and adjoint operators are in demand.
- 78

79 The community gridpoint statistical interpolation (GSI) system (Wu et al., 2002; Purser et al.,

- 80 2003a, 2003b) is often used to modify regional aerosol simulations with three-dimensional
- 81 variational (3D-Var) DA. The official GSI (version 3.7 in this study) can incorporate
- 82 observations of surface particulate matter concentration and AOD to constrain the aerosols
- 83 simulated within the aerosol mechanism of Goddard Chemistry Aerosol Radiation and
- 84 Transport (GOCART, Liu et al., 2011; Pagowski et al., 2014). The tangent linear operator and
- 85 adjoint operator for AOD were determined using the Community Radiative Transfer Model
- 86 (CRTM). This GSI version incorporating the Moderate Resolution Imaging
- 87 Spectroradiometer (MODIS) AOD in East Asia (Liu et al., 2011) revealed the simultaneous
- 88 DA effects of PM2.5 and AOD in the continental United States (Schwartz et al., 2012). This 89 GSI was used to identify DA effects that weakened during running of the succeeding model
- 90
- as the model error grew (Jiang et al., 2013), and assessed the radiative forcing of the aerosols 91
- released by wildfires (Chen et al., 2014). This version of GSI was also utilized to improve air 92
- quality forecasts in China by assimilating a variety of satellite AOD data retrieved from: the 93
- Geostationary Ocean Color Imager (Pang et al., 2018); Visible Infrared Imaging Radiometer 94 Suite (Pang et al., 2018); Advanced Himawari-8 Imager (Xia et al., 2019a); and the Fengyun-
- 95 3A/medium-resolution spectral imager (Bao et al., 2019; Xia et al., 2019b).
- 96

97 Despite its capabilities, the GOCART mechanism is unable to simulate nitrate and secondary 98 organic aerosols (SOA), and the GOCART aerosol size distribution uses a bulk assumption

Deleted: (or Jacobian matrix)

Deleted: adjoint

Deleted: adjoint

Deleted: adjoint

Deleted: GIS

104 for radiative transfer calculation. Strictly speaking, the lack of aerosol components violates 105 the unbiased requirements for the model states in the DA system. Lack of size-segregated 106 aerosols may introduce a bias in the calculation of optical aerosols. The official GSI can 107 assimilate the surface particle concentration from the aerosol mechanism apart from 108 GOCART, but its AOD DA is tightly bound with the GOCART aerosols. If one wished to use 109 GSI to assimilate AOD for the other aerosol mechanisms, a compromise solution was to 110 either integrate the map of the speciated aerosols of other mechanisms into that of the 111 GOCART aerosols or use a simplified formula to convert aerosol chemical mass 112 concentrations to AOD. For example, Tang et al. (2017) used the official GSI to assimilate 113 MODIS AOD with the aerosols from the Community Multi-scale Air Quality Model 114 (CMAQ). They incorporated the map of the 54 aerosol components of CMAQ into the five 115 CRTM aerosols and repartitioned the mass increments of each CMAQ aerosol according to 116 the ratio of aerosol chemical components in the background field. This repartitioning is called 117 the "ratio approach." Cheng et al. (2019) assimilated the lidar extinction coefficient profiles 118 measured in Beijing to modify the Weather Research and Forecasting-Chemistry (WRF-119 Chem) Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) aerosols. They 120 used the ratio approach to map eight MOSAIC aerosols based on five GOCART aerosols. 121 This mapping strategy is readily implemented but introduces inconsistent size-segregated 122 aerosol information (e.g., hygroscopicity and extinction efficiency) between the aerosol model and the DA system. Kumar et al. (2019) analyzed the CMAQ aerosols by assimilating 123 124 MODIS AOD with GSI. Their forward operator converted aerosol chemical composition into 125 AOD based on the well-known IMPROVE aerosol extinction model (Malm and Hand, 2007). 126 The IMPROVE model predicts AOD with a linear combination of aerosol chemical masses, 127 with the hydrophilic particles multiplied by a tuning factor associated with relative humidity. 128 Because building a GSI system for a new aerosol mechanism is quite technical, the official 129 GSI for the GOCART aerosols is still a primary choice for recent aerosol DA studies (Bao et 130 al., 2019; Xia et al., 2019; Hong et al., 2020). 131 132 Because of the shortcomings, the official GSI has been extended to cooperate with other 133 aerosol mechanisms in WRF-Chem. The MOSAIC mechanism in WRF-Chem simulates 134 aerosol mass and number concentrations in either four- or eight-size bins. This sectional 135 aerosol mechanism involves nitrate chemistry and can simulate SOA with the volatility basis 136 set scheme. Li et al. (2013) developed a 3D-Var scheme for assimilating the surface PM2.5 and 137 speciated aerosol chemical concentrations for the WRF-Chem MOSACI aerosols. Zang et al. 138 (2016) applied this scheme to incorporate aircraft speciated aerosols in California. They 139 proved that the assimilation of aircraft profile extended the DA benefit to aerosol forecast. 140 Saide et al. (2013) proposed a revised GSI version that performed variational DA for the 141 MOSAIC aerosols. The authors generated the adjoint operator code with the automatic 142 differentiation tool (ADT), TAPENADE v3.6. The ADT used the chain rule of derivative 143 calculus on the AOD source code in WRF-Chem. They assimilated multi-source AOD data 144 with the MOSAIC aerosols over continental United States and found that incorporating multi-145 wavelength fine-mode AOD redistributed the aerosols' particulate mass concentration sizes. 146 The revised GSI system assimilated Korean ground-based and geostationary satellite AOD 147 datasets to improve local aerosol simulations (Saide et al., 2014, 2020). Pang et al. (2020)

Deleted: (Zang et al., 2016)

- 149 developed the official GSI to work with the Modal Aerosol Dynamics Model for Europe with
- 150 the Secondary Organic Aerosol Model (MADE/SORGAM) aerosols in WRF-Chem. The
- authors used the WRF-Chem AOD code as the forward operator to calculate the essential
- 152 aerosol optical properties, which were then inputted to the CRTM adjoint operator. Because
- 153 aerosols were externally mixed in CRTM, the setting of the internal mixture per size bin in
- 154 WRF-Chem was not taken into account, and the AOD of each aerosol component was
- 155 calculated separately.
- 156
- 157 This study provides a solution to improve the capability of the GSI 3D-Var DA system for the
- sectional MOSAIC aerosols in WRF-Chem. We designed the <u>tangent linear</u> operator code for
- 159 AOD DA based on the WRF-Chem intrinsic aerosol optical subroutine (Fast et al., 2006), that
- 160 is, without using the ADT. The operator code is programmed based on the analytical
- 161 equations of the linear tangent model for AOD. As our revised GSI does not use the CRTM
- 162 module, it avoids the problem of needing to eliminate WRF-Chem aerosols characteristics
- 163 (e.g., aerosol mixture state and size distribution) to meet the CRTM input requirements. The
- 164 forward and <u>tangent linear</u> operators are coordinated, since they are derived from the same
- 165 WRF-Chem code, and are written in a single subroutine, which is coupled to the GSI at the
- 166 place of invoking CRTM for the AOD calculation. In addition to AOD DA, our tangent linear
- 167 operator has two variants to assimilate the aerosol scattering and absorption coefficients,
- 168 measured using a nephelometer and aethalometer, respectively.
- 169
- 170 This study verifies the effectiveness of our revised GSI system by incorporating multi-
- 171 wavelength aerosol optical observations that were measured during an international field
- 172 campaign, the Dust Aerosol Observation-Kashi, in April 2019 at Kashi city, neighboring the
- 173 Taklamakan Desert, northwestern China. This desert is the second largest globally, and is the
- 174 primary source of dust aerosols in East Asia. The dust from the desert affects the nearby
- 175 Tibetan Plateau (Ge et al., 2014; Jia et al., 2015; Zhao et al., 2020), air quality and climate in
- 176 East Asia (Huang et al., 2014), and the biogeochemical cycles in the western Pacific Ocean
- 177 (Calil et al., 2011). A successful DA analysis will help improve the local air quality forecast
- 178 and enhance our understanding of the environmental impacts of local dust storms. The
- 179 remainder of this paper is organized as follows. Section 2 describes the revised GSI system,
- 180 the experimental design, and the observed data. Section 3 presents the DA results when
- 181 assimilating different observations. Section 4 discusses the impact of DA on aerosol chemical
- 182 composition and aerosol direct radiative forcing. Finally, Section 5 provides the conclusions
- 183 and limitations that need further research.
- 184

185 2. Methodology and Data

186 2.1 Forecast Model

- 187 The background aerosol fields were simulated using the WRF-Chem model version 4.0 (Grell
- 188 et al., 2005; Fast et al., 2006). The model configurations included the Purdue Lin
- 189 microphysics scheme (Chen and Sun, 2002), the unified Noah land surface model (Tewari et
- 190 al., 2004), the Yonsei University scheme for planetary boundary layer meteorological
- 191 conditions (Hong et al., 2006), and the rapid radiative transfer model for general circulation
- 192 models (RRTMG) scheme for shortwave and longwave radiation (Iacono et al., 2008). The

Deleted: adjoint

Deleted: adjoint

Deleted: adjoint

Deleted: adjoint

197 gas-phase chemistry was simulated using the carbon bond mechanism (Zaveri and Peters,

- 198 1999), including aqueous-phase chemistry. The aerosol chemistry was simulated using the
- 199 MOSAIC mechanism (Zaveri et al., 2008), which simulated sulfate, nitrate, ammonium, black
- 200 carbon (BC), organic carbon (OC), sodium, calcium, chloride, carbonate, and other inorganic 201 matter (OIN, e.g., trace metals and silica). SOA was excluded from our experiments to
- 201 matter (OIN, e.g., trace metals and silica). SOA was excluded from our experiments to 202 accelerate model integration. Although ignoring that SOA biased the model, the influer
- 202 accelerate model integration. Although ignoring that SOA biased the model, the influence was 203 assumed to be small, based on low anthropogenic and biogenic emissions in the vicinity of the
- desert. The dust emission was simulated using the GOCART dust scheme (Ginoux et al.,
- 205 2001), and the dust mass was included in the OIN concentration. We performed the MOSAIC
- 206 aerosol simulations with four-size bins (0.039–0.156 μm, 0.156–0.625 μm, 0.625–2.500 μm,
- 207 and 2.5–10.0 μm dry diameters) for the anthropogenic aerosols. The sectional aerosol data in
- 208 the hourly model output were the aerosol dry mass mixing ratios of chemical compositions,
- 209 aerosol number concentration, and aerosol water content. The aerosol compositions included
- 210 hydrophilic particulates (i.e., SO4²⁻, NO3⁻, NH4⁺, Cl⁻, Na⁺) and hydrophobic particulates (i.e.,
- BC, OC, and OIN). We used the spherical particulate assumption and computed the aerosol
- 212 optics according to the Mie theory. The aerosol compositions were internally mixed in each
- 213 <u>size bin and were externally mixed between the size bins</u>. The internal mixing refractive index
- 214 was the volume-weighted mean refractive index of each composition. The WRF-Chem model
- 215 computed the aerosol optics at 300, 400, 600, and 999 nm and interpolated the aerosol optical
- 216 parameters (AOD, SSA, asymmetry factor) to eleven shortwave lengths with Ångström
- 217 exponents for the radiative transfer calculation.

218

219 2.2 Assimilation System

The revised GSI DA system is based on the official GSI (https://dtcenter.org/communitycode/gridpoint-statistical-interpolation-gsi, Wu et al., 2002; Liu et al., 2011; Schwartz et al.,

- 222 2012; Pagowski et al., 2014) version 3.7. The 3D-Var DA minimizes the cost function:
- 223

224 $J(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}_b)^T \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_b) + \frac{1}{2} (H(\mathbf{x}) - \mathbf{y})^T \mathbf{R}^{-1} (H(\mathbf{x}) - \mathbf{y})$ 225

226

where **x** is the state vector composed of the model control variables; the subscript *b* denotes that **x** is the background state vector; **y** is the vector of the observations; *H* is the forward operator or observation operator that transfers the gridded control variables into the observed quantities at the observation locations; and **B** and **R** are the background and observation error covariance matrices, respectively.

- 232
- 233 The official GSI version only works with the GOCART aerosols for assimilating the surface-
- 234 layer $PM_{2.5}$ and PM_{10} (denoted as PM_x in the context) concentrations, and the 550 nm MODIS
- 235 AOD. Our revised GSI system assimilates PM_x concentrations, multi-wavelength aerosol
- 236 scattering/absorption coefficients, and AOD. Figure 1 shows the workflow of our DA system.
- 237 According to the AOD calculation in WRF-Chem, we can either choose the aerosol number
- 238 concentration (option 1), or aerosol mass concentration (option 2) as control variables. Option

Moved (insertion) [2] Moved (insertion) [1]

(1)

Deleted: determination and aerosol optical calculation

Moved up [2]: The dust emission was simulated using the GOCART dust scheme (Ginoux et al., 2001).

Moved up [1]: The dust mass was included in the OIN concentration determination and aerosol optical calculation.

244 1 is described in Li et al. (2020). In this study, we selected option 2, which is described in the

- 245 following subsections. 246 Figure 1

247

248 2.2.1 Control Variables

249 The control variables in this study were the mass mixing ratio of composition of each aerosol 250 per size bin, which corresponded to the WRF-Chem output data only. This set therefore 251 differed from previous studies that lumped aerosols per size bin as control variables. The 252 lumped aerosols avoided the burdensome task of specifying the background error statistics for 253 numerous aerosols (Li et al., 2013; Pagowski et al. 2014). Although our control variables 254 could have been further optimized, here we designed the control variable using only those that 255 substantially contributed to the total mass concentrations. We set the control variables of six 256 aerosol mass mixing ratios of SO₄²⁻, NH₄⁺, <u>NO₃⁻</u>, OC, BC, and OIN per size bin. <u>Chlorine</u>, 257 and sodium had miniscule background concentrations and remained the background values in 258 the DA analysis. There were twenty-four control variables in total for the four-size bin 259 simulations, In Kashi's case near the desert, the OIN was predominant, accounting for 62% of 260 PM_{2.5} and 82% of PM₁₀. 261 262 Our design of the control variables was different from the AOD assimilation in Saide et al. 263 (2013), with theirs being the natural logarithm of the total mass mixing ratio per size bin, 264 multiplied by the thickness of the model layer. As the high model layer had a significant layer 265 thickness with low aerosol concentrations, the multiplication offset the opposite effects of 266 increasing layer thickness versus decreasing concentrations with increase in altitude. This 267 multiplication prevented the addition of many modifications for the high model layers, where 268 aerosols were low in concentration. The logarithmic transformation was used to decrease the 269 extensive value range in the control variables caused by multiplication. Since the AOD value 270 is often smaller than one, this leads to a significant negative logarithm value and a relatively 271 unconstrained DA system. Saide et al. (2013) introduced two weak constraints in their cost 272 function to cut off the user-defined "extraordinarily high" and "extraordinarily low" 273 concentrations. They repartitioned the increments of the total mass per size bin for 274 composition of each aerosol, with the background aerosol chemical mass fractions. Here, 275 neither the logarithmic transformation, nor the multiplication using layer thickness was set in 276 our DA system. Our control variable was restricted to the WRF-Chem output variable, and the 277 DA system changed the composition of each aerosol per size bin, depending on the aerosol 278 background errors. 279 280 Consistent with the set by Pang et al. (2020), aerosol water content (AWC) was not one of the 281 control variables in our GSI. Otherwise, the AWC might have increased contrary to the 282 physical constraints for the loading of hydrophilic particles, and simply as a mathematical 283 artefact. The AWC was diagnosed according to the analyzed aerosol mass concentration and 284 the background relative humidity in each DA outer loop. The hygroscopic growth was

- 285 calculated using the WRF-Chem code coupled with the revised GSI.
- 286

Deleted: In the case of Kashi situated near the desert, the OIN was predominant, accounting for ~99% of the total particle mass concentrations. The control variable could thus have exclusively comprised the OIN. However, because we were curious about the response of aerosol chemical fractions in the DA constraint, w

Deleted: five

Deleted: Nitrate c

Deleted: , and the time cost for the DA calculation for these variables was acceptable

Moved (insertion) [3]

Moved up [3]: Saide et al. (2013) repartitioned the increments of the total mass per size bin for composition of each aerosol, with the background aerosol chemical mass fractions. Our control variable

102.2.2 Jangent Linear Operator for PM.Defends and the sum of all across of the PM. (concentration over the size bins, and the sum of
the first free site PM.); (cone at al., 2019; Wang et al., 2020; Accordingly, the Pargent
linear operator for PM.) is the gradient of the PM, concentration to the across of chemical mass
concentration per size bins.Defects: Adjain07
$$\frac{\partial_{12}PM_{11}}{\partial_{1}(corral}} + t = 1, ..., n_{Rise}$$

(2)(2)00where n_{dec} is the number of size bins and is equal to four in this study; [] denotes the most
concentration ($\mu_{11} = h^{-1} h_{11} h_{12} e^{-1} h_{12} h_{12} e^{-1} h_{13} h_{12} e^{-1} h_{13} h_{12} e^{-1} h_{13} h_{13} h_{13} e^{-1} h_{13} h_{13}$

343 344 $e_{ext,z,k} = e_{sca,z,k} + e_{abs,z,k}$ 345 (5) 346 347 The extinction cross section $e_{ext,z,k}$ of a wet particle with radius $r_{wet,z,k}$ is: 348 349 $e_{ext,z,k} = p_{ext,z,k} \cdot \pi \cdot r_{wet,z,k}^2$ 350 (<u>6</u>) 351 352 where $p_{ext,z,k}$ is the extinction <u>efficiency</u>, given the desired mixing refractive indexes and the Deleted: coefficient 353 wet particle radius. The $p_{ext,z,k}$ is attained through the Chebyshev polynomial interpolation: 354 $p_{ext,z,k} = \exp \{\sum_{j=1}^{n_{coef}} c_{ch}(j) \cdot c_{ext,z,k}(j)\}$ 355 356 (7) 357 where c_{ch} is the coefficient of n_{coef} order Chebyshev polynomials, $c_{ext,z,k}$ is the polynomial 358 value for the extinction efficiency of the particle, which is an internal mixture of all aerosol 359 compositions (i.e., the control variables plus chlorine, sodium, and AWC). The radius in the Deleted: nitrate, 360 AOD subroutine code is in a logarithmic transform to handle the broad particle size range 361 from 0.039 µm to 10 µm. The exponential function in Eq. (7) transforms the logarithm radius 362 back to the normal radius. The aerosol number concentration $n_{z,k}$ and the aerosol dry (wet) 363 mass concentration $m_{i,z,k}$ have a linkage through the dry (wet) particle radius $r_{dry,z,k}$ ($r_{wet,z,k}$) and 364 the density ρ_i of each aerosol chemical composition: 365 $n_{z,k} = \sum_{i}^{n_{wet_aer}} \frac{m_{i,z,k}}{\rho_i} \cdot \frac{3}{4\pi \cdot r_{wet,z,k}^3} = \sum_{i}^{n_{dry_aer}} \frac{m_{i,z,k}}{\rho_i} \cdot \frac{3}{4\pi \cdot r_{dry_z,k}^3}$ 366 367 (<u>8</u>) 368 369 Both the dry and wet particle radius will appear in the tangent linear operator. The difference 370 between the second and the third terms in Eq (8) is whether aerosol water content is counted. 371 <u> $n_{wet aer}$ </u> is the number of aerosol chemical composition plus aerosol water content ($n_{wet aer}$ 372 $\underline{n_{dry_aer}+1}$). 373 374 2.2.4 Tangent Linear Operator Developed for AOD **Deleted:** Adjoint 375 As per the forward operator in Eq. (3) in WRF-Chem, we developed the tangent linear Deleted: adjoint 376 operator for AOD, which requires the derivative of τ in Eq. (3) to the aerosol dry mass 377 concentration (aerosol water content is not a control variable), $m_{i,z,k}$: 378 $\frac{\delta \tau}{\delta m_{i,z,k}} = \frac{\delta \tau_z}{\delta m_{i,z,k}} = \frac{\delta e_{ext,z,k} \cdot n_{z,k} \cdot H_z}{\delta m_{i,z,k}} + \frac{e_{ext,z,k} \cdot \delta n_{z,k} \cdot H_z}{\delta m_{i,z,k}} + \frac{e_{ext,z,k} \cdot n_{z,k} \cdot \delta H_z}{\delta m_{i,z,k}}$ 379 380 (<u>9</u>) 381

The first term on the righthand side of Eq. (9) indicates the change in AOD as the perturbation
of extinction cross section. According to Eq. (6), considering that the particle radius is
constant,
$$\delta e_{ext,x,k} = \delta p_{ext,x,k}$$
, $\pi \cdot r_{wet,x,k}^2$ (10)
 $\delta e_{ext,x,k} = \delta p_{ext,x,k}$, $\pi \cdot r_{wet,x,k}^2$ (10)
 $\delta e_{ext,x,k} = \delta p_{ext,x,k}$, $\pi \cdot r_{wet,x,k}^2$ (10)
 $\delta e_{ext,x,k} = \delta p_{ext,x,k}$, $\pi \cdot r_{wet,x,k}^2$ (10)
 $\delta e_{ext,x,k} = \delta p_{ext,x,k}$, $\pi \cdot r_{wet,x,k}^2$ (10)
 $\delta e_{ext,x,k} = \delta p_{ext,x,k}$, $\pi \cdot r_{wet,x,k}^2$ (10)
 $\delta e_{ext,x,k} = p_{ext,x,k}$, $\{\sum_{j=1}^{n_{corf}} c_{ch}(j) \cdot \delta c_{ext,x,k}(j)\}$
 $\delta p_{ext,x,k} = p_{ext,x,k}$, $\{\sum_{j=1}^{n_{corf}} c_{ch}(j) \cdot \delta c_{ext,x,k}(j)\}$ (11)
By expanding $\delta c_{ext,x,k}$ in Eq. (11), we have:
 $\delta p_{ext,x,k}(j) = \delta w_{00} \cdot E_{ext,00}(j) + \delta w_{01} \cdot E_{ext,01}(j) + \delta w_{11} \cdot E_{ext,11}(j)$ (12)
 $\delta c_{ext,x,k}(j) = \delta w_{00} \cdot E_{ext,00}(j) + \delta w_{01} \cdot E_{ext,01}(j) + \delta w_{11} \cdot E_{ext,11}(j)$ (12)
 $\delta c_{ext,x,k}(j) = \delta w_{00} \cdot E_{ext,00}(j) + \delta w_{01} \cdot E_{ext,01}(j) + \delta w_{11} \cdot E_{ext,11}(j)$ (12)
 $\delta c_{ext,x,k}(j) = \delta w_{00} \cdot E_{ext,00}(j) + \delta w_{01} = (1 - v_j \delta u - u \delta v)$
 $\delta w_{00} = (v - 1) \delta u + (u - 1) \delta v$ $\delta w_{01} = (1 - v_j \delta u - u \delta v)$
 $\delta w_{00} = (v - 1) \delta u + (u - 1) \delta v$ $\delta w_{01} = (1 - v_j \delta u - u \delta v)$
 $\delta w_{010} = (1 - u_j \delta v - v \delta u)$ $\delta w_{11} = u \delta v + v \delta u$
 $\delta w_{10} = (1 - u_j \delta v - v \delta u)$ $\delta w_{11} = u \delta v + v \delta u$
 $\delta w_{11} = \frac{R_{mix} - R_{low}}{R_{up} - R_{low}}}$ $\delta v = \frac{\delta R_{mix}}{R_{up} - R_{low}}}$
 $\delta v = \frac{\delta R_{mix}}{R_{up} - R_{low}}$ $\delta v = \frac{\delta R_{mix}}{R_{up} - R_{low}}}$ (14)
In Eq. (14), R_{mix} and I_{mix} are the aerosol volume-weighted mean real and imaginary parts of
complex refractive indices, respectively, $R_w (I_w)$ and $R_{bw} (I_{bw})$ are the nearest upper and
lower limits for $R_{mix} (I_{mix})$ in the Mie table. Considering $V_{wet,x}$ is the volume of all acrosol dry,
masses plus acrosol water content, the real and imaginary parts and their drivatives are:
233

424
$$R_{mix,z,k} = \sum_{i} R_i \cdot \frac{m_{i,z,k}}{\rho_i \cdot V_{wet,z,k}} \qquad \delta R_{mix,z,k} = \frac{R_i}{\rho_i \cdot V_{wet,z,k}} \cdot \delta m_{i,z,k}$$
10

$$\begin{array}{cccc} 425 & I_{mix,z,k} = \sum_{i=1}^{n_{wet,aer}} I_i \cdot \frac{m_{i,z,k}}{\rho_i \cdot V_{wet,z,k}} & \delta I_{mix,z,k} = \frac{I_i}{\rho_i \cdot V_{wet,z,k}} \cdot \delta m_{i,z,k} \end{array}$$

$$\begin{array}{c} 426 & (15) \\ 427 \\ 428 & \text{where} \\ 429 & V_{wet,z,k} = \sum_{i=1}^{n_{wet,aer}} \frac{m_{i,z,k}}{\rho_i} \\ 430 & (16) \\ 431 \\ 432 & \text{Put Eq. (12), Eq. (13) into Eq. (11) leads to:} \\ 433 \\ 434 & \delta p_{ext,z,k} = [(v-1)\alpha_{sca,00} + (1-v)\alpha_{sca,01} - v\alpha_{sca,10} + v\alpha_{sca,11}]\delta u + \\ [(u-1)\alpha_{abs,00} - u\alpha_{abs,01} + (1-u)\alpha_{abs,10} + u\alpha_{abs,11}]\delta v \\ 437 & \text{where} \\ 438 & \alpha_{sca,00} = p_{sca,1,k} \cdot \sum_{i=1}^{n_{coef}} c_{ch}(j) \cdot E_{sca,00}(j) \\ 439 & \alpha_{sca,10} = p_{sca,1,k} \cdot \sum_{i=1}^{n_{coef}} c_{ch}(j) \cdot E_{sca,10}(j) \\ n_{coef} & n_{coef} \\ \end{array}$$

$$\begin{array}{ll}
440 & \alpha_{abs,00} = p_{abs,1,k} \cdot \sum_{j=1}^{n_{coef}} c_{ch}(j) \cdot E_{abs,00}(j) & \alpha_{abs,01} = p_{abs,1,k} \cdot \sum_{j=1}^{n_{coef}} c_{ch}(j) \cdot E_{abs,01}(j) \\
441 & \alpha_{abs,10} = p_{abs,1,k} \cdot \sum_{j=1}^{n_{coef}} c_{ch}(j) \cdot E_{abs,10}(j) & \alpha_{abs,11} = p_{abs,1,k} \cdot \sum_{j=1}^{n_{coef}} c_{ch}(j) \cdot E_{abs,11}(j) \\
442 \\
443 & (18)
\end{array}$$

(<u>18</u>)

445 The subscripts of *sca* and *abs* in Eq. (17) and (18) denote "scattering" and "absorption", 446 respectively. The first term on the righthand side of Eq. $(\underline{9})$ is determined using Eq. $(\underline{10})$ and 447 Eq. $(\underline{17})$. The second term on the righthand side of Eq. $(\underline{9})$ indicates the linkage of the aerosol 448 number and mass concentrations. It is the derivative of $\frac{dry \text{ particle in }}{Eq. (\underline{8})}$ by assuming a

444

$$\begin{array}{l}
451 \quad \delta n_{z,k} = \frac{1}{4\pi \cdot r_{dyr,z,k}^3 \cdot \rho_i} \\
452 \\
453
\end{array} \tag{19}$$

454 The third term on the righthand side of Eq. $(\underline{9})$ contains the derivative of the layer thickness to 455 the concentrations in this layer. This indicates that the light attenuation length based on per

456 unit concentration, which can be intuitively represented by the ratio of layer thickness to the
457 aerosol mass concentration in this layer. Putting Eq. (19) and Eq. (19) into Eq. (9), we have
458 the original formula of the Langent linear operator for AOD for the aerosol dry mass
459 concentration:
460
461
462
$$\frac{\delta \tau}{\delta m_{i,x,k}} = \frac{\delta \tau_{x,x}}{\delta m_{i,x,k}} = \frac{\delta e_{ext,x,k} \cdot n_{x,k} \cdot H_x}{\delta m_{i,x,k}} + \frac{e_{ext,x,k} \cdot \delta n_{x,k} \cdot H_x}{\delta m_{i,x,k}} + \frac{e_{ext,x,k} \cdot n_{x,k} \cdot \delta H_x}{\delta m_{i,x,k}} = \frac{\delta \tau_{x,x}}{\delta m_{i,x,k}} + \frac{1 - \nu n_{x,x,n,0}}{\delta m_{i,x,k}} + \frac{1 - \nu n_{x,x,n,0}}{\rho_1 \cdot V_{wet,x,k} \cdot (R_{v,p,x,k} - R_{i,0w,x,k})} + \frac{1}{4}$$
463 $\{ [(\nu - 1)\alpha_{x,cn,00} + (1 - \nu)\alpha_{x,cn,01} - \nu \alpha_{x,cn,10} + \nu \alpha_{x,cn,11}] \cdot \frac{\pi \cdot r_{wet,x,k}^2 \cdot R_1 \cdot n_{x,k} \cdot H_x}{\rho_1 \cdot V_{wet,x,k} \cdot (L_{up,x,k} - L_{low,x,k})} + \frac{1}{4}$
465 $[(\nu - 1)\alpha_{abs,00} - u\alpha_{abs,01} + (1 - u)\alpha_{abs,1,0} + u\alpha_{abs,1,1}] \cdot \frac{\pi \cdot r_{wet,x,k}^2 \cdot (L_{up,x,k} - L_{low,x,k})}{\rho_1 \cdot V_{wet,x,k} \cdot (L_{up,x,k} - L_{low,x,k})} + \frac{1}{4}$
466 $\frac{3e_{ext,x,k} \cdot H_x}{4\pi \cdot r_{dy,x,k}^2 \cdot \rho_1} + \frac{e_{ext,x,k} \cdot n_{x,k} \cdot H_x}{m_{x,x}} \cdot \rho_1} + \frac{e_{ext,x,k} \cdot n_{x,k} \cdot H_x}{m_{x,x}}} + \frac{e_{ext,x,k} \cdot n_{x,k} \cdot H_x}{(20)}$
470 where β is the factor that changes the unit of mass from µg kg⁻¹ to µg m⁻³. The last righthand term in Eq. (20) may not have a quick convergence in the DA outer loops because the aerosol mass concentration $m_{t,x}$ in the denominator often has a low bias, which introduces an error in to the operator. The error is amplified by the layer thickness H, in the numerator. Thus, the perator of Eq. (20) cannot lead to a stable analysis. For this reason, we changed the permutor to account for the columnar mean aerosol extinction coefficient which is described as follows:
477 $\frac{\delta (e_{ext} \cdot n)}{\delta m_{t,x,k}}} = \frac{H_x}{\Sigma H_x} \cdot \frac{\delta (e_{ext,x,k} \cdot n_{x,k}}{\delta m_{t,x,k}}} + \frac{e_{ext,x,k} \cdot n_{x,k}}{\delta m_{t,x,k}} + \frac{e_{ext,x,k} \cdot n_{x,k}}{\delta m_{t,x,k}} + \frac{e_{ext,x,k} \cdot n_{x,k}}{\delta m_{t,x,k}} + \frac{e_{ext,x,k} \cdot n_{x,k$

Deleted: adjoint

 Deleted: adjoint

 Deleted: adjoint

 Deleted: adjoint

by observation location. Note that the dry
$$(r_{max,0})$$
 particle radiuses are both,
present in Eq. (2). Because aerosol water content is not a control variable, $r_{p_{max}}$ is used in Eq.
(19) and appears in Eq. (2). Acrosol water content participates the computation of internal
mixing refractive indexes, and thus r_{max} is also present in Eq. (2). Equation (2) is the final
angeent linear operator for AOD DA in this study.
Detect: adjoint
The aerosol scattering and absorption coefficients measured by the nephelometer and
actual and absorption coefficients measured by the nephelometer and
actual meta-operator for the two coefficients measured by metholometer is
detended scattering coefficient measured by metholometer is described as follows:
$$\frac{\delta(c_{max}, s^+, n_{k,k})}{\delta m_{n,k}} = \{l(v-1)a_{max}m + (1-v)a_{max}m + va_{max}, n + va_{max}, n \}, \frac{3e_{max}m_{max}}{4\pi + n_{max}^2, n + n_{max}^2}, \frac{3e_{max}m_{max}}{4\pi + n_{max}^2, n + n_{max}^2}, \frac{3e_{max}m_{max}}{2}, \frac{1}{2}$$

where the symbols have the same meaning as before, and the subscript once in Eq. (2)
denotes the surface layer. The operator for the aerosol absorption coefficient measured by
actual means of the cost function within the CSI. That is, the cost function is first
minimized with the first analysis contentruins in the aerosof
anumber concentration in the background field, and the number
concentration in updated with the first analysis contentruins. This iterative process in
denoted as the "arter loop," which first analysis contructuring in the cost function the first analysis
(Massart et al., 2010). We agate maximum interving the propriors first and the cool function the cost contructure in the aerosof
atomic at the "autor loop," which are presented several times to attain the first analysis
(Massart et al., 2010). We agate maximum interving the cost function first
minimized with the first analysis constructs a new
operator value, resulting in an examalysis of law subsurating at the present in the conter loops within the CSI.
The WRP-C

541 2.2.6 Aerosol Complex Refractive Indexes in GSI

542 Table S1 in the supplementary document shows the complex refractive indexes for each 543 aerosol chemical composition in the revised GSI. The refractive indexes are for eleven 544 wavelengths, including four for CE318, three for nephelometer, three for aethalometer, and 545 one for 550 nm MODIS AOD (not assimilated in this study). The real parts of refractive 546 indexes of sulfate, nitrate, and ammonium are similar and refer to Toon et al.'s (1976) data. 547 The real part is 1.53 at 440 nm and decreases to 1.52 at 1020 nm. The refractive indexes of 548 OC and BC are constant across the wavelengths, being 1.55–0.001*i* for OC (Chen and Bond, 549 2010) and 1.95–0.79i for BC (Bond and Berstrom, 2006). The dust refractive index's real part 550 is a constant value of 1.54 (Zhao et al., 2010). The dust refractive index's imaginary part 551 depends on the dust mineralogy, size distribution, and shape, which are associated with the 552 dust sources. The imaginary part varies a lot at the same dust source. Cheng et al. (2006) 553 reported the desert dust refractive index in winter and spring at Dunhuang, a city adjacent to 554 the northeast side of the Taklamakan desert. Their imaginary part value was approximately in 555 the ranges of 0.0008 to 0.0028 at 440 nm, 0.0006 to 0.0030 at 670 nm, 0.0005 to 0.0036 at 556 870 nm, and 0.0005 to 0.0040 at 1020 nm (See Figure 9 in their paper). Recently, Di Biagio et 557 al. (2019) retrieved the dust's imaginary part in the Taklimakan desert's north edge (41.83°N, 558 85.88°E). Their dust imaginary part decreased from 0.0018±0.0008 at 370 nm to 559 0.0005±0.0002 at 950 nm, much lower than the generic values in climate models. The 560 imaginary part's retrieval uncertainty is related to the iron oxide in dust samples, the cutoff 561 coarse particle size (<10 µm in Di Bigaio et al., 2019), and the assumption of spherical 562 particles applied in the retrieval algorithm. Here, we admit the high uncertainty and use the 563 imaginary part following the generic model values (Table S1), which are higher than the 564 upper limits of the data of Di Biagio et al. (2019) and are close to the values of Cheng et al. 565 (2006). The desert dust has a stronger absorption at shortwave wavelengths. The refractive 566 index of a wavelength without exact literature data uses the nearby wavelength's data in 567 literature. The supplement also shows the aerosol density (Table S2) that follows the density 568 data in Barnard et al. (2010). The aerosol density is necessitated to compute aerosol optical 569 parameters in the AOD forward operator and construct our tangent linear operator. 570

571 2.3 Background Error Covariance (BEC)

572 Many aerosol DA studies used the National Meteorological Center (NMC) method (Parrish 573 and Derber, 1992) to model the BEC matrix. The NMC method uses long-term archived 574 weather data that are created in the forecast cycles. It computes the statistical differences 575 between two forecasts with different leading lengths (e.g., 24 h and 48 h), but which are valid 576 at the same time. The NMC method is workable because solving global weather forecasts is 577 an initial value problem of mathematical physics. That is, a slight difference in the initial 578 atmospheric state would lead to a substantially different prediction, because of the chaos in 579 the atmosphere. However, a regional model is a boundary value problem. Meteorological 580 reanalysis data drive the regional chemistry simulation, and the driving data quality affects the 581 simulation (Giorgi and Mearns, 1999). The WRF-Chem simulations in the NMC method only 582 reflected the influences of using different initial conditions. As the model runs, the influence 583 of the initial conditions becomes weak, while the influence of lateral boundary conditions 584 always takes effect. Because the same reanalysis data drive the paring regional model

- 585 simulations, the following lateral boundary conditions for the simulations of the two leading-
- 586 lengths are similar. This leads to a limited regional model difference when using the NMC
- method. That is, the NMC method's BEC on the meteorology would underestimate the
- aerosol error in WRF-Chem. Kumar et al. (2019) assimilated AOD in the contiguous United
- 589 States based on the NMC method's BEC. They perturbed the background emissions by adding
- 590 the gridded mean differences of four emission inventories. Their analysis with the BEC
- 591 accounting for meteorology and emissions uncertainties reduced the AOD bias by 38%,
- 592 <u>superior to 10% bias reduction counting the meteorology uncertainty alone</u>
- 593
- 594 Some aerosol DA studies have created background error variance using the ensemble
- 595 simulations by randomly disturbing model lateral boundary conditions and surface emissions
- 596 (Peng et al., 2017; Ma et al., 2020). The ensemble experiments better represent the model
- 597 error, but significantly increase the computational burden. Here, we used the standard
- 598 deviation of hourly aerosol concentrations in April in the background field (first guess field)
- 599 to represent the background error variance. The rationale of this approach is that the Tarim
- 600 Basin acts as a "dust reservoir" and traps dust particles for a period, before being carried long-
- 601 distance by wind (Fan et al., 2020). The model bias in dust dominates the model aerosol error,
- 602 and is correlated with the aerosol variation as the weather fluctuates. The model bias is small
- on clear days when the aerosol concentration is low. Conversely, the bias is large when the
- mean concentration is high: that is, on heavily-polluted days. Because the mean aerosol
- 605 concentration correlated positively with the aerosol variation, we used the standard deviation 606 of aerosol concentration to represent the background aerosol error. This approach was similar
- to Sič et al. (2016), who set a percentage of the first guess field for the background error
- 608 variance. Our approach prioritizes DA modification of aerosols which have high background
- 609 mean concentrations.610

We calculated the statistics of the background error, including the aerosol standard deviationand the horizontal and vertical correlation length scales, using the GENerate the Background

- 613 Errors (GEN-BE) software (Descombes et al., 2015), based on the one-month hourly aerosol
- 614 concentrations in WRF-Chem. We obtained the statistics of four static BECs for the four DA
- 615 analysis hours (i.e., 00:00, 06:00, 12:00, and 18:00 UTC), respectively. The DA procedures
- 616 for the April 2019 data repeatedly use the statistics of the background error at the
- 617 corresponding analysis time. A usual strategy to enrich the samples of model results for
- 618 calculating the statistics is to gather model grid points with similar characteristics of the
- 619 atmosphere, referred to as "binning." The statistics are spatially averaged over the binned grid
- 620 points. The default strategy in the GEN BE for GSI is latitude-binning, which creates a
- 621 latitude-dependent error correlation function (Figure 2a). The latitude binning is generally
- 622 used for latitude flow dependency and works for large and global domains (Wu et al., 2002).
- 623 However, we found that using the latitude-binning strategy overestimated the surface PMx
- 624 concentration when assimilating aerosol optical observations. One reason for this was related
- 625 to the model bias in particle extinction efficiency, as discussed in Section 3.3. Another
- 626 plausible reason is related to the vertical profile of the background model error. The
- 627 maximum dust error occurred at the surface of the desert (Figure 2e) because of the local dust
- 628 emission sources, but the maximum error at Kashi was at the dust transporting layer above the

Deleted: We speculate that the NMC method cannot fully represent the model biases in emission inventories

Deleted: and model chemistry, underestimate the aerosol error in WRF-Chem.

633 surface (Figure 2d). Owing to the vast extent of the Taklamakan Desert, the latitude-binning

634 suppressed the local error characteristics at Kashi, and led to a vertical error profile (Figure

635 2c) similar to that over the desert (Figure 2e).

636

637 For this reason, we used the standard deviation of the control variable at each model grid to

638 replace the latitude-binning standard deviation. The <u>horizontal and vertical correlation length</u> 639 scales were calculated based on the latitude-binning data. Figure 3 shows the background

scales were calculated based on the latitude-binning data. Figure 3 shows the backgrounderror statistics generated by the GEN BE software, which provided the input to the GSI. The

641 OIN component showed high background errors in the third and fourth particle sizes at the

transporting layer above the surface (Figure $\frac{31}{2}$). The aerosol compositions related to

643 anthropogenic emissions (i.e., sulfate, <u>nitrate</u>, ammonium, OC, and BC, referred to here as

644 'anthropogenic aerosols') had maximum errors in the second particle size <u>and showed the</u>

645 greatest vertical error at the surface. The background error for OIN composition was higher

than that for anthropogenic aerosols by a factor of two or three, because of the high

- 647 background dust concentration in the city.
- 648

649 The horizontal and vertical correlation length scales determine the range of observation

650 innovations spreading from the observation locations. The horizontal influences had small

651 changes in altitude within the lowest 15 model layers (below a height of \sim 5 km), indicating

that the dust transport layer was well-mixed in the lower atmosphere. This deep dust layer

653 was consistent with the dust simulation by Meng et al. (2019). They showed that the dust in 654 spring was vertically mixed in a thick boundary layer to a height of 3–5 km in the Tarim

spring was vertically mixed in a thick boundary layer to a height of 3–5 km in the Tarim
Basin. The vertical correlation length scales first increased from low values at the surface, to

high values at ~2.5 km in height (for the 8–9 layers), indicating that strong winds yielded

657 intense aerosol upward flux. The vertical correlation length scale quickly decreased from the

658 maximum value, with further increase in altitude corresponding to the large particle gradient

at the upper edge of the transporting layer. The latter was associated with laminar air motion

660 during the dust storm.

661

The background model errors were independent of particle size, which would have tended to accumulate the DA modification in a single size bin that had the maximum background error

664 (e.g., the OIN in the fourth particle size). To avoid excessive accumulation of increments in a

665 single size bin, we added a one-dimensional recursive filter for the background covariances of

666 control variables across the size bins within the GSI. The inter-size bin correlation length

667 scale was <u>four</u> bin units,

668

Figure 2, Figure 3

669

- 670 **2.4 Observational Data and Errors**
- 671 The Dust Aerosol Observation-Kashi field campaign was performed at Kashi from
- 672 00:00UTC 25 March to 00:00 UTC 1 May 2019. <u>The site was placed in the Kashi campus of</u>
- the Aerospace Information Research Institute, Chinese Academy of Sciences (39.50°N,
- 674 <u>75.93°E; Li et al., 2018), about 4 km in the northwest to the Kashi city.</u> The <u>site</u> aerosol
- 675 observations used for our DA analysis included: (1) the multi-wavelength AOD measured by

Deleted: for the OIN component

Deleted: standard deviation for the other compositions and the

Deleted: . aerosol compositions showed vertical error profiles, greatest at the surface (Figures 3a-d).

Deleted: , as per the setting of Saide et al. (2013)

- the sun-sky photometer (Cimel CE318); (2) the multi-wavelength aerosol scattering and
- absorption coefficients at the surface, measured with a nephelometer (Aurora 3000) and
- aethalometer (Magee AE-33), respectively, during the campaign; and (3) the hourly PM_{2.5} and
- 685 PM₁₀ observations, measured with a METONE BAM-1020 continuous particulate monitor.
- All the instruments were deployed at the roof of a three stories height building on the campus.
- 687 Please refer to Li et al. (2020) for more details about the field campaign.
- 688

689 Table 1 summarizes the observation periods, the wavelengths of the aerosol optical data, and

690 the observation errors. The multi-wavelength data of each type of observation were

- assimilated simultaneously. The observation errors of PMx are handled in the conventional
- 692 <u>way (Schwartz et al., 2012; Chen et al., 2019), which contains</u> the measurement error (e_1) and
- the representative error (e_2) . The measurement error is the sum of a baseline error of 1.5 µg
- m^{-3} and 0.75% of the observed PMx concentration. The representative error is the
- 695 measurement error multiplied by the half-squared ratio of the grid spacing to the scale
- 696 distance. The scale distance denotes the site representation in GSI and has four default values
- of 2, 3, 4, and 10 km, corresponding to the urban, unknown, suburban, and rural sites. We
- used 3 km for the scale distance in this study. As we had a single site in Kashi, it is difficult to
- 699 estimate the site representation error. Since the DA analysis was based on the child model
- domain with a horizontal resolution of 5 km, close to the site distance to the Kashi urban area,
- 701 we assumed the aerosol optical measurement had good representativeness of the model grid
- 702 covering the site. The observation error of CE318 AOD took the AERONET AOD
- 703 <u>uncertainty of 0.01 in cloud-free conditions (Holben et al., 1998). The AOD observational</u>
- 704 <u>error</u> was further divided by the total model layer thickness in GSI. It is difficult to determine
- 705 instrumental errors in nephelometers and aethalometers, and we empirically set their
- 706 instrumental errors to 10 Mm⁻¹, equivalent to the magnitude of the Rayleigh extinction
- 707 coefficient. The observational errors were uncorrelated, with **R** being a diagonal matrix.

708

Table 1 709

710 2.5 Experimental Design

711 The WRF-Chem simulations were configured in a two-nested domain centered at 82.9 °E, 712 41.5 °N. The coarse domain was a 120×100 (west-east × north-south) grid with a horizontal 713 resolution of 20 km that covered the Taklamakan Desert, and the fine domain was an 81×61 714 grid with a resolution of 5 km, focusing on Kashi and environs (Figure 4a). Both domains had 715 41 vertical levels extending from the surface to 50 hPa. The lowest model layer at the site was 716 approximately 25-meter height from the ground. The two domains were two-way coupled. 717 The parent domain covered the entire dust emission source, providing dust transport fluxes at 718 the lateral boundaries of the fine domain. The aerosol radiative effect was set to provide 719 feedback on the meteorology. The indirect effect of aerosols was not set in the experiments. 720 Initial and lateral boundary meteorological conditions for WRF-Chem were the one-degree 721 resolution of the National Centers for Environmental Prediction Final Analysis data created 722 by the Global Forecast System model. The meteorological lateral boundary conditions for the 723 coarse domain were updated every six hours, and were linearly interpolated between the 724 updates in WRF-Chem. We did not set the chemical boundary conditions for the coarse

- 725 domain. The Multiresolution Emission Inventory of China (MEIC) for the year 2010
- 726 (www.meicmodel.org) provided anthropogenic emission levels. The yearly emission
- 727 differences in 2010-2019 may bias the aerosol chemical simulation, but this bias is hard to be
- 728 quantified as lack of aerosol chemical observations in this city. As the significant pollutant at
- 729 Kashi is dust, we just ignore the model uncertainties due to the yearly differences in
- 730 anthropogenic emission inventories. The biogenic emission levels were estimated online
- 731 using the Model of Emissions of Gases and Aerosols from Nature (Guenther et al., 2006).
- 732 Wildfire emissions were not set in the experiments.
- 733
- 734 We conducted a one-month WRF-Chem simulation for April 2019, starting at 00:00 UTC 27
- 735 March and discarding the first five days for spin-up. The revised GSI system modified the
- 736 aerosols in the fine domain at 00:00, 06:00, 12:00, and 18:00 UTC each day starting from
- 737 00:00 UTC 1 April until the end of the month. We assimilated the observations four times a
- 738 day because the reanalyzed meteorological data were available for the four time slices, which
- 739 facilitated the model restarting from the DA analyses. The hourly PMx observations were
- 740 assimilated at the exact time of analysis. The observed AOD and aerosol scattering/absorption
- 741 coefficients were assimilated when they fell within 3 hours before the time of analysis. Table
- 742 2 shows the DA experiments. The literal meanings of the experimental names denote the
- 743 observations that were individually or simultaneously assimilated. To study the impact of DA
- 744 on aerosol direct radiative forcing (ADRF), we modified the WRF-Chem code to calculate the
- 745 shortwave irradiance with and without aerosols at each model integration step. The modified
- 746 WRF-Chem model restarted from each DA analysis and ran to the next analysis time. Each
- 747 running performed the radiation transfer calculation twice, and each calculation saw the
- 748 aerosols and clean air, respectively. The irradiance difference between the two pairing calls
- 749 was aerosol radiative forcing. Section 4.2 shows the DA effects on the clear-sky ADRF values.
- 750 751

Table 2, Figure 4

752

753 3. Results

754 3.1 Evaluation of Control Experiment

- 755 Table 2 shows the monthly mean values and correlations between the observed data and the
- 756 model results. The statistical values were based on the pairing data between the model results
- 757 and the observations. Figures $\underline{6}$ show the surface PMx concentrations, aerosol scattering
- 758 coefficients, and AOD when assimilating the observations at 00:00, 06:00, 12:00, and 18:00
- 759 UTC each day in April.
- 760

761 Kashi is in the junction between the Tian Shan Mountains to the west and the Taklamakan

- 762 Desert to the east (Figure 5a). In the Tarim Basin, the prevailing surface wind is easterly or
- 763 northeasterly, which raises dust levels and carries the particles westward (Figure 5b). An
- 764 intense dust storm hit the city at noon on 24 April 2019, with a peak PM10 concentration 765
- exceeding 3,000 μ g m⁻³. The dust storm travelled across the northern part of the desert and 766
- carried the dust particles to Kashi and the mountainous area (Figure 5c, d). A few mild dust
- 767 storms occurred at Kashi on April 3-5, April 8-11, and April 14-17 (Figure 6b), and the

Deleted: we restarted the WRF-Chem model from each DA analysis, which then ran to the next analysis time.

Deleted: absorption

771 maximum PM_{10} concentrations were in the range of 400–600 μ gm⁻³. The time series of $PM_{2.5}$,

aerosol scattering/absorption coefficient, and AOD showed patterns, similar to those for PM_{10} (Figure 6).

774

WRF-Chem captured the main dust episodes, but significantly underestimated the aerosols at
 Kashi (Table 2). The background monthly mean concentrations of PM_{2.5} and PM₁₀ were <u>17%</u>

777 and 41% lower than the observed values, respectively, with a low correlation (R < 0.3). The

5778 simulated dust storm on 24 April was a mild dust event and had a maximum PM_{10} of ~300 μ g

- m^{-3} , one-tenth of the observed value. The model <u>underestimates</u> the aerosol
- 780 scattering/absorption coefficients and AOD by 40-70%.
- 781
- The OIN component accounted for the model bias in PM_{10} on dusty days. Zhao et al. (2020)
- 783 proposed that the GOCART scheme reproduced dust emission fluxes under conditions of
- 784 weak wind erosion but underestimated the emissions in conditions of strong wind erosion. We
- 785 did not assimilate meteorology. The model bias in the surface wind introduces errors in dust
- remission, and places bias on the number of dust particles entering the city. In the non-dust
- 787 days with the PM_{10} lower than the 25th percentile PM_{10} in April, the model hourly $PM_{2.5}$ on
- 788 <u>average only accounted for 60%</u> of the observed data levels. The $PM_{2.5}$ low bias could be due
- 789 to the lack of SOA chemistry in our experiments and the emission low bias in the residential 790 sector which is a major source of anthropogenic emissions for PM₂ s. BC, and OC in the
- 790 sector <u>which</u> is a major source of anthropogenic emissions <u>for</u> PM_{2.5}, BC, and OC in the developing western area. The residential sector accounts for 36–82% of these emissions.
- developing western area. The <u>residential</u> sector accounts for 36–82% of these emissions,
 according to the MEIC emission inventory (Li et al., 2017) and is the primary source of
- uncertainty in anthropogenic emission inventories in China.
- uncertainty in anthropogenic emissions inventories in China.

Figure 5

795

796 3.2 Assimilating PM_{2.5} and PM₁₀ Concentrations

797 Simultaneous assimilation of the observed PMx (DA_PMx) improved both the fine and 798 coarse particle concentrations, with a substantial improvement in the third and fourth particle 799 sizes of the OIN composition (Figure 8f). The analyzed monthly mean PM10 increased to 800 <u>329.3</u> μ g m⁻³, with a high correlation of 0.99. The analyzed monthly mean PM_{2.5} was 801 improved to $89.3 \,\mu g \, m^{-3}$, although it was still lower than the observed levels, with a high correlation of 0.89. The low bias in PM2.5 and the high bias in PM10 in the analyses were both 802 803 mainly in the dust storm on 24-25 April (Figure 6a, d). Applying the inter-size bin correlation 804 length caused the interlinked analyses of PM_{2.5} and PM₁₀. In the desert area, the coarse and 805 fine dust are readily affected by the magnitude of BEC of the fourth size-bin OIN (oin_a04). 806 We intentionally decreased the BEC of oin a04 by 10% each time to 30% of its original 807 value. The magnitude of 30% of oin a04 was comparable to the magnitude of the third size-808 bin (oin a03) OIN's background error. As shown in Table S3, because the oin a04's BEC 809 reduction relaxes the constraint on the coarse particle, the PM₁₀ bias becomes more negative 810 along with the decrease in on_a04's BEC. Meanwhile, the PM2.5 bias becomes more positive. 811 Correspondingly, the ratio of PM_{2.5} to PM₁₀ was exaggerated to 0.33 with 30% of oin_a04's 812 BEC, higher than the observed value of 0.28. Overall, the original BEC of oin_a04 is a

813 reasonable tradeoff in our DA experiments. The inter-size bin correlation length tunes the

Deleted: simulated anthropogenic aerosols were probably too low to be reasonable for this city.

816 cross size-bin modifications, and it indeed does matter to the DA performance compared with

817 those without inter-size bin correlation. Although the correlation length of four in our DA

818 experiment is a little bit arbitrary, we found that the impact on the analysis due to using

- 819 <u>different correlation length is almost ignorable.</u>
- 820

821 <u>The</u> DA system preferentially modified the coarse particle concentrations because <u>of</u> the

coarse particles's high background model error according to our BEC modeling strategy.

823 Intuitionally, <u>our</u> modification that mainly focused on the highest concentration of coarse

- 824 particles was reasonable. It decreased the model biases by raising the heaviest loading
- aerosols. As a result, the ratio of $PM_{2.5}$ to PM_{10} decreased from 0.39 in the background to 0.27
- 826 in DA_PMx, approaching the observed ratio of 0.28. Such improvement was consistent with
- 827 the correction required to the model desert dust in literature. Kok et al. (2011) found that
- 828 regional and global circulation models underestimate the fraction of emitted coast dust (>~5_
- μm), overestimates the fraction of fine dust (<2μm diameter). Adebiyi and Kok (2020)
- 830 claimed that too rapid deposition of coarse dust out of the atmosphere accounts for the
- 831 missing coarse dust in models. Similarly, WRF-Chem assimilated too much smaller dust
- particles than the observed. According to Kashi's AOD between 440 nm and 1020 nm, the
- 833 observed Ångström exponent (AE) was 0.18 in this case, but the background value was 0.54
- (Table 3). DA_PMx reduced the AE value to 0.30, a little improvement but not sufficient.
- 835

As the particle concentration increased, the <u>635 nm</u> aerosol scattering coefficient in DA_PMx_

837 <u>moderately</u> increased to 170.4 Mm⁻¹, with a high correlation of 0.89, still lower than the

838 <u>observed level of 231.5 Mm⁻¹. The analyzed 660 nm absorption coefficient was 15.8 Mm⁻¹</u>,

67% lower than observed levels, with a correlation of 0.42. The analyzed AOD showed a

840 monthly mean value of 0.38 in DA_PMx, 42% lower than observed levels, with a low

841 correlation of <u>0.35</u>.842

Figure <u>9a</u> shows the diurnal concentrations of PM₁₀ in the analyses in April. The observed
 PM₁₀ showed a substantial variation at 18:00 UTC, the (local midnight). This substantial

nocturnal variation was partly owing to the dust storm that started on 24 April and ended the

next day. This midnight variation was also related to a nocturnal low-level jet. Ge et al.

- 847 (2016) pointed out that there was a nocturnal low-level jet at a height of 100–400 m, with a
- 848 wind speed of $4-10 \text{ m s}^{-1}$ throughout the year in the Tarim Basin. They stressed that the low-
- 849 level jet broke down in the morning, transporting its momentum toward the surface, and
- 850 increased dust emissions. The nocturnal low-level jet increased the possibility of dust
- 851 particles moving towards the city at night, causing a high PM₁₀ variation at 18:00 UTC. The
- diurnal changes in the DA analyses followed the observed levels, but had higher mean values.
- 853

854 **3.3 Assimilating AOD**

- Assimilating AOD (DA_AOD) improved the monthly mean 870 nm AOD to 0.59,
- approaching to the observed value of 0.66, with a high correlation of 0.98 (Figure 60). The
- monthly mean PM_{2.5} was improved to $\frac{92.6}{2.6} \mu \text{g m}^{-3}$, quite close to the observed level of 91 μg
- 858 \underline{m}^{-3} , but the analyzed PM₁₀ was <u>541.7</u> μ g m⁻³, <u>68% higher</u> than the observed value. The DA
- system improved the AOD at the price of deteriorating the data quality of surface <u>coarse</u>

Deleted: The improvements in the analyzed absorption coefficients and AOD were insufficient (Figures 6d-e).

862 particle concentrations, Surface particle overestimations have been reported in previous 863 studies (Liu et al., 2011; Ma et al., 2020; Saide et al., 2020). In the arid area of Kashi, the ratio 864 of $PM_{2.5}$ to PM_{10} therefore reduced to 0.17 in DA AOD, which was too far comparing with 865 the observed ratio of 0.28. 866 867 The revised GSI updates aerosol number concentration according to the analyzed aerosol 868 mass concentration and the background ratio between mass and number concentrations. Thus, 869 an overestimation of aerosol mass concentration inclines to raise aerosol number 870 concentration, resulting in high scattering/absorption coefficients. In Kashi, the analyzed 635 871 nm scattering coefficient in DA_AOD was 222.6 Mm⁻¹, slightly lower than the observed 872 value. The analyzed 660 nm absorption coefficient was 17.0 Mm⁻¹, 64% lower than the 873 observed value. It indicates that WRF-Chem strongly underestimated the 874 scattering/absorption cross section. This underestimation resulted in too many coarse particles 875 as compensation to fit the observed AOD, and hence decreased the $PM_{2.5}/PM_{10}$ ratio further. 876 877 Table 4 shows the ratios of the AOD and aerosol scattering/absorption coefficients to the 878 surface PM₁₀ concentrations. The ratio of AOD to PM₁₀ in the background model result was 879 one-third of the observed levels. The observed mass scattering coefficient (Esca/PM₁₀) was 880 $1.05 \text{ Mm}^{-1} \mu \text{g}^{-1} \text{ m}^3$, while the background value was only 0.65 Mm⁻¹ $\mu \text{g}^{-1} \text{ m}^3$. DA AOD 881 did not eliminate the low bias but enlarged the low bias to 0.51 $Mm^{-1}\,\mu g^{-1}\,m^3.$ The same 882 thing occurred for Eabs/PM₁₀, which was 0.09 in the background and 0.05 in DA_AOD, 883 much lower than the observed value of 0.25. Figure 10 shows these mean ratios at the other 884 wavelengths. The low bias in AOD/PM₁₀ was comparable at each wavelength. All DA 885 experiments yielded close bias in extinction/scattering/absorption efficiency. Such low bias in 886 AOD/PM_{10} imposed the DA system to overestimate the PM₁₀ to fit the observed AOD data. 887 888 Additionally, we computed the surface single scattering albedo (SSAsrf) with the 525 nm 889 scattering coefficient and 520 nm absorption coefficient. We did not use the Ångström 890 exponent to interpolate the scattering/absorption coefficients to a similar wavelength because 891 the AE itself had a large model bias even after DA (Table 3). The observed SSAsrf value was 892 0.78, indicating an emphatic absorption particle, probably due to the mixture of anthropogenic 893 black carbon and natural desert dust in the local air. The model background SSAsrf was 0.86, 894 while the DA analyses gave even higher SSAsrf (0.88 to 0.9). 895 896 The low bias in mass scattering/absorption efficiency is related to the aerosol optical module, 897 which is based on Mie theory in WRF-Chem. First, the simulations used four-size bin particle 898 segregation. This coarse size representation aggregated many aerosols in the accumulation 899 mode (Figure 8f). Because small particles have a strong of light attenuation capability, 900 according to the Mie theory, too many coarse particles would not effectively increase the 901 AOD. Saide et al. (2020) linked the aerosol optics to the size bin representation (from 4 to 16

902 bins) for hazes in South Korea. They showed that WRF-Chem underestimated the dry aerosol

903 extinction, and the underestimation could be relieved when using a finer size bin than four.

904 Okada and Kai (2004) found that the dust particle radius in the Taklamakan Desert was in the

Deleted: , opposite to the result when assimilating PMx

Deleted: a model low bias in particle scattering/absorption efficiency

908 range of 0.1-4 µm, indicating the dominant fine-mode particles in the desert. Using the four-909 size bin would simultaneously obtain better analyses of both AOD and PMx. 910 911 Second, the dust particles are irregular in shape (Okada and Kai, 2004), while the spherical 912 particle is a common assumption for the aerosol optics in the Mie theory in current models, 913 which is an essential source of uncertainty in the forward operator of WRF-Chem when the 914 assumption of spherical particles for dust fails. The irregular morphology had a significant 915 influence on the dust simulation. Okada et al. (2001) found that the aspect ratio (the ratio of 916 the longest dimension to its orthogonal width) of the mineral dust particles (0.1-6 µm) in 917 China arid regions exhibited a median of 1.4. Dubovik et al. (2006) suggested the aspect ratio 918 of ~1.5 and higher in desert dust plumes. Kok et al. (2017) found that the dust' sphericity 919 assumption underestimated dust extinction efficiency by ~20-60% for the dust particle larger 920 than 1µm. Tian et al. (2020) found that using a dust ellipsoid model could increase the 921 concentration of coarse dust particle (5-10 μ m) by ~5% in eastern china and ~10% in the 922 Taklimakan area because of the decrease in gravitational settling, comparing with the 923 simulations with dust sphericity model. Nevertheless, the aspect ratio of the spheroid dust is 924 uncertain. Even after applying the spheroidal approximation, Soorbas et al. (2015) found that 925 the model underestimated 550 nm aerosol scattering and backscattering values by 49% and 926 11%, respectively, because of the uncertainties in particle axial ratio, complex refractive 927 index, and the particle size distribution. To date, the assumption of spherical particles has 928 been widespread in models (including WRF-Chem) for computational efficiency. Impact of 929 dust morphology to DA deserves a further investigation. 930 931 To reduce the overestimate in PMx concentrations, we set the gridded standard deviation in 932 place of the latitude-binning standard deviation, as discussed in Section 2.3. Figure 11 shows 933 the analyzed vertical profiles of PMx concentrations. Higher PM₁₀ concentrations were 934 observed in the low atmosphere than at the surface. These vertical error profiles decreased the 935 surface $\underline{PM_{10}}$ particles and tended to increase the $\underline{PM_{2.5}/PM_{10}}$ ratio, contrary to the effects of 936 low model bias in particle extinction efficiency, For the net effect of the compensation, the 937 mass extinction efficiency, in the analysis was still almost equivalent to the background value 938 (Table 4). That is, our tuned BEC vertical profile at Kashi, to some extent canceled out the 939 effects of other model error sources (e.g., the positive bias in the coarse particle of BEC, and 940 the low bias in extinction efficiency) but was not sufficient to increase the mass extinction 941 efficiency, to the observed value. Finer aerosol size representation and a better advanced 942 aerosol optical calculation for dust are essential solutions. 943 944 Assimilating the AOD seems to increase the diurnal variation in the DA analyses, but this 945 variation was not conclusive since there were different amounts of AOD data for DA at 00:00, 946 06:00, and 12:00. The AOD data were not always available as the data quality control (i.e., 947 cloud screening). There was a higher increase in the concentration at noon (06:00 UTC) 948 (Figure <u>9b</u>), corresponding to a few high AOD during mild dust episodes at that hour. The DA

- 949 system had to raise the PM₁₀ to fit the observed high AOD values. Because the CE318 AOD
 - 950
 - was only available in the daytime, none DA analysis was performed at 18:00. Also, due to the
 - 951 limited AOD data, assimilating AOD did not substantially increase the correlation of PMx.

Deleted:

Another reason for the low ratio of AOD to PM10 is related to our approach for modeling BEC. It is important to remember that our BEC represents the possible error effects owing to model bias in aerosols. The coarse particle accounts for a large mass portion of PMx, and its bias dominates the model error, we cannot say that this background error assessment is unbiased. As our BEC gave a high background error to the coarse particle for its sufficient concentration, the DA system tended to increase PM10, which was not as effective in increasing AOD as PM2.5. If the background error of the coarse particle were too high, the BEC would falsely lower the ratio of AOD to PM10 in the analysis.

Deleted: and the possible high bias in the BEC values of coarse particles

Deleted: ratio

Deleted: ratio

Deleted:

Because the DA system overestimated the aerosol number concentration, resulting in a positive bias in PM10, This indicates that WRF-Chem strongly underestimated the singleparticle absorption efficiency, and the low bias was too strong to be compensated by the overestimated aerosol number concentration.the analyzed aerosol scattering coefficient was overestimated up to 280.1 Mm-1, 37% higher than the observed value. In contrast, the analyzed absorption coefficient was 23.1 $Mm^{\text{--1}},$ 72% lower than the observed value. also indicates that WRF-Chem strongly underestimated the single-particle absorption efficiency, and the low bias was too strong to be compensated by the overestimated aerosol number concentration.

Deleted: . At the hot time of the day, intense sunlight increased the light extinction by the particles

Deleted: At dawn (00:00 UTC) or dusk (12:00 UTC), when the sunlight was weak, the DA modifications were small, and the DA increases in the PM10 fell to low levels. However, because the AOD constraint was only available in the daytime and the AOD DA data were not always available as the data quality control (i.e., cloud screening),

- P91 The analyzed <u>PM_{2.5} and PM₁₀ still had low correlations with the observed levels</u>
- 992 (*R*=0.<u>31</u>~0.35). 993

994 3.4 Assimilating Aerosol Scattering Coefficient

- 995 Assimilating the aerosol scattering coefficient (DA_Esca) yielded overall analyses similar to
- the phenomenon in DA_AOD. The <u>analyzed 635 nm</u> scattering coefficient (<u>192.1 Mm⁻¹</u>) was
 <u>lower than the observation (231.5 Mm⁻¹</u>), with a high correlation of 0.97. The analyzed
- monthly mean AOD was 0.53, better than the AOD of 0.38 when assimilating PMx.
- However, the surface particle concentrations were overestimated (i.e., positive biases by 14%
- 1000 for $PM_{2.5}$, and $\frac{37}{9}\%$ for PM_{10}), with a substantial increase in the coarse particle of OIN.
- 1001 Overestimations appeared during <u>a few</u> mild dust episodes (Figure <u>7d</u>). This again indicated
- 1002 that WRF-Chem underestimated the <u>dust</u> scattering efficiency, <u>in accordance with the low</u>
- 1003 <u>bias in the</u> ratio of the scattering coefficient to PM_{10} (0.52 Mm⁻¹ μ g⁻¹ m³; Table 4). The DA
- $1004 \qquad \text{system thus overfitted the PMx concentration to approach the observed scattering coefficient.}$
- 1005 The diurnal PM_{10} in the analysis was similar to the assimilation of PMx, showing a maximum
- 1006 improvement and a robust nocturnal variation at 18:00 UTC (Figure 9c). Assimilating the
- 1007 scattering coefficient failed to improve the absorption coefficient. The monthly mean
- 1008 absorption coefficient was 16.5 Mm⁻¹, 65% lower than the observed value.

1009

1010 3.5 Assimilating Aerosol Absorption Coefficient

- 1011 In contrast to the above results, assimilating the absorption coefficient (DA_Eabs) degraded
- 1012 all the analyses other than the absorption coefficient itself. The analyses showed substantial
- 1013 daily variations, and strong positive biases appeared in the dust episodes (Figure 7). The
- 1014 PM_{2.5} was overestimated by a factor of <u>three</u>, and the PM₁₀ was overestimated by a factor of 1015 four. The increases occurred each hour (Figure 9d). Because of the constant ratio between
- 1015 four. The increases occurred each hour (Figure 9d). Because of the constant ratio between
 1016 mass and number concentration, the particle number concentration increased. As a result, the
- 1016 mass and number concentration, the particle number concentration increased. As a result, the 1017 aerosol scattering coefficient was overfitted to 612.2 Mm^{-1} , higher than the observed levels by
- 1017 aerosol scattering coefficient was overfitted to <u>612.2</u> Mm⁻¹, higher than the observed levels by 1018 a factor of three. The monthly mean AOD improbably rose up to 1.73. Nevertheless, the
- 1018 a factor of three. The monthly mean AOD improbably rose up to 1.73. Nevertheless, the 1019 absorption coefficient (40 Mm^{-1}) was improved to the observed level (47.4 Mm^{-1}).
- 1019 absorption coefficient ($\underline{40}$ Mm⁻¹) was <u>improved to</u> the observed level ($\underline{47.4 \text{ Mm}^{-1}}$). 1020
- 1020
- 1021 <u>Improving</u> the absorption coefficient at the cost of PM₁₀ overestimation indicates the model
- biases in the representation of the particle mixture and the other <u>absorbing particles</u> (e.g.,
- 1023 <u>black carbon</u>, brown carbon and aged dust). With respect to the current model, this failure is
- 1024 related to the aerosol absorption represented in WRF-Chem. The leading absorption aerosol in
- 1025 $\,$ WRF-Chem is BC. The BC particle in the second size (0.156–0.625 $\mu m)$ had the maximum
- $1026 \qquad \text{absorption, according to Mie theory, and had the maximum DA modifications in the second-}$
- 1027 size bin (Figure <u>8e</u>). However, because the BC had a small background concentration, the BC
- 1028 showed a small DA improvement (<1.5 μ g m⁻³) and had small effects on increasing the
- 1029 particle absorption. Meanwhile, the coarse dust particle concentration was primarily
- $1030 \qquad \text{increased, but the dust particles did not have a strong absorption as BC. As a result, the model}$
- 1031 lowered the ratio of the absorption coefficient of PM_{10} by an order of magnitude (Table <u>4</u>).
- 1032 The lower mass absorption efficiency was comparable at each wavelength and was close to
- 1033 <u>the other DA experiment (Figure 10c). Because of the constraint of the observed absorption</u>
- 1034 coefficient, the DA system dramatically overestimated the particle concentrations and induced

Deleted: and enlarged the diurnal variation of PM_{10}

Deleted: The maximum increase in the mean value was at 06:00 UTC, also because of the strong noontime heating in the model. As t

Deleted: cannot increase the absorption data

Deleted: . This DA failure in assimilating the absorption coefficient

Deleted: aborting

1043 too much higher aerosol scattering coefficient and AOD, Because the overestimation of the 1044 scattering coefficient was higher than that of the absorption coefficient, DA abs even gave 1045 the strongest SSArf (0.9; Table 3) in all DA experiments, opposite to our expectation that the 1046 assimilation of absorption coefficient should improve SSA. 1047 1048 To understand the DA_Eabs's failure, we performed a few trials by changing the imaginary 1049 part of the dust refractive index on 1200UTC on April 9. The results are present in the 1050 supplementary Table S4a and S4b. The trials show that a high imaginary part of the dust 1051 refractive index decreases the aerosol absorption coefficient. This paradox is due to the BC's 1052 reduction. Specifically, a high imaginary part increases the absorption efficiency of coarse_ 1053 dust and decreases the coarse dust number concentration (num a04; Table S4a). This 1054 reduction also led to less fine aerosol number concentrations (e.g., num_a02) because of the 1055 inter-size bin correlation. BC is abundant in the second and third size bins, and its imaginary 1056 part of refractive index is two orders of magnitude higher than dust. Less BC caused a weak 1057 absorption coefficient (Table S4b). On the contrary, the low dust imaginary part would not 1058 largely increase dust numbers in the coarse size bin because the DA system attempts to 1059 increase BC to enhance the absorption coefficient. In an extreme case with zero value of 1060 imaginary part of dust, the improvement of absorption coefficient exclusively relies on BC; 1061 the num a02 is increased by order of magnitude (Table S4a), and 660 nm Eabs rose up to 1062 92.5 Mm⁻¹ (Table S4b), much higher than the observed level. 1063 1064 At Kashi, BC has a low background concentration and low background error. The innovation 1065 of BC was limited. Thus, tuning the imaginary part of dust would not change the SSAsrf 1066 value a lot (0.89 to 0.92). Excluding the contribution from OIN in PM₁₀, the scattering 1067 coefficient was associated with sulfate. The sulfate's background error was higher than the 1068 BC's by order of magnitude. The DA system prioritized sulfate modification even when 1069 assimilating absorption coefficient, resulting in a smaller BC mass fraction in PM₁₀ (Figure 1070 12f) and a high SSAsrf of 0.90. 1071 1072 We did another set of trials by increasing the original BC's BEC per size bin. As shown in the 1073 supplementary Table S5, increasing the BC's BECs would not much degrade the absorption 1074 coefficient but significantly decrease the positive biases in PMx, AOD, and scattering_ 1075 coefficient; the SSAsrf approached the observation. Increasing BC's BECs by a factor of 1076 seven (DA Eabs BC*7) shows the best analyses. This trial suppressed the positive biases 1077 without decreasing the accuracy of absorption coefficient (Figure 7), and the BC mass 1078 fraction was increased (Figure 12g). Nevertheless, the disadvantage of the enlargement of 1079 BC'BEC is that the simultaneous assimilation of scattering and absorption coefficient is not 1080 convergent as well as before. After four outer loops and each with 50 inner iterations, the 1081 analyzed absorption coefficient in DA Eabs BC*7 was still higher than the observed value 1082 by 47% (Figure S1j). It indicates there is a low bias in BC's background concentration that

- 1083 violates the unbiased condition of DA.
- 1084
- 1085 3.6 Assimilating Multi-source Observations

Deleted:, but the analyzed absorption coefficient was still underestimated.

- 1088 Assimilating an individual observation improves the corresponding model parameter (i.e.,
- 1089 PM_{2.5}, PM₁₀, Esca, Eabs, and AOD) but may worsen other parameters. The reasons for the
- 1090 inconsistent improvements are relevant to the aerosol model itself. These are: (1) the model
- 1091 parameters have opposite signs in biases (e.g., one model parameter has a positive bias while
- 1092 another has a negative bias); (2) the model biases have vast differences in magnitude (e.g., a
- 1093 good fit of a parameter may lead to another's overfit) and the different biases in magnitude
- 1094 cannot be reconciled because the forward operator is inaccurate to represent the linkage

1095 between aerosol mass and aerosol optics (e.g., lower particle mass extinction efficiency), 1096

- 1097 In our case, simultaneous assimilation of the scattering and absorption coefficients
- 1098 (DA Esca Eabs) resulted in the analyses when assimilating the scattering coefficient alone
- 1099 (DA_Esca), and the inferior analysis in DA_Eabs vanished. This was because incorporating
- 1100 the scattering coefficient constrained the aerosol number concentrations, which also benefited
- 1101 from incorporating the observed absorption coefficient. Simultaneous assimilation of PMx
- 1102 and AOD (DA_PMx_AOD) gave the best overall DA results, in which all the analyses except
- 1103 the absorption coefficient were not significantly different in the month mean values from the
- 1104 observations. Furthermore, DA_PMx_AOD substantially improved the Ångström exponent,
- 1105 with an analyzed value of 0.17, consistent with the observed value of 0.18 (Table 3). 1106 Simultaneous assimilation of all observations (DA PMx Esca Eabs AOD) did not
- 1107 substantially improve the analyses when compared with DA PMx_AOD because the surface
- 1108
- coefficients, and AOD had overlapped information of the light attenuation. A redundant 1109
- information source did not introduce extra constraints on the DA system. 1110
 - Table 3, 4; Figure 6, 7, 8, 9, 10

1111

1112 3.7 Vertical Profiles of Aerosol Concentrations

1113 Figure 11 shows the vertical concentration profiles of PM2.5 and PM10. The DA system

1114 increased the aerosol concentrations up to a height of 4 km, which is consistent with previous 1115 studies on the Taklamakan Desert. Meng et al. (2019) simulated a deep dust layer thickness in 1116 spring, with a depth of 3-5 km. Ge et al. (2014) analyzed the Cloud-Aerosol Lidar Orthogonal 1117 Polarization data from to 2006-2012 in the desert. They showed that dust could be lifted up to 1118 5 km above the Tarim Basin, and even higher along the northern slope of the Tibetan Plateau. 1119 Among our DA experiments, the analyzed PMx in the lower atmosphere followed PMx at the 1120 surface. The vertical PM₁₀ concentration increased quickly in the lowest three model layers 1121 and maintained high values at heights of less than 3 km. This vertical profile corresponded to 1122 the background vertical error profile, reflecting the deep dust transporting layer. The PM_{2.5} 1123 vertical profiles of showed a rapid reduction with an increase in altitude. The figure clearly 1124 shows that DA PMx improved the PM2.5 and PM10 better, whereas DA AOD preferentially 1125 adjusted the coarse particles and overestimated the PM10. Also shown in the figure are the 1126 vertical profiles normalized to their own respective surface particulate concentrations. The 1127 assimilations not only added a larger fraction of the mass in these layers but also adjusted the 1128 shapes of the PM₁₀ profiles within 3 km above the ground (Figure 11d), following the BEC's

- 1129 vertical correlation length scales (Figure 3r).
- 1130

Deleted: through the adjoint operator

Deleted: Therefore, it may not always lead to a better analysis when assimilating one type of observation. Simultaneous assimilation of the multi-source observations imposes more definite constraints on the DA system and helps to eliminate significant model biases.

Deleted: Compared with the analysis assimilating the PMx alone (DA_PMx), assimilating the two aerosol attenuation coefficients (DA Esca Eabs) better reproduced the AOD, but overestimated the surface particle concentrations. In Figures 8-9, there were extremely high values on 28 April 2019, because the scattering coefficient was missing at that time, during which the DA system assimilated the absorption coefficient alone and worsened the analysis again. Simultaneous assimilation of the surface particle concentration and the two aerosol attenuation coefficients (DA_PMx_Esca_Eabs) improved these three assimilated parameters, but still gave a notable low bias in AOD, % lower than the observed levels.

Deleted: The analyses between DA_PMx_AOD and DA_PMx_Esca_Eabs were comparable, except that the former additionally increased AOD better.

Deleted: the DA experiments failed to improve the aerosol absorption coefficient, always showed strong low biases and (), implying room for improvement of our DA system.

Deleted: DA_PMx._AOD provided the best balance between the adjustments of PM2.5 and PM10.

Deleted:

Figure 11

1159

1160 4. Discussions

- 1161 4.1 DA Impact on Aerosol Chemical Composition
- 1162 For control variable design, our DA system modifies the chemical composition of each
- 1163 aerosol according to the BEC values. The PM10 chemical fractions remain close to their 1164
- background values (Figure 12). As discussed in section 3.5, the assimilation of the aerosol 1165 absorption coefficient alone (DA Eabs) increased the sulfate fraction. The DA modification
- 166 increased aerosol number concentration, and the rising number concentration increased the
- 1167 tangent linear operator value for the scattering component. Sulfate was the predominant
- 1168 anthropogenic aerosol at Kashi and had a high background error value. The DA system
- 1169 prioritized the modification of sulfate and prevented a rise in the BC fraction in DA_Eabs. As
- 1170 the enlarged BC BEC in DA_Eabs_BC*7, the BC mass fraction showed the largest increase.
- 1171 The model bias in aerosol background concentration and the background error determine the
- 1172
- analyzed aerosol chemical fraction. Overall, it seems that differences in aerosol chemical 1173
- composition from assimilating the aerosol optical data are smaller than the difference in 1174 model setting (e.g., using other aerosol chemistry mechanisms, or using finer aerosol size
- 1175 bins). The assimilation of the total aerosol quantities cannot eliminate the intrinsic bias in
- 1176 aerosol composition. Thus, accurate aerosol chemistry and optical modules are crucial to
- 1177 attain a better background aerosol chemical data for DA analysis (Saide et al., 2020).
- 1178

1179

Figure 12

- 1180 4.2 DA Impact on Aerosol Direct Radiative Forcing
- 1181 Table 5 shows the instantaneous clear-sky ADRF in the background data and the analyses of
- 1182 DA_PMx and DA_PMx_AOD. After the analyses, the DA effect (various DA frequencies for
- 1183 assimilating AOD and the surface particle concentrations) gradually faded away after
- 1184 restarting the model run. We therefore focused on the instantaneous radiative forcing values
- 1185 one hour after assimilating AOD data. This ensured that the comparison was based on similar

1186 analysis times and showed effective DA effects,

1187

1188	<u>Aerosol</u> redistributes the energy between the land and the atmosphere. The atmosphere gains
1189	more shortwave energy as the dust and black carbon particle absorption; the warming
1190	atmosphere also emits more longwave energy as it absorbs shortwave energy. The change in
1191	energy budget at the surface is correspondingly the opposite of that in the atmosphere. As
1192	shown in Table $\underline{5}$, the enhancements in surface cooling forces were slightly stronger than the
1193	atmospheric warming forcings. The differences between the surface forcing and atmospheric
1194	forcing indicate the ADRF at the top of the atmosphere (TOA). The TOA ADRF when
1195	assimilating the surface particle concentrations was enhanced by $\underline{21}\%$ in the shortwave, $\underline{100}\%$
1196	in the longwave, and $\underline{18}\%$ in the net forcing values, and enhanced by $\underline{34}\%$, $\underline{67}\%$, and $\underline{32}\%$,
1197	respectively, when assimilating the AOD. Apparently, assimilating PMx alone is not
1198	sufficient to accurately estimate the ADRF value. At Kashi, the total net (shortwave plus
1199	longwave) clear-sky ADRF with assimilating surface particles and AOD were -10.4 Wm ⁻² at

Deleted: The maximum concentrations of sulfate. ammonium, BC, and OC in April were 4.1, 1.5, 0.5, and 1.3 µg m-3, respectively, in the background model data. Although a careful evaluation is difficult because of the lack of aerosol chemical measurements, we speculated that the aerosols (other than OIN) were considerably low. Anthropogenic emissions might be biased for this city. The sources of emissions in residential/developing areas are principally anthropogenic; yet the residential emission factor for the emission inventory compilation is highly uncertain compared with the emission factors of power plants, industrial plants, and vehicles (Li et al., 2017). Chlorine and sodium are selected to represent sea-salt aerosols in WRF-Chem, yet the two concentrations were at very low concentrations in the model at Kashi. This was despite the fact that the Taklamakan Desert had many atmospheric halite particles, which were Cland Na-rich and accounted for 10% of the total particles in the desert (Okada and Kai, 2004).

Deleted: 11 the DA experiments showed that the

Deleted: The low biases cannot be improved via DA because the aerosol chemical measurements were not available. In addition, the differences between DA_Esca and DA Esca Eabs were quite small (Figure 13c, e), indicating that assimilating the aerosol absorption coefficient did not enhance particle absorption (19.1-1 vs. 20.0 Mm-1 in Table 3) in our system. T

Deleted: of BC to 7.1%, which was slightly higher than the 6.5% background BC

Deleted: The first reason for the small changes in the aerosol chemical proportions is that the scattering aerosols (i.e., sulfate, nitrate, and ammonium), use the same refractive index and hygroscopicity parameter in WRF-Chem. Therefore, the AOD had virtually the same sensitivity to composition of each aerosol, and assigned comparable modification to each composition. When assimilating the total quantities of aerosols (e.g., PM2.5, PM10, and AOD), it is difficult to distinguish different aerosol chemical [1]

Deleted: As the dust was the predominant component, the ADRF in this section was closely equivalent to the dust radiative forcing.

Deleted: Dust

1259	the TOA, ± 20.8 Wm ⁻² within the atmosphere, and ± 31.2 Wm ⁻² at the surface, respectively,
1260	enhanced by 55%, 48%, and 50% respectively, compared to the background ADRF values.
1261	
1262	It is noteworthy to say that the ADRF estimation remains uncertain even after DA. The AOD
1263	observation is only sporadically available because of cloud screening in retrieval data. The
1264	DA experiments cannot eliminate the low bias in AOD in WRF-Chem. The ADRF values in
1065	the DA experiments are likely to be weaker than the plausible seresal redictive forcing at

experiments are likely to be weaker than the plausible aerosol radiative forcing at 1266 Kashi. Neither DA experiment lowers SSAsrf to approach the observation. The observed

1267 SSAsrf (0.78) indicates likely warming forcing of aerosol at Kashi, while WRF-Chem and the

1268 DA analyses impose cooling forcing. The ADRF uncertainty is associated with the

1269 background aerosols. WRF-Chem simulates aerosol size up to 10 µm, whereas larger particles

1270 (>10 µm) exhibit substantial absorption relative to scattering in the visible wavelength (Kok

1271 et al., 2017). Anthropogenic emission inventories need an update for the year 2019, which

1272 may reduce the potential low bias in BC concentration. Additionally, the revised GSI does not

- 1273 concern the change in particle effective radius per size bin when calculating the aerosol
- 1274 number concentration in each outer loop. Low absorption cross section rises aerosol number

1275 concentration as compensation, increasing aerosol scattering coefficient too much. If our

- 1276 tangent operator concerns the change in particle effective radius per size bin, we can use
- 1277 aerosol mass and number concentration as control variables simultaneously. The DA would

1278 have a higher degree of freedom to balance the particle radius and number concentration and

1279 improve the absorption coefficient. All these need further research in the future.

1280

1281 5. Conclusions

- 1282 This study described our revised GSI DA system for assimilating aerosol observed data for
- 1283 the four-size bin sectional MOSAIC aerosol mechanism in WRF-Chem. The DA system has
- 1284 new design tangent linear operators for the multi-wavelength AOD, aerosol scattering, and
- 1285 absorption coefficients measured by the sun-sky radiometer, nephelometer, and aethalometer,
- 1286 respectively. We examined the DA system for Kashi city in northwestern China by
- 1287 assimilating the multi-wavelength aerosol optical measurements gathered by the Dust Aerosol
- 1288 Observation-Kashi field campaign of April 2019 and the concurrent hourly measurements of
- 1289 surface PM_{2.5} and PM₁₀ concentrations.

1290

- 1291 Our DA system includes two main aspects. Firstly, the control variable is the aerosol chemical
- 1292 composition per size bin corresponding to the WRF-Chem output data. This design allows the
- 1293 modification of the composition of each aerosol, based on their background error covariances.
- 1294 The number of control variables could be reduced by intentionally excluding a few aerosol
- 1295 compositions in a specific case, if these compositions had low concentrations (e.g. chlorine 1296
- and sodium in this study). Second, the DA system incorporates the observed AOD by 1297
- assimilating the column mean aerosol extinction coefficient. This transfer avoids handling 1298
- sensitivity from light attenuation length to the aerosol mass concentration in the tangent linear 1299 operator, which is difficult to accurately estimate and introduces significant errors in the
- 1300 operator. The tangent linear operator for AOD has two variants that can incorporate
- 1301
- nephelometer and aethalometer measurements at the surface.

1302

Deleted: adjoint

Deleted: adjoint

Deleted: adjoint

1306 The most abundant aerosol at Kashi in April 2019 was dust. The WRF-Chem model captured 1307 the main dust episodes, but lowered the monthly mean concentrations of $PM_{2.5}$ and PM_{10} by 1308 17% and 41%, respectively. The model failed to capture the peak concentrations from a dust 1309 storm on 24 April. The aerosol scattering/absorption coefficients and AOD in the background 1310 data showed strong low biases and weak correlations with the observed levels. The DA 1311 systems effectively assimilate the surface particle concentrations, aerosol scattering 1312 coefficients, and AOD. Some deficiencies in the DA analysis were related to the forward 1313 model bias in transferring the aerosol mass concentrations to the aerosol optical parameter. 1314 Simultaneous assimilation of the PM2.5 and PM10 concentrations improved the model aerosol 1315 concentrations, with significant increases in the coarse particles; meanwhile, the analyzed 1316 AOD was 42% lower than observed levels. The assimilation of AOD significantly improved 1317 the AOD but overestimated the surface PM_{10} concentration by <u>68%</u>. Assimilating the aerosol 1318 scattering coefficient improved the scattering coefficient in the analysis but overestimated the 1319 surface PM_{10} concentration by 37%. It therefore seems that WRF-Chem underestimated the 1320 particle extinction efficiency. As a compensation, the DA system overestimated the aerosol 1321 concentration to fit the observed optical values, yielding overly high particle concentrations. 1322 1323 A notable problem was the assimilation of the absorption coefficient, which greatly 1324 overestimated the monthly mean values by a factor of four in PM_{10} . The aerosol absorption 1825 coefficient was improved but was still 16% lower than observed values. The failure of DA 1326 analysis when assimilating the absorption coefficient is associated with many factors, 1327 including the biases of the model in aerosol particle mixture and aged dust, the uncertainties_ 1328 in the imaginary part of dust refractive index, the uncertain background error of BC and the 1329 likely low bias in anthropogenic emissions. The most effective DA is the simultaneous 1330 assimilation of surface particle concentration and AOD, which provides the best overall DA

1331 1332 analysis.

- 1333 Our design of control variables allowed the DA system to adjust the aerosol chemical
- 1334 compositions individually. However, the analyzed anthropogenic aerosol chemical fractions
- 1335 were almost equivalent to the background chemical fractions. The reason is that the
- 1336 hydrophilic aerosols have equivalent or comparable refractive indices and hygroscopic
- 1337 parameters in the forward operator; they therefore have comparable adjoint operator values
- when assimilating the aerosol optical data. It may be possible to separate the chemicalcompositions based on their background errors. The model anthropogenic aerosols were low
- 1340 at Kashi, probably owing to the low biases in the anthropogenic emissions. The low
- background concentrations led to low background errors and hence few increments for all
- 1342 chemical compositions. As a result, the chemical fractions of the anthropogenic aerosols
- remained close to their background values.
- 1344
- 1345 When assimilating surface particles and AOD, the instantaneous clear-sky ADRF (shortwave
- 1346 <u>plus longwave</u>) at Kashi were -10.4 Wm⁻² at the TOA, +20.8 Wm⁻² within the atmosphere,
- 1347 and $\underline{-31.2}$ Wm⁻² at the surface, respectively. Since the DA analyses still lowered the AOD
- 1348 value and overestimated SSA, the aerosol radiative forcing values assimilating the
- 1349 observations were underestimated in the atmosphere and at the surface.

and aged dustas well as the "missing" absorption of brown carbon, accounted for the bias in absorption efficiency, which would have worsened the DA analysis when assimilating the absorption coefficient.¶

Deleted: The biases of the model in aerosol particle mixture

Simultaneous assimilation of the multi-source observations imposes a more definite constraint and helps improve model parameters. Simultaneously assimilating the scattering and absorption coefficients eliminated the defect of assimilating the absorption coefficient. It also provided comparable improvements for assimilating the surface particles and AOD; the latter additionally improved the AOD analysis. 1363

1364 The limitations that necessitate further research include:

1β65 (1) The desired <u>binning</u> strategy should link the circulation flow and particle emission
 1366 sources. A better hybrid DA coupled with the ensemble Kalman filter will be more effective

- 1367 for estimating the aerosol background error.
- 1368 (2) The observational error could be elaborated further. The PM_{10} included the
- 1369 anthropogenic coarse particles, which should be separated from the dust originating from the
- 1370 desert (Jin et al., 2019). We set the observation errors for PMx and AOD to the conventional
- 1371 values. The observational errors of the nephelometer and aethalometer were slightly arbitrary1372 in this study, necessitating further consideration.
- 1373 (3) The <u>anthropogenic aerosols' background errors are needed</u> to <u>harmonize for better</u>
- 1374 <u>assimilation of the aerosol absorption coefficient or absorption AOD.</u>
- 1375 (4) The DA system was based on four-size bin MOSAIC aerosols, but it can be extended
- 1376 to work with eight-size bin MOSAIC aerosols in WRF-Chem. When assimilating aerosol
- 1377 optical data, the DA quality is strongly dependent on the forward model. The responses of our
- 1378 DA analysis to the bias and uncertainty in the forward aerosol optical model in WRF-Chem
- 1379 need further investigation.

13801381 Author contributions

- 1382 WC developed the DA system, preformed the analyses and wrote the paper. ZL led the field
- 1383 campaign and revised the paper. YZ and KL implemented the observations and the data
- 1384 quality control. YZ helped to design the new adjoint operator. JC verified the DA system.
- 1385

1386 Competing interests

- 1387 The authors declare that they have no conflict of interest.
- 1388

1389 Code/Data availability

- 1390 The official GSI code is available at https://dtcenter.org/community-code/gridpoint-statistical-
- 1391 interpolation-gsi/download. The revised GSI code is available at https://github.com/wenyuan-
- 1392 <u>chang/GSI_WRF-Chem_MOSAIC.</u> The aerosol measurements at Kashi belong to the Sun-sky
- 1393 radiometer Observation NETwork (SONET) which is accessible at
- 1394 http://www.sonet.ac.cn/en/index.php.

1396 Acknowledgments

- 1397 This work is supported by the National Key Research and Development Program of China
- 1398 (Grant number 2016YFE0201400).
- 1399

1395

1400 References

- 1401 Adebiyi, A. A., Kok, J. F.: Climate models miss most of the coarse dust in the atmosphere,
- 1402 <u>Sci. Adv., 6, 1-10, doi:10.1126/sciadv.aaz9507, 2020.</u>
- 1403
- 1404 Bannister, R. N.: A review of operational methods of variational and ensemble-variational
- 1405 data assimilation, Q.J.R. Meteorol. Soc., 143, 607-633, doi:10.1002/qj.2982, 2017.
- 1406

1407	Bao, Y., Zhu, L, Guan, Q., Guan, Y., Lu, Q., Petropoulos, G. P., Che H., Ali, g., Dong, Y.,
1408	Tang, Z., Gu, Y., Tang, W., and Hou, Y.: Assessing the impact of Chinese FY-3/MERSI
1409	AOD data assimilation on air quality forecasts: sand dust events in northeast China, Atmos.
1410	Environ., 205, 78-89, doi:10.1016/j.atmosenv.2019.02.026, 2019.
1411	
1412	Barnard, J. C., Fast, J. D., Paredes-Miranda, G., Arnott, W. P., and Laskin, A.: Technical
1413	Note: Evaluation of the WRF-Chem "Aerosol Chemical to Aerosol Optical Properties"
1414	Module using data from the MILAGRO campaign, Atmos. Chem. Phys., 19, 7325-7340,
1415	doi:10.5194/acp-10-7325-2010, 2010.
1416	
1417	Bond, T. C., and Bergstrom, R. W.: Light absorption by carbonaceous particles: an
1418	investigative review, Aerosol Sci. Tech., 40, 27-67, doi:10.1080/02786820500421521, 2006.
1419	
1420	Calil, P. H. R., Doney, S. C., Yumimoto, K., Eguchi, K., and Takemura, T.: Episodic
1421	upwelling and dust deposition as bloom triggers in low-nutrient, low-chlorophyll regions, J.
1422	Geophys. Res., 116, C06030, doi:10.1029/2010jc006704, 2011.
1423	
1424	Chen, Y., and Bond, T. C.: Light absorption by organic carbon from wood combustion,
1425	Atmos. Chem. Phys., 10, 1773-1787, doi:10.5194/acp-10-1773-2010, 2010.
1426	
1427	Chen, D., Liu, Z., Schwartz, C. S., Lin, HC., Cetola, J. D., Gu, Y., and Xue, L.: The impact
1428	of aerosol optical depth assimilation on aerosol forecasts and radiative effects during a wild
1429	fire event over the United States, Geosci. Model Dev., 7, 2709-2715, doi:10.5194/gmd-7-
1430	2709-2014, 2014.
1431	
1432	Chen, L., Gao, Y., Zhang, M., Fu, J. S., Zhu, J., Liao, H., Li, J., Huang, K., Ge, B., Wang, X.,
1433	Lam, Y. F., Lin, CY., Itahashi, S., Nagashima, T., Kajino, M., Yamaji, K., Wang, Z., and
1434	Kurokawa, Ji.: MICS-Asia III: multi-model comparison and evaluation of aerosol over East
1435	Asia, Atmos. Chem. Phys., 19, 11911-11937, doi:10.5194/acp-19-11911-2019, 2019.
1436	
1437	Chen, SH., and Sun, WY.: A one-dimensional time dependent cloud model. J. Meteor. Soc.
1438	Janan, 80, 1, 99-118, doi:10.2151/imsi.80.99, 2002.
1439	I (,)
1440	Chen, D., Liu, Z., Ban, J., Zhao, P., and Chen, M.: Retrospective analysis of 2015-2017
1441	wintertime PM_{25} in China: response to emission regulations and the role of meteorology
1442	Atmos Chem Phys. 19 7409-7427 doi:10.5194/acn-19-7409-2019 2019
1443	<u>Autor cheminings, 12, 1102 (12, 40, 10, 01) (10, 12, 110) 2012, 2012.</u>
1444	Cheng T. Wang H. Xu V. Li H. and Tian L. Climatology of serosol ontical properties in
1445	northern China Atmos Environ 40 1495-1509 doi:10.1016/j.atmosenv.2005.10.047.2006
1446	notateri enina, Autos. Environ., 40, 1475-1507, doi:10.1010/j.autosenv.2005.10.047, 2000.
1447	Cheng X Liu V Xu X Vou W Zang Z Gao I Chen V Su D and Von De Lidar
1448	data assimilation method based on CRTM and WDF Cham models and its application in
1440	DM., foreagets in Deliving Sol Total Environ, 682, 541, 552
1449	r 1912.5 1010000315 III Doujilig, SCI. 10101 Eliviloii., 082, 541-552,
1400	u01.10.1010/j.sch0lchv.2017.05.160, 2017.

doi:10.1016/j.scitotenv.2019.05.186, 2019.

1451		
1452	Descombes, G., Auligné, T., Vandenberghe, F., Barker, D. M., and Barré, J.: Generalized	
1453	background error covariance matrix model (GEN_BE v2.0), Geosci. Model Dev., 8, 669-696,	
1454	doi:10.5194/gdm-8-669-2015, 2015.	
1455		
1456	Di Biagio, C., Formenti, P., Balkanski, Y., Caponi, L., Cazaunau, M., Pangui, E., Journet, E.,	
1457	Nowak, S., Andreae, M. O., Kandler, K., Saeed, T., Piketh, S., Seibert, D., Williams, E., and	
1458	Doussin, JF.: Complex refractive indices and single-scattering albedo of global dust aerosols	
1459	in the shortwave spectrum and relationship to size and iron content, Atmos. Chem. Phys., 19,	
1460	15503-15531, doi:10.5194/acp-19-15503-2019, 2019.	
1461		
1462	Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B. N., Mishchenko, M., Yang, P., Eck, T. F.,	
1463	Volten, H., Munoz, O., Veihelmann, B., van der Zande, W. J., Leon, JF., Sorokin, M., and	
1464	Slutsker, I.: Application of spheroid models to account for aerosol particle nonsphericity in	
1465	remote sensing of desert dust, J. Geophys. Res., 111, doi:10.1029/2005JD006619, 2006.	
1466		
1467	Fan, J., Shang, Y., Chen, Q., Wang, S., Zhang, X., Zhang, L., Zhang, Y., Xu, X., and Jiang,	
1468	P.: Investigation of the "dust reservoir effect" of the Tarim Basin using WRF-GOCART	
1469	model, Arab. J. Geosci., 13, 214, doi:10.1007/s12517-020-5154-x, 2020.	
1470		
1471	Fast, J. D., Gustafson, W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C., Chapman, E. G.,	
1472	Grell, G. A. Peckham, S. E.: Evolution of ozone, particulates, and aerosol direct radiative	
1473	forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol	
1474	model, J. Geophys. ResAtmos., 111, D21305, doi:10.1029/2005jd006721, 2006.	
1475		
1476	Feng, S., Jiang, F., Jiang, Z., Wang, H., Cai, Z., and Zhang, L.: Impact of 3DVAR	
1477	assimilation of surface PM2.5 observations on PM2.5 forecasts over China during wintertime,	
1478	Atmos. Environ., 187, 34-49, doi:10.1016/j.atmosenv.2018.05.049, 2018.	
1479		
1480	Ge, J. M., Huang, J. P., Xu, C. P., Qi, Y. L., and Liu, H. Y.: Characteristics of Taklimakan	
1481	dust emission and distribution: A satellite and reanalysis field perspective, J Geophys. Res.	
1482	Atmos., 119, 11772-11783, doi:10.1002/2014jd022280, 2014.	
1483		
1484	Ge, J. M., Liu, H., Huang, J., and Fu, Q.: Taklimakan desert nocturnal low-level jet:	
1485	climatology and dust activity, Atmos. Chem. Phys., 16, 7773-7783, doi:10.5194/acp-16-7773-	
1486	2016, 2016.	
1487		
1488	Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O., and Lin, SJ.:	
1489	Sources and distributions of dust aerosols simulated with the GOCART model, J. Geophys.	
1490	Res., 106, D17, 20255-20273, doi: 10.1029/2000JD000053, 2001.	
1491		
1492	Giorgi, F., and Mearns, L. O.: Introduction to special section: Reginal climate modeling	
1493	revisited, J. Geophys. Res., 104, D6, 6335-6352, doi:10.1029/98JD02072, 1999.	

- 1495 Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and
- 1496 Eder, B.: Fully coupled "online" chemistry within the WRF model. Atmos. Environ., 39,
- 1497 6957-7975, doi:10.1016/j.atmosenv.2005.04.027, 2005.
- 1498
- 1499 Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of
- 1500 global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and
- 1501 Aerosols from Nature), Atmos. Chem. Phys., 6, 3181-3210, doi:10.5194/acp-6-3181-2006,
 1502 2006.
 1503
 1504 He, J., Zhang, Y., Wang, K., Chen, Y., Leung, L. R., Fan, J., Li, M., Zheng, B., Zhang, Q.,
- 1304 ne, J., Zhang, T., Wang, K., Chen, T., Leung, L. K., Fan, J., Li, M., Zheng, B., Zhang, Q.
- 1505 Duan, F., and He, K.: Multi-year application of WRF-CAM5 over East Asia-Part I:
- Comprehensive evaluation and formation regimes of O₃ and PM_{2.5}, Atmos. Environ., 165, 122-142, doi:10.1016/j.amtosenv.2017.06.015, 2017.
- 1507 1508
- 1509 Holben, B. N., Eck, T. F., Slutsker, I., Tanré D., Buis, J. P., Setzer, A., Vermote, E., Reagan,
- 1510 J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., and Smirnov, A.: AERONET–
 1511 A federated instrument network and data archive for aerosol characterization, Remote Sens.
- 1512 Environ., 66, 1-16, doi:10.1016/s0034-4257(98)00031-5, 1998.
- 1513
- Hong, S.-Y., Noh, Y., Dudhia, J.: A new vertical diffusion package with an explicit treatment
 of entrainment processes, Mon. Wea. Res., 134, 2318-2341, doi:10.1175/MWR3199.1, 2006.
- 1517 Huang, J., Wang, T., Wang, W., Li, Z., and Yan, H.: Climate effects of dust aerosols over
- 1518 East Asian arid and semiarid regions, J. Geophys. Res., 119, 11398-11416,
- 1519 doi:10.1002/2014jd021796, 2014.
- 1520
- Hong, J., Mao, F., Min, Q., Pan, Z., Wang, W., Zhang, T., and Gong, W.: Improved PM_{2.5}
- predictions of WRF-Chem via the integration of Himawari-8 satellite data and ground
 observations, Environ. Pollut., 263, 114451, doi:10.1016/j.envpol.2020.114451, 2020.
- 1525 6656174416165, Environ. 1 61444, 265, 111151, doi:10.1016/j.envip612622.0111151, 262
- 1525 Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins,
- 1526 W. D.: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative
- 1527 transfer models, J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944, 2008.
- 1528

1529 Jia, R., Liu, Y., Chen, B., Zhang, Z., and Huang, J.: Source and transportation of summer dust

- 1530 over the Tibetan Plateau, Atmos. Environ., 123, 210-219,
- 1531 doi:10.1016/j.atmosenv.2015.10.038, 2015.
- 1532
- 1533 Jiang, Z., Liu, Z., Wang, T., Schwartz, C. S., Lin, H.-C., and Jiang, F.: Probing into the
- 1534 impact of 3DVAR assimilation of surface PM₁₀ observations over China using process
- 1535 analysis, J. Geophys. Res., 118, 6738-6749, doi:10.1002/jgrd.50495, 2013.
- 1536

 Kok, J. F., A scaling lifedry for the size distribution of enhined dust aerosols suggests i models underestimate the size of the global dust cycle, Proc. Natl. Acad. Sci. U.S.A., 1016-1021, doi:10.1073/pnas.1014798108, 2011. Kok, J. F., Ridley, D. A., Zhou, Q., Miller, R. L., Zhao, C., Heald, C. L., Ward, D. S., S., and Haustein, K.: Smaller desert dust cooling effect estimated from analysis of dus and abundance, Nat. Geosci., doi:10.1038/ngeo2912, 2017. Kumar, R., Monache, L. D., Bresch, J., Saide, P. E., Tang, Y., Liu, Z., de Silva, A. M. Alessandrini, S., Pfister, G., Edwards, D., Lee, P., and Djalaova, I.: Toward improving term predictions of fine particulate matter over the United States via assimilation of sa aerosol optical depth retrievals, J. Geophys. Res., 124, 2753-2773, doi:10.1029/2018jd029009, 2019. Li, L., Li, Z., Chang, W., Ou, Y., Goloub, P., Li, C., Li, K., Hu, Q., Wang, J., and Wer M.: Solar radiative forcing of aerosol particles near the Taklimakan desert during the I Aerosol Observation-Kashi campaign in Spring 2019, Atmos. Chem. Phys., 20, 10845 doi:10.5194/acp-2020-60, 2020. Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., M Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a review, Natl. S Rev., 4, 834-866, doi:10.1093/nsr/nwx150, 2017. Li, Z., Zang, Z., Li, Q. B., Chao, Y., Chen, D., Ye, Z., Liu, Y., and Liou, K. N.: A threa dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM_{2.5} prediction, Atmos. Chem. Phys., 13, 4265-42' doi:10.5194/acp-13-4265-2013, 2013. Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu, X. F., Zhao, W. Q. J. Deng, R. R., Su, X. L., Huang, B., Qiao, Y. L., Cui, W. Y., Hu, Y., Gong, C. L., Y. Q., Wang, X. F., Wang, J. P., Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Comprel study of optical, physical, chemical, and radiative propertises of total columnar atmo	Vale I I	A cooling theory for the size distribution of emitted dust correctly successes
 Inderestinate the size of the global dust cycle, Proc. Natl. Acad. Sci. 0.3.A., 1016-1021, doi:10.1073/pnas.1014798108, 2011. Kok, J. F., Ridley, D. A., Zhou, Q., Miller, R. L., Zhao, C., Heald, C. L., Ward, D. S., S., and Haustein, K.: Smaller desert dust cooling effect estimated from analysis of dus and abundance, Nat. Geosci., doi:10.1038/ngeo2912, 2017. Kumar, R., Monache, L. D., Bresch, J., Saide, P. E., Tang, Y., Liu, Z., de Silva, A. M. Alessandrini, S., Pfister, G., Edwards, D., Lee, P., and Djalaova, I.: Toward improving term predictions of fine particulate matter over the United States via assimilation of sa aerosol optical depth retrievals, J. Geophys. Res., 124, 2753-2773, doi:10.1029/2018jd029009, 2019. Li, L., Li, Z., Chang, W., Ou, Y., Goloub, P., Li, C., Li, K., Hu, Q., Wang, J., and Wer M.: Solar radiative forcing of aerosol particles near the Taklimakan desert during the I Aerosol Observation-Kashi campaign in Spring 2019, Atmos. Chem. Phys., 20, 10845 doi:10.5194/acp-2020-60, 2020. Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., M. Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a review, Natl. S Rev., 4, 834-866, doi:10.1093/nsr/nwx150, 2017. Li, Z., Zang, Z., Li, Q. B., Chao, Y., Chen, D., Ye, Z., Liu, Y., and Liou, K. N.: A three dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM_{2.5} prediction, Atmos. Chem. Phys., 13, 4265-42' doi:10.5194/acp-13-4265-2013, 2013. Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu, X. F., Zhao, W. Q. J. Deng, R. R., Su, X. L., Huang, B., Qiao, Y. L., Cui, W. Y., Hu, Y., Gong, C. L., Y. Q., Wang, X. F., Wang, J. P., Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Compref study of optical, physical, chemical, and radiative properties of total columnar atmospi aerosols over China An overview of sun-sky radiometer observation network (SONET measurements,	<u>KOK, J. J</u>	A scaling theory for the size distribution of emitted dust aerosols suggests cluderestimets the size of the clobel dust surle. Proc. Netl. Acad. Sci. U.S.A. 10
 Kok, J. F., Ridley, D. A., Zhou, Q., Miller, R. L., Zhao, C., Heald, C. L., Ward, D. S., S., and Haustein, K.: Smaller desert dust cooling effect estimated from analysis of dus and abundance, Nat. Geosci., doi:10.1038/ngeo2912, 2017. Kumar, R., Monache, L. D., Bresch, J., Saide, P. E., Tang, Y., Liu, Z., de Silva, A. M. Alessandrini, S., Pfister, G., Edwards, D., Lee, P., and Djalaova, I.: Toward improving term predictions of fine particulate matter over the United States via assimilation of sa aerosol optical depth retrievals, J. Geophys. Res., 124, 2753-2773, doi:10.1029/2018jd029009, 2019. Li, L., Li, Z., Chang, W., Ou, Y., Goloub, P., Li, C., Li, K., Hu, Q., Wang, J., and Wer M.: Solar radiative forcing of aerosol particles near the Taklimakan desert during the I Aerosol Observation-Kashi campaign in Spring 2019, Atmos. Chem. Phys., 20, 10845 doi:10.5194/acp-2020-60, 2020. Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., M Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a review, Natl. S Rev., 4, 834-866, doi:10.1093/nsr/nwx150, 2017. Li, Z., Zang, Z., Li, Q. B., Chao, Y., Chen, D., Ye, Z., Liu, Y., and Liou, K. N.: A thredimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM_{2.5} prediction, Atmos. Chem. Phys., 13, 4265-42′ doi:10.5194/acp-13-4265-2013, 2013. Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu, X. F., Zhao, W. Q. J. Deng, R. R., Su, X. L., Huang, B., Qiao, Y. L., Cui, W. Y., Hu, Y., Gong, C. L., Y. Q., Wang, X. F., Wang, J. P., Du, W. B., Pan, Z. O., Li, Z. Z. and Bu, D.: Comprel study of optical, physical, chemical, and radiative properties of total columnar atmospa aerosols over China An overview of sun-sky radiometer observation network (SONET measurements, Bull. Amer. Meteorol. Soc., 739-755, doi:10.1175/BMAS-D-17-0133. Liu, Z., Liu, Q., Lin, HC., Schwartz, C. S., Lee, YH., and Wa	1016 10	inderestimate the size of the global dust cycle, Proc. Nati. Acad. Sci. U.S.A., 19
 Kok, J. F., Ridley, D. A., Zhou, Q., Miller, R. L., Zhao, C., Heald, C. L., Ward, D. S., S., and Haustein, K.: Smaller desert dust cooling effect estimated from analysis of dus and abundance, Nat. Geosci., doi:10.1038/ngeo2912, 2017. Kumar, R., Monache, L. D., Bresch, J., Saide, P. E., Tang, Y., Liu, Z., de Silva, A. M. Alessandrini, S., Pfister, G., Edwards, D., Lee, P., and Djalaova, I.: Toward improving term predictions of fine particulate matter over the United States via assimilation of sa aerosol optical depth retrievals, J. Geophys. Res., 124, 2753-2773, doi:10.1029/2018jd029009, 2019. Li, L., Li, Z., Chang, W., Ou, Y., Goloub, P., Li, C., Li, K., Hu, Q., Wang, J., and Wer M.: Solar radiative forcing of aerosol particles near the Taklimakan desert during the I Aerosol Observation-Kashi campaign in Spring 2019, Atmos. Chem. Phys., 20, 10845 doi:10.5194/acp-2020-60, 2020. Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., M Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a review, Natl. S Rev., 4, 834-866, doi:10.1093/nsr/nwx150, 2017. Li, Z., Zang, Z., Li, Q. B., Chao, Y., Chen, D., Ye, Z., Liu, Y., and Liou, K. N.: A three dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM_{2.5} prediction, Atmos. Chem. Phys., 13, 4265-42′ doi:10.5194/acp-13-4265-2013, 2013. Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu, X. F., Zhao, W Q. J. Deng, R. R., Su, X. L., Huang, B., Qiao, Y. L., Cui, W. Y., Hu, Y., Gong, C. L., Y. Q., Wang, X. F., Wang, J. P., Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Comprel study of optical, physical, chemical, and radiative properties of total columnar atmospia aerosols over China An overview of sun-sky radiometer observation network (SONET measurements, Bull. Amer. Meteorol. Soc., 739-755, doi:10.1175/BMAS-D-17-0133. Liu, Z., Liu, Q., Lin, HC., Schwartz, C. S., Lee, YH., and	1010-10	21, doi:10.1075/pnas.1014798108, 2011.
 S., and Haustein, K.: Smaller desert dust cooling effect estimated from analysis of dus and abundance, Nat. Geosci., doi:10.1038/ngeo2912, 2017. Kumar, R., Monache, L. D., Bresch, J., Saide, P. E., Tang, Y., Liu, Z., de Silva, A. M. Alessandrini, S., Pfister, G., Edwards, D., Lee, P., and Djalaova, I.: Toward improving term predictions of fine particulate matter over the United States via assimilation of sa aerosol optical depth retrievals, J. Geophys. Res., 124, 2753-2773, doi:10.1029/2018jd029009, 2019. Li, L., Li, Z., Chang, W., Ou, Y., Goloub, P., Li, C., Li, K., Hu, Q., Wang, J., and Wer M.: Solar radiative forcing of aerosol particles near the Taklimakan desert during the I Aerosol Observation-Kashi campaign in Spring 2019, Atmos. Chem. Phys., 20, 10845 doi:10.5194/acp-2020-60, 2020. Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., N Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a review, Natl. S Rev., 4, 834-866, doi:10.1093/nsr/nwx150, 2017. Li, Z., Zang, Z., Li, Q. B., Chao, Y., Chen, D., Ye, Z., Liu, Y., and Liou, K. N.: A thre dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM_{2.5} prediction, Atmos. Chem. Phys., 13, 4265-42′ doi:10.5194/acp-13-4265-2013, 2013. Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu, X. F., Zhao, W Q. J. Deng, R. R., Su, X. L., Huang, B., Qiao, Y. L., Cui, W. Y., Hu, Y., Gong, C. L., Y. Q., Wang, X. F., Wang, J. P., Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Compret study of optical, physical, chemical, and radiative properties of total columnar atmospi aerosols over China An overview of sun-sky radiometer observation network (SONET measurements, Bull. Amer. Meteorol. Soc., 739-755, doi:10.1175/BMAS-D-17-0133. 	Kok, J. I	Ridley, D. A., Zhou, Q., Miller, R. L., Zhao, C., Heald, C. L., Ward, D. S., A
 and abundance, Nat. Geosci., doi:10.1038/ngeo2912, 2017. Kumar, R., Monache, L. D., Bresch, J., Saide, P. E., Tang, Y., Liu, Z., de Silva, A. M. Alessandrini, S., Pfister, G., Edwards, D., Lee, P., and Djalaova, I.: Toward improving term predictions of fine particulate matter over the United States via assimilation of sa aerosol optical depth retrievals, J. Geophys. Res., 124, 2753-2773, doi:10.1029/2018jd029009, 2019. Li, L., Li, Z., Chang, W., Ou, Y., Goloub, P., Li, C., Li, K., Hu, Q., Wang, J., and Wer M.: Solar radiative forcing of aerosol particles near the Taklimakan desert during the I Aerosol Observation-Kashi campaign in Spring 2019, Atmos. Chem. Phys., 20, 10845 doi:10.5194/acp-2020-60, 2020. Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., N Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a review, Natl. S Rev., 4, 834-866, doi:10.1093/nsr/nwx150, 2017. Li, Z., Zang, Z., Li, Q. B., Chao, Y., Chen, D., Ye, Z., Liu, Y., and Liou, K. N.: A three dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM_{2.5} prediction, Atmos. Chem. Phys., 13, 4265-42′ doi:10.5194/acp-13-4265-2013, 2013. Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu, X. F., Zhao, W Q. J. Deng, R. R., Su, X. L., Huang, B., Qiao, Y. L., Cui, W. Y., Hu, Y., Gong, C. L., Y. Q., Wang, X. F., Wang, J. P., Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Compret study of optical, physical, chemical, and radiative properties of total columnar atmospi aerosols over China An overview of sun-sky radiometer observation network (SONET measurements, Bull. Amer. Meteorol. Soc., 739-755, doi:10.1175/BMAS-D-17-0133. 	S., and I	Haustein, K.: Smaller desert dust cooling effect estimated from analysis of dust
 Kumar, R., Monache, L. D., Bresch, J., Saide, P. E., Tang, Y., Liu, Z., de Silva, A. M. Alessandrini, S., Pfister, G., Edwards, D., Lee, P., and Djalaova, I.: Toward improving term predictions of fine particulate matter over the United States via assimilation of sa aerosol optical depth retrievals, J. Geophys. Res., 124, 2753-2773, doi:10.1029/2018jd029009, 2019. Li, L., Li, Z., Chang, W., Ou, Y., Goloub, P., Li, C., Li, K., Hu, Q., Wang, J., and Wei M.: Solar radiative forcing of aerosol particles near the Taklimakan desert during the I Aerosol Observation-Kashi campaign in Spring 2019, Atmos. Chem. Phys., 20, 10845 doi:10.5194/acp-2020-60, 2020. Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., N Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a review, Natl. S Rev., 4, 834-866, doi:10.1093/nsr/nwx150, 2017. Li, Z., Zang, Z., Li, Q. B., Chao, Y., Chen, D., Ye, Z., Liu, Y., and Liou, K. N.: A three dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM_{2.5} prediction, Atmos. Chem. Phys., 13, 4265-42′ doi:10.5194/acp-13-4265-2013, 2013. Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu, X. F., Zhao, W. Q. J. Deng, R. R., Su, X. L., Huang, B., Qiao, Y. L., Cui, W. Y., Hu, Y., Gong, C. L., Y. Q., Wang, X. F., Wang, J. P., Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Comprel study of optical, physical, chemical, and radiative properties of total columnar atmospi aerosols over China An overview of sun-sky radiometer observation network (SONET measurements, Bull. Amer. Meteorol. Soc., 739-755, doi:10.1175/BMAS-D-17-0133. 	and abu	ndance, Nat. Geosci., doi:10.1038/ngeo2912, 2017.
 Alessandrini, S., Pfister, G., Edwards, D., Lee, P., and Djalaova, I.: Toward improving term predictions of fine particulate matter over the United States via assimilation of sa aerosol optical depth retrievals, J. Geophys. Res., 124, 2753-2773, doi:10.1029/2018jd029009, 2019. Li, L., Li, Z., Chang, W., Ou, Y., Goloub, P., Li, C., Li, K., Hu, Q., Wang, J., and Wei M.: Solar radiative forcing of aerosol particles near the Taklimakan desert during the I Aerosol Observation-Kashi campaign in Spring 2019, Atmos. Chem. Phys., 20, 10845 doi:10.5194/acp-2020-60, 2020. Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., M Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a review, Natl. S Rev., 4, 834-866, doi:10.1093/nsr/nwx150, 2017. Li, Z., Zang, Z., Li, Q. B., Chao, Y., Chen, D., Ye, Z., Liu, Y., and Liou, K. N.: A thre dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM_{2.5} prediction, Atmos. Chem. Phys., 13, 4265-42^o doi:10.5194/acp-13-4265-2013, 2013. Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu, X. F., Zhao, W. Q. J. Deng, R. R., Su, X. L., Huang, B., Qiao, Y. L., Cui, W. Y., Hu, Y., Gong, C. L., Y. Q., Wang, X. F., Wang, J. P., Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Comprel study of optical, physical, chemical, and radiative properties of total columnar atmospi aerosols over China An overview of sun-sky radiometer observation network (SONET measurements, Bull. Amer. Meteorol. Soc., 739-755, doi:10.1175/BMAS-D-17-0133. 	Kumar,	R., Monache, L. D., Bresch, J., Saide, P. E., Tang, Y., Liu, Z., de Silva, A. M.,
 term predictions of fine particulate matter over the United States via assimilation of sa aerosol optical depth retrievals, J. Geophys. Res., 124, 2753-2773, doi:10.1029/2018jd029009, 2019. Li, L., Li, Z., Chang, W., Ou, Y., Goloub, P., Li, C., Li, K., Hu, Q., Wang, J., and Wer M.: Solar radiative forcing of aerosol particles near the Taklimakan desert during the I Aerosol Observation-Kashi campaign in Spring 2019, Atmos. Chem. Phys., 20, 10845 doi:10.5194/acp-2020-60, 2020. Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., N Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a review, Natl. S Rev., 4, 834-866, doi:10.1093/nsr/nwx150, 2017. Li, Z., Zang, Z., Li, Q. B., Chao, Y., Chen, D., Ye, Z., Liu, Y., and Liou, K. N.: A thre dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM_{2.5} prediction, Atmos. Chem. Phys., 13, 4265-42′ doi:10.5194/acp-13-4265-2013, 2013. Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu, X. F., Zhao, W Q. J. Deng, R. R., Su, X. L., Huang, B., Qiao, Y. L., Cui, W. Y., Hu, Y., Gong, C. L., Y. Q., Wang, X. F., Wang, J. P., Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Comprel study of optical, physical, chemical, and radiative properties of total columnar atmospiaerosols over China An overview of sun-sky radiometer observation network (SONET measurements, Bull. Amer. Meteorol. Soc., 739-755, doi:10.1175/BMAS-D-17-0133. 	Alessan	Irini, S., Pfister, G., Edwards, D., Lee, P., and Djalaova, I.: Toward improving
 aerosol optical depth retrievals, J. Geophys. Res., 124, 2753-2773, doi:10.1029/2018jd029009, 2019. Li, L., Li, Z., Chang, W., Ou, Y., Goloub, P., Li, C., Li, K., Hu, Q., Wang, J., and Wer M.: Solar radiative forcing of aerosol particles near the Taklimakan desert during the I Aerosol Observation-Kashi campaign in Spring 2019, Atmos. Chem. Phys., 20, 10845 doi:10.5194/acp-2020-60, 2020. Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., N Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a review, Natl. S Rev., 4, 834-866, doi:10.1093/nsr/nwx150, 2017. Li, Z., Zang, Z., Li, Q. B., Chao, Y., Chen, D., Ye, Z., Liu, Y., and Liou, K. N.: A three dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM_{2.5} prediction, Atmos. Chem. Phys., 13, 4265-42′ doi:10.5194/acp-13-4265-2013, 2013. Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu, X. F., Zhao, W Q. J. Deng, R. R., Su, X. L., Huang, B., Qiao, Y. L., Cui, W. Y., Hu, Y., Gong, C. L., Y. Q., Wang, X. F., Wang, J. P., Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Comprel study of optical, physical, chemical, and radiative properties of total columnar atmospi aerosols over China An overview of sun-sky radiometer observation network (SONET neasurements, Bull. Amer. Meteorol. Soc., 739-755, doi:10.1175/BMAS-D-17-0133. Liu, Z., Liu, Q., Lin, HC., Schwartz, C. S., Lee, YH., and Wang, T.: Three-dimensi 	term pre	dictions of fine particulate matter over the United States via assimilation of sat
 doi:10.1029/2018jd029009, 2019. Li, L., Li, Z., Chang, W., Ou, Y., Goloub, P., Li, C., Li, K., Hu, Q., Wang, J., and Wer M.: Solar radiative forcing of aerosol particles near the Taklimakan desert during the I Aerosol Observation-Kashi campaign in Spring 2019, Atmos. Chem. Phys., 20, 10845 doi:10.5194/acp-2020-60, 2020. Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., M Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a review, Natl. S Rev., 4, 834-866, doi:10.1093/nsr/nwx150, 2017. Li, Z., Zang, Z., Li, Q. B., Chao, Y., Chen, D., Ye, Z., Liu, Y., and Liou, K. N.: A three dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM_{2.5} prediction, Atmos. Chem. Phys., 13, 4265-42′ doi:10.5194/acp-13-4265-2013, 2013. Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu, X. F., Zhao, W Q. J, Deng, R. R., Su, X. L., Huang, B., Qiao, Y. L., Cui, W. Y., Hu, Y., Gong, C. L., Y. Q., Wang, X. F., Wang, J. P., Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Comprel study of optical, physical, chemical, and radiative properties of total columnar atmospiaerosols over China An overview of sun-sky radiometer observation network (SONET measurements, Bull. Amer. Meteorol. Soc., 739-755, doi:10.1175/BMAS-D-17-0133. 	aerosol	optical depth retrievals, J. Geophys. Res., 124, 2753-2773,
 Li, L., Li, Z., Chang, W., Ou, Y., Goloub, P., Li, C., Li, K., Hu, Q., Wang, J., and Wen M.: Solar radiative forcing of aerosol particles near the Taklimakan desert during the I Aerosol Observation-Kashi campaign in Spring 2019, Atmos. Chem. Phys., <u>20, 10845</u> doi:10.5194/acp-2020-60, 2020. Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., N Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a review, Natl. S Rev., 4, 834-866, doi:10.1093/nsr/nwx150, 2017. Li, Z., Zang, Z., Li, Q. B., Chao, Y., Chen, D., Ye, Z., Liu, Y., and Liou, K. N.: A three dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM_{2.5} prediction, Atmos. Chem. Phys., 13, 4265-42′ doi:10.5194/acp-13-4265-2013, 2013. Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu, X. F., Zhao, W. Q. J. Deng, R. R., Su, X. L., Huang, B., Qiao, Y. L., Cui, W. Y., Hu, Y., Gong, C. L., Y. Q., Wang, X. F., Wang, J. P., Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Comprel study of optical, physical, chemical, and radiative properties of total columnar atmospi aerosols over China An overview of sun-sky radiometer observation network (SONET measurements, Bull. Amer. Meteorol. Soc., 739-755, doi:10.1175/BMAS-D-17-0133. Liu, Z., Liu, Q., Lin, HC., Schwartz, C. S., Lee, YH., and Wang, T.: Three-dimensi 	doi:10.1	029/2018jd029009, 2019.
 M.: Solar radiative forcing of aerosol particles near the Taklimakan desert during the I Aerosol Observation-Kashi campaign in Spring 2019, Atmos. Chem. Phys., 20, 10845 doi:10.5194/acp-2020-60, 2020. Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., N Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a review, Natl. S Rev., 4, 834-866, doi:10.1093/nsr/nwx150, 2017. Li, Z., Zang, Z., Li, Q. B., Chao, Y., Chen, D., Ye, Z., Liu, Y., and Liou, K. N.: A three dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM_{2.5} prediction, Atmos. Chem. Phys., 13, 4265-42′ doi:10.5194/acp-13-4265-2013, 2013. Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu, X. F., Zhao, W. Q. J. Deng, R. R., Su, X. L., Huang, B., Qiao, Y. L., Cui, W. Y., Hu, Y., Gong, C. L., Y. Q., Wang, X. F., Wang, J. P., Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Comprel study of optical, physical, chemical, and radiative properties of total columnar atmospiaerosols over China An overview of sun-sky radiometer observation network (SONET measurements, Bull. Amer. Meteorol. Soc., 739-755, doi:10.1175/BMAS-D-17-0133. Liu, Z., Liu, Q., Lin, HC., Schwartz, C. S., Lee, YH., and Wang, T.: Three-dimensi 	Li. L., I	i, Z., Chang, W., Ou, Y., Goloub, P., Li, C., Li, K., Hu, O., Wang, J., and Wen
 Aerosol Observation-Kashi campaign in Spring 2019, Atmos. Chem. Phys., 20, 10845 doi:10.5194/acp-2020-60, 2020. Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., N Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a review, Natl. S Rev., 4, 834-866, doi:10.1093/nsr/nwx150, 2017. Li, Z., Zang, Z., Li, Q. B., Chao, Y., Chen, D., Ye, Z., Liu, Y., and Liou, K. N.: A three dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM_{2.5} prediction, Atmos. Chem. Phys., 13, 4265-42′ doi:10.5194/acp-13-4265-2013, 2013. Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu, X. F., Zhao, W Q. J. Deng, R. R., Su, X. L., Huang, B., Qiao, Y. L., Cui, W. Y., Hu, Y., Gong, C. L., Y. Q., Wang, X. F., Wang, J. P., Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Comprel study of optical, physical, chemical, and radiative properties of total columnar atmosplaerosols over China An overview of sun-sky radiometer observation network (SONET measurements, Bull. Amer. Meteorol. Soc., 739-755, doi:10.1175/BMAS-D-17-0133. Liu, Z., Liu, Q., Lin, HC., Schwartz, C. S., Lee, YH., and Wang, T.: Three-dimensi	M.: Sola	r radiative forcing of aerosol particles near the Taklimakan desert during the D
 doi:10.5194/acp-2020-60, 2020. Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., M. Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a review, Natl. S Rev., 4, 834-866, doi:10.1093/nsr/nwx150, 2017. Li, Z., Zang, Z., Li, Q. B., Chao, Y., Chen, D., Ye, Z., Liu, Y., and Liou, K. N.: A three dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM_{2.5} prediction, Atmos. Chem. Phys., 13, 4265-42^o doi:10.5194/acp-13-4265-2013, 2013. Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu, X. F., Zhao, W. Q. J. Deng, R. R., Su, X. L., Huang, B., Qiao, Y. L., Cui, W. Y., Hu, Y., Gong, C. L., Y. Q., Wang, X. F., Wang, J. P., Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Comprel study of optical, physical, chemical, and radiative properties of total columnar atmosplaerosols over China An overview of sun-sky radiometer observation network (SONET measurements, Bull. Amer. Meteorol. Soc., 739-755, doi:10.1175/BMAS-D-17-0133. Liu, Z., Liu, Q., Lin, HC., Schwartz, C. S., Lee, YH., and Wang, T.: Three-dimensi 	Aerosol	Observation-Kashi campaign in Spring 2019, Atmos. Chem. Phys., 20, 10845-
 Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., N. Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a review, Natl. S. Rev., 4, 834-866, doi:10.1093/nsr/nwx150, 2017. Li, Z., Zang, Z., Li, Q. B., Chao, Y., Chen, D., Ye, Z., Liu, Y., and Liou, K. N.: A three dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM_{2.5} prediction, Atmos. Chem. Phys., 13, 4265-42^o doi:10.5194/acp-13-4265-2013, 2013. Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu, X. F., Zhao, W. Q. J, Deng, R. R., Su, X. L., Huang, B., Qiao, Y. L., Cui, W. Y., Hu, Y., Gong, C. L., Y. Q., Wang, X. F., Wang, J. P., Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Comprel study of optical, physical, chemical, and radiative properties of total columnar atmospi aerosols over China An overview of sun-sky radiometer observation network (SONET measurements, Bull. Amer. Meteorol. Soc., 739-755, doi:10.1175/BMAS-D-17-0133. Liu, Z., Liu, Q., Lin, HC., Schwartz, C. S., Lee, YH., and Wang, T.: Three-dimensi 	doi:10.5	194/acp-2020-60, 2020.
 Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., M. Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a review, Natl. S. Rev., 4, 834-866, doi:10.1093/nsr/nwx150, 2017. Li, Z., Zang, Z., Li, Q. B., Chao, Y., Chen, D., Ye, Z., Liu, Y., and Liou, K. N.: A three dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM_{2.5} prediction, Atmos. Chem. Phys., 13, 4265-42′ doi:10.5194/acp-13-4265-2013, 2013. Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu, X. F., Zhao, W. Q. J. Deng, R. R., Su, X. L., Huang, B., Qiao, Y. L., Cui, W. Y., Hu, Y., Gong, C. L., Y. Q., Wang, X. F., Wang, J. P., Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Comprel study of optical, physical, chemical, and radiative properties of total columnar atmosplaerosols over China An overview of sun-sky radiometer observation network (SONET measurements, Bull. Amer. Meteorol. Soc., 739-755, doi:10.1175/BMAS-D-17-0133. Liu, Z., Liu, Q., Lin, HC., Schwartz, C. S., Lee, YH., and Wang, T.: Three-dimensi 		-
 Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a review, Natl. S Rev., 4, 834-866, doi:10.1093/nsr/nwx150, 2017. Li, Z., Zang, Z., Li, Q. B., Chao, Y., Chen, D., Ye, Z., Liu, Y., and Liou, K. N.: A three dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM_{2.5} prediction, Atmos. Chem. Phys., 13, 4265-42′ doi:10.5194/acp-13-4265-2013, 2013. Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu, X. F., Zhao, W Q. J. Deng, R. R., Su, X. L., Huang, B., Qiao, Y. L., Cui, W. Y., Hu, Y., Gong, C. L., Y. Q., Wang, X. F., Wang, J. P., Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Comprel study of optical, physical, chemical, and radiative properties of total columnar atmosplaerosols over China An overview of sun-sky radiometer observation network (SONET measurements, Bull. Amer. Meteorol. Soc., 739-755, doi:10.1175/BMAS-D-17-0133. Liu, Z., Liu, Q., Lin, HC., Schwartz, C. S., Lee, YH., and Wang, T.: Three-dimensi 	Li, M., I	iu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., M
 Rev., 4, 834-866, doi:10.1093/nsr/nwx150, 2017. Li, Z., Zang, Z., Li, Q. B., Chao, Y., Chen, D., Ye, Z., Liu, Y., and Liou, K. N.: A three dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM_{2.5} prediction, Atmos. Chem. Phys., 13, 4265-42′ doi:10.5194/acp-13-4265-2013, 2013. Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu, X. F., Zhao, W. Q. J. Deng, R. R., Su, X. L., Huang, B., Qiao, Y. L., Cui, W. Y., Hu, Y., Gong, C. L., Y. Q., Wang, X. F., Wang, J. P., Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Comprel study of optical, physical, chemical, and radiative properties of total columnar atmosplaerosols over China An overview of sun-sky radiometer observation network (SONET measurements, Bull. Amer. Meteorol. Soc., 739-755, doi:10.1175/BMAS-D-17-0133. Liu, Z., Liu, Q., Lin, HC., Schwartz, C. S., Lee, YH., and Wang, T.: Three-dimensi 	Zhang, (Q., and He, K.: Anthropogenic emission inventories in China: a review, Natl. S
 Li, Z., Zang, Z., Li, Q. B., Chao, Y., Chen, D., Ye, Z., Liu, Y., and Liou, K. N.: A three dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM_{2.5} prediction, Atmos. Chem. Phys., 13, 4265-42⁻ doi:10.5194/acp-13-4265-2013, 2013. Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu, X. F., Zhao, W. Q. J, Deng, R. R., Su, X. L., Huang, B., Qiao, Y. L., Cui, W. Y., Hu, Y., Gong, C. L., Y. Q., Wang, X. F., Wang, J. P., Du, W. B., Pan, Z. Q., Li, Z. and Bu, D.: Comprel study of optical, physical, chemical, and radiative properties of total columnar atmospl aerosols over China An overview of sun-sky radiometer observation network (SONET measurements, Bull. Amer. Meteorol. Soc., 739-755, doi:10.1175/BMAS-D-17-0133. Liu, Z., Liu, Q., Lin, HC., Schwartz, C. S., Lee, YH., and Wang, T.: Three-dimensi 	Rev., 4,	834-866, doi:10.1093/nsr/nwx150, 2017.
 dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM_{2.5} prediction, Atmos. Chem. Phys., 13, 4265-42' doi:10.5194/acp-13-4265-2013, 2013. Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu, X. F., Zhao, W Q. J, Deng, R. R., Su, X. L., Huang, B., Qiao, Y. L., Cui, W. Y., Hu, Y., Gong, C. L., Y. Q., Wang, X. F., Wang, J. P., Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Comprel study of optical, physical, chemical, and radiative properties of total columnar atmospl aerosols over China An overview of sun-sky radiometer observation network (SONET measurements, Bull. Amer. Meteorol. Soc., 739-755, doi:10.1175/BMAS-D-17-0133. Liu, Z., Liu, Q., Lin, HC., Schwartz, C. S., Lee, YH., and Wang, T.: Three-dimensi 	Li, Z., Z	ang, Z., Li, Q. B., Chao, Y., Chen, D., Ye, Z., Liu, Y., and Liou, K. N.: A three
 WRF/Chem and an application to PM_{2.5} prediction, Atmos. Chem. Phys., 13, 4265-42' doi:10.5194/acp-13-4265-2013, 2013. Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu, X. F., Zhao, W. Q. J. Deng, R. R., Su, X. L., Huang, B., Qiao, Y. L., Cui, W. Y., Hu, Y., Gong, C. L., Y. Q., Wang, X. F., Wang, J. P., Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Comprel study of optical, physical, chemical, and radiative properties of total columnar atmospl aerosols over China An overview of sun-sky radiometer observation network (SONET measurements, Bull. Amer. Meteorol. Soc., 739-755, doi:10.1175/BMAS-D-17-0133. Liu, Z., Liu, Q., Lin, HC., Schwartz, C. S., Lee, YH., and Wang, T.: Three-dimensi 	dimensi	onal variational data assimilation system for multiple aerosol species with
doi:10.5194/acp-13-4265-2013, 2013. Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu, X. F., Zhao, W. Q. J, Deng, R. R., Su, X. L., Huang, B., Qiao, Y. L., Cui, W. Y., Hu, Y., Gong, C. L., Y. Q., Wang, X. F., Wang, J. P., Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Comprel study of optical, physical, chemical, and radiative properties of total columnar atmospl aerosols over China An overview of sun-sky radiometer observation network (SONET measurements, Bull. Amer. Meteorol. Soc., 739-755, doi:10.1175/BMAS-D-17-0133. Liu, Z., Liu, Q., Lin, HC., Schwartz, C. S., Lee, YH., and Wang, T.: Three-dimensi	WRF/Cl	nem and an application to PM2.5 prediction, Atmos. Chem. Phys., 13, 4265-427
Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu, X. F., Zhao, W. Q. J, Deng, R. R., Su, X. L., Huang, B., Qiao, Y. L., Cui, W. Y., Hu, Y., Gong, C. L., Y. Q., Wang, X. F., Wang, J. P., Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Comprel study of optical, physical, chemical, and radiative properties of total columnar atmospl aerosols over China An overview of sun-sky radiometer observation network (SONET measurements, Bull. Amer. Meteorol. Soc., 739-755, doi:10.1175/BMAS-D-17-0133. Liu, Z., Liu, Q., Lin, HC., Schwartz, C. S., Lee, YH., and Wang, T.: Three-dimensi	doi:10.5	194/acp-13-4265-2013, 2013.
Q. J, Deng, R. R., Su, X. L., Huang, B., Qiao, Y. L., Cui, W. Y., Hu, Y., Gong, C. L., Y. Q., Wang, X. F., Wang, J. P., Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Comprel study of optical, physical, chemical, and radiative properties of total columnar atmospl aerosols over China An overview of sun-sky radiometer observation network (SONET measurements, Bull. Amer. Meteorol. Soc., 739-755, doi:10.1175/BMAS-D-17-0133. Liu, Z., Liu, Q., Lin, HC., Schwartz, C. S., Lee, YH., and Wang, T.: Three-dimensi	Li, Z. O	, Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu, X. F., Zhao, W.
Y. Q., Wang, X. F., Wang, J. P., Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Comprel study of optical, physical, chemical, and radiative properties of total columnar atmospl aerosols over China An overview of sun-sky radiometer observation network (SONET measurements, Bull. Amer. Meteorol. Soc., 739-755, doi:10.1175/BMAS-D-17-0133. Liu, Z., Liu, Q., Lin, HC., Schwartz, C. S., Lee, YH., and Wang, T.: Three-dimensi	Q. J, De	ng, R. R., Su, X. L., Huang, B., Qiao, Y. L., Cui, W. Y., Hu, Y., Gong, C. L., V
study of optical, physical, chemical, and radiative properties of total columnar atmosp aerosols over China An overview of sun-sky radiometer observation network (SONET measurements, Bull. Amer. Meteorol. Soc., 739-755, doi:10.1175/BMAS-D-17-0133. Liu, Z., Liu, Q., Lin, HC., Schwartz, C. S., Lee, YH., and Wang, T.: Three-dimensi	Y. Q., W	Vang, X. F., Wang, J. P., Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Compreh-
aerosols over China An overview of sun-sky radiometer observation network (SONET measurements, Bull. Amer. Meteorol. Soc., 739-755, doi:10.1175/BMAS-D-17-0133. Liu, Z., Liu, Q., Lin, HC., Schwartz, C. S., Lee, YH., and Wang, T.: Three-dimensi	study of	optical, physical, chemical, and radiative properties of total columnar atmosph
measurements, Bull. Amer. Meteorol. Soc., 739-755, doi:10.1175/BMAS-D-17-0133. Liu, Z., Liu, Q., Lin, HC., Schwartz, C. S., Lee, YH., and Wang, T.: Three-dimensi	aerosols	over China An overview of sun-sky radiometer observation network (SONET)
Liu, Z., Liu, Q., Lin, HC., Schwartz, C. S., Lee, YH., and Wang, T.: Three-dimensi	measure	ments, Bull. Amer. Meteorol. Soc., 739-755, doi:10.1175/BMAS-D-17-0133.1
Liu, Z., Liu, Q., Lin, HC., Schwartz, C. S., Lee, YH., and Wang, T.: Three-dimensi		
	Liu, Z.,	Liu, Q., Lin, HC., Schwartz, C. S., Lee, YH., and Wang, T.: Three-dimensio
	duct stor	m over East Asia I Geophys Res 116 D23206 doi:10.1029/20111D016150

Jin, J., Lin, H. X., Segers, A., Xie, Y., and Heemink, A.: Machine learning for observation

1580 Ma, C., Wang, T., Mizzi, A. P., Anderson, J. L., Zhuang, B., Xie, M., and Wu, R.: 1581 Multiconstituent data assimilation with WRF-Chem/DART: Potential for adjusting 1582 anthropogenic emissions and improving air quality forecasts over eastern China, J. Geophys. 1583 Res. Atmos., 124, 7393-7412, doi:10.1029/2019JD030421, 2019. 1584 1585 Ma, C., Wang, T., Jiang, Z., Wu, H., Zhao, M., Zhuang, B., Li, S., Xie, M., Li, M., Liu, J., 1586 and Wu, R.: Importance of bias correction in data assimilation of multiple observations over 1587 eastern China using WRF-Chem/DART, J. Geophys. Res. Atmos., 125, e2019JD031465, 1588 doi:10.1029/2019JD031465, 2020. 1589 1590 Malm, W., C., and Hand, J. L .: An examination of the physical and optical properties of 1591 aerosols collected in the IMPROVE program, Atmos. Environ., 41, 16, 3407-3427, 1592 doi:10.1016/j.atmosenv.2006.12.012, 2007. 1593 1594 Massart, S., Pajot, B., Piacentini, A., and Pannekoucke, O.: On the merits of using a 3D-1595 FGAT assimilation scheme with an outer loop for atmospheric situations governed by 1596 transport, Mon. Weather Rev., 138, 12, 4509-4522, doi:10.1175/2010MWR3237.1, 2010. 1597 1598 Meng, L, Yang, X., Zhao, T., He, Q., Lu, H., Mamtimin, A., Huo, W., Yang, F., and Liu, C.: 1599 Modeling study on three-dimensional distribution of dust aerosols during a dust storm over 1600 the Tarim Basin, Northwest China, Atmos. Res., 218, 285-295, 1601 doi:10.1016/j.atmores.2018.12.006, 2019. 1602 1603 Okada, K., Heintzenberg, J., Kai, K., and Qin, Y.: Shape of atmospheric mineral particles 1604 collected in three Chinese arid-regions, Geophys. Res. Lett., 28, 16, 3123-3126, 1605 doi:10.1029/2000GL012798, 2001. 1606 1607 Okada, K., and Kai, K.: Atmospheric mineral particles collected at Qira in the Taklamakan 1608 Desert, China, Atmos. Environ., 38, 6927-6935, doi:10.1016/j.atmosenv.2004.03.078, 2004. 1609 1610 Pagowski, M., Grell, G. A., McKeen, S. A., Peckham, S. E., and Devenyi, D.: Three-1611 dimensional variational data assimilation of ozone and fine particulate matter observations: 1612 some results using the Weather Research and Forecasting - Chemistry model and Grid-point 1613 Statistical Interpolation, Q. J. R., Meteorol. Soc., 136, 2014-2024, doi:10.1002/qj.700, 2010. 1614 1615 Pagowski, M., Liu, Z., Grell, G. A., Hu, M., Lin, H.-C., and Schwartz, C. S.: Implementation 1616 of aerosol assimilation in Gridpoint Statistical Interpolation (v.3.2) and WRF-Chem (v.3.4.1), 1617 Geosci. Model Dev., 7, 1621-1627, doi:10.5194/gmd-7-1621-2014, 2014. 1618 1619 Pang, J., Liu, Z., Wang, X., Bresch, J., Ban, J., Chen, D., and Kim, J.: Assimilating AOD 1620 retrievals from GOCI and VIIRS to forecast surface PM2.5 episodes over eastern China, 1621 Atmos. Environ., 179, 288-304, doi:10.1016/j.atmosenv.2018.02.011, 2018.

- 1623 Pang, J., Wang, X., Shao, M., Chen, W, and Chang, M.: Aerosol optical depth assimilation for
- 1624 a modal aerosol model: Implementation and application in AOD forecasts over East Asia, Sci. Total Environ., 719, 137430, doi:10.1016/j.scitotenv.2020.137430, 2020.
- 1625
- 1626
- 1627 Parrish, D. F., and Derber, J. C .: The National Meteorological Center's spectral statistical-
- 1628 interpolation analysis system, Mon. Weaterh Rev., 120, 1747-1763, doi: 10.1175/1520-1629 0493(1992)120<1747:TNMCSS>2.0.CO;2, 1992.
- 1630

1631 Peng, Z., Liu, Z., Chen, D., and Ban, J.: Improving PM2.5 forecast over China by the joint

- 1632 adjustment of initial conditions and source emissions with an ensemble Kalman filter, Atmos. 1633 Chem. Phys., 17, 4837-4855, doi:10.5194/acp-17-4837-2017, 2017.
- 1634

1635 Peng, Z., Lei, L., Liu, Z., Sun, J., Ding, A., Ban, J., Chen, D., Kou, X., and Chu, K.: The

1636 impact of multi-species surface chemical observation assimilation on air quality forecasts in

1637 China, Atmos. Chem. Phys., 18, 17387-17404, doi:10.5194/acp-18-17387-2018, 2018. 1638

1639 Purser, R. J., Wu, W.-S., Parrish, D. F., and Roberts, N. M.: Numerical aspects of the

1640 application of recursive filters to variational statistical analysis. Part I: spatially homogeneous

1641 and isotropic gaussian covariances, Mon. Weather Rev., 131, 1524-1535, doi: 10.1175//1520-1642 0493(2003)131<1524:NAOTAO>2.0.CO;2, 2003a.

1643

1644 Purser, R. J., Wu, W.-S., Parrish, D. F., and Roberts, N. M.: Numerical aspects of the

1645 application of recursive filters to variational statistical analysis. Part II: spatially

1646 inhomogeneous and anisotropic general covariances, Mon. Weather Rev., 131, 1536-1548, 1647 doi: 10.1175//2543.1, 2003b.

1648

1649 Saide, P. E., Carmichael, G. R., Liu, Z., Schwartz, C. S., Lin, H. C., da Silva, A. M., and

1650 Hyer, E.: Aerosol optical depth assimilation for a size-resolved sectional model: impacts of 1651 observationally constrained, multi-wavelength and fine mode retrievals on regional scale

1652 analyses and forecasts, Atmos. Chem. Phys., 13, 10425-10444, doi:10.5194/acp-13-10425-1653 2013, 2013.

1654

1655 Saide, P. E., Kim, J., Song, C. H., Choi, M., Cheng, Y., and Carmichael, G. R.: Assimilation

1656 of next generation geostationary aerosol optical depth retrievals to improve air quality

1657 simulations, Geophys. Res. Lett., 41, 9188-9196, doi:10.1002/2014GL062089, 2014. 1658

1659 Saide, P. E., Gao, M., Lu, Z., Goldberg, D., Streets, D. G., Woo, J.-H., Beyersdorf, A., Corr,

1660 C. A., Thornhill, K. L., Anderson, B., Hair, J. W., Nehrir, A. R., Diskin, G. S., Jimenez, J. L.,

1661 Nault, B. A., Campuzano-Jost, P., Dibb, J., Heim, E.,, Lamb, K. D., Schwarz, J. P., Perring,

1662 A. E., Kim, J., Choi, M., Holben, B., Pfister, G., Hodzic, A., Carmichael, G. R., Emmons, L.,

1663 and Crawford, J. H.: Understanding and improving model representation of aerosol optical

1664 properties for a Chinese haze event measured during KORUS-AQ, Atmos. Chem. Phys., 20,

1665 6455-6478, doi:10.5194/acp-20-6455-2020, 2020.

1667 1668 1669 1670	Schwartz, C. S., Liu, Z., Lin, HC., and McKeen, S. A.: Simultaneous three-dimensional variational assimilation of surface fine particulate patter and MODIS aerosol optical depth, J. Geophys. Res., 117, D13202, doi:10.1029/2011JD017383, 2012.
1670 1671 1672 1673 1674	Sič, B., Amraoui, L. E., Piacentini, A., Marécal, V., Emili, E., Cariolle, D., Prather, M., and Attié, JL.: Aerosol data assimilation in the chemical transport model MOCAGE during the TRAQA/ChArMEx campaign: aerosol optical depth, Atmos. Chem. Phys., 9, 5535-5554, doi:10.5194/amt-9-5535-2016, 2016.
1676 1677 1678 1679	Sorribas, M., Olmo, F. J., Quirantes, A., Lyamani, H., Gil-Ojeda, M., Alados-Arboledas, L., and Horvath, H.: Role of spheroidal particles in closure studies for aerosol microphysical- optical properties, Q. J. R. Meteorol. Soc, 141, 2700-2707, doi:10.1002/qj.2557, 2015.
1680 1681 1682 1683 1684 1685	 Tang, Y., Pagowski, M., Chai, T., Pan, L., Lee, P., Baker, B., Kumar, R., Monache, L. D., Tong, D., and Kim, HC.: A case study of aerosol data assimilation with the Community Multi-scale Air Quality Model over the contiguous United States using 3D-Var and optimal interpolation methods, Geosci. Model Dev., 10, 4743-4758, doi:10.5194-gmd-10-4743-2017, 2017.
1686 1687 1688 1689 1690	Tewari, M., Chen, F., Wang, W., Dudhai, J., LeMone, M. A., Mitchell, K., Ek, M., Gayno, G., Wegiel, J., and Cuenca, R. H.: Implementation and vertification of the unified NOAH land surface model in the WRF model. 20 th conference on weather analysis and forecasting/16 th conference on numerical weather prediction, pp. 11-15, 2004.
1690 1691 1692 1693 1694	Tian, Y., Wang, Z., Pan, X., Li, J., Yang, T., Wang, D., Liu, X., Liu, H., Zhang, Y., Lei, S., Sun, Y., Fu, P., Uno, I., and Wang, Z.: Influence of the morphological change in natural Asian dust during transport: A modeling study for a typical dust event over northern China, Sci. Total Environ., 10.1016/j.scitotenv.2020.139791, 2020.
1695 1696 1697 1698 1699	Toon, O. B., Pollack, J. B., and Khare, B. N.: The optical constants of several atmospheric aerosol species: ammonium sulfate, aluminum oxide, and sodium chloride, J. Geophys. Res., 81, 33, doi:10.1029/JC081i033p05733, 1976.
1700 1701 1702 1703	Wang, KY., Lary, D. J., Shallcross D. E., Hall, S. M., and Pyle, J. A.: A review on the use of the adjoint method in four-dimensional atmospheric-chemistry data assimilation, Q. J. R. Meteorol. Soc., 127, 2181-2204, doi:10.1002/qj.49712757616, 2001.
1704 1705 1706 1707	Wang, D., You, W., Zang, Z., Pan, X., He, H., and Liang, Y.: A three-dimensional variational data assimilation system for a size-resolved aerosol model: Implementation and application for particulate matter and gaseous pollutant forecasts across China, Sci. China-Earth Sci., 63, 1366-1380, doi:10.1007/s11430-019-9601-4, 2020.

- 1709 Wu, W.-S., Purser, r. J., and Parrish, D. F.: three-dimensional variational analysis with
- 1710 spatially inhomogeneous covariances, Mon. Weather Rev., 130, 12, 2905-2916,
- 1711 doi: 10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2, 2002.
- 1712
- 1713 Xia, X., Min, J., Shen, F., Wang, Y., and Yang, C.: Aerosol data assimilation using data from
- Fengyun-3A and MODIS: application to a dust storm over East Asia in 2011, Adv. Atmos.
 Sci., 36, 1-14, doi:10.1007/s00376-018-8075-9, 2019a.
- 1716

1717 Xia, X., Min, J., Wang, Y., Shen, F., Yang, C., and Sun, Z.: Assimilating Himawari-8 AHI

- aerosol observations with a rapid-update data assimilation system, Atmos. Environ., 215,
 116866, doi:10.1016/j.atmosenv.2019.116866, 2019b.
- 1720
- 1721 Zang, Z., Li, Z., Pan, X., Hao, Z., and You, W.: Aerosol data assimilation and forecasting

1722 experiments using aircraft and surface observations during CalNex, Tellus B., 68,1, 29812,

- 1723 doi:10.3402/tellusb.v68.29812, 2016.
- 1724
- Zaveri, R. A., and Peters, L. K.: A new lumped structure photochemical mechanism for largescale applications, J. Geophys. Res., 104, 30387-30415, doi:10.1029/1999JD900876, 1999.
- 1728 Zaveri, R. A., Easter, R. C., Fast, J. D., Peters, L. K.: Model for simulating aerosol
- 1729 interactions and chemistry (MOSAIC), J. Geophys. Res., 113, D13204,
- 1730 doi:10.1029/2007JD008782, 2008.
- 1731

1727

1732 Zhao, C., Liu, X., Leung, L. R., Johnson, B., McFarlane, S. A., Gustafson Jr., W. I., Fast, J.

1733 D., and Easter, R.: The spatial distribution of mineral dust and its shortwave radiative forcing
 1734 over North Africa: modeling sensitivities to dust emissions and aerosol size treatments,

- 1735 Atmos. Chem. Phys., 10, 8821-8838, doi:10.5194/acp-10-8821-2010, 2010.
- 1736
- 1737 Zhao, J., Ma, X., Wu, S., and Sha, T.: Dust emission and transport in Northwest China: WRF-
- 1738 Chem simulation and comparisons with multi-sensor observation, Atmos. Res., 241, 104978, 1720
- 1739 doi:10.1016/j.atmosres.2020.104978, 2020.

- 1742 Figure 1. The workflow of aerosol DA in the revised GSI system for the sectional
- MOSAIC aerosols in WRF-Chem. The contents in blue are the portions we 1743
- 1744 developed. The arrows in gray indicate the workflow of option 2 that we did in this
- 1745 study. Only option 2 can assimilate the aerosol scattering/absorption coefficients.
- Abbreviations: so4, sulfate; nh4, ammonium; oc, organic carbon; bc, black carbon; 1746
- 1747 oin, other inorganic matter; awc, aerosol water content; num, aerosol number
- concentration; no3, nitrate; cl, chlorine; na, sodium; Esca, aerosol scattering 1748
- 1749 coefficient; Eabs, aerosol absorption coefficient.
- 1750

1754 Figure 2. Schematic diagram of the binning strategy for modeling background error

1755 covariance matrix on (a) the latitude binning data or (b) the gridded data; and the

1756 vertical profiles of standard deviations ($\mu g \ kg^{-1}$) of the coarse OIN component

1757 concentration at 06:00UTC in April 2019 (c) on average over the latitude bins, (d) at

1758 Kashi city grid and (e) at the Taklimakan desert grid (i.e., 1.5 degrees east to the

1759 Kashi_city).

Figure 3. Background error standard deviations at Kashi grid (std, a-f, µg kg⁻¹),

horizontal correlation length scales (hls, g-l, km), and vertical correlation length

scales (vls, m-r, km) at 00:00 UTC in April 2019 for the sectional sulfate (SO4),

nitrate (NO3), ammonium (NH4), organic aerosol (OC), black carbon (BC), and other inorganic aerosols (OIN, including dust) in the model domain 2. The horizontal and

vertical correlation length were computed based on the latitude bins with a half degree width.

1775 Figure 4. Topography in China (a) and the model domains with the grid resolution of

1776 20 km (b) and 5 km (c) in WRF-Chem.

¹⁷⁷⁹

1786 1787 1788

1780 Figure 5. Monthly mean PM_{10} concentration (µg m⁻³) and the streamlines of the 10-m 1781 wind $(m s^{-1})$ in April (a, b) and their daily mean anomalies (c, d) during a dust storm 1782 on 24 April to the monthly mean values. Only the streamlines at the topographical 1783 height lower than 2500 meters are shown for clarity. The rectangles in figures (b) and 1784 (d) denote the fine model domain 2, which was the geographical range in the figures

1785 (a) and (c). The black points indicate the Kashi city. Deleted: (a)

Deleted: (b)

Figure 6. Comparison of PM_{2.5} (μg m⁻³; a-c), PM₁₀ (μg m⁻³; d-f), 870 nm AOD (g-i),
635 nm aerosol scattering coefficient (Esca, Mm⁻¹; j-1), and 660 nm aerosol
absorption coefficient (Eabs, Mm⁻¹; m-o) in the observation (black solid point), the
background simulation (orange solid point), and the DA analyses (blue line) when
assimilating the observed PM_{2.5} and PM₁₀ (DA_PMx), AOD (DA_AOD), and
simultaneously assimilating PMx and AOD (DA_PMxAOD) at Kashi in April 2019.

- 1804 635 nm aerosol scattering coefficient (Esca, Mm⁻¹; j-l), and 660 nm aerosol
- 1805 absorption coefficient (Eabs, Mm⁻¹; m-o) in the observation (black solid point), the
- 1806 background simulation (orange solid point), and the DA analyses (blue line) when
- 1807 assimilating the aerosol scattering coefficient (DA Esca), aerosol absorption
- 1808 coefficient (DA_Eabs), and absorption coefficient with the background error of BC
- 1809 enlarged by a factor of 7 (DA_Eabs_BC*7) at Kashi in April 2019.
- 1810

background (NoDA) and the DA analyses when assimilating each individual

Figure 7. Comparison of (a) $PM_{2.5}$ (µg m⁻³), (b) PM_{10} (µg m⁻³), (c) aerosol scattering coefficient (Esca, Mm⁻¹), (d) aerosol absorption coefficient (Eabs, Mm⁻¹) and (e) AOD in the observation (OBS), the background simulation (NoDA), and the DA analyses when assimilating the observed aerosol absorbing coefficients (DA_Eabs) and AOD (DA_AOD) at Kashi in April 2019.¶

¶ ¶

Page Break-

observation at Kashi in April 2019.

1815

1816

1833 Figure 9. Surface PM_{10} concentrations ($\mu g m^{-3}$) in the observation (black),

1834 <u>background simulation (blue) and the DA analyses (red) at 00:00, 06:00, 12:00, 18:00</u>

1835 <u>UTC in April when assimilating the observations of (a) PMx, (b) AOD, (c) aerosol</u>

1836 <u>scattering coefficients (Esca), and (d) aerosol absorption coefficient (Eabs),</u>

1837 respectively. The DA_AOD had no analysis at 18:00 UTC that was local midnight.

1838 Kashi is 6 hours ahead of UTC (UTC+6).

1841

1842 Figure 10. Monthly mean biases in the ratios of AOD to PM₁₀, aerosol scattering

- 1843 <u>coefficient (Esca, Mm⁻¹), and aerosol absorbing coefficient (Eabs, Mm⁻¹) at Kashi in</u>
- 1844 <u>April 2019.</u>

- 1859 excluding the OIN component at Kashi in April 2019.

1862	Table 1.	The	observed	surface	particle	concentration,	aerosol	scattering coe	fficient
------	----------	-----	----------	---------	----------	----------------	---------	----------------	----------

(Esca), aerosol absorption coefficient (Eabs), and AOD used for the DA analysis and their observational errors.

	Data time range	Wavelength (nm)	Observation error (e)
PM _{2.5} & PM ₁₀	Apr 1 – Apr 30		$e = \left[e_1^2 + e_2^2 \right]$
(µg m ⁻³)			$e_1 = 1.5 + 0.0075$
			$\cdot PM_x$
			$e_2 = 0.5 \cdot e_1 \cdot \left[\frac{d}{3000} \right]$
			<i>d</i> : grid spacing in meter
AOD	Mar 29 – Apr 25	440, 675, 870, 1020	$e = 0.01/\text{height} \times 10^8$
Esca (Mm ⁻ ¹)	Apr 2 – Apr 30	450, 525, 635	<i>e</i> = 10
Eabs (Mm^{-1})	Apr 2 – Apr 30	470, 520, 660	<i>e</i> = 10

- 1868 Table 2. The monthly mean values of the $PM_{2.5}$ and PM_{10} concentrations (µg m⁻³),
- 1869 <u>635</u> nm aerosol scattering coefficient (Esca, Mm⁻¹), <u>660</u> nm aerosol absorption

1870 coefficient (Eabs, Mm⁻¹) and 870 nm AOD in the background and analysis data and

1871 their correlation values (in brackets) with the observations at 00:00, 06:00, 12:00,

1872 18:00 UTC at Kashi in April 2019. The underlined number in bold denotes the

1873 monthly mean value that is not significantly different from the observation, and the1874 dashed line denotes an insignificant correlation. Both the statistical tests of the mean

1874 dashed line denotes an insignificant correlation. Both the statistical tests of the mean
 1875 <u>difference</u> and correlation are conducted at the significance level of 0.05.

1876

DA	PM _{2.5}	PM10	870 nm AOD	<u>635nm</u> Esca	<u>660nm</u> Eab
DA experiment	$(\mu g \ m^{-3})$	$(\mu g \ m^{-3})$		(Mm^{-1})	(Mm^{-1})
Observation	91.0	323.2	0.66	<u>231.5</u>	<u>47.4</u>
Background	<u>75.3</u> (<u>0.28</u>)	<u>190.7 (0.24)</u>	<u>0.24 (0.60)</u>	<u>123.3</u> (<u>0.36</u>)	<u>12.9 (0.34</u>)
DA_PM _x	<u>89.3 (0.89</u>)	<u>329.3 (0.99</u>)	<u>0.38 (0.35)</u>	<u>170.4 (0.89</u>)	<u>15.8 (0.42</u>
DA_AOD	<u>92.6</u> (0.35)	<u>541.7 (0.31</u>)	0.59 (0.98)	<u>222.6</u> (<u>0.61</u>)	<u>17.0</u> (0.26
DA_PMx_AOD	103.6 (0.61)	<u>372.7 (0.86)</u>	<u>0.59 (0.98)</u>	192.2 (0.86)	<u>16.7 (0.45</u>
DA_Esca	103.6 (0.67)	<u>442.1 (0.93)</u>	0.53 (0.62)	192.1 (0.97)	<u>16.5 (0.47</u>
DA_Eabs	<u>298.8 (0.36</u>)	<u>1281.2 (0.34</u>)	<u>1.73 ()</u>	<u>612.2</u> (<u>0.54</u>)	<u>40.0</u> (0.98
DA Eabs BC*7	106.7 (0.48)	463.7 (0.45)	0.75 (0.50)	226.2 (0.52)	51.9 (0.90

1877

879	Table 3. The	Ångström exponent based	d on the AOD at 440 n	m and 1020 nm and the
-----	--------------	-------------------------	-----------------------	-----------------------

surface single scattering albedo (SSAsrf=Esca525/(Esca525+Eabs520)) at Kashi in April 2019

- 1880 1881 1882

	440-1020 nm Ångström	SS A curf
	exponent	<u>55A811</u>
Observation	0.18	<u>0.78</u>
Background	<u>0.54</u>	<u>0.86</u>
DA PMx	0.30	0.88
DA_AOD	<u>-0.01</u>	0.88
DA_PMx_AOD	<u>0.17</u>	<u>0.89</u>
DA Esca	0.15	0.88
DA Eabs	-0.01	0.90
DA_Eabs_BC*7	0.33	0.82

Table $\underline{4}$. The ratios of AOD, aerosol scattering/absorption coefficient to PM₁₀

1886 concentration (mean \pm standard deviation) in the observations, the model background

data, and the DA analyses.

		Ratios of <u>870</u> nm	Ratios of <u>635</u> nm	Ratios of <u>660</u> nm
		AOD to PM ₁₀	aerosol scattering	aerosol absorption
		$(\mu g^{-1} m^3)$	coefficient (Esca)	coefficient (Eabs)
			to $PM_{10} (Mm^{-1} \ \mu g^{-}$	to $PM_{10} (Mm^{-1} \mu g^{-1}$
			¹ m ³)	¹ m ³)
	Observation	0.0030±0.0020	1.05±0.57	0.25±0.22
	Background	0.0013±0.0009	<u>0.65±0.18</u>	0.09±0.05
	DA_PMx	0.0013 ± 0.0008	0.61±0.22	0.07 ± 0.05
	DA_AOD	0.0013 ± 0.0011	0.51±0.24	0.05 ± 0.04
	DA_PMx_AOD	0.0015 ± 0.0010	0.61±0.24	0.06±0.05
	DA_Esca	0.0015±0.0010	0.52±0.21	0.05 ± 0.05
	DA_Eabs	0.0015±0.0010	0.58±0.37	0.05±0.06
	DA_Eabs_BC*7	0.0023±0.0085	0.74±0.51	0.30±0.48
20				

1891	Table 5. The m	ean instantaneous c	lear-sky s	hortwave	(SW),	longwave	(LW)) and the
------	----------------	---------------------	------------	----------	-------	----------	------	-----------

net (SW+LW) direct radiative forcing (Wm-2) at the top of atmosphere (TOA), in the

atmosphere (ATM) and at the surface (SRF) in the background and the simulations

restarted from the analyses of DA_PMx and DA_PMx_AOD at one hour after the analysis times of AOD DA at Kashi in April 2019.

	SW (Wm ⁻²)			L	W (Wm	-2)	SW+LW (Wm ⁻²)		
	TOA	ATM	SRF	TOA	ATM	SRF	TOA	ATM	SRF
Background	-7.0	+17.0	<u>-24.0</u>	+0.3	-2.9	+3.2	<u>-6.7</u>	+14.1	<u>-20.8</u>
DA_PMx	-8.5	+22.7	-31.2	+0.6	-6.3	+6.9	<u>-7.9</u>	+16.4	<u>-24.3</u>
DA_PMx_A	-11.4	+28.6	-40.0	+1.0	-7.8	+8.8	-10.4	+20.8	<u>-31.2</u>
OD									