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The authors appreciate the reviewer’s constructive and friendly comments. We have substantially 
revised the manuscript. New data and figures are present in the main text. A new supplementary 
document is included in the revision. We reply to the reviewer’s comments point by point. 
 
Anonymous Referee #1 
Received and published: 19 October 2020 
 
The manuscript presents the development of assimilation of aerosol observations into WRF-Chem using 
the GSI system using approaches that are different to those used in previous studies. These 
developments are then tested for a case of assimilating ground-based observations of particle mass 
concentration, scattering and absorption coefficients, and AOD, performing sensitivity simulations on 
assimilating datasets independently and jointly. This is done for a single site located in Kashi, 
representative of dust conditions. This study it’s within the scope of ACP and represents good con- 
tributions to the field as it develops a tool that could be used by the community and highlights 
shortcomings in the techniques a and how could they be improved. I think the paper needs a bit more 
work before it’s ready for publication based on the comments below. 
 
My main comments are the following. 
- While the WRF-Chem optical properties module assumes Mie theory which is based on particles being 
spherical, the testing of the tool is focused on dust which are mostly non-spherical particles. This is 
briefly mentioned in the article, but I would like to see more on the subject, including looking into 
literature that has explored this topic and discussion on what discrepancies obtained in this study could 
be explained by this issue. See more on by line comments. 
Response: Yes, the spherical dust particle in WRF-Chem introduces uncertainty. We reviewed a few 
literatures and added a paragraph to discuss the impact of non-spherical particles in section 3.3. 
 
- I believe that what the authors defined as Adjoint operators are really the tangent linear models, i.e., 
the derivative of the observables with respect to the inputs (aerosol mass). The adjoint operates on 
perturbations on the observables and outputs the expected perturbations on inputs. Please verify with 
the literature and correct accordingly.  
Response: The author appreciates the reviewer’s kindly comment. We have changed the misstatement 
of “adjoint operator” to “tangent linear operator”. 
 
- Assess representation of some intensive properties such as size (e.g., angstrom exponent, ratio of 
pm2.5 to pm10), single-scattering albedo, and mass scattering efficiency to try to understand 
mismatches when doing assimilation. A little bit is done but it would be very helpful to expand this topic 
and use the nomenclature used in the literature. See more on by line comments. 
Response: According to this comment, the revised manuscript shows additional assessments of 
angstrom exponent and SSA (Table 3). A new figure 10 shows the multi-wavelength mass 
scattering/absorption coefficient. Hope this additional content makes this study more convincible. 
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- Absorption seems completely biased even after assimilation, this points to issues probably related to 
underestimation of imaginary refractive index of dust. Look for literature on this depending on the 
deserts, I believe Chinese deserts tend to have darker (i.e., more absorbing) sands.  
Response: We used the generic model value of dust refractive index in the first version manuscript. In 
the revision, we increased the imaginary part of the dust refractive index, which is higher than the 
imaginary part of the Taklimakan desert that has been retrieved by Di Biagio et al. (2019). We find that 
tuning dust DA is not helpful for removing the DA bias in absorption coefficient. We redid a lot of DA 
experiments and found a negligence of anthropogenic emission in the WRF-Chem simulation. This 
strong bias in absorption DA is relevant to the low concentration of black carbon (BC) and the low BC’s 
background error. We have rewritten the relevant content in section 3.5. 
 
Di Biagio, C., et al.: Complex refractive indices and single-scattering albedo of global dust aerosols in the 
shortwave spectrum and relationship to size and iron content, Atmos. Chem. Phys., doi:10.5194/acp-19-
15503-2019, 2019. 
 
Comments by line: 
103-108. For completion, consider citing and discussing the study by Kumar et al (2019) that also uses 
GSI with CMAQ but does not use the CRTM as Tang study. This study also provides an alternative way of 
computing the BEC matrix (other than the NMC method) which you discuss in section 2.3 
Response: We added a few words about Kumar et al. (2019) study in the revised introduction and 
section 2.3. 
 
545-552. Are all of these observations in the same location? If not how far apart are they? How many 
PM2.5/PM10 sites are used? Also, what’s the inlet cutoff size used for the scattering and absorption 
measurements? This is important to related mass and optical properties properly. 
Response: All the observations (PM2.5, PM10, AOD, scattering/absorption coefficient) were carried out 
at a single site. There was no inlet cutoff for the scattering and absorption measurements. In the revised 
manuscript: 
 
“The site was placed in the Kashi campus of the Aerospace Information Research Institute, Chinese 

Academy of Sciences (39.50°N, 75.93°E; Li et al., 2018), about 4 km in the northwest to the Kashi city. … 
All the instruments were deployed at the roof of a three stories height building on the campus.” 
 
554-561. Could you add justification for the PM2.5/PM10 observation errors stated in Table 1? There is 
no explanation how the errors were picked. Also, why do you only use representative error for 
PM2.5/PM0 but not for the other observations? 
Response: In the revised section 2.4: 
 
“The observation errors of PMx are handled in the conventional way (Schwartz et al., 2012; Chen et al., 
2019), which contains the measurement error (e1) and the representative error (e2). The measurement 
error is the sum of a baseline error of 1.5 µg m–3 and 0.75% of the observed PMx concentration. The 
representative error is the measurement error multiplied by the half-squared ratio of the grid spacing to 
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the scale distance. The scale distance denotes the site representation in GSI and has four default values of 
2, 3, 4, and 10 km, corresponding to the urban, unknown, suburban, and rural sites. We used 3 km for the 
scale distance in this study. As we had a single site in Kashi, it is difficult to estimate the site 
representation error. Since the DA analysis was based on the child model domain with a horizontal 
resolution of 5 km, close to the site distance to the Kashi urban area, we assumed the aerosol optical 
measurement had good representativeness of the model grid covering the site. The observation error of 
CE318 AOD took the AERONET AOD uncertainty of 0.01 in cloud-free conditions (Holben et al., 1998).” 
 
569. Can you add a bit more info on the vertical resolution? For instance, thickness of the 1st level and 
number of levels within 1km. 
Response: In the revised section 2.5: 
 
“Both domains had 41 vertical levels extending from the surface to 50 hPa. The lowest model layer at the 
site was approximately 25-meter height from the ground.” 
 
594-596. Can you clarify if you did 2 simulations every cycle with and without aerosol interacting with 
radiation, or it was a single simulation with two calls to the radiation code within the same simulation? 
Response: It was a single simulation with two calls to the radiation code. In the revised section 2.5: 
 
“To study the impact of DA on aerosol direct radiative forcing (ADRF), we modified the WRF-Chem code 
to calculate the shortwave irradiance with and without aerosols at each model integration step. The 
modified WRF-Chem model restarted from each DA analysis and ran to the next analysis time. Each 
running performed the radiation transfer calculation twice, and each calculation saw the aerosols and 
clean air, respectively. The irradiance difference between the two pairing calls was aerosol radiative 
forcing.” 
 
632-638. You are also missing some processes of potential importance such as secondary organic 
aerosol formation and heterogeneous sulfate formation influencing low-dust days. 
Response: Yes, our simulation did not have SOA, and the heterogenous sulfate formation in WRF-Chem 
may bias. Nevertheless, we accidently lowered the anthropogenic emissions in the original WRF-Chem 
simulation. Because of the ambition of haze abatement in China since 2013, the atherogenic emissions 
had dramatic reductions in 2013-2019. So far as we know, a timely update of emission inventories is not 
available, and we used the open MEIC emission inventories for the year 2010 when the anthropogenic 
emissions had peak values. A general way to handle this emission reduction is to scale the historical 
emissions, which were not appropriately handled in our first manuscript. The anthropogenic emissions 
that we set for Kashi in the 2019 simulation were too low. As lack of aerosol measurement at Kashi, the 
low bias was not identified at the first glance. In the revised manuscript, we just ignore the yearly 
emission differences. We redid all simulations with the MEIC emission inventories for 2010. 
 
The revised model concentrations of PM2.5 and PM10 are almost equivalent to the old data (Figure 1) 
because dust is the dominant component at Kashi. Besides, the real part of the refractive index of 
sulfate, nitrate, ammonium, and dust are comparable in the model. Thus, the new results do not change 
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the conclusion. The new advantage is that the DA bias in absorption coefficient can be somewhat 
attributed to black carbon when the BC’s background error was amplified. We rewrote the DA of the 
absorption coefficient in section 3.5. 
 
 

 
 

Figure 1. Comparisons of PM2.5 (left) and PM10 (right) in the WRF-Chem simulations with high (y-axis) 
and low anthropogenic emissions (x-axis) at Kashi in April 2019 

 
 
645-647. I think a better fit to PM2.5 could be achieved if you relaxed the interbin correlation. It looks 
like PM10 is fitting pretty well but it’s going a bit over the observation, so this is restricting increases in 
PM2.5 due to the correlation. Since bin 4 is 2.5-10um, in theory, if no interbin correlation was present, 
PM10 and PM2.5 should be able to fit independently. For this study it would make sense to relax the 
interbin correlation due to the known issues in dust size distributions (see next comment) 
Response: Based on lots of experiments, we find that the analyses are not sensitive to the inter-size bin 
correlation length in this case, though the analyses changed a lot when we turned off the inter-size bin 
correlation. We find that the magnitude of large background error of coarse dust is more effective in 
affecting the analysis of PM2.5. Reducing the background error of the fourth size bin OIN (oin_a04) will 
increase PM2.5 and decrease PM10. We added table S3 in the supplementary document, which shows 
the PMx response to the different magnitudes of oin_a04’s background error. 
 
In the revised section 3.2: 
 
“Applying the inter-size bin correlation length caused the interlinked analyses of PM2.5 and PM10. In the 
desert area, the coarse and fine dust are readily affected by the magnitude of BEC of the fourth size-bin 
OIN (oin_a04). We intentionally decreased the BEC of oin_a04 by 10% each time to 30% of its original 
value. The magnitude of 30% of oin_a04 was comparable to the magnitude of the third size-bin (oin_a03) 
OIN’s background error. As shown in Table S3, because the oin_a04’s BEC reduction relaxes the 
constraint on the coarse particle, the PM10 bias becomes more negative along with the decrease in 
on_a04’s BEC. Meanwhile, the PM2.5 bias becomes more positive. Correspondingly, the ratio of PM2.5 to 
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PM10 was exaggerated to 0.33 with 30% of oin_a04’s BEC, higher than the observed value of 0.28. 
Overall, the original BEC of oin_a04 is a reasonable tradeoff in our DA experiments.” 
 
647-652. Literature on dust modeling states that parameterizations tend to overpredict the fine dust 
and underpredict the coarse dust (see Kok et al., 2011, Adebiyi and Kok 2020). So the joint assimilation 
of PM2.5 and PM10 could be somewhat correcting for that, which is a additional possible explanation to 
the behavior explained in these sentences. 
Response: Thanks for the hint. We cite the two pieces of literature in the revised section 3.2: 
 
“As a result, the ratio of PM2.5 to PM10 decreased from 0.39 in the background to 0.27 in DA_PMx, 
approaching the observed ratio of 0.28. Such improvement was consistent with the correction required to 
the model desert dust in literature. Kok et al. (2011) found that regional and global circulation models 
underestimate the fraction of emitted coast dust (>~5 µm), overestimates the fraction of fine dust (<2µm 
diameter). Adebiyi and Kok (2020) claimed that too rapid deposition of coarse dust out of the atmosphere 
accounts for the missing coarse dust in models. Similarly, WRF-Chem assimilated too much smaller dust 
particles than the observed. According to Kashi’s AOD between 440 nm and 1020 nm, the observed 
Ångström exponent (AE) was 0.18 in this case, but the background value was 0.54 (Table 3). DA_PMx 
reduced the AE value to 0.30, a little improvement but not sufficient.” 
 
672-685. Another reason for the discrepancy is related to the size distribution. Are you assimilating 
multi-wavelength AOD here, right? If so, I would expect some modifications to the size distribution. It 
looks you are effectively modifying size distr. as the ratio of PM2.5 to PM10 ratio is reduced from 0.31 in 
the background to 0.11 in the DA_AOD simulation but it might be going a bit too far as the observed 
ratio is 0.28. You can also check angstrom exponent. You can also explore the point you make at the end 
related to the dust mass extinction efficiency, you have observations to compute this at the surface. 
Additionally, there is also potential for your vertical distribution to be off and be generating these issues. 
You can diagnose this by comparing the ratio of surface extinction vs AOD. It seems the model is 
overpredicting this ratio, which could mean too much aerosol close to the surface. 
Response: In the revised manuscript, we check the PM2.5/PM10 ratio, mass extinction efficiency, 
angstrom exponent (AE), and SSA. We do not check the ratio of surface extinction and AOD because it 
requires the interpolation of surface extinction and AOD to similar wavelength. The model has a large 
bias in AE, resulting in an unreliable interpolation. We rewrote a lot in sections 3.2 and 3.3. Please refer 
to the revised manuscript. 
 
Related to this point. You are actually already computing mass scattering efficiency (2nd column in Table 
3). The background already underpredicts it, and the assimilation makes it worse as you are increasing 
the coarser fraction. You could explore if there is an underprediction of the dust refractive index. You 
could look into values provided in the literature for the region studied and compare to what WRF-Chem 
uses. 
Response: We add a supplementary document to give the complex refractive indexes for all aerosols in 
this study. A part of the table is shown below. We set the dust’s refractive index referring to the generic 
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model values in literature. The imaginary part in our study is higher than the retrieved imaginary part for 
the Taklimakan desert dust by Di Biagio (2019).  
 
Table S1. Multi-wavelength real and imaginary parts of refractive indexes of aerosol chemical compositions and 
water in this study (a part of the snapshot of table S1) 

(nm) 440 450 470 520 525 550 635 660 675 870 1020 
 

OIN, dust (Cheng et al., 2006; Zhao et al., 2010) 
Real 1.53 
Imag 0.003 0.003 0.003 0.0025 0.0025 0.002 0.0015 0.0015 0.0015 0.001 0.001 

 
 
678-683. I think there is no need for this very long description of the Ma paper as these results are not 
that relevant to the area study as RH is likely low in the desert and dust aerosols tend to be hydrophobic 
Response: We have removed the statements in the revision. 
 
690-692. AOD to PM10 ratios depends on many variables. Since you are blaming discrepancies to issues 
in mass scattering/absorption efficiency it makes more sense to do direct comparissons to this variable 
as you have in-situ measurements of scattering and absorption 
Response: In the revised table 4, we show the ratios of AOD, scattering/absorption coefficient to PM10 
per DA experiment. In the revised section 3.3: 
 
“Table 4 shows the ratios of the AOD and aerosol scattering/absorption coefficients to the surface PM10 
concentrations. The ratio of AOD to PM10 in the background model result was one-third of the observed 
levels. The observed mass scattering coefficient (Esca/PM10) was 1.05 Mm–1 µg–1 m3, while the 
background value was only 0.65 Mm–1 µg–1 m3. DA_AOD did not eliminate the low bias but enlarged the 
low bias to 0.51 Mm–1 µg–1 m3. The same thing occurred for Eabs/PM10, which was 0.09 in the 
background and 0.05 in DA_AOD, much lower than the observed value of 0.25. Figure 10 shows these 
mean ratios at the other wavelengths. The low bias in AOD/PM10 was comparable at each 
wavelength. …” 
 
693-696. You can assess issues with size distribution by using the angstrom exponent. 
Table 2 and 3. Is there any reason behind using the lower wavelength (440-450nm) for these 
comparisons? Since the focus of this work is on dust, it would be preferable to compute optical 
properties for longer wavelengths where coarse aerosols contribute more to the scattering 
Response: A new table 3 shows the angstrom exponent and SSA. The revised discussion in the main text 
is based on 870 nm AOD, 635 nm scattering coefficient, and 660 nm absorption coefficient.  
 
702-706. There is extensive literature on how optical properties of dust particles deviate from Mie 
theory (e.g., Dubovik et al, 2006, Nousiainen et al 2015). It would be good for the authors to reference 
this work and attempt to explain what could be the implications of using Mie theory, and if those can 
explain any of the discrepancies found when assimilating multiple datasets in this study. 
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Response: In the revised section 3.3: 
 
“The irregular morphology had a significant influence on the dust simulation. Okada et al. (2001) found 
that the aspect ratio (the ratio of the longest dimension to its orthogonal width) of the mineral dust 
particles (0.1-6 µm) in China arid regions exhibited a median of 1.4. Dubovik et al. (2006) suggested the 
aspect ratio of ~1.5 and higher in desert dust plumes. Kok et al. (2017) found that the dust’ sphericity 
assumption underestimated dust extinction efficiency by ~20–60% for the dust particle larger than 1µm. 
Tian et al. (2020) found that using a dust ellipsoid model could increase the concentration of coarse dust 
particle (5-10 µm) by ~5% in eastern china and ~10% in the Taklimakan area because of the decrease in 
gravitational settling, comparing with the simulations with dust sphericity model. Nevertheless, the aspect 
ratio of the spheroid dust is uncertain. Even after applying the spheroidal approximation, Soorbas et al. 
(2015) found that the model underestimated 550 nm aerosol scattering and backscattering values by 49% 
and 11%, respectively, because of the uncertainties in particle axial ratio, complex refractive index, and 
the particle size distribution. To date, the assumption of spherical particles has been widespread in 
models (including WRF-Chem) for computational efficiency. Impact of dust morphology to DA deserves a 
further investigation.” 
 
Figure 12. It would help to see an additional panel with these profiles being normalized, so we can more 
easily assess by how much the assimilation of the different datasets is changing the vertical distribution. 
Response: The revised figure 12 has additional two panels showing the vertical distributions normalized 
to the surface PMx concentrations. 
 
730 You know it overestimated PM10, not sure about aerosol number concentration (you would need a 
different observation for assessing that) 
Response: We do not have the surface measurement of aerosol number concentration. The amounts of 
quality assured retrievals of aerosol columnar volume and effective radius by CE318 are limited in DAO-
K (<9 days, 1 to 4 data samples per day). It is difficult to give a robust verification. The original statement 
describes that the GSI tends to increase the aerosol number in response to the high aerosol mass 
concentration. We changed the statement to: 
 
“The revised GSI updates aerosol number concentration according to the analyzed aerosol mass 
concentration and the background ratio between mass and number concentrations. Thus, an 
overestimation of aerosol mass concentration inclines to raise aerosol number concentration, resulting in 
high scattering/absorption coefficients.” 
 
734. Use single-scattering albedo for this 
Response: We add a new table 4 to show the angstrom exponent and SSA. In the revised section 3.3: 
 
“Additionally, we computed the surface single scattering albedo (SSAsrf) with the 525 nm scattering 
coefficient and 520 nm absorption coefficient. We did not use the Ångström exponent to interpolate the 
scattering/absorption coefficients to a similar wavelength because the AE itself had a large model bias 
even after DA (Table 3). The observed SSAsrf value was 0.78, indicating an emphatic absorption particle, 
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probably due to the mixture of anthropogenic black carbon and natural desert dust in the local air. The 
model background SSAsrf was 0.86, while the DA analyses gave even higher SSAsrf (0.88 to 0.9).” 
 
738-746. This is a misconception, aerosol light extinction and AOD does not depend on sun light 
intensity (for instance, you can sample both at night time with different methods). What’s going to 
change with sunlight are the radiative effects. There are likely other reasons to explain this diurnal 
behavior. Look into the diurnal evolution of your BEC, and also into diurnal evolution of dust reaching 
the city. Similar misconnection is mentioned in lines 770-771. 
Response: In the revised 3.3, 
“Assimilating the AOD seems to increase the diurnal variation in the DA analyses, but this variation was 
not conclusive since there were different amounts of AOD data for DA at 00:00, 06:00, and 12:00. The 
AOD data were not always available as the data quality control (i.e., cloud screening). There was a 
higher increase in the concentration at noon (06:00 UTC) (Figure 9b), corresponding to a few high AOD 
during mild dust episodes at that hour. …” 
 
The misstatement in the original lines 770-771 has been removed. 
 
960-963. This is probably due to underprediction of dust imaginary refractive index 
Response: We set the dust refractive index to refer to the generic model values in literature. The 
imaginary part in our study is higher than the imaginary part for the Taklimakan desert dust retrieved by 
Di Biagio (2019). The strong bias in absorption coefficient can be largely removed by tuning the 
background error of black carbon, though additional disadvantage is introduced. Please refer to the 
revised section 3.5. 
 
Minor Edits 
Fig 5 caption. It reads like a) and b) represent PM10 and winds, respectively, but I think that’s not the 
case. Please revise 
Response: The figure caption is changed to  
“Figure 5. Monthly mean PM10 concentration (µg m–3) and the streamlines of the 10-m wind (m s–1) in 
April (a, b) and their daily mean anomalies (c, d) …” 
 
623. Did you mean “underestimates” instead of “lowered”? 
Response: changed to “underestimates” 
 
780. Do you mean “particles that absorb radiation” rather than “aborting particles“? Also, I would like 
black carbon in that list as well. 
Response: Corrected. 
 
781-791. I believe primary dust in WRF-Chem is also considered to be a bit absorbing (has a imaginary 
refractive index above 0). As mentioned in a previous comment, this number might be too low for dust 
in this region. 
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Response: In the first version manuscript, the imaginary part of dust was in the range of 0.002 to 0.001. 
In the revision, we increase the imaginary part to the range of 0.003 to 0.001. Our imaginary part is 
higher than the imaginary part for the Taklimakan desert dust retrieved by Di Biagio (2019). The strong 
bias when assimilating the absorption coefficient can be largely removed by tuning the background error 
of black carbon. Please refer to the revised section 3.5. 
 
802-804. I disagree with this statement. If the model has biases that the assimilation is not able to 
correct (for instance, inaccurate real and imaginary refractive indexes) then assimilating multiple 
observation could also create unrealistic modifications to the model. 
Response: The statements have been removed in the revision. 
 
806-828. I wouldn’t put DA_Esca_Eabs as an improvement over DA_Esca, they show pretty much the 
same results. This means that the absorption observations are not really generating any differences in 
the results. Also, DA_PMx_AOD matches better the assimilated variables (which off course is expected) 
and the better agreement with scattering you happened to underpredict it with PM assimilation, and 
overpredict it with AOD assimilation, so assimilating both yields you something in between. 
Response: Because of the problem of individual assimilation of the absorption coefficient, we remove 
the DA results of DA_Esca_Eabs and DA_PMx_Esca_Eabs_AOD and just keep the result of 
DA_PMx_AOD. 
 
832-834. As mentioned earlier, it would be better to check this using normalized profiles. The 
background profiles already had aerosols up to 4km, so is likely that the assimilation is just scaling this 
profile upwards rather than adding a larger fraction of the mass in these layers 
Response: The revised figure 12 shows the normalized profiles. In the revised section 3.7: 
 
“Also shown in the figure are the vertical profiles normalized to their own respective surface particulate 
concentrations. The assimilations not only added a larger fraction of the mass in these layers but also 
adjusted the shapes of the PM10 profiles within 3 km above the ground (Figure 11d), following the BEC’s 
vertical correlation length scales (Figure 3r).” 
 
Section 4.1. I don’t think this section is very relevant, the aerosols are so dominated by dust and your 
BEC is constructed in a way dust aerosols will be the ones largely modified. So just briefly mentioning 
that the composition of these other aerosols doesn’t change would do. 
Response: We shorten the revised section 4.1 and present the new anthropogenic aerosols’ results. 
 
Section 4.2. Might want to discuss in this section how the large underprediction of dust absorption 
would impact these results. 
Response: It is not easy to quantify the ADRF bias due to the weak absorption with a single WRF-Chem 
experiment. We admit this uncertainty and add a new paragraph in section 4: 
 
“It is noteworthy to say that the ADRF estimation remains uncertain even after DA. The AOD observation 
is only sporadically available because of cloud screening in retrieval data. The DA experiments cannot 
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eliminate the low bias in AOD in WRF-Chem. The ADRF values in the DA experiments are likely to be 
weaker than the plausible aerosol radiative forcing at Kashi. Neither DA experiment lowers SSAsrf to 
approach the observation. The observed SSAsrf (0.78) indicates likely warming forcing of aerosol at 
Kashi, while WRF-Chem and the DA analyses impose cooling forcing. The ADRF uncertainty is 
associated with the background aerosols. WRF-Chem simulates aerosol size up to 10 µm, whereas larger 
particles (>10 µm) exhibit substantial absorption relative to scattering in the visible wavelength (Kok et 
al., 2017). Anthropogenic emission inventories need an update for the year 2019, which may reduce the 
potential low bias in BC concentration. Additionally, the revised GSI does not concern the change in 
particle effective radius per size bin when calculating the aerosol number concentration in each outer 
loop. Low absorption cross section rises aerosol number concentration as compensation, increasing 
aerosol scattering coefficient too much. If our tangent operator concerns the change in particle effective 
radius per size bin, we can use aerosol mass and number concentration as control variables 
simultaneously. The DA would have a higher degree of freedom to balance the particle radius and 
number concentration and improve the absorption coefficient. All these need further research in the 
future.” 
 
 
 



 1 

The authors appreciate the reviewer’s constructive and friendly comments. We have substantially 
revised the manuscript. New data and figures are present in the main text. A new supplementary 
document is included in the revision. We reply to the reviewer’s comments point by point. 
 
Anonymous Referee #2 
Received and published: 28 October 2020 
The study of Chang et al. developed the GSI 3Dvar capability to assimilate AOD, scattering/absorbing 
coefficients for MOSAIC scheme. A few DA tests (both simultaneously and separately experiments) were 
conducted for northwestern China and compared with surface observations at Kashi. The authors should 
have spent great efforts on the system development and presented very comprehensive results. 
 
Based on my current understanding, some more work need to be done to facilitate the readers to 
understand, including some essential considerations of the DA core details and the clarifications of the 
texts. In this way, the system would be better under- stand/promoted and readers would be more 
convinced. 
 
My general comments are as below: 
1. Actually GOCART is understood for the better performance of dust simulation and the relevant optical 
properties had been well verified; while the MOSAIC scheme is thought to be more suitable for 
anthropogenic emission related simulation, but the optical simulation is rather complex. 
Response: Agree. The GOCART dust emission scheme is popular for dust simulation. Here, we applied 
the GOCART dust scheme to simulate the dust and used the MOSAIC scheme to simulate anthropogenic 
aerosols. 
 
In this study, the system is developed for MOSAIC but the verification is conducted for a site in desert. 
This required intensive investigation of the DUST related properties representation in the MOSAIC 
scheme, for example, 
(a) the refractive index of OIN since it is mostly treated as DUST (while there should be distinctive 
differences between the two); 
Response: Yes, the OIN is not equivalent to dust. WRF-Chem has a dust option (dust_opt=13) for 
simultaneous simulation of dust and anthropogenic aerosols with the GOCART dust scheme and the 
MOSAIC scheme, respectively. With this option, dust is added to OIN. Surely, this simplification is not 
perfect, but it did not hinder our verification of the DA system. In fact, even using the GOCART aerosol 
scheme, WRF-Chem computes aerosol optics with the Mie theory. Improving the dust representation in 
WRF-Chem needs further code development. 
 
(b) the species partitioning (NO3 is not changed in option 2 which might not be reasonable and lead to 
unbalanced chemistry partitioning),  
Response: NO3 is one of the control variables in the revision. We redid the DA experiments. 
 
(c) the size distribution, (d) the number concentration, since the three factors determining the absorbing 
and scattering efficiency; 
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Response: We used multi-wavelength aerosol optical measurements to verify the DA system. The 
revised manuscript additionally shows the angstrom exponent result in Table 3. 
 
(e) aerosol water content which are not considered but actually may change the optical properties. With 
very limited observational data to verify the above-mentioned information, the results in this study is 
really hard to interpret. 
Response: Aerosol water content (AWC) is not a control variable in DA but is diagnosed in the GSI 
system according to the hygroscopic growth scheme, based on the analyzed aerosol dry mass 
concentrations. This treatment ensures the change in AWC is a physical constraint. Besides, AWC is low 
in the desert site and does not affect AOD a lot. In the revision, we dig the analyses by studying 
angstrom exponent, SSA, mass extinction coefficient. Hope the revised manuscript is convincible. 
 
2. Some descriptions about DA core and observational data should be provided. For example, it seemed 
not only AOD, but also wavelength depended absorbing and scattering efficient were all assimilated, the 
corresponding observational operators and the errors should be given in more detail. 
Response: Sorry for the confusion. The observational operators of scattering/absorption coefficient are 
implicitly involved in the operator of AOD in equation (3). In the revised section 2.2.3, we explicitly 
present the two observational operators in equation (4). We rewrote the statements about observation 
errors in the revised section 2.4: 
 
“The observation errors of PMx are handled in the conventional way (Schwartz et al., 2012; Chen et al., 
2019), which contains the measurement error (e1) and the representative error (e2). The measurement 
error is the sum of a baseline error of 1.5 µg m–3 and 0.75% of the observed PMx concentration. The 
representative error is the measurement error multiplied by the half-squared ratio of the grid spacing to 
the scale distance. The scale distance denotes the site representation in GSI and has four default values of 
2, 3, 4, and 10 km, corresponding to the urban, unknown, suburban, and rural sites. We used 3 km for the 
scale distance in this study. As we had a single site in Kashi, it is difficult to estimate the site 
representation error. Since the DA analysis was based on the child model domain with a horizontal 
resolution of 5 km, close to the site distance to the Kashi urban area, we assumed the aerosol optical 
measurement had good representativeness of the model grid covering the site. The observation error of 
CE318 AOD took the AERONET AOD uncertainty of 0.01 in cloud-free conditions (Holben et al., 1998). 
The AOD observational error was further divided by the total model layer thickness in GSI.” 
 
Comments by lines: 
1. Line 65 and other places. Adjoint operator, is it referred as TL-AD? Please clarify 
Response: We corrected the statements to “tangent linear”. 
 
2. Line 86 GIS ? 
Response: Corrected to “GSI” 
 
3. Line 100 Zang et al 2016, acutally a different DA system was used other than GSI in this study. Please 
check. 
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Response: We corrected the statements in the revised introduction: 
 
“Li et al. (2013) developed a 3D-Var scheme for assimilating the surface PM2.5 and speciated aerosol 
chemical concentrations for the WRF-Chem MOSACI aerosols. Zang et al. (2016) applied this scheme to 
incorporate aircraft speciated aerosols in California. They proved that the assimilation of aircraft profile 
extended the DA benefit to aerosol forecast.” 
 
4. Line 181 regarding of the low anthropogenic and biogenic emissions in the desert, why not use 
GOCART instead? 
Response: The research purpose is to introduce the new GSI system to work with the MOSAIC aerosol 
scheme. We used the GOCART scheme to simulate dust. In the revised section 2.1: 
 
“The dust emission was simulated using the GOCART dust scheme (Ginoux et al., 2001), and the dust 
mass was included in the OIN concentration. We performed the MOSAIC aerosol simulations with four-
size bins (0.039–0.156 µm, 0.156–0.625 μm, 0.625–2.500 μm, and 2.5–10.0 μm dry diameters) for the 
anthropogenic aerosols.” 
 
5. Line 184-190. Actually the optical properties of NH4SO4, OC, dust, NaCl, H2O are treated as 
wavelength depended in the model, this information should be investigated and provided. As it seemed 
that multi-wavelength aerosol scattering and absorption coefficients are assimilated. The uncertainties 
of the assumption in the model and observational data should be provided. 
Response: In the revision, we give the complex refractive index in table S1 in the supplementary 
document; Section 2.2.6 describes the refractive index; The revised section 2.4 describes the 
observational errors; the revised section 3.3 and section 4.2 states the uncertainties associated with 
dust morphology and aerosol radiative forcing. Hope the revisions make the manuscript more complete. 
 
6. Line 228. Why NO3 is not considered? In this case, it may lead to unbalanced chemistry partitioning. 
Response: Nitrate is a control variable in the revision. 
 
7. Section 2.2.3 It seemed that scattering and absorbing coefficients are also observational assimilated. 
Please provide details. 
Response: The revised section 2.2.3 provides the observation operators of scattering/absorption 
coefficients.  
 
8. Line 101: are the Mi,z,k in the two terms the same, maybe possibly dry and wet mass concentration 
respectively? If not, please clarify. 
Response: Mi,z,k denotes the aerosol composition.  It could be aerosol water content when calculating 
the internal mixing refractive index. In the revised section 2.2.4,  
 
“Note that the dry (rdry,z,k) and wet (rwet,z,k) particle radiuses are both present in Eq (21). Because aerosol 
water content is not a control variable, rdry,z,k is used in Eq (19) and appears in Eq (21). Aerosol water 
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content participates the computation of internal mixing refractive indexes, and thus rwet,z,k is also present 
in Eq (21).” 
 
9. Line 315: is rwet related with aerosol water content, considering the hygroscopicity? Any uncertainty 
by not considering aerosol water content. Please clarify. 
Response: rwet is the wet particle radius when aerosol water content (AWC) is counted in the aerosol 
composition. At the end of the revised section 2.2.1: 
 
“The AWC was diagnosed according to the analyzed aerosol mass concentration and the background 
relative humidity in each DA outer loop. The hygroscopic growth was calculated using the WRF-Chem 
code coupled with the revised GSI.” 
 
10. Line 352, please clarify mizk as dry or wet mass? 
Response: Mi,z,k denotes the aerosol compositions. It could be aerosol water content when calculating 
the internal mixing refractive index. 
 
11. Line 367. Any uncertainty by considering constant radius? 
Response: It is hard to estimate the uncertainty of this constant radius in this study. Appling this 
constant radius is to simplify the mathematical derivation of the tangent linear operator for AOD. This 
simplification was applied by Saide et al. (2013). We hope to remove this assumption in the future and 
could discuss the relevant uncertainty. 
 
Saide, P. E., Carmichael, G. R., Liu, Z., Schwartz, C. S., Lin, H. C., da Silva, A. M., and Hyer, E.: Aerosol 
optical depth assimilation for a size-resolved sectional model: impacts of observationally constrained, 
multi-wavelength and fine mode retrievals on regional scale analyses and forecasts, Atmos. Chem. Phys., 
13, 10425-10444, doi:10.5194/acp-13-10425-2013, 2013. 
 
12. Line 703-706. Please dig more on this issue. 
Response: We add a paragraph in the revised section 3.3: 
 
“The irregular morphology had a significant influence on the dust simulation. Okada et al. (2001) found 
that the aspect ratio (the ratio of the longest dimension to its orthogonal width) of the mineral dust 
particles (0.1-6 µm) in China arid regions exhibited a median of 1.4. Dubovik et al. (2006) suggested the 
aspect ratio of ~1.5 and higher in desert dust plumes. Kok et al. (2017) found that the dust’ sphericity 
assumption underestimated dust extinction efficiency by ~20–60% for the dust particle larger than 1µm. 
Tian et al. (2020) found that using a dust ellipsoid model could increase the concentration of coarse dust 
particle (5-10 µm) by ~5% in eastern china and ~10% in the Taklimakan area because of the decrease in 
gravitational settling, comparing with the simulations with dust sphericity model. Nevertheless, the aspect 
ratio of the spheroid dust is uncertain. Even after applying the spheroidal approximation, Soorbas et al. 
(2015) found that the model underestimated 550 nm aerosol scattering and backscattering values by 49% 
and 11%, respectively, because of the uncertainties in particle axial ratio, complex refractive index, and 
the particle size distribution. To date, the assumption of spherical particles has been widespread in 
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models (including WRF-Chem) for computational efficiency. Impact of dust morphology to DA deserves a 
further investigation.” 
 
13. Line 765. Please investigate the uncertainties of the modeled and observed absorption coefficients. 
Response: We check the differences in DA analysis as using the different imaginary part of dust 
refractive index and background error of BC. Please refer to the revised section 3.5. 
 
14. Figure2. Why the domain averaged standard deviation (c) is significantly larger than that of column 
averages (d, e)? 
Response: The vertical profiles in figure 2(c, d, e) are based on different grids. As shown in Figure 5c, 
Kashi and the desert point we picked up for figure 2(e) are not on the track of dust storm. Thus, the dust 
variations at the two points (figure 2d, e) are smaller than the average of binning standard deviation 
(figure 2c).  
 
15. Figure 3. Why background error standard deviation of the OIN is two magnitudes larger than the 
other species? Indicating dominating contribution of dust? In this case, is it meaningful to investigate 
other species changes? 
Response: We accidently lowered anthropogenic aerosols in Kashi. The revised simulations correct the 
emissions and show that the OIN is still the predominant composition, accounting for 62% of PM2.5 and 
82% of PM10 in April. The qualitative conclusion is the same. 
 
16. Table 1. Please explain how the errors are determined? 
Response: In the revised section 2.4: 
 
“The measurement error is the sum of a baseline error of 1.5 µg m–3 and 0.75% of the observed PMx 
concentration. The representative error is the measurement error multiplied by the half-squared ratio of 
the grid spacing to the scale distance. The scale distance denotes the site representation in GSI and has 
four default values of 2, 3, 4, and 10 km, corresponding to the urban, unknown, suburban, and rural sites. 
We used 3 km for the scale distance in this study. As we had a single site in Kashi, it is difficult to 
estimate the site representation error. Since the DA analysis was based on the child model domain with a 
horizontal resolution of 5 km, close to the site distance to the Kashi urban area, we assumed the aerosol 
optical measurement had good representativeness of the model grid covering the site. The observation 
error of CE318 AOD took the AERONET AOD uncertainty of 0.01 in cloud-free conditions (Holben et al., 
1998). The AOD observational error was further divided by the total model layer thickness in GSI.” 
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Abstract 29 

The Gridpoint Statistical Interpolation data assimilation (DA) system was developed for the 30 

four-size bin sectional Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) 31 

aerosol mechanism in the Weather Research and Forecasting-Chemistry (WRF-Chem) model. 32 

The forward and tangent linear operators for the aerosol optical depth (AOD) analysis were 33 

derived from WRF-Chem aerosol optical code. We applied three-dimensional variational DA 34 

to assimilate the multi-wavelength AOD, ambient aerosol scattering coefficient, and aerosol 35 

absorption coefficient, measured by the sun-sky photometer, nephelometer, and aethalometer, 36 

respectively. These were undertaken during a dust observation field campaign at Kashi in 37 

northwestern China in April 2019. The results showed that the DA analyses decreased the low 38 

biases in the model aerosols; however, it had some deficiencies. Assimilating the surface 39 

particle concentration increased the coarse particles in the dust episodes, but AOD, and the 40 

coefficients for aerosol scattering and absorption, were still lower than observed values. 41 

Assimilating aerosol scattering coefficient separately from AOD improved the two optical 42 

quantities. However, it caused an overestimation of the particle concentrations at the surface. 43 

Assimilating the aerosol absorption coefficient yielded the highest positive bias in the surface 44 

particle concentration, aerosol scattering coefficient, and AOD. The positive biases in the DA 45 

analysis were caused by the forward operator underestimating aerosol mass scattering and 46 

absorption efficiency. As a compensation, the DA system increased particle concentrations 47 

excessively so as to fit the observed optical values. The best overall improvements were 48 

obtained from the simultaneous assimilation of the surface particle concentration and AOD. 49 

The assimilation did not substantially change the aerosol chemical fractions. After DA, the 50 

clear-sky aerosol radiative forcing at Kashi was –10.4 Wm–2 at the top of the atmosphere, 51 

which was 55% higher than the background radiative forcing value.  52 
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1. Introduction 55 

Data assimilation (DA) blends the information from observations with a priori background 56 

fields from deterministic models to obtain an optimal analysis (Wang et al., 2001; Bannister, 57 

2017). With lagged emission inventories and unsatisfactory model chemistry mechanisms, 58 

there are notable discrepancies between model aerosols and observed levels (He et al., 2017; 59 

Chen L. et al., 2019). The DA technology incorporates aerosol measurements into the models 60 

to optimize emissions (Peng et al., 2017; Ma et al., 2019), and cyclically updates the 61 

background fields in forecasts. This effectively improves the air quality forecasts in China 62 

(Bao et al., 2019; Cheng et al., 2019; Feng et al., 2018; Hong et al., 2020; Liu et al., 2011; 63 

Pang et al., 2018; Peng et al., 2018; Xia et al., 2019a, 2019b). 64 

 65 

Variational DA minimizes the distant scalar function measuring the misfit between model 66 

states and a set of observations in each assimilation window. An effective variational DA 67 

requires an appropriate tangent linear and adjoint operators, which describes the gradient or 68 

sensitivity of the observed parameter to the control variable (Wang et al., 2001; Bannister 69 

2017). The operator is highly dependent on the types of assimilated observations and the 70 

selection of control variables; it is also sometimes dependent on the aerosol mechanism. For 71 

PM2.5 (particulate matter with dynamic radius less than 2.5 µm) DA, the tangent linear 72 

operator is the ratio of the PM2.5 concentration to composition of each aerosol (Pagowski et 73 

al., 2010). For the aerosol optical depth (AOD) DA, the operator is generated through Mie 74 

theory (Liu et al., 2011; Saide et al., 2013). With the development of aerosol mechanisms and 75 

the growing body of novel aerosol observations from ground-based networks and satellites, 76 

appropriate tangent linear and adjoint operators are in demand. 77 

 78 

The community gridpoint statistical interpolation (GSI) system (Wu et al., 2002; Purser et al., 79 

2003a, 2003b) is often used to modify regional aerosol simulations with three-dimensional 80 

variational (3D-Var) DA. The official GSI (version 3.7 in this study) can incorporate 81 

observations of surface particulate matter concentration and AOD to constrain the aerosols 82 

simulated within the aerosol mechanism of Goddard Chemistry Aerosol Radiation and 83 

Transport (GOCART, Liu et al., 2011; Pagowski et al., 2014). The tangent linear operator and 84 

adjoint operator for AOD were determined using the Community Radiative Transfer Model 85 

(CRTM). This GSI version incorporating the Moderate Resolution Imaging 86 

Spectroradiometer (MODIS) AOD in East Asia (Liu et al., 2011) revealed the simultaneous 87 

DA effects of PM2.5 and AOD in the continental United States (Schwartz et al., 2012). This 88 

GSI was used to identify DA effects that weakened during running of the succeeding model 89 

as the model error grew (Jiang et al., 2013), and assessed the radiative forcing of the aerosols 90 

released by wildfires (Chen et al., 2014). This version of GSI was also utilized to improve air 91 

quality forecasts in China by assimilating a variety of satellite AOD data retrieved from: the 92 

Geostationary Ocean Color Imager (Pang et al., 2018); Visible Infrared Imaging Radiometer 93 

Suite (Pang et al., 2018); Advanced Himawari-8 Imager (Xia et al., 2019a); and the Fengyun-94 

3A/medium-resolution spectral imager (Bao et al., 2019; Xia et al., 2019b). 95 

 96 

Despite its capabilities, the GOCART mechanism is unable to simulate nitrate and secondary 97 

organic aerosols (SOA), and the GOCART aerosol size distribution uses a bulk assumption 98 
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for radiative transfer calculation. Strictly speaking, the lack of aerosol components violates 104 

the unbiased requirements for the model states in the DA system. Lack of size-segregated 105 

aerosols may introduce a bias in the calculation of optical aerosols. The official GSI can 106 

assimilate the surface particle concentration from the aerosol mechanism apart from 107 

GOCART, but its AOD DA is tightly bound with the GOCART aerosols. If one wished to use 108 

GSI to assimilate AOD for the other aerosol mechanisms, a compromise solution was to 109 

either integrate the map of the speciated aerosols of other mechanisms into that of the 110 

GOCART aerosols or use a simplified formula to convert aerosol chemical mass 111 

concentrations to AOD. For example, Tang et al. (2017) used the official GSI to assimilate 112 

MODIS AOD with the aerosols from the Community Multi-scale Air Quality Model 113 

(CMAQ). They incorporated the map of the 54 aerosol components of CMAQ into the five 114 

CRTM aerosols and repartitioned the mass increments of each CMAQ aerosol according to 115 

the ratio of aerosol chemical components in the background field. This repartitioning is called 116 

the “ratio approach.” Cheng et al. (2019) assimilated the lidar extinction coefficient profiles 117 

measured in Beijing to modify the Weather Research and Forecasting-Chemistry (WRF-118 

Chem) Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) aerosols. They 119 

used the ratio approach to map eight MOSAIC aerosols based on five GOCART aerosols. 120 

This mapping strategy is readily implemented but introduces inconsistent size-segregated 121 

aerosol information (e.g., hygroscopicity and extinction efficiency) between the aerosol 122 

model and the DA system. Kumar et al. (2019) analyzed the CMAQ aerosols by assimilating 123 

MODIS AOD with GSI. Their forward operator converted aerosol chemical composition into 124 

AOD based on the well-known IMPROVE aerosol extinction model (Malm and Hand, 2007). 125 

The IMPROVE model predicts AOD with a linear combination of aerosol chemical masses, 126 

with the hydrophilic particles multiplied by a tuning factor associated with relative humidity. 127 

Because building a GSI system for a new aerosol mechanism is quite technical, the official 128 

GSI for the GOCART aerosols is still a primary choice for recent aerosol DA studies (Bao et 129 

al., 2019; Xia et al., 2019; Hong et al., 2020). 130 

 131 

Because of the shortcomings, the official GSI has been extended to cooperate with other 132 

aerosol mechanisms in WRF-Chem. The MOSAIC mechanism in WRF-Chem simulates 133 

aerosol mass and number concentrations in either four- or eight-size bins. This sectional 134 

aerosol mechanism involves nitrate chemistry and can simulate SOA with the volatility basis 135 

set scheme. Li et al. (2013) developed a 3D-Var scheme for assimilating the surface PM2.5 and 136 

speciated aerosol chemical concentrations for the WRF-Chem MOSACI aerosols. Zang et al. 137 

(2016) applied this scheme to incorporate aircraft speciated aerosols in California. They 138 

proved that the assimilation of aircraft profile extended the DA benefit to aerosol forecast. 139 

Saide et al. (2013) proposed a revised GSI version that performed variational DA for the 140 

MOSAIC aerosols. The authors generated the adjoint operator code with the automatic 141 

differentiation tool (ADT), TAPENADE v3.6. The ADT used the chain rule of derivative 142 

calculus on the AOD source code in WRF-Chem. They assimilated multi-source AOD data 143 

with the MOSAIC aerosols over continental United States and found that incorporating multi-144 

wavelength fine-mode AOD redistributed the aerosols’ particulate mass concentration sizes. 145 

The revised GSI system assimilated Korean ground-based and geostationary satellite AOD 146 

datasets to improve local aerosol simulations (Saide et al., 2014, 2020). Pang et al. (2020) 147 
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developed the official GSI to work with the Modal Aerosol Dynamics Model for Europe with 149 

the Secondary Organic Aerosol Model (MADE/SORGAM) aerosols in WRF-Chem. The 150 

authors used the WRF-Chem AOD code as the forward operator to calculate the essential 151 

aerosol optical properties, which were then inputted to the CRTM adjoint operator. Because 152 

aerosols were externally mixed in CRTM, the setting of the internal mixture per size bin in 153 

WRF-Chem was not taken into account, and the AOD of each aerosol component was 154 

calculated separately. 155 

 156 

This study provides a solution to improve the capability of the GSI 3D-Var DA system for the 157 

sectional MOSAIC aerosols in WRF-Chem. We designed the tangent linear operator code for 158 

AOD DA based on the WRF-Chem intrinsic aerosol optical subroutine (Fast et al., 2006), that 159 

is, without using the ADT. The operator code is programmed based on the analytical 160 

equations of the linear tangent model for AOD. As our revised GSI does not use the CRTM 161 

module, it avoids the problem of needing to eliminate WRF-Chem aerosols characteristics 162 

(e.g., aerosol mixture state and size distribution) to meet the CRTM input requirements. The 163 

forward and tangent linear operators are coordinated, since they are derived from the same 164 

WRF-Chem code, and are written in a single subroutine, which is coupled to the GSI at the 165 

place of invoking CRTM for the AOD calculation. In addition to AOD DA, our tangent linear 166 

operator has two variants to assimilate the aerosol scattering and absorption coefficients, 167 

measured using a nephelometer and aethalometer, respectively. 168 

 169 

This study verifies the effectiveness of our revised GSI system by incorporating multi-170 

wavelength aerosol optical observations that were measured during an international field 171 

campaign, the Dust Aerosol Observation-Kashi, in April 2019 at Kashi city, neighboring the 172 

Taklamakan Desert, northwestern China. This desert is the second largest globally, and is the 173 

primary source of dust aerosols in East Asia. The dust from the desert affects the nearby 174 

Tibetan Plateau (Ge et al., 2014; Jia et al., 2015; Zhao et al., 2020), air quality and climate in 175 

East Asia (Huang et al., 2014), and the biogeochemical cycles in the western Pacific Ocean 176 

(Calil et al., 2011). A successful DA analysis will help improve the local air quality forecast 177 

and enhance our understanding of the environmental impacts of local dust storms. The 178 

remainder of this paper is organized as follows. Section 2 describes the revised GSI system, 179 

the experimental design, and the observed data. Section 3 presents the DA results when 180 

assimilating different observations. Section 4 discusses the impact of DA on aerosol chemical 181 

composition and aerosol direct radiative forcing. Finally, Section 5 provides the conclusions 182 

and limitations that need further research. 183 

 184 

2. Methodology and Data 185 

2.1 Forecast Model 186 

The background aerosol fields were simulated using the WRF-Chem model version 4.0 (Grell 187 

et al., 2005; Fast et al., 2006). The model configurations included the Purdue Lin 188 

microphysics scheme (Chen and Sun, 2002), the unified Noah land surface model (Tewari et 189 

al., 2004), the Yonsei University scheme for planetary boundary layer meteorological 190 

conditions (Hong et al., 2006), and the rapid radiative transfer model for general circulation 191 

models (RRTMG) scheme for shortwave and longwave radiation (Iacono et al., 2008). The 192 
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gas-phase chemistry was simulated using the carbon bond mechanism (Zaveri and Peters, 197 

1999), including aqueous-phase chemistry. The aerosol chemistry was simulated using the 198 

MOSAIC mechanism (Zaveri et al., 2008), which simulated sulfate, nitrate, ammonium, black 199 

carbon (BC), organic carbon (OC), sodium, calcium, chloride, carbonate, and other inorganic 200 

matter (OIN, e.g., trace metals and silica). SOA was excluded from our experiments to 201 

accelerate model integration. Although ignoring that SOA biased the model, the influence was 202 

assumed to be small, based on low anthropogenic and biogenic emissions in the vicinity of the 203 

desert. The dust emission was simulated using the GOCART dust scheme (Ginoux et al., 204 

2001), and the dust mass was included in the OIN concentration. We performed the MOSAIC 205 

aerosol simulations with four-size bins (0.039–0.156 µm, 0.156–0.625 μm, 0.625–2.500 μm, 206 

and 2.5–10.0 μm dry diameters) for the anthropogenic aerosols. The sectional aerosol data in 207 

the hourly model output were the aerosol dry mass mixing ratios of chemical compositions, 208 

aerosol number concentration, and aerosol water content. The aerosol compositions included 209 

hydrophilic particulates (i.e., SO4
2–, NO3

–, NH4
+, Cl–, Na+) and hydrophobic particulates (i.e., 210 

BC, OC, and OIN). We used the spherical particulate assumption and computed the aerosol 211 

optics according to the Mie theory. The aerosol compositions were internally mixed in each 212 

size bin and were externally mixed between the size bins. The internal mixing refractive index 213 

was the volume-weighted mean refractive index of each composition. The WRF-Chem model 214 

computed the aerosol optics at 300, 400, 600, and 999 nm and interpolated the aerosol optical 215 

parameters (AOD, SSA, asymmetry factor) to eleven shortwave lengths with Ångström 216 

exponents for the radiative transfer calculation. 217 

 218 

2.2 Assimilation System 219 

The revised GSI DA system is based on the official GSI (https://dtcenter.org/community-220 

code/gridpoint-statistical-interpolation-gsi, Wu et al., 2002; Liu et al., 2011; Schwartz et al., 221 

2012; Pagowski et al., 2014) version 3.7. The 3D-Var DA minimizes the cost function: 222 

 223 

!(#) =
1
2 (
# − #!)")#$(# − #!) +

1
2 (
+(#) − ,)"-#$(+(#) − ,) 224 

(1) 225 

 226 

where x is the state vector composed of the model control variables; the subscript b denotes 227 

that x is the background state vector; y is the vector of the observations; H is the forward 228 

operator or observation operator that transfers the gridded control variables into the observed 229 

quantities at the observation locations; and B and R are the background and observation error 230 

covariance matrices, respectively. 231 

 232 

The official GSI version only works with the GOCART aerosols for assimilating the surface-233 

layer PM2.5 and PM10 (denoted as PMx in the context) concentrations, and the 550 nm MODIS 234 

AOD. Our revised GSI system assimilates PMx concentrations, multi-wavelength aerosol 235 

scattering/absorption coefficients, and AOD. Figure 1 shows the workflow of our DA system. 236 

According to the AOD calculation in WRF-Chem, we can either choose the aerosol number 237 

concentration (option 1), or aerosol mass concentration (option 2) as control variables. Option 238 
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1 is described in Li et al. (2020). In this study, we selected option 2, which is described in the 244 

following subsections. 245 

 246 

Figure 1 
 247 

2.2.1 Control Variables 248 

The control variables in this study were the mass mixing ratio of composition of each aerosol 249 

per size bin, which corresponded to the WRF-Chem output data only. This set therefore 250 

differed from previous studies that lumped aerosols per size bin as control variables. The 251 

lumped aerosols avoided the burdensome task of specifying the background error statistics for 252 

numerous aerosols (Li et al., 2013; Pagowski et al. 2014). Although our control variables 253 

could have been further optimized, here we designed the control variable using only those that 254 

substantially contributed to the total mass concentrations. We set the control variables of six 255 

aerosol mass mixing ratios of SO4
2–, NH4

+, NO3
–, OC, BC, and OIN per size bin. Chlorine, 256 

and sodium had miniscule background concentrations and remained the background values in 257 

the DA analysis. There were twenty-four control variables in total for the four-size bin 258 

simulations. In Kashi’s case near the desert, the OIN was predominant, accounting for 62% of 259 

PM2.5 and 82% of PM10. 260 

 261 

Our design of the control variables was different from the AOD assimilation in Saide et al. 262 

(2013), with theirs being the natural logarithm of the total mass mixing ratio per size bin, 263 

multiplied by the thickness of the model layer. As the high model layer had a significant layer 264 

thickness with low aerosol concentrations, the multiplication offset the opposite effects of 265 

increasing layer thickness versus decreasing concentrations with increase in altitude. This 266 

multiplication prevented the addition of many modifications for the high model layers, where 267 

aerosols were low in concentration. The logarithmic transformation was used to decrease the 268 

extensive value range in the control variables caused by multiplication. Since the AOD value 269 

is often smaller than one, this leads to a significant negative logarithm value and a relatively 270 

unconstrained DA system. Saide et al. (2013) introduced two weak constraints in their cost 271 

function to cut off the user-defined “extraordinarily high” and “extraordinarily low” 272 

concentrations. They repartitioned the increments of the total mass per size bin for 273 

composition of each aerosol, with the background aerosol chemical mass fractions. Here, 274 

neither the logarithmic transformation, nor the multiplication using layer thickness was set in 275 

our DA system. Our control variable was restricted to the WRF-Chem output variable, and the 276 

DA system changed the composition of each aerosol per size bin, depending on the aerosol 277 

background errors. 278 

 279 

Consistent with the set by Pang et al. (2020), aerosol water content (AWC) was not one of the 280 

control variables in our GSI. Otherwise, the AWC might have increased contrary to the 281 

physical constraints for the loading of hydrophilic particles, and simply as a mathematical 282 

artefact. The AWC was diagnosed according to the analyzed aerosol mass concentration and 283 

the background relative humidity in each DA outer loop. The hygroscopic growth was 284 

calculated using the WRF-Chem code coupled with the revised GSI. 285 

 286 
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2.2.2 Tangent Linear Operator for PMx 301 

The PM10 is the sum of all aerosol dry mass concentrations over the size bins, and the sum of 302 

the first three is the PM2.5 (Chen et al., 2019; Wang et al., 2020). Accordingly, the tangent 303 

linear operator for PMx is the gradient of the PMx concentration to the aerosol chemical mass 304 

concentration per size bin: 305 

 306 

.[01%]
.34&'(,*5

, 7 = 1,… , 9+,-' 307 

(2) 308 

 309 

where nsize is the number of size bins and is equal to four in this study; [.] denotes the mass 310 

concentration (µg m–3 for PMx); Caer, k is the aerosol mass mixing ratio (µg kg–1) of SO4
2–, 311 

NO3
–, NH4

+, OC, BC, and OIN at the k-th size bin. Because we did not multiply the chemical 312 

mass with a scaling factor to represent some unknown compositions in the summation of 313 

PMx, Eq (2) always equals one. It means that we equally distribute the PMx increment to 314 

each aerosol composition per size bin. The PM2.5 and PM10 are assimilated in the same way. 315 

When the fine and coarse particles are assimilated simultaneously, we assimilate the 316 

concentration of PM2.5 and the coarse particulate (PM10-PM2.5). 317 

 318 

2.2.3 Forward Operator for Aerosol Optics in WRF-Chem 319 

We used the original forward operator in WRF-Chem for the aerosol optical parameters (Fast 320 

et al., 2006). AOD is calculated as a function of wavelength according to Mie theory. The 321 

columnar AOD : is the sum of layer AOD across the nz model layers: 322 

 323 

: =;:-

.!

-/$
=; ; <'%0,-,* ∙ 9-,* ∙ +-

."#!$

*/$

.!

-/$
 324 

(3) 325 

 326 

where eext,z,k is the extinction cross section of a single mixing particle in the k-th size bin at the 327 

z-th model layer, nz,k is the aerosol number concentration, and Hz is the layer thickness. At the 328 

surface, the ambient aerosol scattering (Esca) and absorbing (Eabs) coefficients that are 329 

measured by the nephelometer and aethalometer, respectively, are represented in the model as 330 

 331 

>+1& = ; <+1&,$,* ∙ 9$,*

."#!$

*/$
 332 

>&!+ = ; <&!+,$,* ∙ 9$,*

."#!$

*/$
 333 

(4) 334 

 335 

where esca,1,k and eabs,1,k are the scattering and absorption cross section of a particle at the 336 

surface. There is a relationship: 337 
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 343 

<'%0,-,* = <+1&,-,* + <&!+,-,* 344 

(5) 345 

 346 

The extinction cross section eext,z,k of a wet particle with radius rwet,z,k is: 347 

    348 

<'%0,-,* = ?'%0,-,* ∙ @ ∙ A2'0,-,*3  349 

(6) 350 

 351 

where pext,z,k is the extinction efficiency, given the desired mixing refractive indexes and the 352 

wet particle radius. The pext,z,k is attained through the Chebyshev polynomial interpolation:  353 

 354 

?'%0,-,* = exp	{ ; G14(H) ∙ G'%0,-,*(H)

.%&$'

5/$
} 355 

(7) 356 

where cch is the coefficient of ncoef order Chebyshev polynomials, cext,z,k is the polynomial 357 

value for the extinction efficiency of the particle, which is an internal mixture of all aerosol 358 

compositions (i.e., the control variables plus chlorine, sodium, and AWC). The radius in the 359 

AOD subroutine code is in a logarithmic transform to handle the broad particle size range 360 

from 0.039 µm to 10 µm. The exponential function in Eq. (7) transforms the logarithm radius 361 

back to the normal radius. The aerosol number concentration nz,k, and the aerosol dry (wet) 362 

mass concentration mi,z,k have a linkage through the dry (wet) particle radius rdry,z,k (rwet,z,k) and 363 

the density J, of each aerosol chemical composition: 364 

 365 

9-,* = ;
K,,-,*
J,

.($)_+$,

,
∙

3
4@ ∙ A2'0,-,*6 = ;

K,,-,*
J,

∙
3

4@ ∙ A7(8,-,*6

.-,._+$,

,
 366 

(8) 367 

 368 

Both the dry and wet particle radius will appear in the tangent linear operator. The difference 369 

between the second and the third terms in Eq (8) is whether aerosol water content is counted. 370 

nwet_aer is the number of aerosol chemical composition plus aerosol water content (nwet_aer= 371 

ndry_aer+1). 372 

 373 

2.2.4 Tangent Linear Operator Developed for AOD 374 

As per the forward operator in Eq. (3) in WRF-Chem, we developed the tangent linear 375 

operator for AOD, which requires the derivative of : in Eq. (3) to the aerosol dry mass 376 

concentration (aerosol water content is not a control variable), mi,z,k: 377 

 378 

.:
.K,,-,*

=
.:-

.K,,-,*
=
.<'%0,-,* ∙ 9-,* ∙ +-

.K,,-,*
+
<'%0,-,* ∙ .9-,* ∙ +-

.K,,-,*
+
<'%0,-,* ∙ 9-,* ∙ .+-

.K,,-,*
 379 

(9) 380 

 381 
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The first term on the righthand side of Eq. (9) indicates the change in AOD as the perturbation 386 

of extinction cross section. According to Eq. (6), considering that the particle radius is 387 

constant, .<'%0,-,* is represented as: 388 

 389 

.<'%0,-,* = .?'%0,-,* ∙ @ ∙ A2'0,-,*3  390 

(10) 391 

 392 

where .Gℎ(H) = 0 assuming that the particle radius is constant. This assumption simplifies 393 

the tangent linear operator and is also employed in Saide et al. (2013). 394 

 395 

Equation (10) is expanded with the derivative of Eq. (7): 396 

 397 

.?'%0,-,* = ?'%0,-,* ∙ { ; G14(H) ∙ .G'%0,-,*(H)

.%&$'

5/$
} 398 

(11) 399 

By expanding .G'%0,-,* in Eq. (11), we have: 400 

 401 

.G'%0,-,*(H) = .P99 ∙ >'%0,99(H) + .P9$ ∙ >'%0,9$(H) + .P$9 ∙ >'%0,$9(H) + .P$$ ∙ >'%0,$$(H) 402 

 (12) 403 

 404 

where the four parameters of Eext indicate the extinction efficiencies in the Mie lookup table 405 

surrounding the point with the desired mixing refractive indexes, and the wet particle radius. 406 

The interpolation weights .P are determined as: 407 

 408 

.P99 = (Q − 1).R + (R − 1).Q									.P9$ = (1 − Q).R − R.Q 409 

.P$9 = (1 − R).Q − Q.R																					.P$$ = R.Q + Q.R 410 

(13) 411 

 412 

where 413 

     414 

R =
S:,% − S;<2
S=> − S;<2

									.R =
.S:,%

S=> − S;<2
 415 

Q =
T:,% − T;<2
T=> − T;<2

												.Q =
.T:,%

T=> − T;<2
 416 

(14) 417 

 418 

In Eq. (14), Rmix and Imix are the aerosol volume-weighted mean real and imaginary parts of 419 

complex refractive indices, respectively. Rup (Iup) and Rlow (Ilow) are the nearest upper and 420 

lower limits for Rmix (Imix) in the Mie table. Considering Vwet,z,k is the volume of all aerosol dry 421 

masses plus aerosol water content, the real and imaginary parts and their derivatives are: 422 

 423 

S:,%,-,* = ; S, ∙
K,,-,*

J, ∙ U2'0,-,*

.($)_+$,

,
											.S:,%,-,* =

S,
J, ∙ U2'0,-,*

∙ .K,,-,* 424 
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T:,%,-,* = ; T, ∙
K,,-,*

J, ∙ U2'0,-,*

.($)_+$,

,
															.T:,%,-,* =

T,
J, ∙ U2'0,-,*

∙ .K,,-,* 425 

(15)  426 

     427 

where 428 

U2'0,-,* = ;
K,,-,*
J,

.($)_+$,

,
 429 

(16) 430 

 431 

Put Eq. (12), Eq. (13) into Eq. (11) leads to: 432 

 433 

.?'%0,-,* = 3(Q − 1)V+1&,99 + (1 − Q)V+1&,9$ − QV+1&,$9 + QV+1&,$$5.R + 434 

																					3(R − 1)V&!+,99 − RV&!+,9$ + (1 − R)V&!+,$9 + RV&!+,$$5.Q 435 

(17) 436 

where 437 

V+1&,99 = ?+1&,$,* ∙ ; G14(H) ∙ >+1&,99(H)

.%&$'

5/$
											V+1&,9$ = ?+1&,$,* ∙ ; G14(H) ∙ >+1&,9$(H)

.%&$'

5/$
 438 

V+1&,$9 = ?+1&,$,* ∙ ; G14(H) ∙ >+1&,$9(H)

.%&$'

5/$
											V+1&,$$ = ?+1&,$,* ∙ ; G14(H) ∙ >+1&,$$(H)

.%&$'

5/$
 439 

V&!+,99 = ?&!+,$,* ∙ ; G14(H) ∙ >&!+,99(H)

.%&$'

5/$
												V&!+,9$ = ?&!+,$,* ∙ ; G14(H) ∙ >&!+,9$(H)

.%&$'

5/$
 440 

V&!+,$9 = ?&!+,$,* ∙ ; G14(H) ∙ >&!+,$9(H)

.%&$'

5/$
												V&!+,$$ = ?&!+,$,* ∙ ; G14(H) ∙ >&!+,$$(H)

.%&$'

5/$
 441 

 442 

(18) 443 

 444 

The subscripts of sca and abs in Eq. (17) and (18) denote “scattering” and “absorption” , 445 

respectively. The first term on the righthand side of Eq. (9) is determined using Eq. (10) and 446 

Eq. (17). The second term on the righthand side of Eq. (9) indicates the linkage of the aerosol 447 

number and mass concentrations. It is the derivative of dry particle in Eq. (8) by assuming a 448 

constant radius: 449 

 450 

.9-,* =
3 ∙ .K,,-,*

4@ ∙ A78(,-,*6 ∙ J,
 451 

(19) 452 

 453 

The third term on the righthand side of Eq. (9) contains the derivative of the layer thickness to 454 

the concentrations in this layer. This indicates that the light attenuation length based on per 455 
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unit concentration, which can be intuitively represented by the ratio of layer thickness to the 456 

aerosol mass concentration in this layer. Putting Eq. (10) and Eq. (19) into Eq. (9), we have 457 

the original formula of the tangent linear operator for AOD for the aerosol dry mass 458 

concentration: 459 

 460 

 461 

.:
.K,,-,*

=
.:-

.K,,-,*
=
.<'%0,-,* ∙ 9-,* ∙ +-

.K,,-,*
+
<'%0,-,* ∙ .9-,* ∙ +-

.K,,-,*
+
<'%0,-,* ∙ 9-,* ∙ .+-

.K,,-,*
=	462 

{[(Q − 1)V+1&,99 + (1 − Q)V+1&,9$ − QV+1&,$9 + QV+1&,$$] ∙
@ ∙ A2'0,-,*3 ∙ S, ∙ 9-,* ∙ +-

J, ∙ U2'0,-,* ∙ WS=>,-,* − S;<2,-,*X
463 

+	464 

3(R − 1)V&!+,99 − RV&!+,9$ + (1 − R)V&!+,$9 + RV&!+,$$5 ∙
@ ∙ A2'0,-,*3 ∙ T, ∙ 9-,* ∙ +-

J, ∙ U2'0,-,* ∙ WT=>,-,* − T;<2,-,*X
+	465 

3<'%0,-,* ∙ +-
4@ ∙ A7(8,-,*6 ∙ J,

+
<'%0,-,* ∙ 9-,* ∙ +-

K,,-,*
} ∙ Y 466 

 467 

(20) 468 

 469 

where Y is the factor that changes the unit of mass from µg kg–1 to µg m–3. The last righthand 470 

term in Eq. (20) may not have a quick convergence in the DA outer loops because the aerosol 471 

mass concentration mi,z,k in the denominator often has a low bias, which introduces an error 472 

into the operator. The error is amplified by the layer thickness Hz in the numerator. Thus, the 473 

operator of Eq. (20) cannot lead to a stable analysis. For this reason, we changed the operator 474 

to account for the columnar mean aerosol extinction coefficient which is described as follows: 475 

 476 

.(<'%0 ∙ 9)ZZZZZZZZZZZZ
.K,,-,*

=
+-
∑+-

∙
.W<'%0,-,* ∙ 9-,*X

.K,,-,*
=

+-
∑+-

∙ [
.<'%0,-,* ∙ 9-,*

.K,,-,*
+
<'%0,-,* ∙ .9-,*

.K,,-,*
] =	477 

{[(Q − 1)V+1&,99 + (1 − Q)V+1&,9$ − QV+1&,$9 + QV+1&,$$] ∙
@ ∙ A2'0,-,*3 ∙ S, ∙ 9-,*

J, ∙ U2'0,-,* ∙ WS=>,-,* − S;<2,-,*X
478 

+	479 

3(R − 1)V&!+,99 − RV&!+,9$ + (1 − R)V&!+,$9 + RV&!+,$$5 ∙
@ ∙ A2'0,-,*3 ∙ T, ∙ 9-,*

J, ∙ U2'0,-,* ∙ WT=>,-,* − T;<2,-,*X
+	480 

3<'%0,-,*
4@ ∙ A7(8,-,*6 ∙ J,

} ∙ Y ∙
+-
∑+-

 481 

 482 

(21) 483 

 484 

In Eq. (21), the operator is based on the extinction coefficient at each layer, weighted by the 485 

layer thickness normalized to the total model layer thickness. Correspondingly, the AOD 486 

observations and AOD observation error are divided by the total layer thickness at the 487 
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observation location. Note that the dry (rdry,z,k) and wet (rwet,z,k) particle radiuses are both 492 

present in Eq (21). Because aerosol water content is not a control variable, rdry,z,k is used in Eq 493 

(19) and appears in Eq (21). Aerosol water content participates the computation of internal 494 

mixing refractive indexes, and thus rwet,z,k is also present in Eq (21). Equation (21) is the final 495 

tangent linear operator for AOD DA in this study. 496 

 497 

2.2.5 Tangent Linear Operator Developed for Surface Aerosol Attenuation Coefficients 498 

The aerosol scattering and absorption coefficients measured by the nephelometer and 499 

aethalometer, respectively, are similar to the aerosol extinction coefficient at the surface in 500 

Eq. (21). Neither of the two coefficients address the layer thickness. The operator for the 501 

aerosol scattering coefficient measured by nephelometer is described as follows: 502 

 503 

!(#!"#,%,& ∙ %%,&)
!'',%,&

= {[(+ − 1).!"#,(( + (1 − +).!"#,(% − +.!"#,%( + +.!"#,%%]505 

∙ 1 ∙ 2)*+,%,&, ∙ 3' ∙ %%,&
4' ∙ 5)*+,%,& ∙ 63-.,%,& − 3/0),%,&7

+ 3#!"#,%,&
41 ∙ 2123,%,&4 ∙ 4'

} ∙ ;	506 

 (22) 504 

      507 

where the symbols have the same meaning as before, and the subscript one in Eq. (22) 508 

denotes the surface layer. The operator for the aerosol absorption coefficient measured by 509 

aethalometer is 510 

 511 

!(##5!,%,& ∙ %%,&)
!'',%,&

= {[(= − 1).#5!,(( − =.#5!,(% + (1 − =).#5!,%( + =.#5!,%%]513 

∙ 1 ∙ 2)*+,%,&, ∙ >' ∙ %%,&
4' ∙ 5)*+,%,& ∙ 6>-.,%,& − >/0),%,&7

+ 3##5!,%,&
41 ∙ 2123,%,&4 ∙ 4'

} ∙ ;	514 

 (23) 512 

 515 

As shown in the operators, the gradients of the aerosol mass concentrations rely on the aerosol 516 

number concentration; meanwhile, the number concentration is estimated according to the 517 

mass concentration and the particle radius. The two concentrations are intertwined in the DA 518 

system, indicating the nonlinearity of the operator. This nonlinearity is handled with a 519 

succeeding minimization of the cost function within the GSI. That is, the cost function is first 520 

minimized with the number concentration in the background field, and the number 521 

concentration is updated with the first analyzed aerosol mass concentrations. In the second 522 

minimization, the number concentration assessed in the first analysis constructs a new 523 

operator value, resulting in a new analysis of mass concentrations. This iterative process is 524 

denoted as the “outer loop,” which is repeated several times to attain the final analysis 525 

(Massart et al., 2010). We set ten maximum iterations to handle the nonlinearity in the 526 

operator. The cost function in most analyses reaches the minimum in two or three outer loops. 527 

The WRF-Chem AOD code is coupled into the GSI subroutine at the place of invoking 528 

CRTM. The tangent linear operators of Eq. (21), Eq. (22), and Eq. (23) are simultaneously 529 

determined in the subroutines, which are cyclically invoked in the outer loops within the GSI. 530 

 531 
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2.2.6 Aerosol Complex Refractive Indexes in GSI 541 

Table S1 in the supplementary document shows the complex refractive indexes for each 542 

aerosol chemical composition in the revised GSI. The refractive indexes are for eleven 543 

wavelengths, including four for CE318, three for nephelometer, three for aethalometer, and 544 

one for 550 nm MODIS AOD (not assimilated in this study). The real parts of refractive 545 

indexes of sulfate, nitrate, and ammonium are similar and refer to Toon et al.'s (1976) data. 546 

The real part is 1.53 at 440 nm and decreases to 1.52 at 1020 nm. The refractive indexes of 547 

OC and BC are constant across the wavelengths, being 1.55–0.001i for OC (Chen and Bond, 548 

2010) and 1.95–0.79i for BC (Bond and Berstrom, 2006). The dust refractive index's real part 549 

is a constant value of 1.54 (Zhao et al., 2010). The dust refractive index's imaginary part 550 

depends on the dust mineralogy, size distribution, and shape, which are associated with the 551 

dust sources. The imaginary part varies a lot at the same dust source. Cheng et al. (2006) 552 

reported the desert dust refractive index in winter and spring at Dunhuang, a city adjacent to 553 

the northeast side of the Taklamakan desert. Their imaginary part value was approximately in 554 

the ranges of 0.0008 to 0.0028 at 440 nm, 0.0006 to 0.0030 at 670 nm, 0.0005 to 0.0036 at 555 

870 nm, and 0.0005 to 0.0040 at 1020 nm (See Figure 9 in their paper). Recently, Di Biagio et 556 

al. (2019) retrieved the dust’s imaginary part in the Taklimakan desert's north edge (41.83°N, 557 

85.88°E). Their dust imaginary part decreased from 0.0018±0.0008 at 370 nm to 558 

0.0005±0.0002 at 950 nm, much lower than the generic values in climate models. The 559 

imaginary part's retrieval uncertainty is related to the iron oxide in dust samples, the cutoff 560 

coarse particle size (<10 µm in Di Bigaio et al., 2019), and the assumption of spherical 561 

particles applied in the retrieval algorithm. Here, we admit the high uncertainty and use the 562 

imaginary part following the generic model values (Table S1), which are higher than the 563 

upper limits of the data of Di Biagio et al. (2019) and are close to the values of Cheng et al. 564 

(2006). The desert dust has a stronger absorption at shortwave wavelengths. The refractive 565 

index of a wavelength without exact literature data uses the nearby wavelength’s data in 566 

literature. The supplement also shows the aerosol density (Table S2) that follows the density 567 

data in Barnard et al. (2010). The aerosol density is necessitated to compute aerosol optical 568 

parameters in the AOD forward operator and construct our tangent linear operator. 569 

 570 

2.3 Background Error Covariance (BEC) 571 

Many aerosol DA studies used the National Meteorological Center (NMC) method (Parrish 572 

and Derber, 1992) to model the BEC matrix. The NMC method uses long-term archived 573 

weather data that are created in the forecast cycles. It computes the statistical differences 574 

between two forecasts with different leading lengths (e.g., 24 h and 48 h), but which are valid 575 

at the same time. The NMC method is workable because solving global weather forecasts is 576 

an initial value problem of mathematical physics. That is, a slight difference in the initial 577 

atmospheric state would lead to a substantially different prediction, because of the chaos in 578 

the atmosphere. However, a regional model is a boundary value problem. Meteorological 579 

reanalysis data drive the regional chemistry simulation, and the driving data quality affects the 580 

simulation (Giorgi and Mearns, 1999). The WRF-Chem simulations in the NMC method only 581 

reflected the influences of using different initial conditions. As the model runs, the influence 582 

of the initial conditions becomes weak, while the influence of lateral boundary conditions 583 

always takes effect. Because the same reanalysis data drive the paring regional model 584 
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simulations, the following lateral boundary conditions for the simulations of the two leading-585 

lengths are similar. This leads to a limited regional model difference when using the NMC 586 

method. That is, the NMC method’s BEC on the meteorology would underestimate the 587 

aerosol error in WRF-Chem. Kumar et al. (2019) assimilated AOD in the contiguous United 588 

States based on the NMC method's BEC. They perturbed the background emissions by adding 589 

the gridded mean differences of four emission inventories. Their analysis with the BEC 590 

accounting for meteorology and emissions uncertainties reduced the AOD bias by 38%, 591 

superior to 10% bias reduction counting the meteorology uncertainty alone. 592 

 593 

Some aerosol DA studies have created background error variance using the ensemble 594 

simulations by randomly disturbing model lateral boundary conditions and surface emissions 595 

(Peng et al., 2017; Ma et al., 2020). The ensemble experiments better represent the model 596 

error, but significantly increase the computational burden. Here, we used the standard 597 

deviation of hourly aerosol concentrations in April in the background field (first guess field) 598 

to represent the background error variance. The rationale of this approach is that the Tarim 599 

Basin acts as a “dust reservoir” and traps dust particles for a period, before being carried long-600 

distance by wind (Fan et al., 2020). The model bias in dust dominates the model aerosol error, 601 

and is correlated with the aerosol variation as the weather fluctuates. The model bias is small 602 

on clear days when the aerosol concentration is low. Conversely, the bias is large when the 603 

mean concentration is high: that is, on heavily-polluted days. Because the mean aerosol 604 

concentration correlated positively with the aerosol variation, we used the standard deviation 605 

of aerosol concentration to represent the background aerosol error. This approach was similar 606 

to Sič et al. (2016), who set a percentage of the first guess field for the background error 607 

variance. Our approach prioritizes DA modification of aerosols which have high background 608 

mean concentrations. 609 

 610 

We calculated the statistics of the background error, including the aerosol standard deviation 611 

and the horizontal and vertical correlation length scales, using the GENerate the Background 612 

Errors (GEN-BE) software (Descombes et al., 2015), based on the one-month hourly aerosol 613 

concentrations in WRF-Chem. We obtained the statistics of four static BECs for the four DA 614 

analysis hours (i.e., 00:00, 06:00, 12:00, and 18:00 UTC), respectively. The DA procedures 615 

for the April 2019 data repeatedly use the statistics of the background error at the 616 

corresponding analysis time. A usual strategy to enrich the samples of model results for 617 

calculating the statistics is to gather model grid points with similar characteristics of the 618 

atmosphere, referred to as “binning.” The statistics are spatially averaged over the binned grid 619 

points. The default strategy in the GEN_BE for GSI is latitude-binning, which creates a 620 

latitude-dependent error correlation function (Figure 2a). The latitude binning is generally 621 

used for latitude flow dependency and works for large and global domains (Wu et al., 2002). 622 

However, we found that using the latitude-binning strategy overestimated the surface PMx 623 

concentration when assimilating aerosol optical observations. One reason for this was related 624 

to the model bias in particle extinction efficiency, as discussed in Section 3.3. Another 625 

plausible reason is related to the vertical profile of the background model error. The 626 

maximum dust error occurred at the surface of the desert (Figure 2e) because of the local dust 627 

emission sources, but the maximum error at Kashi was at the dust transporting layer above the 628 
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surface (Figure 2d). Owing to the vast extent of the Taklamakan Desert, the latitude-binning 633 

suppressed the local error characteristics at Kashi, and led to a vertical error profile (Figure 634 

2c) similar to that over the desert (Figure 2e). 635 

 636 

For this reason, we used the standard deviation of the control variable at each model grid to 637 

replace the latitude-binning standard deviation. The horizontal and vertical correlation length 638 

scales were calculated based on the latitude-binning data. Figure 3 shows the background 639 

error statistics generated by the GEN_BE software, which provided the input to the GSI. The 640 

OIN component showed high background errors in the third and fourth particle sizes at the 641 

transporting layer above the surface (Figure 3f). The aerosol compositions related to 642 

anthropogenic emissions (i.e., sulfate, nitrate, ammonium, OC, and BC, referred to here as 643 

‘anthropogenic aerosols’) had maximum errors in the second particle size and showed the 644 

greatest vertical error at the surface. The background error for OIN composition was higher 645 

than that for anthropogenic aerosols by a factor of two or three, because of the high 646 

background dust concentration in the city. 647 

 648 

The horizontal and vertical correlation length scales determine the range of observation 649 

innovations spreading from the observation locations. The horizontal influences had small 650 

changes in altitude within the lowest 15 model layers (below a height of ~5 km), indicating 651 

that the dust transport layer was well-mixed in the lower atmosphere. This deep dust layer 652 

was consistent with the dust simulation by Meng et al. (2019). They showed that the dust in 653 

spring was vertically mixed in a thick boundary layer to a height of 3–5 km in the Tarim 654 

Basin. The vertical correlation length scales first increased from low values at the surface, to 655 

high values at ~2.5 km in height (for the 8–9 layers), indicating that strong winds yielded 656 

intense aerosol upward flux. The vertical correlation length scale quickly decreased from the 657 

maximum value, with further increase in altitude corresponding to the large particle gradient 658 

at the upper edge of the transporting layer. The latter was associated with laminar air motion 659 

during the dust storm. 660 

 661 

The background model errors were independent of particle size, which would have tended to 662 

accumulate the DA modification in a single size bin that had the maximum background error 663 

(e.g., the OIN in the fourth particle size). To avoid excessive accumulation of increments in a 664 

single size bin, we added a one-dimensional recursive filter for the background covariances of 665 

control variables across the size bins within the GSI. The inter-size bin correlation length 666 

scale was four bin units. 667 

 668 

Figure 2, Figure 3 
 669 

2.4 Observational Data and Errors 670 

The Dust Aerosol Observation–Kashi field campaign was performed at Kashi from 671 

00:00UTC 25 March to 00:00 UTC 1 May 2019. The site was placed in the Kashi campus of 672 

the Aerospace Information Research Institute, Chinese Academy of Sciences (39.50°N, 673 

75.93°E; Li et al., 2018), about 4 km in the northwest to the Kashi city. The site aerosol 674 

observations used for our DA analysis included: (1) the multi-wavelength AOD measured by 675 
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the sun-sky photometer (Cimel CE318); (2) the multi-wavelength aerosol scattering and 682 

absorption coefficients at the surface, measured with a nephelometer (Aurora 3000) and 683 

aethalometer (Magee AE-33), respectively, during the campaign; and (3) the hourly PM2.5 and 684 

PM10 observations, measured with a METONE BAM-1020 continuous particulate monitor. 685 

All the instruments were deployed at the roof of a three stories height building on the campus. 686 

Please refer to Li et al. (2020) for more details about the field campaign. 687 

 688 

Table 1 summarizes the observation periods, the wavelengths of the aerosol optical data, and 689 

the observation errors. The multi-wavelength data of each type of observation were 690 

assimilated simultaneously. The observation errors of PMx are handled in the conventional 691 

way (Schwartz et al., 2012; Chen et al., 2019), which contains the measurement error (e1) and 692 

the representative error (e2). The measurement error is the sum of a baseline error of 1.5 µg 693 

m–3 and 0.75% of the observed PMx concentration. The representative error is the 694 

measurement error multiplied by the half-squared ratio of the grid spacing to the scale 695 

distance. The scale distance denotes the site representation in GSI and has four default values 696 

of 2, 3, 4, and 10 km, corresponding to the urban, unknown, suburban, and rural sites. We 697 

used 3 km for the scale distance in this study. As we had a single site in Kashi, it is difficult to 698 

estimate the site representation error. Since the DA analysis was based on the child model 699 

domain with a horizontal resolution of 5 km, close to the site distance to the Kashi urban area, 700 

we assumed the aerosol optical measurement had good representativeness of the model grid 701 

covering the site. The observation error of CE318 AOD took the AERONET AOD 702 

uncertainty of 0.01 in cloud-free conditions (Holben et al., 1998). The AOD observational 703 

error was further divided by the total model layer thickness in GSI. It is difficult to determine 704 

instrumental errors in nephelometers and aethalometers, and we empirically set their 705 

instrumental errors to 10 Mm–1, equivalent to the magnitude of the Rayleigh extinction 706 

coefficient. The observational errors were uncorrelated, with R being a diagonal matrix. 707 

 708 

Table 1 
 709 

2.5 Experimental Design 710 

The WRF-Chem simulations were configured in a two-nested domain centered at 82.9 °E, 711 

41.5 °N. The coarse domain was a 120×100 (west-east × north-south) grid with a horizontal 712 

resolution of 20 km that covered the Taklamakan Desert, and the fine domain was an 81×61 713 

grid with a resolution of 5 km, focusing on Kashi and environs (Figure 4a). Both domains had 714 

41 vertical levels extending from the surface to 50 hPa. The lowest model layer at the site was 715 

approximately 25-meter height from the ground. The two domains were two-way coupled. 716 

The parent domain covered the entire dust emission source, providing dust transport fluxes at 717 

the lateral boundaries of the fine domain. The aerosol radiative effect was set to provide 718 

feedback on the meteorology. The indirect effect of aerosols was not set in the experiments. 719 

Initial and lateral boundary meteorological conditions for WRF-Chem were the one-degree 720 

resolution of the National Centers for Environmental Prediction Final Analysis data created 721 

by the Global Forecast System model. The meteorological lateral boundary conditions for the 722 

coarse domain were updated every six hours, and were linearly interpolated between the 723 

updates in WRF-Chem. We did not set the chemical boundary conditions for the coarse 724 
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domain. The Multiresolution Emission Inventory of China (MEIC) for the year 2010 725 

(www.meicmodel.org) provided anthropogenic emission levels. The yearly emission 726 

differences in 2010-2019 may bias the aerosol chemical simulation, but this bias is hard to be 727 

quantified as lack of aerosol chemical observations in this city. As the significant pollutant at 728 

Kashi is dust, we just ignore the model uncertainties due to the yearly differences in 729 

anthropogenic emission inventories. The biogenic emission levels were estimated online 730 

using the Model of Emissions of Gases and Aerosols from Nature (Guenther et al., 2006). 731 

Wildfire emissions were not set in the experiments. 732 

 733 

We conducted a one-month WRF-Chem simulation for April 2019, starting at 00:00 UTC 27 734 

March and discarding the first five days for spin-up. The revised GSI system modified the 735 

aerosols in the fine domain at 00:00, 06:00, 12:00, and 18:00 UTC each day starting from 736 

00:00 UTC 1 April until the end of the month. We assimilated the observations four times a 737 

day because the reanalyzed meteorological data were available for the four time slices, which 738 

facilitated the model restarting from the DA analyses. The hourly PMx observations were 739 

assimilated at the exact time of analysis. The observed AOD and aerosol scattering/absorption 740 

coefficients were assimilated when they fell within 3 hours before the time of analysis. Table 741 

2 shows the DA experiments. The literal meanings of the experimental names denote the 742 

observations that were individually or simultaneously assimilated. To study the impact of DA 743 

on aerosol direct radiative forcing (ADRF), we modified the WRF-Chem code to calculate the 744 

shortwave irradiance with and without aerosols at each model integration step. The modified 745 

WRF-Chem model restarted from each DA analysis and ran to the next analysis time. Each 746 

running performed the radiation transfer calculation twice, and each calculation saw the 747 

aerosols and clean air, respectively. The irradiance difference between the two pairing calls 748 

was aerosol radiative forcing. Section 4.2 shows the DA effects on the clear-sky ADRF 749 

values. 750 

 751 

Table 2, Figure 4 
 752 

3. Results 753 

3.1 Evaluation of Control Experiment 754 

Table 2 shows the monthly mean values and correlations between the observed data and the 755 

model results. The statistical values were based on the pairing data between the model results 756 

and the observations. Figures 6 show the surface PMx concentrations, aerosol scattering 757 

coefficients, and AOD when assimilating the observations at 00:00, 06:00, 12:00, and 18:00 758 

UTC each day in April. 759 

 760 

Kashi is in the junction between the Tian Shan Mountains to the west and the Taklamakan 761 

Desert to the east (Figure 5a). In the Tarim Basin, the prevailing surface wind is easterly or 762 

northeasterly, which raises dust levels and carries the particles westward (Figure 5b). An 763 

intense dust storm hit the city at noon on 24 April 2019, with a peak PM10 concentration 764 

exceeding 3,000 µg m–3. The dust storm travelled across the northern part of the desert and 765 

carried the dust particles to Kashi and the mountainous area (Figure 5c, d). A few mild dust 766 

storms occurred at Kashi on April 3–5, April 8–11, and April 14–17 (Figure 6b), and the 767 
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maximum PM10 concentrations were in the range of 400–600 µgm–3. The time series of PM2.5, 771 

aerosol scattering/absorption coefficient, and AOD showed patterns, similar to those for PM10 772 

(Figure 6). 773 

 774 

WRF-Chem captured the main dust episodes, but significantly underestimated the aerosols at 775 

Kashi (Table 2). The background monthly mean concentrations of PM2.5 and PM10 were 17% 776 

and 41% lower than the observed values, respectively, with a low correlation (R < 0.3). The 777 

simulated dust storm on 24 April was a mild dust event and had a maximum PM10 of ~300 µg 778 

m–3, one-tenth of the observed value. The model underestimates the aerosol 779 

scattering/absorption coefficients and AOD by 40–70%. 780 

 781 

The OIN component accounted for the model bias in PM10 on dusty days. Zhao et al. (2020) 782 

proposed that the GOCART scheme reproduced dust emission fluxes under conditions of 783 

weak wind erosion but underestimated the emissions in conditions of strong wind erosion. We 784 

did not assimilate meteorology. The model bias in the surface wind introduces errors in dust 785 

emission, and places bias on the number of dust particles entering the city. In the non-dust 786 

days with the PM10 lower than the 25th percentile PM10 in April, the model hourly PM2.5 on 787 

average only accounted for 60% of the observed data levels. The PM2.5 low bias could be due 788 

to the lack of SOA chemistry in our experiments and the emission low bias in the residential 789 

sector which is a major source of anthropogenic emissions for PM2.5, BC, and OC in the 790 

developing western area. The residential sector accounts for 36–82% of these emissions, 791 

according to the MEIC emission inventory (Li et al., 2017) and is the primary source of 792 

uncertainty in anthropogenic emissions inventories in China. 793 

 794 

Figure 5 
 795 

3.2 Assimilating PM2.5 and PM10 Concentrations 796 

Simultaneous assimilation of the observed PMx (DA_PMx) improved both the fine and 797 

coarse particle concentrations, with a substantial improvement in the third and fourth particle 798 

sizes of the OIN composition (Figure 8f). The analyzed monthly mean PM10 increased to 799 

329.3 µg m–3, with a high correlation of 0.99. The analyzed monthly mean PM2.5 was 800 

improved to 89.3 µg m–3, although it was still lower than the observed levels, with a high 801 

correlation of 0.89. The low bias in PM2.5 and the high bias in PM10 in the analyses were both 802 

mainly in the dust storm on 24–25 April (Figure 6a, d). Applying the inter-size bin correlation 803 

length caused the interlinked analyses of PM2.5 and PM10. In the desert area, the coarse and 804 

fine dust are readily affected by the magnitude of BEC of the fourth size-bin OIN (oin_a04). 805 

We intentionally decreased the BEC of oin_a04 by 10% each time to 30% of its original 806 

value. The magnitude of 30% of oin_a04 was comparable to the magnitude of the third size-807 

bin (oin_a03) OIN’s background error. As shown in Table S3, because the oin_a04’s BEC 808 

reduction relaxes the constraint on the coarse particle, the PM10 bias becomes more negative 809 

along with the decrease in on_a04’s BEC. Meanwhile, the PM2.5 bias becomes more positive. 810 

Correspondingly, the ratio of PM2.5 to PM10 was exaggerated to 0.33 with 30% of oin_a04’s 811 

BEC, higher than the observed value of 0.28. Overall, the original BEC of oin_a04 is a 812 

reasonable tradeoff in our DA experiments. The inter-size bin correlation length tunes the 813 
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cross size-bin modifications, and it indeed does matter to the DA performance compared with 816 

those without inter-size bin correlation. Although the correlation length of four in our DA 817 

experiment is a little bit arbitrary, we found that the impact on the analysis due to using 818 

different correlation length is almost ignorable. 819 

 820 

The DA system preferentially modified the coarse particle concentrations because of the 821 

coarse particles’s high background model error according to our BEC modeling strategy. 822 

Intuitionally, our modification that mainly focused on the highest concentration of coarse 823 

particles was reasonable. It decreased the model biases by raising the heaviest loading 824 

aerosols. As a result, the ratio of PM2.5 to PM10 decreased from 0.39 in the background to 0.27 825 

in DA_PMx, approaching the observed ratio of 0.28. Such improvement was consistent with 826 

the correction required to the model desert dust in literature. Kok et al. (2011) found that 827 

regional and global circulation models underestimate the fraction of emitted coast dust (>~5 828 

µm), overestimates the fraction of fine dust (<2µm diameter). Adebiyi and Kok (2020) 829 

claimed that too rapid deposition of coarse dust out of the atmosphere accounts for the 830 

missing coarse dust in models. Similarly, WRF-Chem assimilated too much smaller dust 831 

particles than the observed. According to Kashi’s AOD between 440 nm and 1020 nm, the 832 

observed Ångström exponent (AE) was 0.18 in this case, but the background value was 0.54 833 

(Table 3). DA_PMx reduced the AE value to 0.30, a little improvement but not sufficient. 834 

 835 

As the particle concentration increased, the 635 nm aerosol scattering coefficient in DA_PMx 836 

moderately increased to 170.4 Mm–1, with a high correlation of 0.89, still lower than the 837 

observed level of 231.5 Mm–1. The analyzed 660 nm absorption coefficient was 15.8 Mm–1, 838 

67% lower than observed levels, with a correlation of 0.42. The analyzed AOD showed a 839 

monthly mean value of 0.38 in DA_PMx, 42% lower than observed levels, with a low 840 

correlation of 0.35. 841 

 842 

Figure 9a shows the diurnal concentrations of PM10 in the analyses in April. The observed 843 

PM10 showed a substantial variation at 18:00 UTC, the (local midnight). This substantial 844 

nocturnal variation was partly owing to the dust storm that started on 24 April and ended the 845 

next day. This midnight variation was also related to a nocturnal low-level jet. Ge et al. 846 

(2016) pointed out that there was a nocturnal low-level jet at a height of 100–400 m, with a 847 

wind speed of 4–10 m s–1 throughout the year in the Tarim Basin. They stressed that the low-848 

level jet broke down in the morning, transporting its momentum toward the surface, and 849 

increased dust emissions. The nocturnal low-level jet increased the possibility of dust 850 

particles moving towards the city at night, causing a high PM10 variation at 18:00 UTC. The 851 

diurnal changes in the DA analyses followed the observed levels, but had higher mean values. 852 

 853 

3.3 Assimilating AOD 854 

Assimilating AOD (DA_AOD) improved the monthly mean 870 nm AOD to 0.59, 855 

approaching to the observed value of 0.66, with a high correlation of 0.98 (Figure 6u). The 856 

monthly mean PM2.5 was improved to 92.6 µg m–3, quite close to the observed level of 91 µg 857 

m–3, but the analyzed PM10 was 541.7 µg m–3, 68% higher than the observed value. The DA 858 

system improved the AOD at the price of deteriorating the data quality of surface coarse 859 
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particle concentrations. Surface particle overestimations have been reported in previous 862 

studies (Liu et al., 2011; Ma et al., 2020; Saide et al., 2020). In the arid area of Kashi, the ratio 863 

of PM2.5 to PM10 therefore reduced to 0.17 in DA_AOD, which was too far comparing with 864 

the observed ratio of 0.28. 865 

 866 

The revised GSI updates aerosol number concentration according to the analyzed aerosol 867 

mass concentration and the background ratio between mass and number concentrations. Thus, 868 

an overestimation of aerosol mass concentration inclines to raise aerosol number 869 

concentration, resulting in high scattering/absorption coefficients. In Kashi, the analyzed 635 870 

nm scattering coefficient in DA_AOD was 222.6 Mm–1, slightly lower than the observed 871 

value. The analyzed 660 nm absorption coefficient was 17.0 Mm–1, 64% lower than the 872 

observed value. It indicates that WRF-Chem strongly underestimated the 873 

scattering/absorption cross section. This underestimation resulted in too many coarse particles 874 

as compensation to fit the observed AOD, and hence decreased the PM2.5/PM10 ratio further. 875 

 876 

Table 4 shows the ratios of the AOD and aerosol scattering/absorption coefficients to the 877 

surface PM10 concentrations. The ratio of AOD to PM10 in the background model result was 878 

one-third of the observed levels. The observed mass scattering coefficient (Esca/PM10) was 879 

1.05 Mm–1 µg–1 m3, while the background value was only 0.65 Mm–1 µg–1 m3. DA_AOD 880 

did not eliminate the low bias but enlarged the low bias to 0.51 Mm–1 µg–1 m3. The same 881 

thing occurred for Eabs/PM10, which was 0.09 in the background and 0.05 in DA_AOD, 882 

much lower than the observed value of 0.25. Figure 10 shows these mean ratios at the other 883 

wavelengths. The low bias in AOD/PM10 was comparable at each wavelength. All DA 884 

experiments yielded close bias in extinction/scattering/absorption efficiency. Such low bias in 885 

AOD/PM10 imposed the DA system to overestimate the PM10 to fit the observed AOD data. 886 

 887 

Additionally, we computed the surface single scattering albedo (SSAsrf) with the 525 nm 888 

scattering coefficient and 520 nm absorption coefficient. We did not use the Ångström 889 

exponent to interpolate the scattering/absorption coefficients to a similar wavelength because 890 

the AE itself had a large model bias even after DA (Table 3). The observed SSAsrf value was 891 

0.78, indicating an emphatic absorption particle, probably due to the mixture of anthropogenic 892 

black carbon and natural desert dust in the local air. The model background SSAsrf was 0.86, 893 

while the DA analyses gave even higher SSAsrf (0.88 to 0.9). 894 

 895 

The low bias in mass scattering/absorption efficiency is related to the aerosol optical module, 896 

which is based on Mie theory in WRF-Chem. First, the simulations used four-size bin particle 897 

segregation. This coarse size representation aggregated many aerosols in the accumulation 898 

mode (Figure 8f). Because small particles have a strong of light attenuation capability, 899 

according to the Mie theory, too many coarse particles would not effectively increase the 900 

AOD. Saide et al. (2020) linked the aerosol optics to the size bin representation (from 4 to 16 901 

bins) for hazes in South Korea. They showed that WRF-Chem underestimated the dry aerosol 902 

extinction, and the underestimation could be relieved when using a finer size bin than four. 903 

Okada and Kai (2004) found that the dust particle radius in the Taklamakan Desert was in the 904 

Deleted: , opposite to the result when assimilating PMx905 

Deleted: a model low bias in particle scattering/absorption 906 

efficiency 907 



 22 

range of 0.1–4 µm, indicating the dominant fine-mode particles in the desert. Using the four-908 

size bin would simultaneously obtain better analyses of both AOD and PMx. 909 

 910 

Second, the dust particles are irregular in shape (Okada and Kai, 2004), while the spherical 911 

particle is a common assumption for the aerosol optics in the Mie theory in current models, 912 

which is an essential source of uncertainty in the forward operator of WRF-Chem when the 913 

assumption of spherical particles for dust fails. The irregular morphology had a significant 914 

influence on the dust simulation. Okada et al. (2001) found that the aspect ratio (the ratio of 915 

the longest dimension to its orthogonal width) of the mineral dust particles (0.1-6 µm) in 916 

China arid regions exhibited a median of 1.4. Dubovik et al. (2006) suggested the aspect ratio 917 

of ~1.5 and higher in desert dust plumes. Kok et al. (2017) found that the dust’ sphericity 918 

assumption underestimated dust extinction efficiency by ~20–60% for the dust particle larger 919 

than 1µm. Tian et al. (2020) found that using a dust ellipsoid model could increase the 920 

concentration of coarse dust particle (5-10 µm) by ~5% in eastern china and ~10% in the 921 

Taklimakan area because of the decrease in gravitational settling, comparing with the 922 

simulations with dust sphericity model. Nevertheless, the aspect ratio of the spheroid dust is 923 

uncertain. Even after applying the spheroidal approximation, Soorbas et al. (2015) found that 924 

the model underestimated 550 nm aerosol scattering and backscattering values by 49% and 925 

11%, respectively, because of the uncertainties in particle axial ratio, complex refractive 926 

index, and the particle size distribution. To date, the assumption of spherical particles has 927 

been widespread in models (including WRF-Chem) for computational efficiency. Impact of 928 

dust morphology to DA deserves a further investigation. 929 

 930 

To reduce the overestimate in PMx concentrations, we set the gridded standard deviation in 931 

place of the latitude-binning standard deviation, as discussed in Section 2.3. Figure 11 shows 932 

the analyzed vertical profiles of PMx concentrations. Higher PM10 concentrations were 933 

observed in the low atmosphere than at the surface. These vertical error profiles decreased the 934 

surface PM10 particles and tended to increase the PM2.5/PM10 ratio, contrary to the effects of 935 

low model bias in particle extinction efficiency. For the net effect of the compensation, the 936 

mass extinction efficiency in the analysis was still almost equivalent to the background value 937 

(Table 4). That is, our tuned BEC vertical profile at Kashi, to some extent canceled out the 938 

effects of other model error sources (e.g., the positive bias in the coarse particle of BEC, and 939 

the low bias in extinction efficiency) but was not sufficient to increase the mass extinction 940 

efficiency to the observed value. Finer aerosol size representation and a better advanced 941 

aerosol optical calculation for dust are essential solutions. 942 

 943 

Assimilating the AOD seems to increase the diurnal variation in the DA analyses, but this 944 

variation was not conclusive since there were different amounts of AOD data for DA at 00:00, 945 

06:00, and 12:00. The AOD data were not always available as the data quality control (i.e., 946 

cloud screening). There was a higher increase in the concentration at noon (06:00 UTC) 947 

(Figure 9b), corresponding to a few high AOD during mild dust episodes at that hour. The DA 948 

system had to raise the PM10 to fit the observed high AOD values. Because the CE318 AOD 949 

was only available in the daytime, none DA analysis was performed at 18:00. Also, due to the 950 

limited AOD data, assimilating AOD did not substantially increase the correlation of PMx. 951 
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The analyzed PM2.5 and PM10 still had low correlations with the observed levels 991 

(R=0.31~0.35). 992 

 993 

3.4 Assimilating Aerosol Scattering Coefficient 994 

Assimilating the aerosol scattering coefficient (DA_Esca) yielded overall analyses similar to 995 

the phenomenon in DA_AOD. The analyzed 635 nm scattering coefficient (192.1 Mm–1) was 996 

lower than the observation (231.5 Mm–1), with a high correlation of 0.97. The analyzed 997 

monthly mean AOD was 0.53, better than the AOD of 0.38 when assimilating PMx. 998 

However, the surface particle concentrations were overestimated (i.e., positive biases by 14% 999 

for PM2.5, and 37% for PM10), with a substantial increase in the coarse particle of OIN. 1000 

Overestimations appeared during a few mild dust episodes (Figure 7d). This again indicated 1001 

that WRF-Chem underestimated the dust scattering efficiency, in accordance with the low 1002 

bias in the ratio of the scattering coefficient to PM10 (0.52 Mm–1 µg–1 m3; Table 4). The DA 1003 

system thus overfitted the PMx concentration to approach the observed scattering coefficient. 1004 

The diurnal PM10 in the analysis was similar to the assimilation of PMx, showing a maximum 1005 

improvement and a robust nocturnal variation at 18:00 UTC (Figure 9c). Assimilating the 1006 

scattering coefficient failed to improve the absorption coefficient. The monthly mean 1007 

absorption coefficient was 16.5 Mm–1, 65% lower than the observed value. 1008 

 1009 

3.5 Assimilating Aerosol Absorption Coefficient 1010 

In contrast to the above results, assimilating the absorption coefficient (DA_Eabs) degraded 1011 

all the analyses other than the absorption coefficient itself. The analyses showed substantial 1012 

daily variations, and strong positive biases appeared in the dust episodes (Figure 7). The 1013 

PM2.5 was overestimated by a factor of three, and the PM10 was overestimated by a factor of 1014 

four. The increases occurred each hour (Figure 9d). Because of the constant ratio between 1015 

mass and number concentration, the particle number concentration increased. As a result, the 1016 

aerosol scattering coefficient was overfitted to 612.2 Mm–1, higher than the observed levels by 1017 

a factor of three. The monthly mean AOD improbably rose up to 1.73. Nevertheless, the 1018 

absorption coefficient (40 Mm–1) was improved to the observed level (47.4 Mm–1). 1019 

 1020 

Improving the absorption coefficient at the cost of PM10 overestimation indicates the model 1021 

biases in the representation of the particle mixture and the other absorbing particles (e.g., 1022 

black carbon, brown carbon and aged dust). With respect to the current model, this failure is 1023 

related to the aerosol absorption represented in WRF-Chem. The leading absorption aerosol in 1024 

WRF-Chem is BC. The BC particle in the second size (0.156–0.625 μm) had the maximum 1025 

absorption, according to Mie theory, and had the maximum DA modifications in the second-1026 

size bin (Figure 8e). However, because the BC had a small background concentration, the BC 1027 

showed a small DA improvement (<1.5 µg m–3) and had small effects on increasing the 1028 

particle absorption. Meanwhile, the coarse dust particle concentration was primarily 1029 

increased, but the dust particles did not have a strong absorption as BC. As a result, the model 1030 

lowered the ratio of the absorption coefficient of PM10 by an order of magnitude (Table 4). 1031 

The lower mass absorption efficiency was comparable at each wavelength and was close to 1032 

the other DA experiment (Figure 10c). Because of the constraint of the observed absorption 1033 

coefficient, the DA system dramatically overestimated the particle concentrations and induced 1034 
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too much higher aerosol scattering coefficient and AOD. Because the overestimation of the 1043 

scattering coefficient was higher than that of the absorption coefficient, DA_abs even gave 1044 

the strongest SSArf (0.9; Table 3) in all DA experiments, opposite to our expectation that the 1045 

assimilation of absorption coefficient should improve SSA. 1046 

 1047 

To understand the DA_Eabs’s failure, we performed a few trials by changing the imaginary 1048 

part of the dust refractive index on 1200UTC on April 9. The results are present in the 1049 

supplementary Table S4a and S4b. The trials show that a high imaginary part of the dust 1050 

refractive index decreases the aerosol absorption coefficient. This paradox is due to the BC’s 1051 

reduction. Specifically, a high imaginary part increases the absorption efficiency of coarse 1052 

dust and decreases the coarse dust number concentration (num_a04; Table S4a). This 1053 

reduction also led to less fine aerosol number concentrations (e.g., num_a02) because of the 1054 

inter-size bin correlation. BC is abundant in the second and third size bins, and its imaginary 1055 

part of refractive index is two orders of magnitude higher than dust. Less BC caused a weak 1056 

absorption coefficient (Table S4b). On the contrary, the low dust imaginary part would not 1057 

largely increase dust numbers in the coarse size bin because the DA system attempts to 1058 

increase BC to enhance the absorption coefficient. In an extreme case with zero value of 1059 

imaginary part of dust, the improvement of absorption coefficient exclusively relies on BC; 1060 

the num_a02 is increased by order of magnitude (Table S4a), and 660 nm Eabs rose up to 1061 

92.5 Mm–1 (Table S4b), much higher than the observed level. 1062 

 1063 

At Kashi, BC has a low background concentration and low background error. The innovation 1064 

of BC was limited. Thus, tuning the imaginary part of dust would not change the SSAsrf 1065 

value a lot (0.89 to 0.92). Excluding the contribution from OIN in PM10, the scattering 1066 

coefficient was associated with sulfate. The sulfate’s background error was higher than the 1067 

BC’s by order of magnitude. The DA system prioritized sulfate modification even when 1068 

assimilating absorption coefficient, resulting in a smaller BC mass fraction in PM10 (Figure 1069 

12f) and a high SSAsrf of 0.90. 1070 

 1071 

We did another set of trials by increasing the original BC’s BEC per size bin. As shown in the 1072 

supplementary Table S5, increasing the BC’s BECs would not much degrade the absorption 1073 

coefficient but significantly decrease the positive biases in PMx, AOD, and scattering 1074 

coefficient; the SSAsrf approached the observation. Increasing BC’s BECs by a factor of 1075 

seven (DA_Eabs_BC*7) shows the best analyses. This trial suppressed the positive biases 1076 

without decreasing the accuracy of absorption coefficient (Figure 7), and the BC mass 1077 

fraction was increased (Figure 12g). Nevertheless, the disadvantage of the enlargement of 1078 

BC’BEC is that the simultaneous assimilation of scattering and absorption coefficient is not 1079 

convergent as well as before. After four outer loops and each with 50 inner iterations, the 1080 

analyzed absorption coefficient in DA_Eabs_BC*7 was still higher than the observed value 1081 

by 47% (Figure S1j). It indicates there is a low bias in BC’s background concentration that 1082 

violates the unbiased condition of DA. 1083 

 1084 

3.6 Assimilating Multi-source Observations 1085 

Deleted: , but the analyzed absorption coefficient was still 1086 

underestimated.1087 
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Assimilating an individual observation improves the corresponding model parameter (i.e., 1088 

PM2.5, PM10, Esca, Eabs, and AOD) but may worsen other parameters. The reasons for the 1089 

inconsistent improvements are relevant to the aerosol model itself. These are: (1) the model 1090 

parameters have opposite signs in biases (e.g., one model parameter has a positive bias while 1091 

another has a negative bias); (2) the model biases have vast differences in magnitude (e.g., a 1092 

good fit of a parameter may lead to another’s overfit) and the different biases in magnitude 1093 

cannot be reconciled because the forward operator is inaccurate to represent the linkage 1094 

between aerosol mass and aerosol optics (e.g., lower particle mass extinction efficiency). 1095 

 1096 

In our case, simultaneous assimilation of the scattering and absorption coefficients 1097 

(DA_Esca_Eabs) resulted in the analyses when assimilating the scattering coefficient alone 1098 

(DA_Esca), and the inferior analysis in DA_Eabs vanished. This was because incorporating 1099 

the scattering coefficient constrained the aerosol number concentrations, which also benefited 1100 

from incorporating the observed absorption coefficient. Simultaneous assimilation of PMx 1101 

and AOD (DA_PMx_AOD) gave the best overall DA results, in which all the analyses except 1102 

the absorption coefficient were not significantly different in the month mean values from the 1103 

observations. Furthermore, DA_PMx_AOD substantially improved the Ångström exponent, 1104 

with an analyzed value of 0.17, consistent with the observed value of 0.18 (Table 3). 1105 

Simultaneous assimilation of all observations (DA_PMx_Esca_Eabs_AOD) did not 1106 

substantially improve the analyses when compared with DA_PMx_AOD because the surface 1107 

coefficients, and AOD had overlapped information of the light attenuation. A redundant 1108 

information source did not introduce extra constraints on the DA system.  1109 

 1110 

Table 3, 4; Figure 6, 7, 8, 9, 10 
 1111 

3.7 Vertical Profiles of Aerosol Concentrations 1112 

Figure 11 shows the vertical concentration profiles of PM2.5 and PM10. The DA system 1113 

increased the aerosol concentrations up to a height of 4 km, which is consistent with previous 1114 

studies on the Taklamakan Desert. Meng et al. (2019) simulated a deep dust layer thickness in 1115 

spring, with a depth of 3–5 km. Ge et al. (2014) analyzed the Cloud-Aerosol Lidar Orthogonal 1116 

Polarization data from to 2006–2012 in the desert. They showed that dust could be lifted up to 1117 

5 km above the Tarim Basin, and even higher along the northern slope of the Tibetan Plateau. 1118 

Among our DA experiments, the analyzed PMx in the lower atmosphere followed PMx at the 1119 

surface. The vertical PM10 concentration increased quickly in the lowest three model layers 1120 

and maintained high values at heights of less than 3 km. This vertical profile corresponded to 1121 

the background vertical error profile, reflecting the deep dust transporting layer. The PM2.5 1122 

vertical profiles of showed a rapid reduction with an increase in altitude. The figure clearly 1123 

shows that DA_PMx improved the PM2.5 and PM10 better, whereas DA_AOD preferentially 1124 

adjusted the coarse particles and overestimated the PM10. Also shown in the figure are the 1125 

vertical profiles normalized to their own respective surface particulate concentrations. The 1126 

assimilations not only added a larger fraction of the mass in these layers but also adjusted the 1127 

shapes of the PM10 profiles within 3 km above the ground (Figure 11d), following the BEC’s 1128 

vertical correlation length scales (Figure 3r). 1129 

 1130 

Deleted: through the adjoint operator 1131 

Deleted:  Therefore, it may not always lead to a better 1132 

analysis when assimilating one type of observation. 1133 

Simultaneous assimilation of the multi-source observations 1134 

imposes more definite constraints on the DA system and 1135 

helps to eliminate significant model biases.1136 

Deleted: Compared with the analysis assimilating the PMx 1137 

alone (DA_PMx), assimilating the two aerosol attenuation 1138 

coefficients (DA_Esca_Eabs) better reproduced the AOD, but 1139 

overestimated the surface particle concentrations. In Figures 1140 

8–9, there were extremely high values on 28 April 2019, 1141 

because the scattering coefficient was missing at that time, 1142 

during which the DA system assimilated the absorption 1143 

coefficient alone and worsened the analysis again. 1144 

Simultaneous assimilation of the surface particle 1145 

concentration and the two aerosol attenuation coefficients 1146 

(DA_PMx_Esca_Eabs) improved these three assimilated 1147 

parameters, but still gave a notable low bias in AOD, % lower 1148 

than the observed levels. 1149 

Deleted: The analyses between DA_PMx_AOD and 1150 

DA_PMx_Esca_Eabs were comparable, except that the 1151 

former additionally increased AOD better. 1152 

Deleted: the DA experiments failed to improve the aerosol 1153 

absorption coefficient, always showed strong low biases and 1154 

(), implying room for improvement of our DA system.1155 

Deleted: DA_PMx._AOD provided the best balance between 1156 

the adjustments of PM2.5 and PM10.1157 

Deleted: ¶1158 
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Figure 11 
 1159 

4. Discussions 1160 

4.1 DA Impact on Aerosol Chemical Composition 1161 

For control variable design, our DA system modifies the chemical composition of each 1162 

aerosol according to the BEC values. The PM10 chemical fractions remain close to their 1163 

background values (Figure 12). As discussed in section 3.5, the assimilation of the aerosol 1164 

absorption coefficient alone (DA_Eabs) increased the sulfate fraction. The DA modification 1165 

increased aerosol number concentration, and the rising number concentration increased the 1166 

tangent linear operator value for the scattering component. Sulfate was the predominant 1167 

anthropogenic aerosol at Kashi and had a high background error value. The DA system 1168 

prioritized the modification of sulfate and prevented a rise in the BC fraction in DA_Eabs. As 1169 

the enlarged BC BEC in DA_Eabs_BC*7, the BC mass fraction showed the largest increase. 1170 

The model bias in aerosol background concentration and the background error determine the 1171 

analyzed aerosol chemical fraction. Overall, it seems that differences in aerosol chemical 1172 

composition from assimilating the aerosol optical data are smaller than the difference in 1173 

model setting (e.g., using other aerosol chemistry mechanisms, or using finer aerosol size 1174 

bins). The assimilation of the total aerosol quantities cannot eliminate the intrinsic bias in 1175 

aerosol composition. Thus, accurate aerosol chemistry and optical modules are crucial to 1176 

attain a better background aerosol chemical data for DA analysis (Saide et al., 2020). 1177 

 1178 

Figure 12 
 1179 

4.2 DA Impact on Aerosol Direct Radiative Forcing 1180 

Table 5 shows the instantaneous clear-sky ADRF in the background data and the analyses of 1181 

DA_PMx and DA_PMx_AOD. After the analyses, the DA effect (various DA frequencies for 1182 

assimilating AOD and the surface particle concentrations) gradually faded away after 1183 

restarting the model run. We therefore focused on the instantaneous radiative forcing values 1184 

one hour after assimilating AOD data. This ensured that the comparison was based on similar 1185 

analysis times and showed effective DA effects. 1186 

 1187 

Aerosol redistributes the energy between the land and the atmosphere. The atmosphere gains 1188 

more shortwave energy as the dust and black carbon particle absorption; the warming 1189 

atmosphere also emits more longwave energy as it absorbs shortwave energy. The change in 1190 

energy budget at the surface is correspondingly the opposite of that in the atmosphere. As 1191 

shown in Table 5, the enhancements in surface cooling forces were slightly stronger than the 1192 

atmospheric warming forcings. The differences between the surface forcing and atmospheric 1193 

forcing indicate the ADRF at the top of the atmosphere (TOA). The TOA ADRF when 1194 

assimilating the surface particle concentrations was enhanced by 21% in the shortwave, 100% 1195 

in the longwave, and 18% in the net forcing values, and enhanced by 34%, 67%, and 32%, 1196 

respectively, when assimilating the AOD. Apparently, assimilating PMx alone is not 1197 

sufficient to accurately estimate the ADRF value. At Kashi, the total net (shortwave plus 1198 

longwave) clear-sky ADRF with assimilating surface particles and AOD were –10.4 Wm–2 at 1199 

Deleted: The maximum concentrations of sulfate, 1200 

ammonium, BC, and OC in April were 4.1, 1.5, 0.5, and 1.3 1201 

µg m–3, respectively, in the background model data. Although 1202 

a careful evaluation is difficult because of the lack of aerosol 1203 

chemical measurements, we speculated that the aerosols 1204 

(other than OIN) were considerably low. Anthropogenic 1205 

emissions might be biased for this city. The sources of 1206 

emissions in residential/developing areas are principally 1207 

anthropogenic; yet the residential emission factor for the 1208 

emission inventory compilation is highly uncertain compared 1209 

with the emission factors of power plants, industrial plants, 1210 

and vehicles (Li et al., 2017). Chlorine and sodium are 1211 

selected to represent sea-salt aerosols in WRF-Chem, yet the 1212 

two concentrations were at very low concentrations in the 1213 

model at Kashi. This was despite the fact that the Taklamakan 1214 

Desert had many atmospheric halite particles, which were Cl- 1215 

and Na-rich and accounted for 10% of the total particles in 1216 

the desert (Okada and Kai, 2004). ¶1217 

¶1218 

Deleted: ll the DA experiments showed that the1219 

Deleted: The low biases cannot be improved via DA because 1220 

the aerosol chemical measurements were not available. In 1221 

addition, the differences between DA_Esca and 1222 

DA_Esca_Eabs were quite small (Figure 13c, e), indicating 1223 

that assimilating the aerosol absorption coefficient did not 1224 

enhance particle absorption (19.1–1 vs. 20.0 Mm–1 in Table 3) 1225 

in our system. T1226 

Deleted: of BC to 7.1%, which was slightly higher than the 1227 

6.5% background BC1228 

Deleted: The first reason for the small changes in the aerosol 1250 

chemical proportions is that the scattering aerosols (i.e., 1251 

sulfate, nitrate, and ammonium), use the same refractive 1252 

index and hygroscopicity parameter in WRF-Chem. 1253 

Therefore, the AOD had virtually the same sensitivity to 1254 

composition of each aerosol, and assigned comparable 1255 

modification to each composition. When assimilating the total 1256 

quantities of aerosols (e.g., PM2.5, PM10, and AOD), it is 1257 

difficult to distinguish different aerosol chemical 1258 ... [1]

Deleted:  As the dust was the predominant component, the 1246 

ADRF in this section was closely equivalent to the dust 1247 

radiative forcing.1248 

Deleted: Dust 1249 
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the TOA, +20.8 Wm–2 within the atmosphere, and –31.2 Wm–2 at the surface, respectively, 1259 

enhanced by 55%, 48%, and 50% respectively, compared to the background ADRF values.  1260 

 1261 

It is noteworthy to say that the ADRF estimation remains uncertain even after DA. The AOD 1262 

observation is only sporadically available because of cloud screening in retrieval data. The 1263 

DA experiments cannot eliminate the low bias in AOD in WRF-Chem. The ADRF values in 1264 

the DA experiments are likely to be weaker than the plausible aerosol radiative forcing at 1265 

Kashi. Neither DA experiment lowers SSAsrf to approach the observation. The observed 1266 

SSAsrf (0.78) indicates likely warming forcing of aerosol at Kashi, while WRF-Chem and the 1267 

DA analyses impose cooling forcing. The ADRF uncertainty is associated with the 1268 

background aerosols. WRF-Chem simulates aerosol size up to 10 µm, whereas larger particles 1269 

(>10 µm) exhibit substantial absorption relative to scattering in the visible wavelength (Kok 1270 

et al., 2017). Anthropogenic emission inventories need an update for the year 2019, which 1271 

may reduce the potential low bias in BC concentration. Additionally, the revised GSI does not 1272 

concern the change in particle effective radius per size bin when calculating the aerosol 1273 

number concentration in each outer loop. Low absorption cross section rises aerosol number 1274 

concentration as compensation, increasing aerosol scattering coefficient too much. If our 1275 

tangent operator concerns the change in particle effective radius per size bin, we can use 1276 

aerosol mass and number concentration as control variables simultaneously. The DA would 1277 

have a higher degree of freedom to balance the particle radius and number concentration and 1278 

improve the absorption coefficient. All these need further research in the future. 1279 

 1280 

5. Conclusions 1281 

This study described our revised GSI DA system for assimilating aerosol observed data for 1282 

the four-size bin sectional MOSAIC aerosol mechanism in WRF-Chem. The DA system has 1283 

new design tangent linear operators for the multi-wavelength AOD, aerosol scattering, and 1284 

absorption coefficients measured by the sun-sky radiometer, nephelometer, and aethalometer, 1285 

respectively. We examined the DA system for Kashi city in northwestern China by 1286 

assimilating the multi-wavelength aerosol optical measurements gathered by the Dust Aerosol 1287 

Observation–Kashi field campaign of April 2019 and the concurrent hourly measurements of 1288 

surface PM2.5 and PM10 concentrations. 1289 

 1290 

Our DA system includes two main aspects. Firstly, the control variable is the aerosol chemical 1291 

composition per size bin corresponding to the WRF-Chem output data. This design allows the 1292 

modification of the composition of each aerosol, based on their background error covariances. 1293 

The number of control variables could be reduced by intentionally excluding a few aerosol 1294 

compositions in a specific case, if these compositions had low concentrations (e.g. chlorine 1295 

and sodium in this study). Second, the DA system incorporates the observed AOD by 1296 

assimilating the column mean aerosol extinction coefficient. This transfer avoids handling 1297 

sensitivity from light attenuation length to the aerosol mass concentration in the tangent linear 1298 

operator, which is difficult to accurately estimate and introduces significant errors in the 1299 

operator. The tangent linear operator for AOD has two variants that can incorporate 1300 

nephelometer and aethalometer measurements at the surface. 1301 

 1302 

Deleted: adjoint 1303 

Deleted: adjoint 1304 

Deleted: adjoint 1305 
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The most abundant aerosol at Kashi in April 2019 was dust. The WRF-Chem model captured 1306 

the main dust episodes, but lowered the monthly mean concentrations of PM2.5 and PM10 by 1307 

17% and 41%, respectively. The model failed to capture the peak concentrations from a dust 1308 

storm on 24 April. The aerosol scattering/absorption coefficients and AOD in the background 1309 

data showed strong low biases and weak correlations with the observed levels. The DA 1310 

systems effectively assimilate the surface particle concentrations, aerosol scattering 1311 

coefficients, and AOD. Some deficiencies in the DA analysis were related to the forward 1312 

model bias in transferring the aerosol mass concentrations to the aerosol optical parameter. 1313 

Simultaneous assimilation of the PM2.5 and PM10 concentrations improved the model aerosol 1314 

concentrations, with significant increases in the coarse particles; meanwhile, the analyzed 1315 

AOD was 42% lower than observed levels. The assimilation of AOD significantly improved 1316 

the AOD but overestimated the surface PM10 concentration by 68%. Assimilating the aerosol 1317 

scattering coefficient improved the scattering coefficient in the analysis but overestimated the 1318 

surface PM10 concentration by 37%. It therefore seems that WRF-Chem underestimated the 1319 

particle extinction efficiency. As a compensation, the DA system overestimated the aerosol 1320 

concentration to fit the observed optical values, yielding overly high particle concentrations. 1321 

 1322 

A notable problem was the assimilation of the absorption coefficient, which greatly 1323 

overestimated the monthly mean values by a factor of four in PM10. The aerosol absorption 1324 

coefficient was improved but was still 16% lower than observed values. The failure of DA 1325 

analysis when assimilating the absorption coefficient is associated with many factors, 1326 

including the biases of the model in aerosol particle mixture and aged dust, the uncertainties 1327 

in the imaginary part of dust refractive index, the uncertain background error of BC and the 1328 

likely low bias in anthropogenic emissions. The most effective DA is the simultaneous 1329 

assimilation of surface particle concentration and AOD, which provides the best overall DA 1330 

analysis. 1331 

 1332 

Our design of control variables allowed the DA system to adjust the aerosol chemical 1333 

compositions individually. However, the analyzed anthropogenic aerosol chemical fractions 1334 

were almost equivalent to the background chemical fractions. The reason is that the 1335 

hydrophilic aerosols have equivalent or comparable refractive indices and hygroscopic 1336 

parameters in the forward operator; they therefore have comparable adjoint operator values 1337 

when assimilating the aerosol optical data. It may be possible to separate the chemical 1338 

compositions based on their background errors. The model anthropogenic aerosols were low 1339 

at Kashi, probably owing to the low biases in the anthropogenic emissions. The low 1340 

background concentrations led to low background errors and hence few increments for all 1341 

chemical compositions. As a result, the chemical fractions of the anthropogenic aerosols 1342 

remained close to their background values. 1343 

 1344 

When assimilating surface particles and AOD, the instantaneous clear-sky ADRF (shortwave 1345 

plus longwave) at Kashi were –10.4 Wm–2 at the TOA, +20.8 Wm–2 within the atmosphere, 1346 

and –31.2 Wm–2 at the surface, respectively. Since the DA analyses still lowered the AOD 1347 

value and overestimated SSA, the aerosol radiative forcing values assimilating the 1348 

observations were underestimated in the atmosphere and at the surface. 1349 

Deleted: The biases of the model in aerosol particle mixture 1350 

and aged dustas well as the “missing” absorption of brown 1351 

carbon, accounted for the bias in absorption efficiency, which 1352 

would have worsened the DA analysis when assimilating the 1353 

absorption coefficient.¶1354 

¶1355 

Simultaneous assimilation of the multi-source observations 1356 

imposes a more definite constraint and helps improve model 1357 

parameters. Simultaneously assimilating the scattering and 1358 

absorption coefficients eliminated the defect of assimilating 1359 

the absorption coefficient. It also provided comparable 1360 

improvements for assimilating the surface particles and AOD; 1361 

the latter additionally improved the AOD analysis.1362 
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 1363 

The limitations that necessitate further research include: 1364 

(1) The desired binning strategy should link the circulation flow and particle emission 1365 

sources. A better hybrid DA coupled with the ensemble Kalman filter will be more effective 1366 

for estimating the aerosol background error. 1367 

(2) The observational error could be elaborated further. The PM10 included the 1368 

anthropogenic coarse particles, which should be separated from the dust originating from the 1369 

desert (Jin et al., 2019). We set the observation errors for PMx and AOD to the conventional 1370 

values. The observational errors of the nephelometer and aethalometer were slightly arbitrary 1371 

in this study, necessitating further consideration. 1372 

(3) The anthropogenic aerosols’ background errors are needed to harmonize for better 1373 

assimilation of the aerosol absorption coefficient or absorption AOD. 1374 

(4) The DA system was based on four-size bin MOSAIC aerosols, but it can be extended 1375 

to work with eight-size bin MOSAIC aerosols in WRF-Chem. When assimilating aerosol 1376 

optical data, the DA quality is strongly dependent on the forward model. The responses of our 1377 

DA analysis to the bias and uncertainty in the forward aerosol optical model in WRF-Chem 1378 

need further investigation. 1379 
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 1740 

 1741 

Figure 1. The workflow of aerosol DA in the revised GSI system for the sectional 1742 

MOSAIC aerosols in WRF-Chem. The contents in blue are the portions we 1743 

developed. The arrows in gray indicate the workflow of option 2 that we did in this 1744 

study. Only option 2 can assimilate the aerosol scattering/absorption coefficients. 1745 

Abbreviations: so4, sulfate; nh4, ammonium; oc, organic carbon; bc, black carbon; 1746 

oin, other inorganic matter; awc, aerosol water content; num, aerosol number 1747 

concentration; no3, nitrate; cl, chlorine; na, sodium; Esca, aerosol scattering 1748 

coefficient; Eabs, aerosol absorption coefficient. 1749 
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 1752 

 1753 

Figure 2. Schematic diagram of the binning strategy for modeling background error 1754 

covariance matrix on (a) the latitude binning data or (b) the gridded data; and the 1755 

vertical profiles of standard deviations (µg kg–1) of the coarse OIN component 1756 

concentration at 06:00UTC in April 2019 (c) on average over the latitude bins, (d) at 1757 

Kashi city grid and (e) at the Taklimakan desert grid (i.e., 1.5 degrees east to the 1758 

Kashi city). 1759 
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  1761 

 1762 

Figure 3. Background error standard deviations at Kashi grid (std, a-f, µg kg–1), 1763 

horizontal correlation length scales (hls, g-l, km), and vertical correlation length 1764 

scales (vls, m-r, km) at 00:00 UTC in April 2019 for the sectional sulfate (SO4), 1765 

nitrate (NO3), ammonium (NH4), organic aerosol (OC), black carbon (BC), and other 1766 

inorganic aerosols (OIN, including dust) in the model domain 2. The horizontal and 1767 

vertical correlation length were computed based on the latitude bins with a half degree 1768 

width. 1769 
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 1773 

 1774 

Figure 4. Topography in China (a) and the model domains with the grid resolution of 1775 

20 km (b) and 5 km (c) in WRF-Chem. 1776 
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 1778 

 1779 

Figure 5. Monthly mean PM10 concentration (µg m–3) and the streamlines of the 10-m 1780 

wind (m s–1) in April (a, b) and their daily mean anomalies (c, d) during a dust storm 1781 

on 24 April to the monthly mean values. Only the streamlines at the topographical 1782 

height lower than 2500 meters are shown for clarity. The rectangles in figures (b) and 1783 

(d) denote the fine model domain 2, which was the geographical range in the figures 1784 

(a) and (c). The black points indicate the Kashi city. 1785 
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 1791 

 1792 

Figure 6. Comparison of PM2.5 (µg m–3; a-c), PM10 (µg m–3; d-f), 870 nm AOD (g-i), 1793 

635 nm aerosol scattering coefficient (Esca, Mm–1; j-l), and 660 nm aerosol 1794 

absorption coefficient (Eabs, Mm–1; m-o) in the observation (black solid point), the 1795 

background simulation (orange solid point), and the DA analyses (blue line) when 1796 

assimilating the observed PM2.5 and PM10 (DA_PMx), AOD (DA_AOD), and 1797 

simultaneously assimilating PMx and AOD (DA_PMxAOD) at Kashi in April 2019. 1798 
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 1802 

Figure 7. Comparison of PM2.5 (µg m–3; a-c), PM10 (µg m–3; d-f), 870 nm AOD (g-i), 1803 

635 nm aerosol scattering coefficient (Esca, Mm–1; j-l), and 660 nm aerosol 1804 

absorption coefficient (Eabs, Mm–1; m-o) in the observation (black solid point), the 1805 

background simulation (orange solid point), and the DA analyses (blue line) when 1806 

assimilating the aerosol scattering coefficient (DA_Esca), aerosol absorption 1807 

coefficient (DA_Eabs), and absorption coefficient with the background error of BC 1808 

enlarged by a factor of 7 (DA_Eabs_BC*7) at Kashi in April 2019. 1809 
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 1812 

 1813 

Figure 8. Monthly mean aerosol concentrations (µg m–3) per size bin in the 1814 

background (NoDA) and the DA analyses when assimilating each individual 1815 

observation at Kashi in April 2019. 1816 
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 1831 

 1832 

Figure 9. Surface PM10 concentrations (µg m–3) in the observation (black), 1833 

background simulation (blue) and the DA analyses (red) at 00:00, 06:00, 12:00, 18:00 1834 

UTC in April when assimilating the observations of (a) PMx, (b) AOD, (c) aerosol 1835 

scattering coefficients (Esca), and (d) aerosol absorption coefficient (Eabs), 1836 

respectively. The DA_AOD had no analysis at 18:00 UTC that was local midnight. 1837 

Kashi is 6 hours ahead of UTC (UTC+6). 1838 
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 1840 

 1841 

Figure 10. Monthly mean biases in the ratios of AOD to PM10, aerosol scattering 1842 

coefficient (Esca, Mm–1), and aerosol absorbing coefficient (Eabs, Mm–1) at Kashi in 1843 

April 2019. 1844 

 1845 



 48 

 1846 

 1847 

Figure 11. Monthly mean vertical concentration profiles of (a) PM2.5 (µg m–3), (b) 1848 

PM10 (µg m–3) and their normalized concentration respect to the surface concentration 1849 

(c, d) at Kashi in April 2019. 1850 
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 1855 

 1856 

 1857 

Figure 12. Monthly mean chemical composition in percent (%) in the simulated PM10, 1858 

excluding the OIN component at Kashi in April 2019. 1859 
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Table 1. The observed surface particle concentration, aerosol scattering coefficient 1862 

(Esca), aerosol absorption coefficient (Eabs), and AOD used for the DA analysis and 1863 

their observational errors. 1864 

 1865 

 Data time range Wavelength (nm) Observation error (e) 

PM2.5 & 

PM10 

(µg m–3) 

Apr 1 – Apr 30  ! = #!!
" + !"" 

!! = 1.5 + 0.0075
∙ +,# 

!" = 0.5 ∙ !! ∙ -
.

3000 

d: grid spacing in 

meter 

AOD Mar 29 – Apr 25 440, 675, 870, 1020 e = 0.01/height×108 

Esca (Mm–

1) 

Apr 2 – Apr 30 450, 525, 635 e = 10 

Eabs (Mm–

1) 

Apr 2 – Apr 30 470, 520, 660 e = 10 

 1866 

  1867 



 51 

Table 2. The monthly mean values of the PM2.5 and PM10 concentrations (µg m–3), 1868 

635 nm aerosol scattering coefficient (Esca, Mm–1), 660 nm aerosol absorption 1869 

coefficient (Eabs, Mm–1) and 870 nm AOD in the background and analysis data and 1870 

their correlation values (in brackets) with the observations at 00:00, 06:00, 12:00, 1871 

18:00 UTC at Kashi in April 2019. The underlined number in bold denotes the 1872 

monthly mean value that is not significantly different from the observation, and the 1873 

dashed line denotes an insignificant correlation. Both the statistical tests of the mean 1874 

difference and correlation are conducted at the significance level of 0.05. 1875 

 1876 

DA experiment 
PM2.5 

(µg m–3) 
PM10 

(µg m–3) 
870 nm AOD 635nm Esca 

(Mm–1) 
660nm Eabs 

(Mm–1) 
Observation 91.0 323.2 0.66 231.5 47.4 
Background 75.3 (0.28) 190.7 (0.24) 0.24 (0.60) 123.3 (0.36) 12.9 (0.34) 
      
DA_PMx 89.3 (0.89) 329.3 (0.99) 0.38 (0.35) 170.4 (0.89) 15.8 (0.42) 
DA_AOD 92.6 (0.35) 541.7 (0.31) 0.59 (0.98) 222.6 (0.61) 17.0 (0.26) 
DA_PMx_AOD 103.6 (0.61) 372.7 (0.86) 0.59 (0.98) 192.2 (0.86) 16.7 (0.45) 
      
DA_Esca 103.6 (0.67) 442.1 (0.93) 0.53 (0.62) 192.1 (0.97) 16.5 (0.47) 
DA_Eabs 298.8 (0.36) 1281.2 (0.34) 1.73 (----) 612.2 (0.54) 40.0 (0.98) 
DA_Eabs_BC*7 106.7 (0.48) 463.7 (0.45) 0.75 (0.50) 226.2 (0.52) 51.9 (0.90) 

 1877 

  1878 
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Table 3. The Ångström exponent based on the AOD at 440 nm and 1020 nm and the 1879 

surface single scattering albedo (SSAsrf=Esca525/(Esca525+Eabs520)) at Kashi in 1880 

April 2019 1881 

 1882 

 440-1020 nm Ångström 
exponent  

SSAsrf  

Observation 0.18 0.78 

Background 0.54 0.86 

   

DA_PMx 0.30 0.88 

DA_AOD –0.01 0.88 

DA_PMx_AOD 0.17 0.89 

   

DA_Esca –0.15 0.88 

DA_Eabs –0.01 0.90 

DA_Eabs_BC*7 0.33 0.82 

 1883 

  1884 
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Table 4. The ratios of AOD, aerosol scattering/absorption coefficient to PM10 1885 

concentration (mean ± standard deviation) in the observations, the model background 1886 

data, and the DA analyses. 1887 

 1888 

 Ratios of 870 nm 

AOD to PM10 

(µg–1 m3) 

Ratios of 635 nm 

aerosol scattering 

coefficient (Esca) 

to PM10 (Mm–1 µg–

1 m3) 

Ratios of 660 nm 

aerosol absorption 

coefficient (Eabs) 

to PM10 (Mm–1 µg–

1 m3) 

Observation 0.0030±0.0020 1.05±0.57 0.25±0.22 

Background 0.0013±0.0009 0.65±0.18 0.09±0.05 

    

DA_PMx 0.0013±0.0008 0.61±0.22 0.07±0.05 

DA_AOD 0.0013±0.0011 0.51±0.24 0.05±0.04 

DA_PMx_AOD 0.0015±0.0010 0.61±0.24 0.06±0.05 

    

DA_Esca 0.0015±0.0010 0.52±0.21 0.05±0.05 

DA_Eabs 0.0015±0.0010 0.58±0.37 0.05±0.06 

DA_Eabs_BC*7 0.0023±0.0085 0.74±0.51 0.30±0.48 

 1889 

  1890 
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Table 5. The mean instantaneous clear-sky shortwave (SW), longwave (LW) and the 1891 

net (SW+LW) direct radiative forcing (Wm–2) at the top of atmosphere (TOA), in the 1892 

atmosphere (ATM) and at the surface (SRF) in the background and the simulations 1893 

restarted from the analyses of DA_PMx and DA_PMx_AOD at one hour after the 1894 

analysis times of AOD DA at Kashi in April 2019. 1895 

 1896 

 SW (Wm–2) LW (Wm–2) SW+LW (Wm–2) 

 TOA ATM SRF TOA ATM SRF TOA ATM SRF 

Background -7.0 +17.0 -24.0 +0.3 -2.9 +3.2 -6.7 +14.1 -20.8 

DA_PMx -8.5 +22.7 -31.2 +0.6 -6.3 +6.9 -7.9 +16.4 -24.3 

DA_PMx_A

OD 

-11.4 +28.6 -40.0 +1.0 -7.8 +8.8 -10.4 +20.8 -31.2 

 1897 

 1898 


