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Abstract. Sixty days after the lockdown of Hubei province, where the coronavirus was first reported, China’s true recovery from 

the pandemic remained an outstanding question. This study investigates how human activity changed during this period using 15 

observations of surface pollutants. By combining surface data with a three-dimensional chemistry model, the impacts of 

meteorological variations and variations in yearly emissions control are minimized, demonstrating how pollutant levels over China 

changed before and after the Lunar New Year from 2017 to 2020. The results show that the reduction in NO2 concentrations, an 

indicator of emissions in the transportation sector, was clearly deeper and longer in 2020 than in normal years, and started to 

recover after February 15. By contrast, PM2.5 emissions had not yet recovered by the end of March, showing a reduction around 20 

30% compared with normal years. SO2 emissions had not affected significantly by the pandemic. Additional model study using a 

top-down emissions adjustment still confirms a reduction around 25% in unknown surface PM2.5 emissions over the same period, 

even after realistically updating SO2 and NOx emissions. This evidence suggests that different economic sectors in China may be 

recovering at different rates, with the fastest recovery in transportation and a slower recovery likely in agriculture. The apparent 

difference between the recovery timelines of NO2 and PM2.5 implies that monitoring a single pollutant alone (e.g. NOx emissions) 25 

is insufficient to draw conclusions on the overall recovery of the Chinese economy. 

1. Introduction 

Measuring pollutants can provide empirical and immediate information on human activity compared with traditional survey-based 

measures, although interpreting spatial and temporal trends in such data is complex. The novel coronavirus SARS-CoV-2 has 

struck globally since it was first reported in December 2019 in China, the first country to be affected. After strong efforts by the 30 

Chinese government, including the lockdown of Hubei province, the outbreak seems to have eased as of the end of March 2020. 

New daily infections in Hubei have significantly reduced, with reported new cases dropping to zero from the thousands of new 

cases reported daily in February (Worldometer, 2020), and lockdown restrictions have been eased. As countries around the world 

struggle to slow outbreaks of the pandemic disease, it becomes important to observe and analyze signals of recovery in economic 

and public activity in China.  35 

A large proportion of the surface pollutants in China originate from anthropogenic emissions by five major economic sectors: 

transportation, industry, power generation, residential (cooking and heating), and agriculture (Li et al., 2017). Emissions changes 
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for different economic sectors can be approximately inferred based on changes in ambient concentrations of specific pollutants if 

uncertainties associated with real-world emissions and meteorological variations can be reduced or accounted for. NO2 

concentration is strongly associated with nitrogen oxide (NOx = NO + NO2) emissions (Beirle et al., 2011; Georgoulias et al., 40 

2019), and, since mobile sources (transportation) account for a large proportion of NOx emissions, NO2 concentrations can offer a 

good proxy for traffic in urban areas (Li et al., 2017). Meanwhile, SO2 emissions are strongly related to the industrial and residential 

sectors. The agricultural sector plays a critical role in tropospheric chemistry, providing most of the ammonia emissions that 

contribute to the formation of inorganic aerosols (Pinder et al., 2007). 

Surface observations of pollutants provide an independent dataset that can be compared with socioeconomic data based on surveys. 45 

Three main components affect variations in pollutant concentrations: (1) natural variations (e.g. short-term synoptic weather, 

interannual meteorological variations, and long-term climate change) , (2) long-term trends due to emissions control, and (3) 

sporadic socioeconomic events (Kim et al., 2017b)(Kim et al., 2017b). The coronavirus offers a case of an emissions change caused 

by an unprecedented, isolated social event. Therefore, signals from these first two components—meteorological variations and 

year-on-year emissions controls—must be minimized to isolate the true signal of the impact of the pandemic on air pollutant 50 

concentrations. A state-of-the-art three-dimensional atmospheric chemistry model can help to separate these confounding factors. 

This study attempts to estimate the impact of the pandemic on Chinese regional air quality, thus inferring changes in social activity 

based on observations of surface pollutants. 

Although early studies have reported Chinese air quality during the period in question (Bao and Zhang, 2020; Chauhan and Singh, 

2020; He et al., 2020; Huang et al., 2020; Li et al., 2020; F. Liu et al., 2020; Q. Liu et al., 2020; Wang et al., 2020, 2020; Wang 55 

and Su, 2020; Xu et al., 2020)(Bao and Zhang, 2020; Chauhan and Singh, 2020; He et al., 2020; Huang et al., 2020; Li et al., 2020; 

F. Liu et al., 2020; Q. Liu et al., 2020; Wang et al., 2020; Wang and Su, 2020; Xu et al., 2020), it remains very challenging to fully 

isolate the impact of the pandemic on the region’s air quality. To quantitatively assess changes in major surface pollutants and 

their precursor emissions over China during the pandemic period, we conducted a series of analyses using surface observations 

and atmospheric chemistry models, with simulations based on a bottom-up emissions inventory and top-down assimilated 60 

emissions. Section 2 describes the observational data recorded from surface monitors and satellite, as well as the baseline modeling 

methodology. Section 3 describes the methodology for processing time-series data, estimating top-down emissions, and assessing 

sectoral impacts of emissions. Section 4 presents and discusses the results. Finally, Section 5 summarizes the findings and their 

implications. 

2. Data 65 

2.1 Observations 

Surface observation data were obtained from the China National Environmental Monitoring Center (CNEMC; data available at 

http://www.pm25.in). Hourly ambient air concentration data for PM10, PM2.5, CO, NO2, O3, and SO2 were available for 1,571 

sites (over China) and 1,459 sites (within the study domain; Figure 1). After removing sites with less than 80% data availability 

for each year (2017-2020, ± 60 days of Lunar New Year (LNY)), the analysis used observations from 1,332 sites. Data processing 70 

procedures are explained in Section 3.1 and further discussed in Section 4.4. 

2.2 Satellite 

The TROPOspheric Monitoring Instrument (TROPOMI) NO2 vertical column-density, level-2 data (S5P_L2_NO2) were obtained 

from NASA GES DISC (http://tropomi.gesdisc.eosdis.nasa.gov). TROPOMI is a hyperspectral spectrometer onboard the 
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Sentinel‐5P satellite, with wavelength coverage over ultraviolet to visible (270 nm to 495 nm), near infrared (675–775 nm), and 75 

shortwave infrared (2305–2385 nm) wavelengths (Eskes et al., 2019; van Geffen et al., 2019). High-quality pixels from level-2 

data (3.5×7 km resolution at the nadir) were selected using the quality flags provided by the product (qa_value > 0.75) and then 

spatially regridded into the study domain using a conservative spatial-regridding method that preserves mass during interpolation 

(Kim et al., 2018, 2020, 2016)(Kim et al., 2018, 2020, 2016). 

2.3 Model 80 

Meteorological and atmospheric chemistry transport models were used over East Asia with 27-km horizontal resolution. The 

Weather Research and Forecasting Model (WRF, version 3.4.1) was used for meteorological simulations (Skamarock and Klemp, 

2008). The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Protection (NCEP) 

Final Analysis (FNL) product (NCEP, 2000) provided the initial and boundary conditions for the WRF simulations. For chemistry 

simulations, CMAQ (version 4.7.1) (Byun and Schere, 2006), the Meteorology–Chemistry Interface Processor (MCIP, version 85 

3.6) (Otte and Pleim, 2010), and the Sparse Matrix Operator Kernel Emission (SMOKE) modeling framework were used, 

employing the meteorological inputs provided by the WRF simulations. Table 1 details the modeling configurations, and Figure 

S1 compares models with observations. The models provide a reasonably realistic simulation of atmospheric chemical and physical 

processes over the considered domain, especially in terms of their daily variations from 2017 to 2019 (e.g., R = 0.91~0.94 for 

PM2.5, see Emery et al. (2017) for general model performance guidance). However, in 2020, as the effects of the pandemic began 90 

to take hold, the chemical model’s predictions—based on typical (as opposed to pandemic-influenced) emissions—systematically 

overpredict pollutant concentrations, consistent with a pandemic-influenced reduction in emissions.  

2.4 Emissions inventory 

This study used two sets of emissions inventories, the Comprehensive Regional Emissions Inventory for Atmospheric Transport 

Experiment (CREATE, version 2.3) (Jang et al., 2019) and the Model Inter-Comparison Study for Asia (MICS-Asia) emissions 95 

inventory (MIX inventory, 2010) (Li et al., 2017). While the CREATE inventory is based on the latest information, including the 

2016 KORUS-AQ campaign (https://espo.nasa.gov/korus-aq), the MIX inventory has been tested in many diverse applications (J. 

Li et al., 2019; K. Li et al., 2019; Zhang et al., 2017). The time series analysis in Figure 2 (discussed below) was based on the 

CREATE emissions inventory, but the results of the analysis did not depend in any significant way on a choice between these two 

base inventories. The CREATE inventory is provided as an annual mean for each Chinese province for the year 2016 and the 100 

SMOKE preprocessor was used to convert the inventory to hourly model-ready inputs. The base model simulations use these 2016 

emissions for the entire 2017-2020 modeling period. 

3. Method 

This section describes the following aspects of the analysis: (1) data-processing procedures for analyzing the time series, (2) 

emissions-adjustment procedures to update SO2 and NOx emissions to near real-time, and (3) brute-force modeling procedures to 105 

estimate Chinese emissions by sector. It should be noted that the time series analysis (discussed in Section 4.1) utilizes fixed 

emissions inventory (i.e. bottom-up emissions inventory) and the emission adjustment experiment (Section 4.2) utilizes 

observation-based top-down emissions. Sectoral emissions estimations method is for Section 4.3.  

변경된 필드 코드
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3.1 Time-series analysis 

Four types of variation (meteorological, weekly, yearly, and the Chinese spring festival) were reduced or accounted for in the 110 

surface observations, as follows. Meteorological influences were reduced by combining surface data with output from a three-

dimensional chemistry model to calculate estimated emissions. Since the model simulations with fixed emissions inventory respond 

to the variations of meteorological conditions, we can infer the relationship between emissions and ambient pollutant 

concentrations under a specific weather condition. By applying this relationship, we convert the changes of observed concentrations 

into the changes of emissions. Weekly variations, a unique feature of anthropogenic emissions, were removed by using a seven-115 

day moving average. The impact of the Chinese spring festival, the biggest traditional holiday celebrating Lunar New Year (LNY), 

was normalized by rearranging the time series to center on the LNY in each solar year. The LNY alignment was necessary to 

account for the irregular happening of the LNY dates. Seven-day moving average filtering was also required to avoid unfair 

comparisons between different weekdays after the LNY alignment. Otherwise, we may compare different weekdays for different 

year (e.g. 2020 LNY on January 25, Saturday and 2019 LNY is February 5, Tuesday).  Figure S4 shows that the seven-day moving 120 

average filter smooths but does not significantly change the time-series results. Finally, yearly emission variations were removed 

by setting a base period (-60 to -10 days before LNY) and calculating relative changes from the average of the base period.  

We followed the data-processing procedures suggested by Bae et al. (2020)Bae et al. (2020) for their emissions-updating system 

(hereafter BAE2020). First, the observational and modeled data were paired and tested, and observation sites with more than 20% 

of values missing were discarded. To avoid over-weighting dense urban sites, observations occurring within the same model grid 125 

cell were averaged. Second, weekly variations were removed using seven-day moving averages, and the impact of the Chinese 

spring festival was normalized by rearranging the time series to center on LNY in each year. Third, meteorological variations were 

removed by applying the ratio between observed and modeled concentrations. Using a simple linear assumption, observed pollutant 

concentrations were combined with the results of the chemical model to create estimates of actual emissions that are less sensitive 

to meteorological variations. Use of the linear assumption in the concentration-to-emission conversion is further discussed in 130 

Section 4.4 The total estimated emissions, 𝐸௦௧, and their relative variations, 𝑟𝐸௦௧, were calculated as: 

 

 
𝐸௦௧ሺ𝑡ሻ ൌ 𝐸ௗ ∙

𝐶௦ሺ𝑡ሻ
𝐶ௗሺ𝑡ሻ

 
(1) 

   

 
𝑟𝐸௦௧ሺ𝑡ሻ ൌ

𝐸௦௧ሺ𝑡ሻ

∑ 𝐸௦௧ሺ𝑡ሻ 𝑛௦⁄௧ୀ௦
ൈ 100% 

(2) 

 

where C is the daily pollutant concentration; t is days from LNY; base and 𝑛௦ are the pre-LNY base period (shown in Figure 

2) and its number of days, respectively; and 𝐸ௗ is the model emissions. To normalize the yearly changes, a base period (-60 to 135 

-10 days before LNY) was set, with relative changes calculated from the average of that base period (i.e., 𝑟𝐸௦௧ሺ𝑡ሻ). The impact of 

the pandemic was inferred by calculating the difference in estimated emissions between normal years and 2020. Since the model 

uses a fixed emissions inventory for each year, 𝐸ௗ cancels out in the comparison.  

For the spatial analyses of the data (e.g. Figure 3), points data were converted to area format. Similar to the time series data 

processing, the observational and modeled data were paired and tested. Considering location of each paired data set, we assigned 140 

point data to their corresponding Chinese prefecture. By averaging all concentrations in each prefecture, we constructed the 

prefecture-level concentration data set (for each prefecture polygon), which were then converted into domain grids using a 

conservative spatial-regridding technique. Section 4.4 further discusses the data-processing procedures. 

서식 지정된 표

서식 지정된 표
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3.2 Top-down emissions adjustment 

For the second analyses (discussed in Section 4.2), we updated major pollutant emissions to more realistic level and analysed 145 

simulated chemical behaviors. To incorporate a realistic change in emissions from 2016 to 2020, we applied observation-based 

emissions adjustment factors to the 2016 CREATE emissions inventory to reproduce emissions in 2020. In general, model 

emissions can be adjusted based on the ratios between observed and modeled surface concentrations: 

 

 𝐸ௗ    

𝐸ௗ
ൌ 𝛽 ∙

𝐶௦
𝐶ௗ

 
(3) 

where β is a sensitivity factor in the emission-to-concentration conversion. β is close to 1 if less secondary chemical reactions are 150 

involved. BAE2020 assumed a fixed β = 1 to update SO2 emissions, and they demonstrated that the adjusted emissions effectively 

reproduced surface SO2 concentrations over China.  

 

where β is a sensitivity factor in the emission-to-concentration conversion. β is close to 1 if less secondary chemical reactions are 

involved. BAE2020 assumed a fixed β = 1 to update SO2 emissions, and they demonstrated that the adjusted emissions effectively 155 

reproduced surface SO2 concentrations over China. Similar approaches were also confirmed to be effective for the NOx emissions 

adjustment over the same East Asian domain using satellite-based measurements of NO2 column densities (Bae et al., 2020a; 

Chang et al., 2016). 

While this simple assumption works practically, we tried to conduct the emission adjustment processing more carefully, 

considering the unprecedent changes of chemical environment during the pandemic period. We extend the approach of BAE2020, 160 

offering two major enhancements. First, we calculate daily emissions-adjustment factors to represent the rapid changes in emissions 

under the pandemic situation. We applied 14-day moving averages to avoid uncertainties caused by insufficient data points day to 

day. Second, we calculated spatial and temporal variations in β and then applied these to the emissions-adjustment factors. Table 

2 comparecompares the data-processing steps used in this study with those used in BAE2020. 

The β values are calculated as follows. In the real world, the sensitivity of concentration to changes in emissions is not unique or 165 

spatially homogeneous (i.e., β ≠1), especially for NOx emissions and NO2 concentrations. Previous studies have calculated β values 

for a model by using changes in concentration caused by a certain amount of perturbed emissions (e.g., Lamsal et al., 2011 used a 

15% emissions pertubation). Similarly, we calculated β values using outputs of simple emissions adjustment run (i.e., β = 1). For 

this simulation, adj1, we applied adjusted emissions by using the ratio of observed and modeled concentrations,β values for specific 

location and time can be calculated if we have two model simulations with different emissions applied. Previous studies have 170 

calculated β values for a model by using changes in concentration caused by a certain amount of perturbed emissions (e.g., Lamsal 

et al., 2011 used a 15% emissions pertubation).  

To obtain more realistic β values, we have conducted two model simulations, base and adj1 runs. First, the base model simulation 

was conducted using normal emissions inventory, CREATE, we have introduced previously. The second simulation, adj1 run, was 

conducted using perturbed emissions to estimate how the model responds according to the change of emissions. We adjusted 175 

emissions according to the ratio between observed and modelled surface concentrations, so we can reproduce more realistic 

chemical environment.  

From these two simulations, the base and adj1 runs, we calculate the emissions-to-concentration sensitivity, β values, in specific 

spatial and temporal scale – for each Chinses prefecture daily. β values are calculated as, 

 180 

서식 지정된 표
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 𝐸ௗଵ    

𝐸௦
ൌ
𝐶௦
𝐶௦

 𝛽,௧ ൌ
ሾ𝐸ௗଵ /𝐸௦ሿ,௧

ሾ𝐶ௗଵ /𝐶௦ሿ,௧
 

(4) 

 

 

where basep and adj1 runs denote CMAQ simulations usingt stand for indices of Chinese prefectures and specific dates. Using 

calculated β values for each prefecture and date, we finally obtain the CREATE emissions and adjusted emissions inventories, 

respectively. As Equation (3) can be written for adj1 simulation,for the second and final simulations, adj2 run. 185 

 

 𝐸ௗଵ    

𝐸௦
ൌ 𝛽 ∙

𝐶ௗଵ
𝐶௦

ሾ𝐸ௗଶሿ,௧ ൌ 𝛽,௧ ∙ 
𝐶௦
𝐶௦

∙ 𝐸௦൨
,௧

 

 

(5) 

 

 

 

From equations (4) and (5), β values are calculated as, 𝛽 ൌ 𝐶௦/𝐶ௗଵ. The newly calculated β values are used to find emission-190 

adjustment factors in We further discuss the next simulation (adj2): 

 𝐸ௗଶ    

𝐸௦
ൌ 𝛽 ∙

𝐶௦
𝐶௦

ൌ
𝐶௦
𝐶ௗଵ

∙
𝐶௦
𝐶௦

 
(6) 

where adj2 indicates characteristics of the second and final simulation for the top-down emissions-adjustment method. 

From here, β can be interpreted as an addition-adjustment factor. If emissions modification in adj1 resulted in the same percentage 

change in concentrations, Cobs / Cadj1 = 1, we do not need the secondary adjustment. If the simulated to-concentration from adj1 is 

smaller (larger) than the observations, we need to increase (reduce) the amount of emissions. This procedure was applied to create 195 

new 2020 emissions of both SO2 and NOx emissions.  sensitivity in Section 4.4.2. 

In most cases, calculated β values are close to one (Figure S4), implying that the simple assumption β = 1 in BAE2020 remains 

effective. β values for NOx emissions are slightly higher than those for SO2 emissions (Figure S5), which implies that more 

secondary reactions are involved in tropospheric NOx chemistry. 

Both enhancements to the top-down simulations—β values and the daily application of emission-adjustment factors—clearly 200 

improved the model’s performance, especially in the pre-LNY periods. While the monthly emissions adjustments failed to 

represent the rapid changes in NO2 concentrations after January 25, 2020 (Figure S6), the daily adjustment method successfully 

modeled these changes (Figure 4). General underestimation of NO2 concentrations was corrected using the β values (Figure 4). 

The improved model performance is confirmed by comparing spatial distributions and scatter plots before and after these 

adjustments (Figure S7-9). 205 

3.3 Estimation of sectoral contributions 

The contributions of emissions from each sector to surface PM2.5 concentrations over China were estimated using the brute-force 

method (BFM), an approach that uses changes in modeled outputs as a result of perturbed emission inputs (Burr and Zhang, 2011). 

The MIX emissions inventory provides information on five sectors: residential, industry, power generation, transportation, and 

agriculture. Sectoral contributions were calculated by applying the perturbed emissions for each sector: 210 
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Contr. ሺsectorሻ ൌ

ሺCୠୟୱୣ െ C∆,ୱୣୡ୲୭୰ሻ/∆E
Cୠୟୱୣ

ൈ 100 % 
(7) 

 

where C is the surface PM2.5 concentration and ∆E is the ratio of the emissions perturbations. A 50% reduction was chosen to 

perturb emissions for each individual sector. Application of the BFM to East Asian air quality models and a discussion of its 

uncertainties has been presented elsewhere (Kim et al., 2017a)(Kim et al., 2017a). 215 

4. Results 

4.1 Time-series analysis 

Reducing meteorological, weekly, and yearly variations, as well as variations resulting from the Chinese spring festival made the 

comparison of pandemic-influenced surface observations to normal conditions more robust and useful. Estimated NOx emissions 

(Figure 2) display variations from the spring festival season. From 2017–2019, the estimated NOx emissions demonstrate a clear 220 

reduction during the festival period (by up to 45% between -10 and +20 days from LNY). In 2020, this reduction is slightly deeper 

and continues longer, implying that the coronavirus outbreak further reduced traffic in China. The difference between the estimated 

emissions in the 2017–2019 time series and those in the 2020 time series in Figure 2 reflects the relative significance of the impact 

of the coronavirus (p < 0.01 for t-test of comparison after LNY). 

Interestingly, the 2020 time series (that is, the combined effect of the spring festival and the coronavirus) remains flat from the 225 

LNY to February 15. As both effects likely overlapped, they appear inseparable during the period. The maximum impact from the 

coronavirus seen in the data is a 58% reduction on February 15, 2020 from that seen in prior, baseline years (2017–2019). The 

level of NOx emissions from February 1 to 15 (close to a 50% reduction) might suggest a floor level for reduced emissions under 

current conditions in terms of technology and infrastructure. This might have important implications for chemical modeling and 

emissions control, perhaps implying a floor for emissions reductions that China can realistically reach under current conditions. 230 

The blue line represents a time series from Hubei only (46 sites), showing, as would be expected, that the impact in Hubei has been 

more significant and sustained. 

The reduced NOx emissions began to increase after February 15, almost recovering to their normal level by the end of March 2020. 

Hence, the impact of the coronavirus pandemic on NOx emissions in China lasted almost two months. Figure 3 shows the spatial 

distribution of the estimated changes in NOx emissions from the base period to the period of maximum impact, January 25–235 

February 14, 2020, and the recovery period, February 24–March 15, 2020. Just after LNY, NOx emissions strongly reduce across 

China, but their inferred recovery is spatially inhomogeneous. As shown in Figure 3, Hubei province continued to show a strong 

reduction (by more than 50%) compared with the pre-LNY level, even in the recovery phase (period 2). Other regions show various 

patterns in NOx levels compared with previous years. These observations are consistent with space-borne, remote-sensing 

measurements from the TROPOMI (Figure S1). Similar to the surface observations in Figure 3, the spatial distributions of NO2 240 

column densities during the period of maximum impact (January 25 – February 14) and the recovery period (February 24 – March 

15) were generated as changes from the baseline period (November 26, 2019 – January 15, 2020). 

The impact of the virus may actually have begun before the spring festival. In normal years (2017–2019), variation in estimated 

pre-LNY baseline period (-60 to -10 days) NOx emissions is relatively small, because the model uses fixed emissions and weekly 

variations have already been removed. However, the estimated emissions in 2020 are relatively low starting from about 15 days 245 

before LNY, and this relative reduction is more pronounced in Hubei. This suggests that our baseline period in 2020 already 

서식 지정된 표
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includes a partial coronavirus impact. If this is true, the impact of the pandemic would be even stronger than inferred here, as it is 

based on a year-by-year comparison of concentrations during and after the typical-year base-period. 

Unlike the temporal trend in NOx emissions and their spatial distribution, comparison of changes in the PM2.5 level suggests a 

different story (Figure 2b). Contrary to NOx emissions, PM2.5 concentrations typically show a slight increase near LNY, likely 250 

due to increased PM2.5 emissions from fireworks, a long-held tradition in China (Kong et al., 2015), and show only a relatively 

moderate reduction from typical levels (by 10–20%) over the remainder of the spring festival. Unlike NOx emissions, the case of 

PM2.5 involves both direct emissions of particulate matter and gas-to-particle conversion of emitted precursors (e.g., SO2, NOx, 

NH3, VOCs) mediated by atmospheric chemical transformations. As discussed in the Methods section, we assume the same 

approximate relationship for PM2.5 as with NOx between the ambient observations and their associated emissions. This approach 255 

suggests that emissions decreased by roughly 30% from normal levels through the end of March to reach 72.7 ± 6.6% of the 2017–

2019 level from February 4 to March 25, 2020. Interestingly, the pandemic does not seem to have significantly affected SO2 

emissions (see Figure S3), suggesting that the pandemic’s effects on the power generation and industrial sectors have been 

relatively small. 

4.2 Experiment with updated SO2 & NOx emissions 260 

As discussed in Section 3.2 above, we used an alternative approach to investigate unidentified PM2.5 emissions, specifically 

applying more realistic SO2 and NOx emissions adjustments. Using this methodology, we repeated CMAQ simulations with SO2 

and NOx emissions adjusted based on surface measurements. Daily and prefecture-level emission-adjustment factors were 

calculated and applied to the baseline emissions inventory. The two CMAQ simulations—a baseline simulation with the CREATE 

emissions inventory and an adjustment simulation with updated emissions—were both compared with observations from surface-265 

monitoring sites (Figure 4). Individual site comparisons are also available in Figure S11. 

For both SO2 and NO2 concentrations, the CMAQ simulation with adjusted emissions performed well, reproducing observed 

variations in surface concentrations. It should be noted that the CREATE v2.3 emissions inventory we used was constructed for 

2016 and applied to a 2020 simulation. Before LNY, simulated NO2 concentrations with both the baseline and adjusted emissions 

inventory agreed well with observations, implying that there were no significant changes in the NOx emissions level between 2016 270 

and 2020. Near LNY, the baseline NO2 simulations differ significantly from observations, while the simulation with adjusted 

emissions successfully reproduced the huge reductions of the LNY and pandemic period. The difference between the baseline and 

adjusted simulations almost disappears at the end of March, consistent with the result of the time-series analysis (Figure 2). On 

the other hand, the baseline SO2 simulations greatly overestimate observations by two or three times, implying that nominal, real-

world SO2 emissions in 2020 are much smaller than those reflected in the 2016 emissions inventory. By applying the top-down 275 

adjustment described here, simulations could successfully reproduce surface SO2 concentrations, reducing RMSE by 93% from 

9.19 to 0.62 ppb. The updated SO2 and NOx emissions inventories appear to successfully reproduce variations in surface PM2.5 

concentrations, even after the start of LNY celebrations. However, in early February, as the impact of the COVID pandemic became 

more significant, the baseline run (with the CREATE emissions inventory) does not simulate a sudden drop in PM2.5 observations, 

while the adjusted emissions run does so.  280 

A closer look, however, reveals that the real trend in PM2.5 emissions cannot be explained by the change of two major inorganic 

aerosol precursors, SO2 and NOx. Figure 5 depicts the time series of normalized mean biases (NMB) of surface PM2.5 

concentrations. Before LNY, PM2.5 NMB is mostly negative, showing the adjusted emission simulation slightly underestimates 

particulate matter. After LNY, PM2.5 NMB changes prominently, showing the simulation clearly overestimates by about 20% NMB 

in PM2.5 concentration. Before and after LNY, PM2.5 NMB moves by 25.1%, from -4.1% to 21.0%, implying that the model 285 
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suddenly overestimates PM2.5 concentrations by 25% after LNY. In other words, unknown, non-modeled emissions (that is, non-

SO2 and non-NOx emissions) clearly reduce during the pandemic period (February and March) enough to account for 25% of total 

PM2.5 concentration at baseline. This result is consistent with findings (Section 4.1) that changes in SO2 and NOx emissions alone 

cannot explain the reduced PM2.5 concentrations in March. 

4.3 Sectoral contributions to emissions 290 

One remaining question is why the recovery of NOx emissions and unchanged SO2 emissions at the end of March did not lead to 

the recovery of PM2.5, which might be explained by considering the time-varying emissions contribution of each economic sector. 

Sensitivity tests using the CMAQ model reveal that the residential and agricultural sectors are most dominant in the early months 

of the year (Figure 6), accounting for more than 60% of surface PM2.5 concentration over China. As emissions in the residential 

sector are primarily from cooking and heating with anthracite coal and wood, emissions which continue even during a pandemic, 295 

one possible explanation is that emissions from the agricultural sector reduced as a result of pandemic-related delays in planting 

and fertilizing. 

February is the start of the spring-crop planting period in southern China. The coronavirus outbreak could have impacted both field 

crops and livestock farms. Inputs, such as fertilizer and animal feed, have reportedly been scarce as a result of transportation 

disruptions, and seasonal workers have reportedly been lacking due to quarantine controls or fears (Quanying, 2020; Yu, 2020; 300 

Zhang and Xiong, 2020). Agricultural activities that generate particulate matter, such as biomass burning to clear debris and the 

generation of airborne dust during tilling, are reduced in intensity during the pandemic. Reduced NH3 emissions as a result of 

diminished livestock farming activities might also be a factor leading to lower PM2.5 concentrations. 

4.4 Further discussion of discussions on the methods 

4.4.1 On the data processing of time series analysis 305 

We further discuss data-processing procedures here. Figure 7 presents a time series of surface pollutants proceeding through data-

processing steps. Even in raw format, NO2 exhibits clear impacts from the pandemic. Impacts on other pollutants (CO, PM10, and 

PM2.5), however, are not easily recognizable until confounding signals are fully removed. Interpreting SO2 concentration data is 

particularly illuminating. While 2020 SO2 concentrations are substantially lower than those of previous years, the time series 

obtained after the data processing described here suggests that SO2 emissions are mostly consistent before and after LNY. That is, 310 

lower SO2 concentrations in 2020 seem to be a continuation of year-over-year reductions and not a result of the pandemic. 

Note that the various instances of linear assumptions used in this analysis should be interpreted with caution especially considering 

its spatiotemporal resolution and chemical characteristics. Variations in emissions and in chemical and physical processes, 

including chemical reactions, transport, and dispersion, can create large gradients on local scales that are likely poorly represented 

in the WRF and CMAQ modeling performed here, even as their importance is somewhat smoothed over regional and nationwide 315 

scales. Observed concentrations of a pollutant are generally proportional to the emissions associated with that pollutant; 

conceptually, a simple linear relationship between emissions and pollutants is assumed. For the pollutants NO2 and SO2, these are 

NOx and SO2 emissions, respectively. BAE2020 demonstrated that this concentration-to-emission conversion method can be used 

effectively at the Chinese prefecture level. Discussion of the spatial representativeness of Chinese surface-monitoring data and 

associated uncertainties is also presented in BAE2020. For inferring PM2.5-related emissions, the analysis is more complicated, 320 

because PM2.5 results from both primary and secondary (precursor) emissions. While the pollutant–emissions relation for PM2.5 is 

nonlinear, especially over relatively small spatial and temporal scales, it is still approximately valid over larger geographical 

regions and longer time periods.  

변경된 필드 코드
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The validity of the linear assumption was tested through a model sensitivity analysis. A CMAQ simulation with 50% reduced 

emissions yielded approximately 50% reduction in surface PM2.5 concentrations over most regions in China (Table S1). Taken as 325 

a whole, surface PM2.5 concentrations are roughly proportional to overall emissions. Thus, the simplifying assumption of linearity 

appears reasonable for the more complex PM2.5 case, generating a time series of estimated pollutant emissions without 

meteorological variations. Nevertheless, PM2.5 emissions estimated with this analysis are necessarily more uncertain than are NOx 

emissions. Notably, Table S1 also shows that CMAQ simulations with adjustments in SO2, NOx, and NH3 individually showed 

disproportionately lower responses, suggesting that surface PM2.5 concentrations are influenced by other emissions (e.g., elemental 330 

carbon and organic carbon emissions) and/or nonlinear processes that likely vary with atmospheric chemistry regime.  

4.4.2 On the emissions adjustment experiment 

As stated in the methodology section, we further discuss here the emissions-to-concentration sensitivities (i.e. β). The β values can 

be calculated using any two model simulations based on different emissions inputs, by comparing the change in emissions with 

the change in simulated concentrations. Furthermore, if we specifically change the emissions according to the ratio of observations 335 

and the base model simulation, we further simplify the emissions scaling factor as follows. 

For this simulation, adj1, if we apply the adjusted emissions using the ratio of the observed and modeled concentrations, the 

adjusted emissions for the adj1 run, Eୟୢ୨ଵ, are  

 

 340 

 

If we apply this to Eq. (4), we can obtain  

 

 
β ൌ

Eୟୢ୨ଵ /Eୠୟୱୣ
Cୟୢ୨ଵ /Cୠୟୱୣ

ൌ
C୭ୠୱ /Cୠୟୱୣ
Cୟୢ୨ଵ /Cୠୟୱୣ

ൌ
C୭ୠୱ 

Cୟୢ୨ଵ 
 

(7) 

 

Therefore, the emission adjustment factors in the next simulation (adj2) can be found using Eq. (5): 345 

 

 
Eୟୢ୨ଶ ൌ β ∙

C୭ୠୱ
Cୠୟୱୣ

∙ Eୠୟୱୣ ൌ ቈ
C୭ୠୱ 

Cୟୢ୨ଵ 
∙

C୭ୠୱ
Cୠୟୱୣ

 ∙ Eୠୟୱୣ  
(8) 

 

where adj2 indicates the second and final simulation for the top-down emissions adjustment method.  

From here, the 
େౘ౩
େౚౠభ

൨ term, or β, can be interpreted as an additional adjustment factor to the original adjustment factor in adj1, 

ቂ
େౘ౩
େౘ౩

ቃ. If the emissions modification in adj1 results in the same percentage change in concentrations, Cobs / Cadj1 = 1, we do not 350 

need the secondary adjustment. If the simulated concentration from adj1 is smaller (larger) than the observations, we need to 

increase (reduce) the amounts of emissions. This procedure was applied to create new 2020 emissions of both SO2 and NOx. 

In most cases, the calculated β values are close to one (Figure S5), implying that the simple assumption β = 1 in BAE2020 remains 

effective. The β values for NOx emissions are slightly higher than those for SO2 emissions over polluted areas (Figure S6), which 

implies that more secondary reactions are involved in tropospheric NOx chemistry. 355 

Both enhancements to the top-down simulations—β values and the daily application of emission adjustment factors—clearly 

improved the model’s performance, especially in the pre-LNY periods. While the monthly emissions adjustments failed to 

 
Eୟୢ୨ଵ ൌ

C୭ୠୱ
Cୠୟୱୣ

∙ Eୠୟୱୣ 
(6) 
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represent the rapid changes in NO2 concentrations after January 25, 2020 (Figure S7), the daily adjustment method successfully 

modeled these changes (Figure 4). The general underestimation of NO2 concentrations was corrected using the β values (Figure 

4). The improved model performance was confirmed by comparing the spatial distributions and scatterplots before and after these 360 

adjustments (Figures S8–S10). Spatial distributions of RMSEs of model performances in SO2, NO2 and PM2.5 are also 

summarized in Figure S12. 

Understanding the characteristics of the β values in terms of their spatial distribution, temporal variation, and chemical difference 

is important for several reasons. In the emission update procedure in practice, we can apply the pre-calculated β values from the 

look-up table if the β values show general consistency according to their location, time, and chemical component. For the emission 365 

control policy, the β values provide valuable information on the efficiency of emissions control because they suggest how 

effectively pollutant concentrations can be removed given the amount of emissions control by the government. 

Figure 8 summarizes the characteristics of the β values. As they are defined as the ratio of the emissions change (i.e. Eୟୢ୨ଵ /Eୠୟୱୣ) 

to the change in concentrations (i.e. Cୟୢ୨ଵ /Cୠୟୱୣ), the slopes of the fitted lines in the scatterplots describe the emissions-to-

concentration sensitivities for SO2 and NO2 (Figure 8a & b). The histogram of the occurrence of the β values also confirms that 370 

for both SO2 and NO2, the calculated β values are centered slightly over one (mean=1.42 and median=1.27 for SO2 and mean=1.40 

and median=1.26 for NO2) (Figure S13). Figure 8c & d demonstrate the spatial distributions of the β values over Chinese 

territories. Except a few outside locations, the β values are mostly consistent, around one. We further investigated the temporal 

variations of the β values by showing the daily variations of the estimated β values for selected Chinese provinces (Figure 8e & 

f). It is evident that the β values differ by location, implying that the emissions-to-concentration sensitivities vary for different 375 

regions likely due to their unique chemical and emission environment. However, for each location, the β values are mostly 

consistent over time. For the practical use of the β values in the emission update procedure, we may use region-specific sensitivity 

parameterization since their temporal variations over a specific region are not significant. 

To evaluate the emissions update approach, the key feature in this study is the validation of PM2.5 concentration. We used 

observation-based SO2 and NO2 emissions adjustments and there was no adjustment in the primary PM2.5 emissions, meaning that 380 

the improvement of PM2.5 is achieved through chemical reactions and their balances. The surface concentrations of surface PM2.5 

concentrations, especially inorganic aerosols, are formed by secondary reactions, which are determined by the balance of chemical 

reactions for nitrate, sulfate, and ammonium. The performance of the PM2.5 simulations provides strong evidence that the top-down 

emissions adjustment method used in this study is valid and successfully reproduces a realistic chemical environment. 

 385 

5. Summary 

We investigated changes in observed surface-pollutant concentrations and precursor emissions over China and inferred changes in 

human activity as a result of the coronavirus pandemic. Three analyses were conducted: (1) a time series analysis, (2) emissions 

adjustment experiment, and (3) sectoral emission contribution estimations. First, we removed four types of variation 

(meteorological, weekly, yearly, and the LNY) to isolate impacts of coronavirus pandemic from observed surface pollutant 390 

concentrations. A chemistry model simulation with fixed emission inventory was used to remove meteorological variations. The 

analysis has shown that NOx emissions across China recovered to almost normal levels two months after LNY. However, 

considering the estimated changes in emissions associated with PM2.5, some emissions remain missing, as of the end of March 

2020, compared with normal years. AnSecond, an alternative modeling approach using updated real-time SO2 and NOx emissions 
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also suggested that about 25% of PM2.5 emissions are likely missing from the period. Third, impacts of sectoral emissions were 395 

presented to infer the role potential missing emissions or activities. 

The surface observations of pollutants and inferred precursor emissions across China suggest that the country is greatly recovering, 

as evidenced by the apparent resumption of near-normal transportation-related emissions. The pandemic appears not to have 

strongly affected the industrial sector; continued depression in estimated PM2.5-associated emissions may be due to effects on the 

agricultural sector. If the sustained reduction in PM2.5 is due to reduced activity in the agricultural sector, agricultural production 400 

could be affected, at least in the short term. This could hold important implications for China’s path to recovery and, potentially, 

for broader parts of the world, if similar types of agricultural impacts occur elsewhere.  

The data analysis approach used here has attempted to isolate the ambient data signal due to the coronavirus from other sources of 

variation. The apparent difference between the recovery timelines for NO2 and PM2.5 suggests that estimating NOx emissions alone 

is insufficient to draw conclusions about the overall recovery of the Chinese economy. Overall, changes in concentrations of 405 

atmospheric pollutants can provide useful information about the spatial and temporal economic impacts of the coronavirus 

pandemic, a serious global issue. 
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Table 1. Physical options for meteorological and chemical simulations 

Model Physical options Descriptions 

WRF 

v3.4.1 

Initial field 

Microphysics 

Cumulus scheme 

Land surface model scheme 

Planetary boundary layer scheme 

FNL (NCEP, 2000) 

WSM6 (Hong et al., 2004) 

Kain-Fritsch (Kain, 2004) 

NOAH (Chen and Dudhia, 2001) 

YSU (Hong et al., 2006) 

CMAQ 

v4.7.1 

Chemical mechanism 

Chemical solver 

Aerosol module 

Advection scheme 

Horizontal diffusion 

Vertical diffusion 

Cloud scheme 

SAPRC99 (Carter, 2003) 

EBI (Hertel et al., 1993) 

AERO5 (Binkowski and Roselle, 2003) 

YAMO (Yamartino, 1993) 

Multiscale (Louis, 1979) 

Eddy (Louis, 1979) 

RADM (Chang et al., 1987) 

 

  

서식 지정된 표
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Table 2. Comparison of data-processing steps in the emissions-adjustment methods used in BAE2020 and this study 

Data-processing steps BAE2020 This study 

Spatial processing Prefecture-level Prefecture-level 

Temporal processing Monthly Daily (14-day moving average) 

Emission-to-concentration 

conversion factor (β) 
β = 1 

Varying 

(Daily & prefecture-level) 

CMAQ simulations 1 (adj1) 2 (adj1 & adj2) 

Emissions adjusted SO2 SO2, NOx 

Note  

Results of ‘adj1’ simulations were 

used to calculate beta values for 

‘adj2’ simulation 

   560 

서식 지정된 표
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Figure 1. Geographical coverage of modeling domain and surface-monitoring sites. Monthly mean surface PM2.5 concentrations in 
February 2019 and February 2020 are shown. 

   565 
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Figure 2. Time series of estimated emissions for (a) NO2 and (b) PM2.5 using 1,332 surface monitoring sites across China. The gray lines 
indicate 2017–2019 variations, with their average in the thick gray line, whereas the red line indicates the 2020 variation. The blue line 
indicates the 2020 variations in Hubei province (46 sites). BASE is used as the pre-LNY period, and (1) and (2) denote the period of 
maximum impact and the recovery period, respectively. 570 
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Figure 3. Spatial distribution of the change in estimated NOx emissions from the baseline period (Figure 2) during the period of maximum 
impact (January 25 – February 14, 2020) and the recovery period (February 24 – March 15, 2020). Hubei province is marked in red. 575 
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Figure 4. Time series and scatter plots of observed and modeled surface concentrations of SO2, NO2, and PM2.5 from 1,332 Chinese 
surface-monitoring sites during the pandemic period. Model simulations using the baseline emissions inventory (CREATE) and top-580 
down adjusted emissions are shown in blue and red, respectively. Observations are represented by gray circles. 
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Figure 5. Time series of surface PM2.5 normalized mean bias during the pandemic period between observed and modeled data with 
adjusted emissions (i.e., SO2 and NOx emissions adjusted). Mean NMB before and after LNY are also marked. Raw, 7-day, and 14-day 585 
moving average NMBs are shown in thin, medium-thin and thick lines, respectively.  
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Figure 6. Monthly variations in emission contributions to surface PM2.5 concentrations over China by sector. The contributions from 
the five sectors (residential, industry, power generation, transportation, and agriculture) were estimated using a brute force perturbation 590 
method. 
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Figure 7. Time series of surface NO2, SO2, CO, O3, PM2.5, and PM10 concentrations over China following the data-processing procedures 
step by step. Raw data (left column), data after applying a seven-day moving average and an LNY alignment (middle column), and data 595 
after removing meteorological variations and calculating variations from the baseline periods (right column) are all shown. 
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Figure 8 Calculation of the concentration-to-emissions sensitivities (β) for the emissions adjustment experiment of SO2 (left column) and 
NO2 (right column). The β values are obtained as the ratio of the emissions change (i.e. Emis_adj/Emis_base) to the change in 600 
concentrations (i.e. Conc_adj1/Conc_base), which is also consistent with the slope in the scatterplot (A & B). Spatial variations of the 
average concentration-to-emissions sensitivities (β) during January to March 2020 over China (C & D) . The temporal variations of the 
β values for selected Chinese provinces are shown in the lower panel (E & F). (BJ=Beijing, SH=Shanghai, CQ=Chongqing, HU=Hubei, 
SD=Shandong, AH=Anhui, HN=Hunan, JS=Jangsu, SX=Shanxi). 

 605 서식 지정함: 영어 미( 국)


