

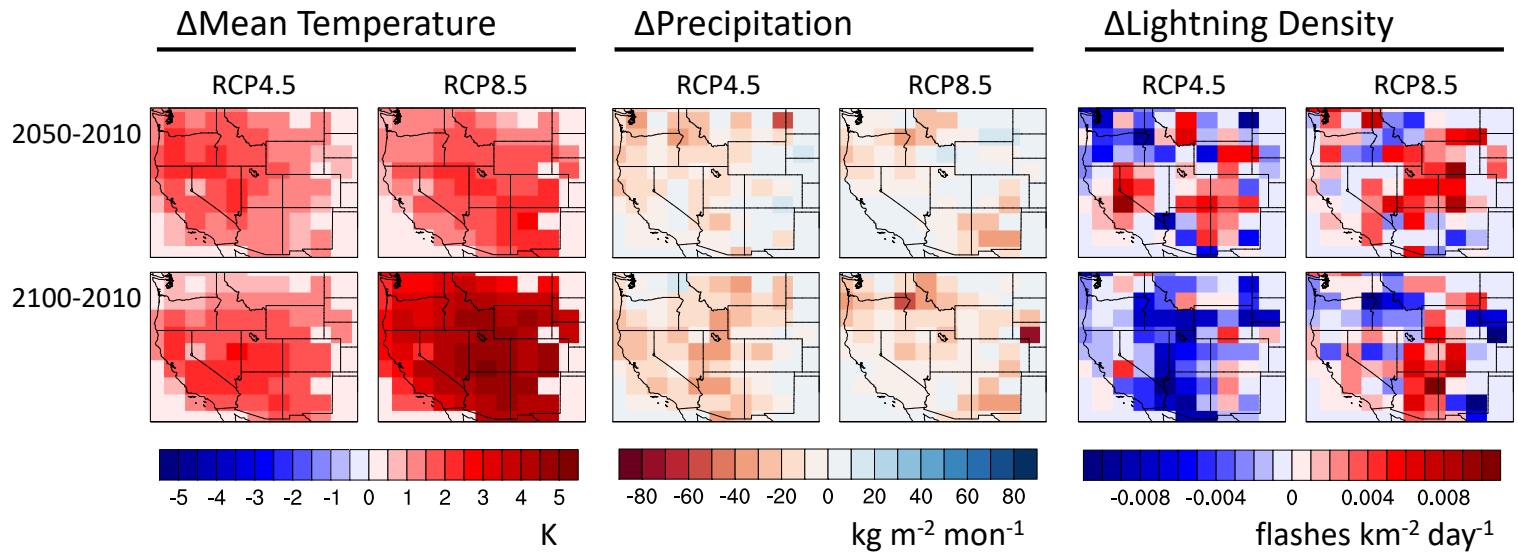
1 Supplementary material

2

3 Trends and spatial shifts in lightning fires and smoke concentrations

4 in response to 21st century climate over the forests of the Western

5 United States


6

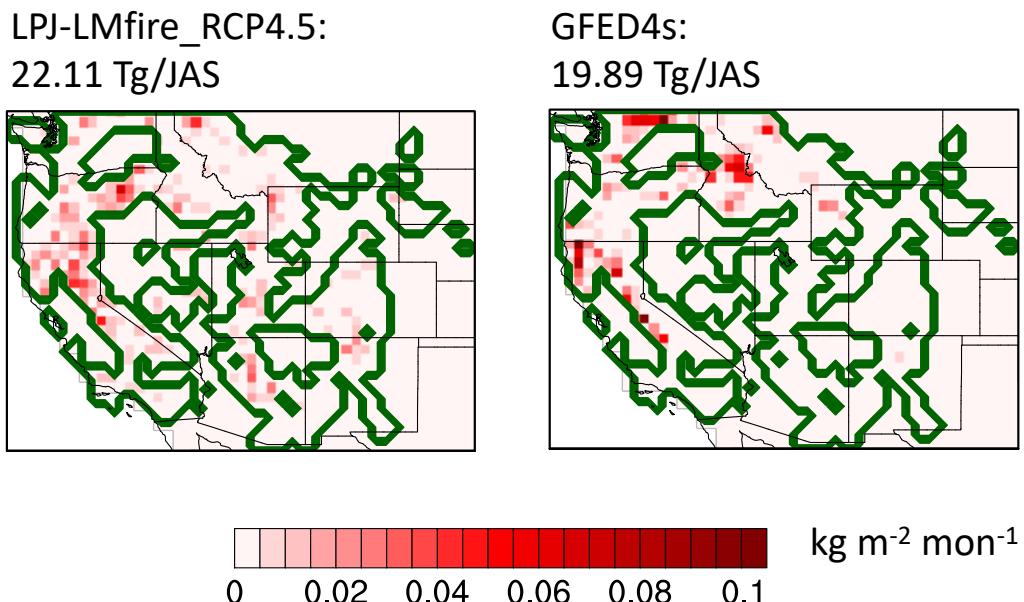
7 Y. Li¹, L. J. Mickley¹, P. Liu¹, J. O. Kaplan²

⁸ ¹John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge,
⁹ MA, USA

²Department of Earth Sciences, The University of Hong Kong, Hong Kong, China

11 *Correspondence to:* Yang Li (yangli@seas.harvard.edu)

14 **Fig. S1.** Changes in monthly mean temperature, precipitation and lightning density averaged
 15 over the fire season in the western U.S. for the RCP4.5 and RCP8.5 scenarios. The top row
 16 shows changes between the present day and 2050, and the bottom row shows changes between
 17 the present day and 2100. Temperature and precipitation are from GISS-E2-R for the RCP4.5
 18 and RCP8.5 scenarios, with five years representing each time period. Lightning density is
 19 calculated using the GISS convective mass flux following the empirical parameterization of
 20 *Magi* [2015]. The fire season is July, August, and September.

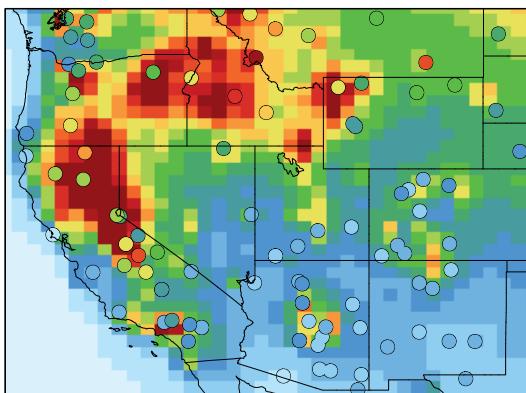

21 **Evaluation of LPJ-LMfire fire emissions**

22 We first evaluate the lightning-caused wildfire emissions from LPJ-LMfire over the
23 National Forests in the western U.S. by comparing with the Global Fire Emissions Database
24 (GFED4s) emissions over the same regions (Fig. S2). Lighting is the dominant fire source over
25 the western U.S. forests, allowing a reasonable comparison between the two emission inventories
26 over the forest areas in the West. The total fire-season dry matter burned (DM) over National
27 Forests and Parks from LPJ-LMfire is 22.11 Tg for July-August-September (JAS), comparable to
28 that from GFED4s (19.89 Tg), providing confidence in the LPJ-LMfire representation of fires
29 without active suppression. GFED4s shows greater DM over northern Washington, Idaho, and
30 northern California than LPJ-LMfire but overall the spatial mismatches are not large.

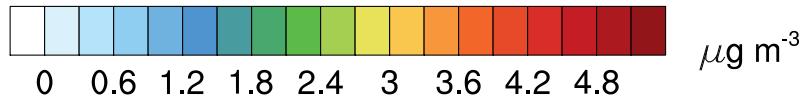
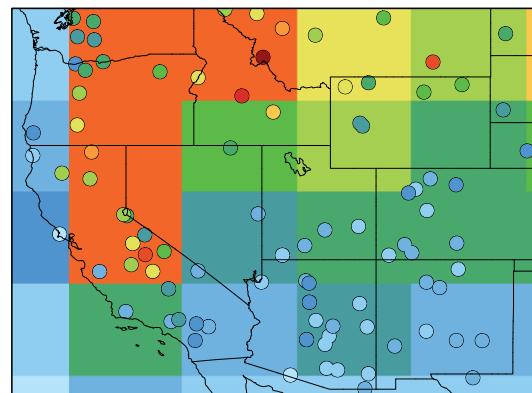
31 We then validate the carbonaceous fine particulate matter ($PM_{2.5}$; BC+OC) generated by
32 GEOS-Chem in a simulation with the combined emissions (LPJ-LMfire over the National Forests
33 and Parks and GFED4s elsewhere) during JAS. Simulated BC and OC also include contributions
34 from non-fire sources, such as fossil fuel combustion from transportation, industry, and power
35 plants. We compare the GEOS-Chem results against ground-based measurements from the
36 Interagency Monitoring of Protected Visual Environments (IMPROVE) network in the western
37 U.S. We find that GEOS-Chem generally reproduces the IMPROVE observations, with elevated
38 concentrations ($\sim 3.0\text{--}5.0 \mu\text{g m}^{-3}$) over the northern states and in California (Fig. S3). In JAS, large
39 amounts of smoke PM are transported from Canada, as implied by some IMPROVE observations
40 in Idaho and Montana. GFED4s includes the smoke from these Canadian fires, as reflected by
41 elevated smoke PM in the northeast corner of the domain in the GEOS-Chem results. Results in
42 RCP8.5 for the present-day are similar to those under RCP4.5 (not shown). We also compare 5-
43 year fire-season averages of smoke PM in each grid cell in the western U.S. from GEOS-Chem

44 against those from IMPROVE observations (Fig. S4). The GEOS-Chem simulation with combined
45 emissions generally reproduces smoke PM within an uncertainty of 50%.

46

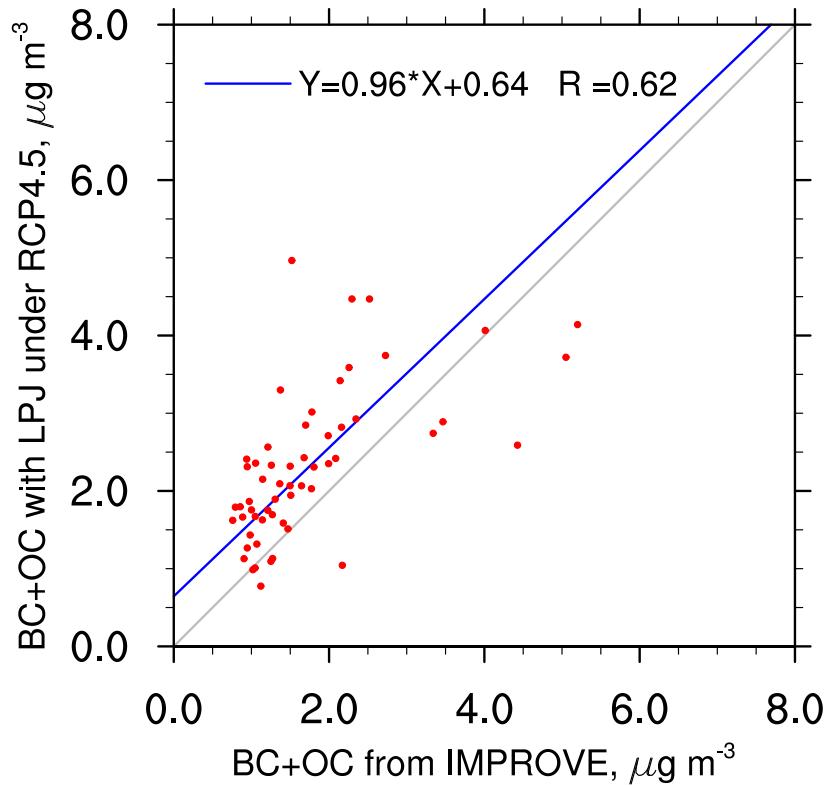


47



48 **Fig. S2.** Present-day (2011-2015) fire-season averaged lightning-caused dry matter burned (DM)
49 over National Forests and Parks in the West for LPJ RCP4.5 and GFED4s. Bold green lines mark
50 the boundaries of National Forests and Parks. Value are the total fire-season DM over the
51 National Forests and Parks in the two inventories. The fire season is July, August, and
52 September.

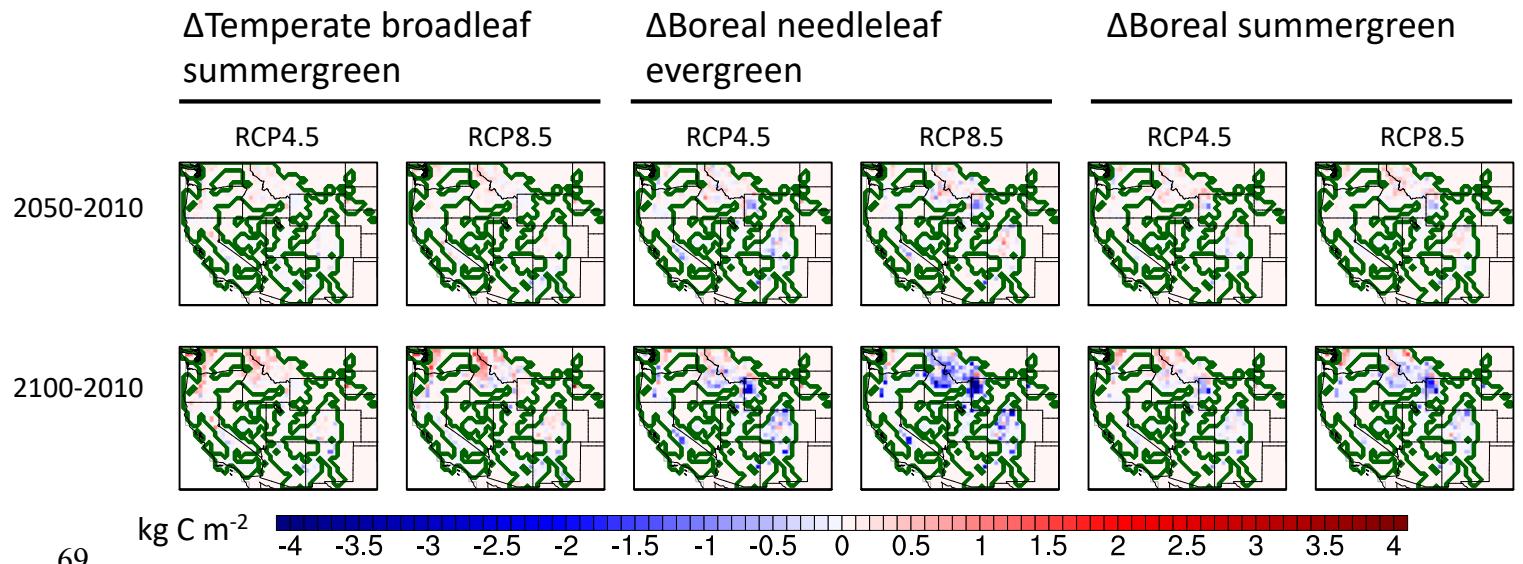
53

54 $0.5^\circ \times 0.625^\circ$

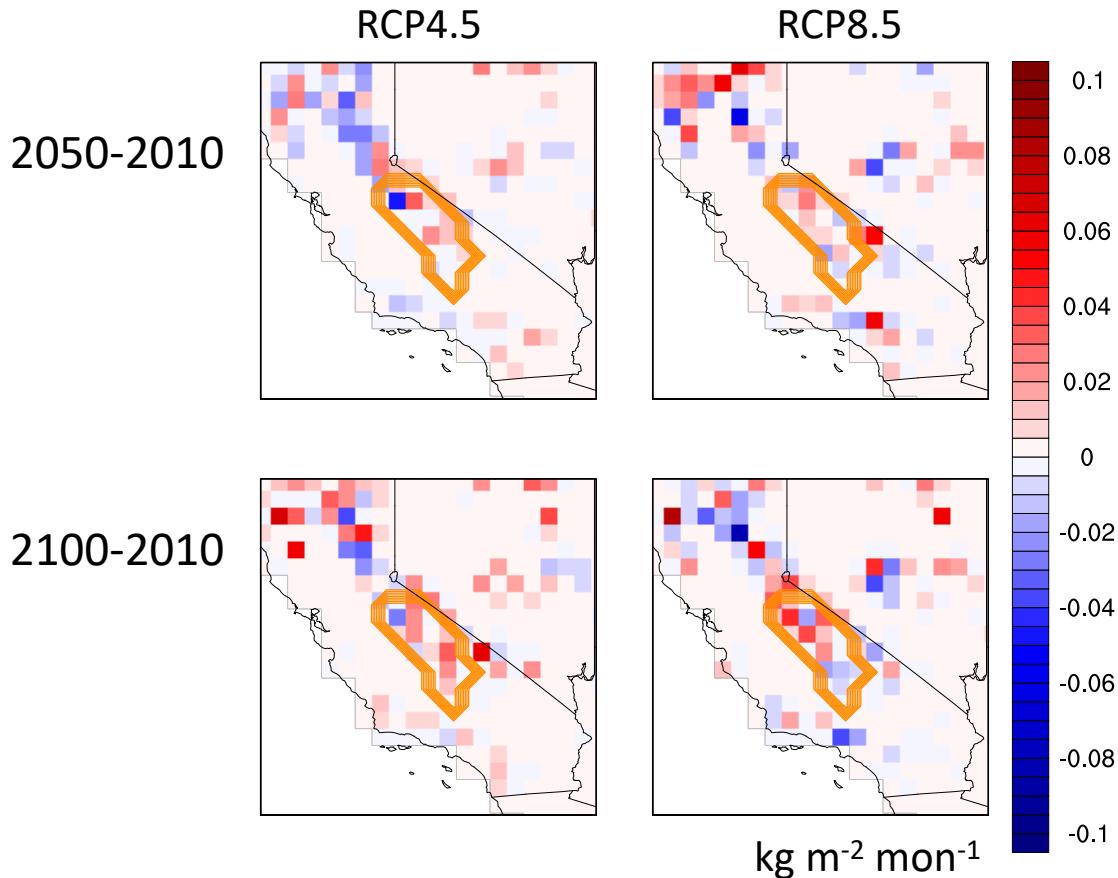


55 $4^\circ \times 5^\circ$

56


57 **Fig. S3.** Fire-season averaged smoke PM. Circles represent ground-based observations from the
58 IMPROVE network. The colored background is from GEOS-Chem simulations at $0.5^\circ \times 0.625^\circ$
59 and $4^\circ \times 5^\circ$ spatial resolutions for the present-day (2011-2015) using the combined fire emissions
60 from LPJ-LMfire over National Forests and Parks (within green boundaries in Fig. S2) and
GFED4s over other regions. The fire season is July, August, and September.

61


62 **Fig. S4.** BC+OC concentrations simulated with the present-day combined fire emissions from
 63 LPJ RCP4.5 (over National Forests) and GFED4s (over other regions) compared to those from
 64 IMPROVE observations. Each dot represents the 5-year fire-season average of concentrations in
 65 each grid square (with the resolution of $4^\circ \times 5^\circ$) across the western U.S. The blue line is the fitted
 66 line using reduced major axis (RMA) regression between the GEOS-Chem simulations and those
 67 from IMPROVE. The grey line denotes the 1:1 line.

68

70 **Fig. S5.** Simulated changes in living biomass for the three most dominant plant functional types
71 over the National Forests in the western U.S. for the RCP4.5 and RCP8.5 scenarios. The top row
72 shows changes between the present day and 2050, and the bottom row shows changes between
73 the present day and 2100. Results are from LPJ-LMfire, with five years representing each time
74 period. The fire season is July, August, and September.

75

76

77 **Fig. S6.** Simulated changes in monthly mean lightning-caused DM averaged over the fire season
78 over National Forests in California for the RCP4.5 and RCP8.5 scenarios. The top row shows
79 changes in DM between the present day and 2050, and the bottom row shows changes between
80 the present day and 2100. Results are from LPJ-LMfire for the RCP4.5 and RCP8.5 scenarios,
81 with five years representing each time period. The fire season is July, August, and September.
82 Bold orange lines mark the boundaries of the Sierra Nevada (SN).

83

84 **Table S1.** Comparison of fire predictions in the U.S. under future climate.

Methods	Region, scenarios, and future time slice	Fire metric and percent increase relative to present day	Smoke PM and percent increase relative to present day	Reference
Statistical models for lightning fires	Entire U.S. Doubled CO ₂ climate	Number of fires: 44% Area burned: 78%		Price and Rind, 1994
Two climate models	Entire U.S. Doubled CO ₂ climate ~2060	Seasonal fire severity rating: 10-50%		Flannigan et al., 2000
Statistical model	California, U.S. A2 ~2100	Large fire risk: 12-53%		Westerling and Bryant, 2008
Statistical models and GEOS-Chem	Western U.S. A1B ~2050	Area burned: 54% Smoke emission: 100%	Smoke PM concentrations BC: 20% OC: 40%	Spracklen et al., 2009
Climate model with global-scale fire parameterization	Global B1, A1B, A2 ~2100	Fire occurrence in the western U.S. B1: 120% A1B: 233% A2: 242%		Pechony and Shindell, 2010
MAPSS-CENTURY 1 dynamic general vegetation model	U.S. Pacific Northwest A2 ~2100	Area burned: 76-310% Burn severity: 29-41%		Rogers et al., 2011
Statistical models + GEOS-Chem	Western U.S. A1B ~2050	Area burned: 63-169% Smoke PM emissions: 150-170%	Smoke PM concentrations: 43-55%	Yue et al., 2013
Statistical models	California, U.S. A1B ~2050	Area burned: 10-100%		Yue et al., 2014
Coupled Community Land Model (CLMv4) and Community Earth System Model (CESM) ²	Western U.S. RCP4.5 and RCP8.5 ~2050	Smoke PM emissions: • RCP4.5: 100% • RCP8.5: 50%	Total PM _{2.5} concentrations ¹ • RCP4.5: 22% • RCP8.5: 63%	Val Martin et al., 2015

CLMv4.5-BGC with fire parameterization coupled with CESM ³	Contiguous U.S. RCP4.5 and RCP8.5 ~2050 and ~2100 Relative to the present day (1995-2005)	Area burned by 2050: • RCP4.5: 67% • RCP8.5: 50% by 2100: • RCP4.5: 58% • RCP8.5: 108%	Total PM _{2.5} concentrations ¹ by 2050: • RCP4.5: 146% • RCP8.5: 85% by 2100: • RCP4.5: 108% • RCP8.5: 246%	Pierce et al., 2017
CLMv4.5 with fire parameterization coupled with CESM ³	Contiguous U.S. RCP4.5 & RCP8.5 ~2050 and ~2100 Relative to the present day (2000-2010)	Smoke PM emissions by 2050: • RCP4.5: 126% • RCP8.5: 54% by 2100: • RCP4.5: 125% • RCP8.5: 149%	Total PM _{2.5} concentrations ¹ by 2050: • RCP4.5: 113% • RCP8.5: 27% by 2100: • RCP4.5: 93% • RCP8.5: 127%	Ford et al., 2018
LPJ-LMfire coupled with GEOS-Chem	Western U.S. RCP4.5 and RCP8.5 ~2050 and ~2100 Relative to the present day (2011-2015)	by 2050 over the West: • RCP4.5: 45% • RCP8.5: 40% Smoke PM emissions by 2050: • RCP4.5: 81% • RCP8.5: 86% by 2100: • RCP4.5: 111% • RCP8.5: 161%	Smoke PM concentrations by 2100: • RCP4.5: 53% • RCP8.5: 109%	This study

¹ Total PM_{2.5} is the combination of sulfate, ammonium nitrate, secondary organic aerosols, fine dust, fine sea salt, BC and OC.

² This model considers changes in climate, anthropogenic emissions, land cover, and land use.

³ This model considers changes in climate, anthropogenic emissions, land cover, land use, and population.

85

86

87

88

89

90

91 **References**

92 Flannigan, M. D., Stocks, B. J., and Wotton, B. M.: Climate change and forest fires, *Science of*
93 *the total environment*, 262, 221-229, 2000.

94 Ford, B., Val Martin, M., Zelasky, S., Fischer, E., Anenberg, S., Heald, C., and Pierce, J.: Future
95 fire impacts on smoke concentrations, visibility, and health in the contiguous United States,
96 *GeoHealth*, 2, 229-247, 2018.

97 Pechony, O., and Shindell, D. T.: Driving forces of global wildfires over the past millennium and
98 the forthcoming century, *Proceedings of the National Academy of Sciences*, 107, 19167-
99 19170, 2010.

100 Pierce, J., Val Martin, M., and Heald, C.: Estimating the effects of changing climate on fires and
101 consequences for US air quality, using a set of global and regional climate models—Final
102 report to the Joint Fire Science Program, Fort Collins (CO): Joint Fire Science Program, 2017.

103 Price, C., and Rind, D.: The impact of a $2\times$ CO₂ climate on lightning-caused fires, *Journal of*
104 *Climate*, 7, 1484-1494, 1994.

105 Rogers, B. M., Neilson, R. P., Drapek, R., Lenihan, J. M., Wells, J. R., Bachelet, D., and Law, B.
106 E.: Impacts of climate change on fire regimes and carbon stocks of the US Pacific Northwest,
107 *Journal of Geophysical Research: Biogeosciences*, 116, 2011.

108 Spracklen, D. V., Mickley, L. J., Logan, J. A., Hudman, R. C., Yevich, R., Flannigan, M. D., and
109 Westerling, A. L.: Impacts of climate change from 2000 to 2050 on wildfire activity and
110 carbonaceous aerosol concentrations in the western United States, *Journal of Geophysical*
111 *Research: Atmospheres*, 114, 2009.

112 Val Martin, M., Heald, C., Lamarque, J.-F., Tilmes, S., Emmons, L., and Schichtel, B.: How
113 emissions, climate, and land use change will impact mid-century air quality over the United
114 States: a focus on effects at national parks, *Atmospheric Chemistry and Physics*, 15, 2805-
115 2823, 2015.

116 Westerling, A., and Bryant, B.: Climate change and wildfire in California, *Climatic Change*, 87,
117 231-249, 2008.

118 Yue, X., Mickley, L. J., Logan, J. A., and Kaplan, J. O.: Ensemble projections of wildfire activity
119 and carbonaceous aerosol concentrations over the western United States in the mid-21st
120 century, *Atmos Environ*, 77, 767-780, 2013.

121 Yue, X., Mickley, L. J., and Logan, J. A.: Projection of wildfire activity in southern California in
122 the mid-twenty-first century, *Climate dynamics*, 43, 1973-1991, 2014.

123