Authors’ responses to reviewer comments

“Inverse modeling of fire emissions constrained by smoke plume transport
using HYSPLIT dispersion model and geostationary observations”

General response

Authors express their appreciation to the two reviewers and the editor. Thanks to their productive
comments, we were able to improve our manuscript. As the reviewer recommended, we have included
additional tests and discussions on the sensitivity. Mistakes were revised, and performance statistics
were also updated. We provide below the general responses and the point-by-point responses to the
reviewer’s comments. Reviewers’ comments are shown in italics.

Here are three major points in the revised version of the manuscript.
1. Sensitivity tests for temporal coverage

As both reviewers commented, we agree that the temporal sensitivity section needs a clarification of
the goal. Our original intention was to find the most efficient temporal coverage of the inverse system
to conduct the assimilation process, which includes both time windows for the assimilation and the
use of observational data. On the other hand, the reviewers asked to test the sensitivity by the change
of observational data use. We believe that both tests are meaningful, so we included both test results
in the manuscript. The former is important in terms of the efficiency of the inverse system because
dispersion simulations to construct the TCM is the most time-consuming processes in the inverse
system. The latter, selection of observations (used in the assimilation), is also important to investigate
the responses of the inverse system.

Indeed, there are three adjustable time windows in the processes and evaluation of fire emission
assimilation. As shown in Figure R1, the assimilation (or analysis) time window denotes the temporal
coverage of fire emission sources and simulated dispersions. The observational data time window (or
selection of observations used for constraining in the assimilation) can be set equal to or shorter than
the assimilation time window. The evaluation time window (or selection of observations used for
evaluation) is also set equal to or shorter than the observational time window. Therefore, we tested
combinations of these time windows.

1) Assimilation time window (source, dispersion and assimilation process)
2) Observation time window (observation)
3) Evaluation time window (model and observation)

Model performance statistics were calculated with combinations of temporal coverages of
assimilation (shown as “A” in Table R1; 24h-96h), observation (shown as “O”, 24h-96h), and
evaluation (shown as “E”, 24h-96h). Results are summarized in Table R1. As discussed in the
manuscript, including more analytical period generally improves the performance of the inverse
system, but the difference is not critical for more than 48-hour time window.

With fixed analytical period (A:96h), performance statistics are better with shorter observational time
window applied. It makes sense because we expect to have a better fit with smaller number of data
points during the analysis process although it also has a risk of potential overfitting problem, as the
reviewer #2 commented.

The manuscript was revised to include these additional sensitivity tests.

(Line 270) “First, we changed the assimilation time windows from one (24-hours) to four days (96-
hours). Since the impact of fire emissions easily translates over multiple days, we tested how temporal
coverage affects system results. The ‘one-day’ (aday=0) simulation is run through the inverse model
using dispersions and observations for the target day, while the ‘two-day’ simulation uses two days
(i.e., 48 hours) of dispersions and observations (aday=-1). For this test, all observations within the



assimilation time windows were selected for the assimilation and the evaluation. The results are
shown in Figure 6a, while the correlation and error statistics are summarized in the top section of
Table 2 (i.e. [A:24h, O:24h, E:24h], ... , [A:96h, O:96h, E:96h]). With the exception of November 10
and 11, in the early stage of the fire event, both the correlation coefficient (R) and normalized root-
mean-square error (NRMSE) were improved by the use of more days (i.e., three or four days) of
dispersions and observations for the inverse model. This makes sense, because emissions from multi-
day fire events spread out and affect concentrations over proceeding days.

A series of additional simulations were also conducted to test the system’s sensitivity to the selection
of observations for the assimilation and the evaluation. In these tests, we investigated combinations in
assimilation time (“A” in Table 2), observational time (“O”) and evaluation time windows (“E”).
Results are also summarized in Table 2. For a fixed assimilation time period (i.e. [A:96h]), using
shorter observational time window resulted in a better result. It is reasonable because we expect a
better fitting with smaller number of data points. However, it can be easily exposed to overfitting
problem if available data for the assimilation is too small.”
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Step 2: Forecast options

Figure R1 Two steps for smoke forecast with the HEIMS-fire system. Temporal coverage of assimilation days (aday=0,-1, -
2,-3) and forecast days (fday=0,+1,+2) for operational tests. Assimilation process includes three time windows —
assimilation, observation and evaluation time windows.



Table R1 Sensitivity test for temporal coverage. Uses of analysis (A), observation (O), and evaluation (E) time windows (24
hours to 96 hours) were tested, and statistics, NRMSE and R, were compared. The best performance is marked as bold.

NRMSE (%) R
A:24h A:48h A:7Zh A: 96h A:24h A:48h A:7Zh A: 96h
Coverage O: 24h O: 48h 0:72h 0: 96h 0:24h O:48h 0:72h O 96h
E:24h E: 48h E:72h E: 96h E:24h E:48h E:72h E: 96h
Nov. 10 66.6 63.7 62.7 68.7 0.677 0.654 0.669 0.577
11 752 65.9 64.0 63.7 0.410 0.620 0.587 0.593
12 751 63.5 61.4 60.6 0373 0.309 0.562 0.526
13 728 65.7 599 59.6 0.208 0.476 0397 0.576
14 75.6 66.3 61.0 56.8 0.285 0.444 0.522 0.469
15 827 70.9 62.7 60.2 0.105 0348 0.465 0.511
16 69.8 725 68.2 61.7 0.146 0.150 0372 0.478
17 69.8 72.5 68.2 0.146 0.150 0.372
A:24h A:48h A:72h A: 96h A:24h A:48h A:72h A: 96h
Coverage 0:24h O: 48h 0:72h 0: 96h 0:24h O: 48h 0:72h O 96h
E: 24h E:24h E: 24h E: 24h E:24h E:24h E:24h E:24h
Nov. 10 66.6 491 49.0 38.7 0.677 0.713 0.716 0.716
11 752 80.6 784 78.4 0.410 0.621 0623 0.623
12 731 45.2 56.5 558 0373 0.406 0.425 0.430
13 728 58.0 52.9 63.5 0.298 0.534 0581 0.589
14 75.6 54.6 538 531 0.285 0.567 0.593 0.609
15 82.7 43.9 42.4 44.6 0.105 0.554 0.539 0571
16 69.8 343 284 274 0.146 0.464 0.507 0.505
17
A:06h A:96h A: 96h A: 96h A:06h A:06h A: 96h A: 96h
Coverage 0: 24h 0 48h 0:72h 0: 96h 0:24h 0: 48h 0:72h 0Q: 96h
E:24h E:48h E:72h E: 96h E:24h E:48h E:72h E: 96h
Nov. 10 53.0 62.1 62.1 68.7 0.746 0.657 0.657 0.577
11 54.7 61.9 63.7 63.? 0.583 0.615 0.593 0.593
12 43.0 54.0 59.1 60.6 0.425 0.481 0.545 0.526
13 40.3 46.4 545 59l6 0.664 0510 0.500 0.576
14 383 435 50.5 56.8 0.638 0.603 0.499 0.469
15 43.9 50.8 553 60.2 0.647 0.572 0533 0511
16 335 422 532 617 .ES 2 0.667 0.685 0581 0.478
17 36.1 538 i . 0.624 0.520 0372
A:96h A: 96h A: 96h A: 96h A:96h A:96h A: 96h A: 96h
Coverage 0: 24h 0 48h 0:72h Q- 96h 0:24h 0 48h 0:72h 0 96h
E:24h E:24h E:24h E:24h E:24h E:24h E:24h E:24h
Nov. 10 53.6 471 471 387 0.746 0.715 0.715 0.716
11 58.1 81.0 784 784 0.668 0.624 0.623 0.623
12 41.3 438.0 56.7 558 0.489 0.432 0.433 0.430
13 395 49.8 554 63.5 0.691 0.612 0588 0.589
14 39.5 458 519 531 0.698 0.612 0.612 0.609
15 37.8 431 431 44.6 0.682 0.552 0.566 0.571
16 337 296 279 274 0.614 0.542 0.510 0.505
17

2. Sensitivity tests for vertical layer selection

For the sensitivity of vertical layer configuration, we added an extra test as the reviewer #2 suggested.
With the maximum height fixed at 5,000m, we conducted a sensitivity test by increasing vertical layer
resolution from 2 layers to 6 layers. As expected, we have better performance statistics as we increase
the number of layers although the change is not dramatic after four layers (Table R2).

Indeed, this vertical layer sensitivity is one of the most important topics in the construction of smoke
forecast system since it is directly related to the smoke plume rise problem. Therefore, we believe that
the topic deserves a separate effort. We are preparing a follow-up study on the plume rise options,
based on plume rise parameterization (in HYSPLIT) and inverse modeling technique. For current
study, we like to narrow and focus on its own scope. While we demonstrate vertical layer selection
sensitivity from its maximum height and vertical layer resolution, detailed analysis on the fire
emission plume rise options warrants an additional full research.



Table R2 Sensitivity tests for vertical layers resolution from two to six layers. The best performance is marked as bold.

3 layers 4 layers 3 layers 6 layers
Date 2 la}'crs (100, 2000, (100, 1000, (100, 1000, (100, 500, 1000,
(100, 5000m) 5000m) 2000, 5000m) 1500, 2000, 1500, 2000,
B 5000m) 5000m)
Nov. 10 729 69.2 65.9 63.7 63.7
11 79.0 71.6 68.1 66.4 65.9
12 70.7 67.8 65.5 65.0 63.5
13 68.7 67.6 66.1 65.9 65.7
NRMSE 14 729 70.6 67.2 67.0 66.3
15 833 771 72.0 71.0 70.9
16 789 72.0 73.2 725 725
17 72.2 70.6 70.2 70.0 69.8
Nov. 10 0.577 0.593 0.630 0.654 0.654
11 0.490 0.558 0.598 0614 0.620
12 0.292 0.285 0.303 0.303 0.309
R 13 0.449 0.450 0.468 0470 0.476
14 0.404 0419 0.439 0.440 0.444
15 0.252 0.276 0.338 0.346 0.348
16 0.112 0.164 0.144 0.149 0.150
17 0.198 0.139 0.139 0.139 0.146

The manuscript was revised including this information.

(Line 286) “Second, we tested the layers at which fire emissions are initiated in the model. As
expected, including more layers results in better statistics, since the transport and dispersion of each
smoke plume can vary with the altitude to which their fire emissions are allocated. We tested the
model’s uncertainties on layers” maximum extension and resolution, with varying selections of two to
seven layers at 100, 500, 1000, 1500, 2000, 5000, or 10000 meters. To test the maximum extension,
starting from two layers (i.e. with emissions released at 100 and 500 meters), we added the next
higher layer over six test runs to investigate the effect of maximum extension of smoke plume. Figure
6b shows the results, and error statistics are summarized in Table 3. Including the 5000m layer,
especially, resulted in noticeable changes, implying the potential benefit of including high-level
transport for specific days. Since the 5000m layer is above typical planetary boundary layer height,
emissions injected at this level experience different physical characteristics. Smoke lofted into the free
troposphere is less affected by turbulence and scavenging, and transports easily hundreds or thousands
of kilometers downwind because of the higher wind speeds. Addition of the 5000m layer would better
represent the potential long-range transport. Smoke plume rise is one of traditionally important
questions in smoke modelling, so further research on the topic is warranted. Effects of the layer
resolution were also tested. Starting from two layers (i.e. 100m and 5000m), we added intermediate
layers up to six layers, and evaluated their performances (Table S3). As expected, including more
layers resulted in the better statistics, but its improvement was not significant after four layers.

3. Scope of the study

Here, we like to address the scope of this manuscript again. In this study, we intended to conduct two
goals: 1) Suggestion of inverse modeling framework, and 2) improvement of operational smoke
forecasts. Our main priority here is to suggest a practical framework to help fire emission estimation.
However, for the second goal, we do not claim that our new system is a complete solution and
outperforms in all aspects because we know that many uncertainties remained to be resolved until we
claim a clearly better forecast system. To improve the forecasting system, we admit that we need
more improvement in other components, including the quality of satellite products (to monitor the
dispersion of smoke plume), better meteorology and fire activity persistency, as we discussed in the
manuscript.

We also provide point-by-point responses to each reviewer.



REVIEWER #1

- In section I (Introduction), there is no background information of applications of inverse modeling
on fire emissions estimations. As this is the focus of this work, it would be helpful to inform readers
about previous investigations on this topic, as well as to highlight the features and advantages of the
inverse modeling system proposed in this work.

Thanks for the comment. We included some of previous inverse modeling efforts, but its application
to fire emission estimation is limited. Most of fire emission estimations use a survey-based bottom-up
or a satellite-based top-down approaches by simple comparison. While we agree that those efforts are
valuable, we see that the inverse modeling technique is rarely used, especially for using smoke
transport as a constraint. We included this information in the manuscript.

(Line 82) “Such an approach has been adapted to estimate inversely various emission sources,
including greenhouse gas emissions (Kunik et al., 2019; Nickless et al., 2018; Turnbull et al., 2019),
volcanic ashes and sulfur dioxide emissions (Boichu et al., 2014; Crawford et al., 2016; Zidikheri and
Lucas, 2020), and radionuclide release from nuclear power plant incident (Chai et al., 2015; Katata et
al., 2015; Li et al., 2019a), but was rarely used in fire emission estimation (e.g. Nikonovas et al.,
2017).”

- The HYSPLIT model used to compute dispersion factors using the TCM approach is described in
section 2.3, but some details are not provided, e.g., the temporal resolution of the HYSPLIT
integration and the TCM results. Also, deposition considered by using a radioactive decay constant.
Is it equivalent to the deposition process of fire smoke aerosols? How does it compare with the
deposition considered in other Eulerian air quality models with more comprehensive chemistry?

Thanks for the comment. We included additional information of HYSPLIT configuration and output
specification. For each day’s inverse process, we saved HYSPLIT simulation outputs hourly, and
ASDTA AOD were also produced hourly. The integration time step of HYSPLIT cannot be specified
because it can vary during the simulation, being computed from the requirement that the advection
distance per time-step should be less than the grid spacing. The maximum transport velocity is
determined from the maximum transport speed during the previous hour. HY SPLIT handles dry and
wet deposition of particles. Smoke particles are subject to dry deposition (including turbulent
diffusion) in addition to gravitational settling and wet removal using meteorological model
precipitation. Similar to other chemistry models, wet removal is defined as a scavenging coefficient to
handle below- and within-cloud processes, although their parameterization would be model-specific.
Please, see Stein et al. (2015) for detailed information of HYSPLIT procedures. Manuscript was
revised to address the consistency to the previous system.

Radioactive decay is used for nuclear dispersion study. It is irrelevant for the study, so was removed.

(Line 130) “Hourly outputs were integrated to match with satellite observational data. HY SPLIT
modelling options were configured to be consistent with the SFS system, including options for dry
and wet depositions (i.e. 0.8 um diameter with 2 g/cm® density) (Rolph et al., 2009).

- In the HYSPLIT simulations, dispersed concentrations were vertically integrated up to 5000 m to get
partial column mass loading of smoke particles. Is there any reference for the selection of the column
height (5000 m)? In addition, smoke loading from satellite observations is converted from AOD using
a constant conversion factor. Could the authors further discuss the possible uncertainties that could
be introduced by using this constant conversion factor? For example, how is this constant conversion
factor compare with values reported by previous literature, and is there any relation between the
conversion factor and other plume features (e.g., plume age)? And, this uncertainty can be considered
in observation errors in the inverse modeling system.

Thanks for the comment. Most of HY SPLIT modeling settings in this study are configured to be
consistent with the current operational system as described in Rolph et al. (2009).

With current design, the inverse system generates the best fit for given situation. Selection of
conversion factor does affect the absolute values of both model and observation, but does not affect



their relative comparison (e.g. NRMSE, R). We have tested different conversion factors, and results
are consistent in terms of their variations regardless of conversion factor assumption. However, it-
should be noted that application of dynamic conversion factor (e.g. conversion factors varying
depending on location and time) may affect the output, so better treatment of conversion factor will be
required for more realistic inverse modeling process in the future. In current system, we include the
observational error of AOD, but does not include error term from the conversion factor. We have
included this information in the manuscript.

(L135) “Although we used a single conversion factor for the study, the actual conversion factors may
vary in time and space (i.e. 3.9 — 5.3 m%/g) (Chand et al., 2006; Hobbs et al., 1996; Ichoku and
Ellison, 2014; Nikonovas et al., 2017; Reid et al., 2005). Therefore, applying more realistic
conversion factors and their uncertainties into the system would be another factor in the future
improvement of the system.”

- In section 3.2 of the cost function used in the inverse system, the estimations of error have not been
provided, which are important terms for the inversion method. Firstly, how are the background error
variances evaluated, and how does the value used here compare with typical uncertainties of fire
emissions? Secondly, as mentioned in section 2, the observation error variances are composed of
uncertainties in Lagrangian model, observations, as well as representative errors. It would be
important to include more details about the determination of these error components. Thirdly, what
kind of error terms should be considered in Foper and how are they determined?

Thanks for the comment. The manuscript has been modified to provide the estimations of error terms
used in the cost function. The added text is shown below to address these issues. In addition, three
references are added as well.

(Line 168) “A background term is included to measure the deviation of the emission estimate from its
first guess, qibkt, obtained from the operational BlueSky emission computation. The background term
ensures the problem remains well-posed even with the limited observations available in certain
circumstances. The background error variance 0%, measures uncertainties in 5. Pan et al. (2020)
compared six global emission estimates and found that the total emission differs by a factor of 3.8.
However, emission estimations at specific locations and times can have much larger errors. In
addition, the vertical distribution of the smoke emissions is difficult to determine and this adds even
more uncertainties to the emission estimates. We chose a large uncertainty for the background term as
ik =1000%q i+ 1000 kg/hr at all locations and heights to minimize the adverse impact of inaccurate
BlueSky emission estimates. The observational error variances, £2,,,, represent uncertainties in both
the model and observations, as well as the representative errors. Kondragunta et al. (2008) indicated
that GOES aerosol retrievals over land were expected to have uncertainties within 0.15t + 0.05, where
T is the AOD. Paciorek et al. (2008) showed a better performance of GOES aerosol retrievals in
eastern U.S. than in western U.S. Green et al. (2009) demonstrated that GOES AOD correlates best
with AERONET in autumn (September to November) than in other seasons. They showed that the
RMS error was 0.060 in autumn while the average for all seasons is 0.0149. Considering the better
performance in the Eastern US and in November, AOD uncertainties of 0.10t + 0.06 are assumed in
this paper. A slightly larger additive component of the AOD error is chosen to include the effects of
the representative errors and model errors which do not vary with the observed AOD values. Foser
refers to the other regularized terms that can be included in the cost function. For instance, Chai et al.
(2015) has a temporal smoothness penalty term to avoid abrupt changes in the temporal profile of the
release rates. While this optimization problem could be solved to obtain optimal emission estimates
using many minimization tools, we used the Limited-Memory Broyden—Fletcher—Goldfarb—Shanno
(BFGS) algorithm (Zhu et al., 1997).”

Christopher J. Paciorek, Yang Liu, Hortensia Moreno-Macias, and Shobha Kondragunta:
Spatiotemporal Associations between GOES Aerosol Optical Depth Retrievals and Ground-Level
PM2.5, Environmental Science & Technology 2008 42 (15), 5800-5806, DOI: 10.1021/es703181j



Green M, Kondragunta S, Ciren P, Xu C. Comparison of GOES and MODIS aerosol optical depth
(AOD) to aerosol robotic network (AERONET) AOD and IMPROVE PM2.5 mass at Bondville,
linois. J Air Waste Manag Assoc. 2009;59(9):1082-1091. doi:10.3155/1047-3289.59.9.1082

Pan, X., Ichoku, C., Chin, M., Bian, H., Darmenov, A., Colarco, P., Ellison, L., Kucsera, T., da Silva,
A., Wang, J., Oda, T., and Cui, G.: Six global biomass burning emission datasets: intercomparison
and application in one global aerosol model, Atmos. Chem. Phys., 20, 969-994,
https://doi.org/10.5194/acp-20-969-2020, 2020.

- The ASDTA smoke AOD data are assimilated in the HEIMS-fire system to obtain inverse estimation
of fire emissions. As indicated in the introduction, the ASDTA data are based on automatic detections
of fire smoke plume and represent smoke AOD, which means that the background AOD has been
subtracted from total value. Is it correct? Then could the authors explain how is the background AOD
derived? Also, the uncertainties in background AODs can impact inversion results, because an
overestimation of background AOD will lead to underestimated smoke AOD (then underestimated fire
emissions) and vice versa. This uncertainty can also be considered in the observation errors used for
inversion.

Thanks for the comment. The ASDTA smoke AOD is not determined by subtracting the background
AOD from the total AOD. The radiative signatures of an aerosol layer are determined by the
scattering and absorption properties of the aerosol within a layer in the atmosphere. Reflectance value
of the 0.86 um channel (R0.86um) divided by the reflectance value of the 0.63pum channel (R0.63um)
is often used to determine the aerosol type. Presence of smaller aerosols, like smoke, tends to reduce
the values for this ratio, as smaller particles are more efficient at scattering light at 0.63um. In
addition, ASDTA also utilizes a pattern recognition technique to isolate smoke aerosols from other
type of aerosols. The background AOD is not directly used to retrieve ASDTA smoke AOD. We
utilize the observational error information of ASDTA AOD in the inverse modeling system.

(Line 111) “For each pixel, the radiative signatures of an aerosol layer (e.g. dust and smoke) are
determined by the scattering and absorption properties of the aerosol. ASDTA also utilizes a pattern-
recognition technique to isolate smoke aerosols from other type of aerosols, so it can recognize
plumes transported far from fire sources.”

- In section 3.3, the naming conventions of inversion and forecasting processes are described. It’s a
bit inaccurate to say that “'fire emissions on November 13 can be estimated using ASDTA
observations for 24 hours (i.e. oday=0), 48 hours (i.e. oday=-1), 72 hours (i.e. oday=-2), and 96
hours (i.e. oday=-3).” Technically, if we focus on fires on the target day (oday = 0), the regional
impact and transported smoke plumes from those fires would be found on the following days (oday=1,
2, 3, etc.). Therefore, in this case the emissions on November 13 can only be constrained by the
observations on oday=0 in reanalysis mode. On the other hand, the observations on oday=0 can
constrain emissions on oday=0, as well as emissions on previous days simultaneously. So, the major
benefit of including more observational days is getting more constraints for fires on multiple days,
and providing a better estimation of the background smoke plume for the target day. In this case, it
would be more precise to say that “for a target day of November 13, inversions are conducted using
ASDTA observations for 24 hours (i.e. oday=0), 48 hours (i.e. oday=-1), 72 hours (i.e. oday=-2), and
96 hours (i.e. oday=-3).”

Thanks for the comment. Descriptions on the analytical and observational time windows are revised.
Also, see discussions in the general response #1.

(Line 207) “This inverse system is designed to estimates fire emissions on the target day by analyzing
past and present smoke field, and then utilizes them to forecast the future smoke field. The
assimilation days (i.e. aday = 0,-1,-2) (see Figure S1) indicate the temporal coverage of dispersions
and constraining observations. For a target day of November 13, inversions are conducted using
HYSPLIT dispersion simulations and ASDTA observations for 24 hours (i.e. aday=0), 48 hours (i.e.
aday=-1), 72 hours (i.e. aday=-2), and 96 hours (i.e. aday=-3). Estimated fire emissions are used to



simulate fire smoke for November 13 (i.e. fday=0; reanalysis), and the same amount of fire emissions
are used in forecast mode for November 14 (i.e. fday=+1) and 15 (i.e. fday=+2).

- Column particle mass loading is used to constrain fire smoke emissions, and emissions released at
different numbers of vertical layers are tested in the sensitivity analysis. Including 5000 m level make
an obvious improvement for the results. But there is a lack of analysis for the reason. A possible
reason is that, 5000 m is usually above the Planetary Boundary Layer Height (PBLH). So, it would be
interesting to examine the PBLH and plume injection height for this case, since smoke injection height
is important to smoke transport. Smoke lofted into the free troposphere is often transported hundreds
or thousands of kilometers downwind because of the higher wind speeds, generally lower turbulence
levels, and less scavenging processes at higher altitudes. While, smoke trapped within the PBL is
usually well mixed, and remains near the source region. If most of the fire spots in this case showed
injected emissions above the PBLH, then it means that, including 5000 m in the simulations allows a
better representation of emission injection, and the plume can be transported further and better
constrained by observations.

Thanks for the comment. We agree with the reviewer’s comment. We included discussions on the
vertical layer extension. Also, see the general response #2.

(Line 292) “Including the 5000m layer, especially, resulted in noticeable changes, implying the
potential benefit of including high-level transport for specific days. Since the 5000m layer is above
typical planetary boundary layer height, emissions injected at this level experience different physical
characteristics. Smoke lofted into the free troposphere is less affected by turbulence and scavenging,
and transports easily hundreds or thousands of kilometers downwind because of the higher wind
speeds. Addition of the 5000m layer would better represent the potential long-range transport.”

- As a follow-up of the last comment, could it provide better results by tuning the emission release
heights incorporating information from a plume rise model?

Thanks for the comment. We agree that plume rise models can help by providing 1) better initial
guess of vertical allocation of emissions, and 2) complementary simulation when observations are
limited. Please, also see the general response #2.

- For the sensitivity test on the time range of observation data used in inversion, “The ‘one-day’
(oday=0) simulation is run through the inverse model using dispersion and observations for the target
day, while the ‘two-day’ simulation uses two days (i.e., 48 hours) of dispersion and observations
(oday=-1)". As this sensitivity test focus on the time range of observations, I think it is unfair to
compare the results using different days for both of dispersion and observations. For example, if we
compare the results using ‘one day’ and ‘two days’ shown in the current test, for the ‘one-day’
simulation, all the mismatches of modeled and observed smoke mass loading would be attributed to
adjustments of fires on the target day, which would likely lead to a significant error in the emission
estimates for the target day. While the ‘two-day’ simulation allows the fires on oday=-1 to be
constrained at the same time. Therefore, it would make more sense to use four days of dispersion for
all the simulations for this test, and just change the observation days from 1 (24 hours) to 4 (96
hours).

Thanks for the comment. We clarified the temporal coverage sensitivity test. Please, see the general
response #2.

- At the end of section 4.3, it is mentioned that “The November 17 output shows how the system
responds when observations are limited or missing, although it still provides a robust result by
honoring the initial guess information”. But no result is referred. It would be clearer to add a
reference to the figure/table supporting this sentence. If it is Figure 4, it would also be better to
indicate the number of points in each panel to show that the observations are limited on Nov 17, given
that many points could be overlapped.



Thanks for the comment. Although November 17 has no ASDTA AOD, the inverse system still
produced a reasonable output (Figure 5). We included discussion on the performance of the inverse
system with limited observational data.

(Line 25) “The November 17 output in Figure 5 shows how the system responds when observations
are limited or missing, although it still provides a robust result by honoring the initial guess
information. On November 17, no ASDTA AOD was provided from the satellite operation. Under 48-
hour configuration (i.e. aday=-1), the inverse system still produced reasonable outputs using limited
observations (November 16) and initial guess emissions (November 16 and 17).”

- P8, L249-255, this paragraph can be more concise. Also, a description of the result of the spatial
coverage sensitivity test is missing.

Thanks for the comment. We removed unnecessary sentences. We also included discussions on the
spatial coverage sensitivity test result.

(Line 301) “In the third test, we varied the spatial coverage of input fire information. Although
wildfire impacts easily spread by long-range transport, we could not include all the global fire
information due to limited computational resources. We therefore tested different spatial domains of
fire locations to evaluate what spatial coverage of wildfire detection information is required to
estimate fire emissions. Fire sources inside domain 1 through 4 (Figure 3) were tested in the
assimilation constrained by ASDTA AOD inside Domain 1. Figure 6¢ and Table 4 show correlation
and error statistics from the sensitivity test of spatial coverage. In most days, we have better results
when we include fire emission sources at least within domain 2. It makes sense considering the effects
of transported fire plumes form Mississippi and Louisiana (Figure 3). Maximizing geographical
coverage (e.g. domain 4) did not always result in the best performance in our case study. This result,
however, should be taken carefully because we do not have strong fire activities outside domain 2 in
our study case. Strong long-range transport cases, typically form northwestern US, Canada and
Alaska, would have bigger impacts.

- As stated in section 4.5, for the forecasting days, smoke is estimated as the summation of impact
from fires existed on previous days and new emissions on the target days, and fire plumes initialized
on fday =0, 1, 2 are used here for the summation. How do the authors determine how many previous
days should be considered? Since the impact of fires can extend to multiple days, would it give a
better result by adding the contribution of smokes initiated on the analysis days, e.g. oday = -1, -2,
and -3?

Thanks for the comment. This is a key point of the temporal coverage sensitivity tests. Theoretically,
we expect better output when we use longer temporal coverage, but it requires more computational
resources. Current sensitivity test suggests that 48-hour time window can provide a decent result. In a
forecast mode, we see the effect of persistency rate seems to be larger than other factors. Therefore, in
the actual application of forecast system, more tuning of the system is required.

- In the abstract, it is concluded that the inverse modeling system developed here outperform than the
current operational forecast product in terms of RMSE, but it’s not clear RMSE of which variable is
denoted here, and what observation dataset are the hindcast results and operational product
evaluated against.

Thanks for the comment. Evaluations were conducted for smoke mass loading between hindcast and
operational product against satellite-observed fire smoke mass loading for next 48-hour.

- P3, L92: “A modeling framework” -> “As a modeling framework”
Corrected.

- P4, L95: emission rate or emission? Do they represent the same term in this paper (i.e. fire smoke
particles emission)? It seems that both are used throughout this paper. It would be better to use one of
them and keep consistent.



Thanks for the comment. Conceptually, it is ‘emission’ in general, and ‘emission rate’ is used as an
actual input for the HYSPLIT. We used ‘emission rate’ specifically for cost function minimization or
as a model input.

- P4, L125: I do not quite understand why “the results shown in the study are obtained by multiplying
the column height (i.e. 5000 m)” here. It has been shown that, the column TCM is calculated by
integrating dispersed concentrations vertically, so the TCM is already in units of column loading per
unit emission. Is it correct?

Simulation outputs for TCM are in density unit and are converted to column mass loading by
multiplying column height.

- P7, L189: true color image. There is not a true color channel.

Corrected.

’ >

- P7, L214: “estimation of assimilated fire emissions” -> “estimation of fire emissions’
Corrected.

- Section 4.3, the time range of observations assimilated in this case experiment is not indicated.
As mentioned in captions of Figure 4 & 5, 48-hour observations are used.

- What'’s the date for the result shown in Figure 5?

Dates are labeled in the left side of each panel. We specified the period in the caption.

- P8, L225: remove “that”

Revised.

- P8, L242: “smoke dispersions” -> “fire emissions”

Corrected.

- P8, L247, “As expected, including more layers generally produce better result.” This sentence is
nearly a duplication of the sentence in L242-243.

Thanks for the comment. We removed the sentence.

- P10, L295: “From the top panel of Figure 9 -> “For the top panels of Figure 9”
Corrected.

- P10, L295: “are solely originated fires” -> “are solely originated from fires”
Corrected.

- P10, L303: “reply on” -> “rely on”

Corrected.

- P10, L312, for the “additional constraint”, “transported smoke plume” could be better. There are
other places of this term, please consider revising them accordingly.

Thanks for the comment. We revised sentences.
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