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Abstract.

Water vapor (H2O) is the source of reactive hydrogen radicals in the middle atmosphere, whereas carbon monoxide (CO),

being formed by CO2 photolysis, is suitable as a dynamical tracer. In the mesosphere, both H2O and CO are sensitive to solar

irradiance variability because of their destruction/production by solar radiation. This enables to analyze the solar signal in both,

models and observed data. Here, we evaluate the mesospheric H2O and CO response to solar irradiance variability using the5

Chemistry-Climate Model Initiative (CCMI-1) simulations and satellite observations. We analyzed the results of four CCMI

models (CMAM, EMAC-L90MA, SOCOLv3, CESM1-WACCM 3.5) operated in CCMI reference simulation REF-C1SD in

specified dynamics mode, covering the period from 1984 to 2017. Multiple linear regression analysis shows a pronounced

and statistically robust response of H2O and CO to solar irradiance variability, and to the annual and semiannual cycles. For

periods with available satellite data, we compared the simulated solar signal against satellite observations, namely GOZCARDS10

composite for 1992-2017 for H2O and Aura/MLS measurements for 2005-2017 for CO. The model results generally agree with

observations and reproduce an expected negative and positive correlation for H2O and CO, respectively, with solar irradiance.

However, the magnitude of the response and patterns of the solar signal varies among the considered models, indicating

differences in the applied chemical reaction and dynamical schemes including the representation of photolyzes. We suggest

that there is no dominating thermospheric influence of solar irradiance in CO, as reported in previous studies because the15

response to solar variability is comparable with observations in both, low-top and high-top models. We stress the importance
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of this work for improving our understanding of the current ability and limitations of state-of-the-art models to simulate a solar

signal in the chemistry and dynamic of the middle atmosphere.

1 Introduction

H2O plays an important role in atmospheric chemistry as a source of the hydrogen oxide radicals (HOx), which are important20

for ozone loss. There are two main sources of water vapor in the middle atmosphere. The first is a direct carry-over of H2O

through the tropopause tropical cold trap (∼ 2-3 ppmv), where strong dehydration of air occurs (Nicolet, 1981). The second is

indirect, namely the upward stratospheric transport of CH4 and its subsequent oxidation. The main chemical reaction leading

to H2O formation throughout the atmosphere is from methane oxidation (Wofsy et al., 1972):

CH4 + OH.→ CH3
. + H2O. (1)25

Middle atmospheric trends in H2O are largely determined by changes in the tropospheric content of CH4 and temperature

at the tropical tropopause (Nedoluha et al., 2013). The amount of H2O in the middle atmosphere can reach the value of up to

10 ppmv (Brasseur and Solomon, 2005). In the mesosphere where the CH4 is fully oxidized, the H2O can have the amount

of about 6.6 ppmv. Nevertheless, the highest mixing ratio of H2O is in the lower atmosphere with 10-100 ppm in the upper

and more than ten thousand ppm in the lower troposphere (Palchetti et al., 2008). With increasing altitude in the mesosphere,30

photodissociation of H2O is caused by solar irradiance at the Ly-α (121.25 nm) spectral line of hydrogen and within the spectral

range of the oxygen Schumann-Runge continuum (175-200 nm; Frederick and Hudson, 1980). The photodissociation lifetime

of water vapor in the presence of the solar Ly-α radiation below mesopause is estimated to be less than 200 hours (Kingston,

1987) because J(Ly–α) of (H2O) = 1.6 x 10–6 s–1 for a total number of O2 molecules of about 1020 cm–2. Products of H2O

photolysis are atomic hydrogen and hydroxyl radicals:35

H2O + hν→ H. + OH.. (2)

As such, an anti-correlation of water vapor with solar irradiance, with the strongest response in the mesosphere, is expected

(Chandra et al., 1997; Hervig and Siskind, 2006; Shapiro et al., 2012) and the strength of this effect depends upon the intensity

of solar irradiance in the Ly-α line and the Schumann-Runge band.

Carbon monoxide (CO) is widely present in the lower thermosphere and mesosphere and due to its chemical lifetime of40

more than one month, it can be used for investigating transport processes in the middle atmosphere. CO can react with some

species (e.g. OH.), which would otherwise destroy ozone and CH4, enhancing its radiative forcing (Ryan et al., 2018). Contrary

to H2O, CO is positively correlated with solar irradiance as it is primarily formed through the photolysis of CO2 in the lower

thermosphere and upper mesosphere at Ly-α (Wofsy et al., 1972) as follows:
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CO2 + hν→ CO + O. (3)45

In the troposphere, the main source of CO is the oxidation of hydrocarbons (Minschwaner et al., 2010). However, in the

mesosphere the amount of CO from the oxidation of CH4 and isoprene is so much smaller compared to the CO2 photodisso-

ciation (Eq 3) that this process can be neglected at high altitudes (Garcia et al., 2014). Chemical loss of CO in the atmosphere

occurs by oxidation (Levy, 1971):

CO + OH. → CO2 + H.. (4)50

The amount of CO in the mesosphere is estimated to be within 30ppb-10 ppm (Brasseur and Solomon, 2005), and 50-100

ppb in the uncontaminated air in the troposphere (Minschwaner et al., 2010), having a strong vertical gradient. Mesospheric

concentrations of H2O and CO are strongly determined by the solar irradiance. Since the processes leading to H2O/CO destruc-

tion/production are much faster than changes in solar irradiance on all timescales, we can assume they are essentially linear.

Therefore, an attribution approach using multiple linear regression (MLR) analysis is reasonable to estimate the impact of so-55

lar irradiance on H2O and CO variability in the middle atmosphere. We apply this linear statistical tool to different model and

satellite data. One major goal of this study is to compare the modeled solar signal in mesospheric H2O and CO to observations.

Recently, the photochemical H2O loss by Ly-α radiation in UARS/HALOE measurements was estimated to be about 35% at

0.01 hPa (∼ 80 km altitude) at 50oN using MLR (Remsberg et al., 2018). Tropical tendencies in mesospheric water vapor

using MLR analysis of Aura/MLS observations for the 2004-2015 period were presented by Nath et al. (2018). Their analysis60

showed a pronounced trend in water vapor throughout the whole considered period, as well as a strong negative correlation

with the F10.7 solar index that maximizes at 0.01 hPa (-0.56 ppmv/ 1% of Ly-α). A solar signal in lower stratospheric H2O was

investigated by Schieferdecker et al. (2015). Using MLR they showed a negative correlation between H2O and solar activity

with a phase-shift of about 2 years in composite data of HALOE and MIPAS over 60oN-60oS.

Lee et al. (2013) presented a study of the middle atmospheric CO variation caused by solar irradiance changes using MLS and65

solar irradiance measurements from the Solar Radiation and Climate Experiment (SORCE). Their results reveal a significant

positive correlation of up to 0.6 between solar irradiance and CO variation in the mesosphere, as well as downward transport

of the CO anomaly induced by solar irradiance over high latitudes with a descent rate of about 1.3 km/day. Lee et al. (2018)

expanded their previous work and investigated the solar cycle variation in CO using MLS measurements for 2004-2017, as

well as free-running WACCM simulations using two different solar spectral irradiance datasets. The updated results have a70

higher correlation (up to 0.8) and show that 68% of upper mesospheric CO variation is caused by solar irradiance changes

as well as pronounced downwelling of the signal within the polar vortex regions. The results simulated with WACCM (3.5)

underestimate the CO variation in the upper mesosphere by a factor of three compared to the Aura/MLS observations. However,

here it should be mentioned that the applied WACCM version does not employ the extreme ultraviolet (EUV) photolysis and

reaction by CO2 with O+ as an additional CO production mechanism in the thermosphere. The modeled CO distribution with75
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the WACCM version 4.0 shows CO in better agreement with the MIPAS and ACE-FTS observations (Garcia et al., 2014). This

also could cause some issues when comparing the results of models where this production mechanism is not included. Thus, the

results of previous studies revealed issues in the modeling of the influence of solar irradiance and motivate an inter-comparison

analysis of multiple models and observations. So far, an MLR analysis using multiple chemistry-climate models (CCMs) and

observations of both CO and H2O had not been conducted.80

In this work, we present an MLR analysis of simulations with several chemistry-climate models in specified dynamics mode

for the period 1984-2017, as well as available observations from UARS/HALOE (1992-2005) and Aura/MLS (2005-2017),

which provide data for 26 years with a good resolution and without serious gaps. The combined UARS/HALOE and Aura/MLS

records provide observations of CO (only for the Aura/MLS period) and H2O (for the whole 1992-2017 period), which makes

these data suited for our analysis. The MLR method is used to retrieve H2O and CO responses to solar irradiance variability,85

and to estimate the consistency of the solar signal in CCMs to that found in observations, and between CCMs. Analyzing

the differences in the solar responses can reveal potential model limitations, such as the dynamics of the middle atmosphere

(weak or strong transport), presence of thermospheric sources (important since some models have an upper boundary at 0.01

hPa), and photochemistry and chemical production or loss of the species considered here. H2O and CO were chosen as they

are very sensitive to solar irradiance variations in the mesosphere (Remsberg et al., 2018; Lee et al., 2018) making them good90

candidates for this kind of analysis.

In Section 2, we describe the data sets used in this study. Section 3 briefly describes the MLR model set-up used to retrieve

the solar signal response. The results of the MLR analysis of the models CMAM, EMAC-L90MA (hereinafter will be denoted

as EMAC), SOCOLv3 (hereinafter will be denoted as SOCOL), and WACCM REF-C1SD runs for the entire period 1984-

2017, as well as the comparison with H2O measurements from UARS/HALOE and Aura/MLS for the 1992-2017 period and95

CO measurements from Aura/MLS for the 2005-2017 period, are presented in Section 4. The discussion and overall summary

can be found in Sections 5 and 6.

2 Data sets

For our study chose four global climate models involved in the Chemistry–Climate Model Initiative (CCMI-1) project. The

CCMI project aims at carrying out the inter-model comparison and validation of model results with observations1. For the100

analysis, we used the results of the REF-C1SD experiment which was performed using boundary conditions extracted from

observations including the atmospheric level of greenhouse gases and ozone-depleting substances (ODSs), as well as sea sur-

face temperature and sea ice concentration (Morgenstern et al., 2017). Specified dynamics (SD) here means that meteorological

fields in the model experiments are nudged toward reanalysis datasets. The nudging is applied in CCMI-1 models for different

atmospheric regions as well as using different reanalysis data (see Table 1; Chrysanthou et al., 2019). The selection of models105

was based on the inspection of the simulated H2O and CO time series for the presence of the solar signal in the mesosphere and

on data reliability. Careful analysis of the CCMI-1 results showed that only CMAM, EMAC, SOCOL, and WACCM CCMs are

1More information on CCMI activities can be found here: https://www.sparc-climate.org/activities/ccm-initiative
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suitable for the intended analysis, while other models involved in CCMI-1 were either in an unusable format, did not extend

high enough, or lack any solar signal in H2O and CO. The REF-C1SD simulations of the four chosen models were extended

to 2017 (CCMI-1 is until 2011) to overlap with the recent satellite measurements.110

Table 1: CCMI-1 model set up

Name Spatial

resolution

Model top

height

Nudging

region

Nudging

data

Reference

CMAM T47, L71 0.0008 hPa Surface–1 hPa ERA-Interim Scinocca et al. (2008)

EMAC-L90MA T42, L90MA 0.01hPa 10–90 hPa ERA-Interim Jöckel et al. (2010);

Jöckel et al. (2016)

SOCOLv3 T42, L39 0.01 hPa Surface–0.01 hPa ERA-Interim Stenke et al. (2012);

Revell et al. (2015)

CESM1-WACCM 3.5 1.9 x 2.5, L66 5.1x10–6 hPa Surface–50 km

(fades out 40–50 km)

MERRA Marsh et al. (2013);

Verronen et al. (2016)

We focus on mesospheric altitudes for the examination of the solar signal response in atmospheric chemistry. Thus, differ-

ences in nudging setups play no role, as the mesosphere does not undergo direct nudging. There is an exception for SOCOL

that the only one model where the whole model atmosphere is nudged up to the 0.01 hPa level. Additionally, in the frame of

this work, it is important to describe the lower limit of the wavelength for photolysis and photoionization in CCMI-1 models115

presented in Table 1.

In EMAC, for the simulation considered in this work, the photolysis rates have been calculated with the submodel JVAL

(Sander et al., 2014), which uses 8 wavelength bands, bands ranging from 178.6 nm to 682.5 nm (Landgraf and Crutzen,

1998) and includes a parametrization for Ly-α photolysis (Chabrillat and Kockarts, 1997). In SOCOL, photolysis rates are

calculated using a look-up-table approach (Rozanov et al., 1999), including effects of the solar irradiance variability with the120

lower limit for photolysis at 120 nm. In the CMAM model, the shortest wavelength is 121.0 nm. Also, the parameterization for

NO photolysis from Minschwaner and Siskind (1993) is used, however, there is no effect of solar variability included on this

rate. In WACCM, the photolysis of H2O starts at Ly-α (121.5 nm). Fluxes at that wavelength are calculated using the Chabrillat

and Kockarts (1998) scheme. For Equation 3, cross-sections from 0.5 to 105.0 nm in the XUV/X-ray wavelength region are

used. Solar fluxes are calculated with Solomon and Qian (2005). Additionally, in WACCM, an ion chemistry loss for CO2 is125

included: CO2 + O+ → O+
2 + CO. In the other models (EMAC, CMAM, and SOCOL) considered here, ion chemistry is not

included.

Since time series of H2O and CO from CMAM, SOCOL, WACCM, and EMAC SD simulations are available until 2017,

we compare the solar response with observations from Aura/MLS CO for the available period of 2005-2017 and H2O for
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1992-2017. However, to extend the REF-C1SD simulations of SOCOL and EMAC the NRLSSI data (Lean et al., 2005) for130

REF-C1 was used only until 2011, and onward the models used the boundary conditions (GHGs and ODSs) of the RCP6.0

scenario (REF-C2). In EMAC the conditions of the year 2011 have been cyclically repeated for the years 2012-2017. In the

case of solar forcing, EMAC uses the adapted solar forcing according to the one used in HadGEM2-ES CMIP5 6.0 simulation

(Jones et al., 2011). The CMAM data for the considered period was from a different specified dynamics simulation than the

one submitted to CCMI-1, produced using a method identical to that of nudging with reanalysis but with specified stratospheric135

aerosols, extra-terrestrial solar flux, and emissions from datasets specified for CMIP6 (Eyring et al., 2016). For the extension

of the WACCM time series of both H2O and CO, the NRLSSI2 model (Coddington et al., 2016) is used from 2015 onward.

To compare simulated results, the observations of H2O from the Halogen Occultation Experiment HALOE (1992-2005)

onboard of the Upper Atmosphere Research Satellite (UARS), and the observations of H2O and CO from Microwave Limb

Sounder (MLS) (2005-2017) instrument on board of the Aura satellite were analyzed. HALOE measured the reduction in140

the intensity of solar energy that passes through the atmosphere to obtain the gas concentration of important atmospheric

trace gases. A detailed HALOE instrument description can be found in Russell et al. (1993). The principal method used with

the MLS instrument is the measurement of microwave thermal emissions from the atmosphere to remotely obtain profiles of

different atmospheric constituents. More information on MLS can be found in Waters et al. (2006). For the analysis of H2O,

we used a combination of the GOZCARDS merged data set consisting of all available data for the 1992-2004 period (Anderson145

et al., 2013) and data from ongoing missions of MLS (Waters et al., 2006) and ACE-FTS (Atmospheric Chemistry Experiment

- Fourier Transform Spectrometer), (Bernath et al., 2005) for 2005-2017 obtained using an averaging procedure based on

overlap periods. Carbon monoxide time series are available only for the period 2005-2017 (Bernath et al., 2005; Waters et al.,

2006). Both datasets of observations are binned into 20 latitude zones, as data of observations (especially HALOE) are rather

noisy and a linear gap-filling procedure was applied to produce a continuous time series.150

Figure 1 shows the time series of H2O and CO averaged over the tropics (30oN-30oS) at 0.01 hPa from CCMI-1 REF-C1SD

simulations and observations from the GOZCARDS composite and Aura/MLS instruments.
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Figure 1. Time series of monthly mean (a) H2O and (b) CO mixing ratio from CCMI-1 models as well as GOZCARDS observational

composite (grey line and shading in (a), starting in 1992) and Aura/MLS observations (blue line and shading in (b), starting in 2005) at 0.01

hPa averaged over the tropics (30oN-30oS). Shadings: 1 σ standard deviation. The red dash-dotted line indicates the F10.7 solar index.

It should be mentioned that the upper boundary for SOCOL and EMAC at 0.01 hPa belongs to the sponge layer where high

diffusion is used to avoid excessive wave amplitudes. The importance for chemistry is that a zero-flux condition is applied

for SOCOL and EMAC, which means that H2O and CO concentrations are not prescribed at 0.01 hPa level. For WACCM155

and CMAM, the model top-level is above 0.01 hPa (at 5.1x10–6 hPa and 0.0008 hPa, respectively) and the influx of the air

with rather high CO and low H2O concentrations from the lower thermosphere could play an important role. For visualization

purposes, we smooth H2O and CO time series presented in Figure 1 using the third-order polynomial interpolation with a 2-

year length of the averaging window, however, data used later for MLR analysis are taken in original form without smoothing.

As it is shown in Figure 1, there is a pronounced response of H2O and CO to solar irradiance variability, represented here160

as the F10.7 solar radio flux (right vertical axis). In the case of H2O, there is a decrease in mixing ratio during solar activity

maximum, and the opposite for CO, which is enhanced during the solar maximum. Obviously, the amplitude of the solar signal

in H2O and CO and their mean values are not the same in different models and observations. The comparison of H2O mixing

ratios in Figure 1 during the 1984-2017 period reveals that all models except SOCOL are within the standard deviation of the

merged observational data. The observed H2O mixing ratio is slightly overestimated by EMAC and underestimated by CMAM165

and WACCM. A substantial overestimation of the water vapor loss by photolysis in SOCOL may lead to an underestimation

of the mixing ratio by up to 50% (Sukhodolov et al., 2017). This can have implications for the simulations of HOx and ozone

loss in the mesosphere. In the case of CO, SOCOL, and WACCM results are almost identical and in good correspondence

with Aura/MLS observations during 2005-2017. This agreement suggests that the influx of CO from the thermosphere in
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WACCM does not substantially contribute to CO in the tropics. However, in SOCOL the lacking of downward transport from170

the thermosphere might hypothetically be compensated by erroneous, for instance too strong in-situ production in the upper

mesosphere. On the other hand, the absolute values of the CO mixing ratio in EMAC and CMAM are very similar. They are

underestimated by a factor of 2 though, in comparison to Aura/MLS data, which might be due to an underestimated production.

Thus, it is obvious that H2O and CO behave differently in models and observations, subject of the exact treatment of chemistry

and radiation in the models. In the following, a detailed MLR analysis of modeled H2O and CO as well as of the observational175

data sets will be presented.

3 Description of the MLR model

The multiple linear regression (MLR) model used in this study is based on the x-regression tool (Kuchar, 2016) consisting

of the Python statistical models library statsmodels (Seabold and Perktold, 2010) coupled with the xarray package dealing

with multi-dimensional arrays (Hoyer and Hamman, 2017). This model configuration adopts a well-established attribution180

methodology already used in previous studies (Ball et al., 2016; Kuchar et al., 2017). In this version, the MLR model uses 9

explanatory/predictor variables and one response variable which is either H2O or CO, respectively. As predictors, we use the

solar F10.7 index (in solar flux units), the El Niño–Southern Oscillation (ENSO) ERSST v5 Nino4 index (in Kelvin), zonal

winds at 30 and 50 hPa (in m/s) as proxies of Quasi-biennial oscillation (QBO) assuming their orthogonality (Crooks and

Gray, 2005), stratospheric aerosol optical depth (SAOD), (dimensionless) as well as two annual (AO) and two semi-annual185

(SAO) oscillation harmonics. To remove the residual autocorrelation, a second-order autocorrelation (AR2) model is used in

an iterative way. The time series of the monthly mean response variables Y(t) (in ppmv) reconstructed as a function of time (t)

by the MLR model for every single cell (latitude x pressure level) is:

Y(t) = α+βSOLAR(t) +γENSO(t) +δ1QBO30(t) +δ2QBO50(t) + εSAOD(t) + 2 –ζAO(t) + 2 –ηSAO(t) +θTREND(t) + e(t). (5)

To estimate the statistical significance of the derived regression coefficients to approximate Y(t), we use a t-test with 95%190

confidential level taking into account the residual autocorrelation. e(t) in the equation 5 means the stochastic noise of the

model where AR2 is included. All explanatory variables with monthly resolution were taken from the KNMI Climate Explorer

database2. In our study, the regression coefficients for the solar proxy (β) are estimated using the MLR model as a latitude-

altitude matrix, and they are used to calculate the solar signal as (Ys/Ȳ)x100%, where Ȳ is an averaged H2O/CO (ppmv) for

the whole considered period and Ys = β *100 is H2O/CO change (ppmv) caused by F10.7 change by 100 units. As such we195

estimate the percentage change in H2O and CO induced by solar irradiance changes from the minimum to the maximum of

the 11-year solar cycle. To check how much of the total variability is represented by the solar variability and whether our

choice of regressors is justified, we calculate the relative importance (RI) of each regressor. We use the Lindeman-Merenda-

Gold measure (LMG, Lindeman et al., 1980) to decompose R2 (coefficient of determination) and to determine RI, which

refers to the proportionate contribution each predictor variable makes to the total predicted criterion variance. Figure 2 shows200

2KNMI Climate Explorer database, generously made available freely under https://climexp.knmi.nl
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RI distributions of zonally averaged time-series of CO and H2O at 0.01 hPa between 30◦S and 30◦N for the period 2005-

2017 and 1992–2017, respectively. Our MRL model, including annual and semiannual harmonics, can assess 70-90% of the

total variability (shown as "total" on the right-hand side of both panels in Figure 2). The solar variability represents around

10% of the total variance and it is the strongest after the SAO (∼50%) driver of CO and H2O variability in all model data and

observations around the equator at 0.01 hPa. While the solar RI in the CO time-series of EMAC agrees well with the Aura/MLS205

observations, CMAM and SOCOL overestimate and WACCM underestimates the solar variability. It is worth saying that in

some models AO and SAO in the upper mesosphere may experience some issues, as much of the variability on those timescales

comes from the residual circulation that would not be fully resolved. In terms of the solar RI in the H2O time-series, EMAC

agrees well with the GOZCARDS dataset. SOCOL together with CMAM overestimates and WACCM rather underestimates

the solar variability. Even larger model spread is revealed in terms of SAO. A significant amount of the SAO variance, much210

larger than for the AO at 0.01 hPa, is consistent with a general understanding of the mesospheric variability (Baldwin et al.,

2001). This may be related to the gravity wave drag imposed in the mesosphere and/or its damping (Rind et al., 2014), or the

mesospheric QBO (MQBO) is not as robust as SAO in the mesospheric region as previously thought (Pramitha et al., 2019).

The SAO dominance at 0.01 hPa cautions us against using deseasonalizing methods only with annual cycle (Deng and Fu,

2019). Therefore, in this study, we exclude the deseasonalization procedure from the MLR set-up. Only in this way, our model215

can assess 70-90% of the total variability.
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Figure 2. The full decomposition of R2 from MLR of equatorial (30oN-30oS) CO for the period 2005–2017 and H2O for the period

1992–2017 at 0.01 hPa in a form of violin plots. For CO observations the Aura/MLS data are used, for H2O the GOZCARDS composite.

Distributions were calculated from 10000 bootstrapped samples using the LMG measure. Horizontal dashed lines represent quartiles of the

distributions. Note that to quantify relative importance of the annual (AO) and semiannual (SAO) oscillation, we do not use deseasonalized

time-series.

4 Results

4.1 Simulated H2O and CO responses to solar irradiance variability for the 1984-2017 period

Results of the MLR analysis of the H2O time series from the four CCMs under consideration are presented in Figure 3 for the

full investigated time, 1984-2017, while comparisons with observations are shown in Figure 5 for a restricted period.220
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Figure 3. The relative importance of the solar signal in H2O from CCMI-1 models (1984-2017) presented as a percentage of the mean.

Model names are indicated at top of each panel. Inclined hatches: area with statistical significance less than 95%.

The most pronounced effect in H2O is seen in SOCOL and WACCM over the 30oN-30oS latitude band, which appears in

the most sunlit region. The effect in SOCOL exceeds those from any other models, with up to a 45% H2O response to solar

irradiance variability. Such a large relative response in SOCOL can be explained by the low background water vapor mixing
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ratio (see Figure 1), wider nudging region, or by the photolysis by Ly-α implemented in the model that is too intense. The H2O

responses simulated with CMAM and EMAC are smaller and do not exceed 20%. The maximum of the response is slightly225

shifted towards the north in CMAM, EMAC, and WACCM models as well as the second maximum in SOCOL, which may

be connected to an enhanced residual circulation modulated by the solar cycle (Cullens et al., 2016). The increased downward

propagation of the solar signal can also be found in the WACCM results, where the maximum is also a bit displaced to the

north along with a strengthened descending motion over the north pole. The response of H2O to solar irradiance variability

disappears below 0.1 hPa in all models because solar irradiance of the Ly-α line cannot penetrate to this depth in the atmosphere230

and the influence of the Schumman-Runge band is less substantial.
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Figure 4. The relative importance of the solar signal in CO from CCMI-1 models (1984-2017) presented as a percentage of the mean. Model

names are indicated at top of each panel. Inclined hatches: area with statistical significance less than 95%.

Figure 4 shows the estimated CO response to solar irradiance variability in the models for the full period 1984-2017. The

similar behavior in CMAM, EMAC, and WACCM suggests a decent of air enriched in CO and a large correlation with solar

irradiance over the high latitudes. The penetration is deeper over the southern hemisphere where a stronger southern polar
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vortex provides more intensive downward motion and stronger isolation from the middle latitudes. A stronger meridional235

transport induced by enhanced atmospheric wave-breaking appears to suggest a maximum CO response over middle and high

latitudes in the northern upper mesosphere (Cullens et al., 2016; Lee et al., 2018). In contrast, SOCOL generates three maxima

of CO (40◦S, 40◦N, and 80–90◦N) in the upper mesosphere between 0.01-0.1 hPa, which are not seen in the other models.

Below we will see that this feature depends on the exact period chosen for comparison (see Figure 7 below). SOCOL also

shows two regions at southern and northern midlatitudes with a stronger response and statistical significance above 95%.240

Again, the exact appearance of this feature depends on the exact years chosen for averaging (see Figure 7 below). In SOCOL a

sharp boundary in the CO response is seen between 0.1-0.2 hPa due to the lower lifetime of CO there (the OH concentration is

higher) that is too short to allow mesospheric CO to be transported down. This effect can be found in the other models as well,

but only in the 40oS-40oN latitude band. The shape of the solar signal in CO is characterized by a much deeper propagation

over the middle and high latitudes, and it substantially differs from the solar signal in H2O, which is mostly confined to the area245

above 0.1 hPa exposed to solar UV in the Ly-α line (dissociating H2O according to Reaction 2). The reason for the difference

in patterns of H2O and CO could be a longer chemical lifetime of CO produced by Ly-α in the mesosphere over middle and

high latitudes that allows for transport down through atmospheric circulation.

4.2 Simulated and observed H2O and CO responses to solar irradiance variability

To evaluate the model performance, the simulated solar signals in H2O and CO are compared with satellite measurements. As250

the observations are not available for the full-time period described in the previous sections, we repeated the MLR calculations

using the GOZCARDS merged H2O data for the 1992-2017 and MLS CO time series for the 2005-2017 periods. The solar

signals in H2O extracted from the slightly shorter period are illustrated in Figure 5. For none of the models, the simulated

results depend strongly on the period. The solar signal in H2O extracted from the satellite data does not show a strong equatorial

response in H2O, as it is visible in most of the model results. Instead, more pronounced effects are shifted to mid-latitude zones255

where strong downwelling propagates the solar cycle signal to lower levels. The effects are very similar to those presented by

Remsberg et al. (2018), who also obtained maximum responses shifted to the middle latitudes. The reason for such a pattern in

UARS/HALOE could be related to the sampling issue over the low-tropical region. The same but with a less pronounced shape

appears in the SOCOL results. In this case, the southern maximum is shifted to approximately 20◦S and the northern maximum

is shifted to high latitudes in the northern hemisphere. Nevertheless, in terms of percentage, WACCM, CMAM, and EMAC260

H2O results are closest-to-observations over the tropical zone. However, over the middle latitudes, only SOCOL shows a slight

poleward shift of the maximum H2O response, similar to but not quite the same as in the observations, possibly resulting from

the full-atmosphere nudging applied in SOCOL).
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Figure 5. The relative importance of the solar signal in H2O from CCMI-1 models and observations collected by GOZCARDS for the period

1992-2017 presented as a percentage of the mean. Model and observations names are indicated at top of each panel. Inclined hatches: area

with statistical significance less than 95%.

Because the latitudinal distribution can be related to the peculiarities of the satellite observations such as gaps and measure-

ment inaccuracies, the tropical averaged plot could be more instructive for the evaluation of the model performance. Figure 6265

shows the tropical response in H2O as a percentage of the mean, and the change in mixing ratio (in ppmv) averaged over

30◦S–30◦N. The effect of solar irradiance variability is the largest in the tropics. Moreover, the H2O response is less sensitive

to thermospheric processes since there is no downwelling over the tropics. To make a better comparison of model results and

observations, we present them not only as a ratio to the mean but also as absolute values of solar regression coefficients, since

the background water vapor concentrations in the considered datasets are different.270
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Figure 6. Vertical profiles of solar irradiance response in H2O from CCMI-1 models and GOZCARDS observational composite for 1992-

2017 at tropical latitudes (30oN-30oS). (a) The relative importance of the solar signal in H2O presented as a percentage of the mean; (b) H2O

regression coefficient at the solar proxy (β) in mixing ratio (ppmv). Shadings: standard deviation.

In the tropics, the observations show a steady increase of the H2O sensitivity to the solar irradiance from 0.1 to 0.01 hPa

where it reaches the maximum for both, relative (23%) and absolute (0.75 ppmv) values. Our results agree rather well with the

results presented by Remsberg et al. (2018) and Nath et al. (2018). The simulated relative sensitivity values agree well with the

observations. However, the SOCOL model shows a much stronger (up to 43%) water vapor sensitivity to solar irradiance (com-

pared with the observed 23%). EMAC results slightly underestimate the observed values, while WACCM and CMAM show a275

slightly larger sensitivity. Almost the same pattern is visible for absolute sensitivity values. CMAM and WACCM show the best

agreement, while SOCOL and EMAC sensitivities are too strong or too weak, respectively. In EMAC, the relative values of

the solar signal in H2O over tropics are well agreed with observations between 0.03 -0.015 hPa but the deviation with the solar

signal in observations becomes noticeable above where EMAC underestimates observations. For absolute values, EMAC un-

derestimates solar signal in H2O for the whole presented area. Contrary to EMAC, SOCOL overestimates solar signal in H2O280

similarly for both relative and absolute values after about 0.05 hPa but underestimates it below 0.03 hPa. In WACCM, the solar

signal in H2O is mostly located within the observational uncertainty but for relative signal, WACCM shows the pronounced

deviation from observations within 0.04 and 0.013 hPa, correspondingly. For 0.01 hPa, the WACCM and CMAM correspond

well with observations in both relative and absolute value of the solar signal, however showing underestimation in absolute

value within the observational uncertainty, though. In the case of absolute values, CMAM agrees well with observations above285

and underestimates them below 0.02 hPa but in the relative meaning, CMAM H2O underestimates observed solar signal below

0.04 hPa and shows overestimation between 0.25 and 0.015 hPa, respectively.
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Figure 7. The relative importance of the solar signal in CO from CCMI-1 models and Aura/MLS for the 2005-2017 period presented as a

percentage of the mean. Model and observations names are indicated at top of each panel. Inclined hatches: area with statistical significance

less than 95%.

The solar signals in CO extracted from the REF-C1SD simulations and observed by MLS data for the 2005-2017 period

are illustrated in Figure 7. Opposite to the H2O case, the influence of the time interval is substantial. The comparison of the

results from Figure 4 and Figure 7 reveals that the southern mesospheric maximum of the CO response to solar irradiance290

variability in SOCOL disappeared, while the northern one became more pronounced. The downward propagation in SOCOL

is also intensified and a large and statistically significant solar signal is visible in the upper and middle stratosphere. In CMAM

and EMAC, the maximum mesospheric response is shifted from the northern mid-latitudes to the equatorial area. There are

two peaks of the signal in EMAC, the stronger one is over the equator, but the second one is similarly shifted as in SOCOL and

WACCM, showing a maximum at the same pressure levels (from 0.01 hPa to the bottom of the mesosphere) and placed at the295

same latitude, but both less intensive than in SOCOL. The downward propagation is visible only over the high northern latitudes

in CMAM and almost disappears in EMAC. The shape of the solar signal simulated with WACCM does not change the location;
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it has a stronger maximum over the middle latitudes, and downward propagation is only marginally significant. This can either

be explained by the shortening of the period that emphasizes some unexplored change or by different circulation patterns during

the 2005-2017 period. The Aura/MLS data shows a maximum in the equatorial middle mesosphere and middle stratosphere300

over the high southern and northern latitudes. In the mesosphere, Aura/MLS data are in a better agreement with CMAM

and EMAC, while below 0.1 hPa all models equally resemble Aura/MLS observations. Some similarity of the stratospheric

response in all considered models and MLS probably results from the applied nudging and therefore it is dynamically induced,

contrary to the mesosphere, where the dynamic is only partly nudged, and the models differ substantially.
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Figure 8. Vertical profiles of solar irradiance response in CO from CCMI-1 models and Aura/MLS observations for 2005-2017 at tropical

latitudes (30oN-30oS). a) The relative importance of the solar signal in CO presented as a percentage of the mean; b) CO regression coefficient

at the solar proxy (β) in mixing ratio (ppmv). Shadings: standard deviation.

Figure 8 shows the tropical response in CO as relative change (in the percentage of the mean), and the mixing ratio (in ppmv)305

averaged over 30oN-30oS. The relative CO sensitivity to the solar irradiance variability averaged over the tropical area from

the Aura/MLS data shows a positive correlation from 10 to 0.01 hPa with a magnitude of up to 40% at the mesopause. The

simulated sensitivity is within the uncertainty range of the observations for all models except EMAC between 0.35 and 0.06

hPa and except WACCM that show underestimation between 0.3-0.01 hPa in case of relative change. The observed absolute

sensitivity in the tropical area reaches almost 2 ppmv at the mesopause and is better reproduced by SOCOL and WACCM.310
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5 Discussion

The comparison of absolute values (mixing ratio) of the solar signal in H2O from models and merged UARS/HALOE and

Aura/MLS (GOZCARDS) observations with previous studies reveals higher values in our study for almost all datasets. Com-

paring the tropical profile plot of H2O with one from Nath et al. (2018) over the same tropical region (30◦S–30◦N), it is seen

that only EMAC shows a similar magnitude of the solar signal of -0.56 ppm in H2O from Nath et al. (2018), while all other315

profiles show stronger responses, including GOZCARDS, which shows -0.73 ppm at 0.01 hPa. However, Nath et al. (2018)

used only Ly-α as a solar forcing, yet in the mesosphere, other wavelengths contribute significantly to H2O photolysis and the

solar signal in H2O. The latitude-height distribution of the solar signal in H2O from GOZCARDS and its magnitudes are in

good agreement with Figure 11 of Remsberg et al. (2018), showing similar mesospheric maxima of about 35% over 50◦-60◦N

and a minor maximum of about 25% around 40oS. A comparison with Remsberg et al. (2018) also showed similar features320

revealed by the MLR setup in our study. Our MLR analysis of Aura/MLS CO shows a weak solar signal of about 40% in the

mesospheric CO over the tropics, compared to the solar signal in CO of 68% from Lee et al. (2018). Also, our results show a

better representation of the CO solar signal in WACCM for the period 2005-2017 in comparison with the one from Lee et al.

(2018). Our results suggest that there is no dominating thermospheric influence of solar irradiance on CO as stated by Lee

et al. (2018), because the signal in SOCOL CO shows reasonable results compared to WACCM CO and Aura/MLS observa-325

tions. However, as it was mentioned above, in SOCOL the absence of a thermospheric source of CO could be compensated by

overproduction of CO in the upper mesosphere.

However, our MLR analysis revealed a peculiar shift of the solar signal in SOCOL and WACCM, as well as a secondary

peak in the same place in EMAC CO for the same period as for Aura/MLS. The nature of this probably reflects the peculiarities

of the model dynamics in the Northern hemisphere, which are in some way changed in SOCOL, WACCM, and EMAC during330

2005-2017 compared to the longer 1984-2017 period. For the longer period, all models show a similar stronger signal to be

shifted northward and downward, and only in SOCOL, the solar signal in CO does not reach levels below 0.02 hPa. Among the

reasons we suggest, we categorize variations on decadal timescales that may have been attributed as the solar signal, such as

global warming, accelerated Brewer-Dobson circulation (BDC), or even changes through sudden stratospheric warmings that

facilitate a downward transport of air from the mesosphere. Also, as it was mentioned above, in SOCOL, the nudging is applied335

for the whole model atmosphere (1000-0.01 hPa) that could make the representation of a dynamical effect on solar signal more

reliable. The period is also could play a role as the 2005-2017 period is rather short for MLR analysis of solar signal since this

period is equal to the duration of only one solar cycle. It is important to mention that the signal in Aura/MLS does not show

this shift, which makes it more difficult to understand its nature. The latitude-height distributions of the solar signal in H2O and

CO from CMAM, SOCOL, EMAC, and WACCM for different periods show that the patterns are very different. The impact of340

the period on our results should not be related to the aliasing of regressors, as reported in previous studies (Chiodo et al., 2014;

Kuchar et al., 2017), because of the absence of any major volcanic eruptions after 2005.

Our analysis revealed deviations of simulation results from observations showing the weakness of current models in the

representation of the solar signal. We hypothesize that the major problem is the model dynamics; this issue can be addressed
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by the application of more accurate dynamics and transport routines in models. Also, the MLR analysis revealed some incon-345

sistencies in the solar signal presented in both, absolute and relative changes compared to observations. For example, SOCOL

shows a higher tropical solar signal in H2O compared to GOZCARDS (Figure 6), but H2O time series (Figure 1) show lower

absolute values by about 2 ppm compared to observations.

One possible reason for the underestimation of H2O in SOCOL is that only the H2O + hν –> H+OH photolysis reaction

is considered. It is known that H2 + O products are also possible with about 10% quantum yield, although the much longer350

lifetime of H2 should rather lead to less intensive recombination of the products and even smaller H2O concentration.

However, in the case of CO, SOCOL shows reasonably good absolute values and solar signals in both presented forms

compared with the Aura/MLS CO in Figure 8. In the case of EMAC, a weaker solar signal in H2O, despite acceptable absolute

values as seen in Figure 1, is simulated. CMAM and EMAC CO show smaller absolute values as presented in Figure 1, and

weak solar signals in CO in both, absolute values and % of the mean view, as shown in Figure 8. WACCM simulates a lower355

absolute value of H2O and higher CO compared to the observations, showing a higher solar signal in CO and a lower solar

signal in H2O at 0.01 hPa, correspondingly. Our results show that the transport of CO from the thermosphere, where CO is

formed by EUV/soft X-rays photodissociation of CO2, is not much of importance; this is seen by comparing absolute values of

CO and the results of our MLR analysis between SOCOL and WACCM, in which thermospheric sources of CO are included.

Surely, this is fair to say only for the periods considered here and for the used MLR set-up. CO2 is photolyzed by the Shuman-360

Runge continuum (SRC) too, but for SOCOL and EMAC, it does not have an impact since SRC plays a role in the thermosphere

that is neither included in SOCOL nor in EMAC, which both have an upper model border at 80 km.

Any impact of volcanic activity upon CO in the upper mesosphere is not likely. However, the large eruptions that occurred

around solar maxima, e.g. El Chichón in 1982 and Mt. Pinatubo in 1991, could have some minor effect on the solar signal in

CO due to the aliasing effects (Chiodo et al., 2014; Kuchar et al., 2017), however, this should not be a problem after 1996.365

As such, these issues inspire moderate corrections to model radiation and chemical modules, but which corrections are

needed strongly depends on each model, as evidenced by our MLR analysis. We assume that an in-depth comparison of these

modules will be needed to find all differences between the CCM set-ups. It might be an option to combine the different

approaches of the simulation of the solar signal in one selected model for further analyses. Moreover, it is needed to use the

MLR analysis (or more advanced methods of regression analysis) to check the results of simulations from this MLR analysis.370

The comparison of these results between themselves and with available observations could help much to identify the potential

ways for model corrections. Also, as a way to reveal problems, especially in dynamic, the comparison of the solar signal from

observations can be undertaken with not only model simulations in SD mode but also with free-running model simulations.

6 Summary

Using an MLR model, this work extracted and investigated the solar signal in the time series of monthly averaged mixing ratio375

of H2O and CO from CMAM, EMAC-L90MA, SOCOLv3, and CESM1-WACCM 3.5 REF-C1SD model simulations as well as

from UARS/HALOE and Aura/MLS measurements. The solar signal was obtained for three periods: for the 1984-2017 period
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to compare models between themselves, for the 1992-2017 period to compare the solar signal in H2O from models against

one from merged UARS/HALOE and Aura/MLS (GOZCARDS) observations, and for 2005-2017 to compare the solar signal

in CO from models against one from Aura/MLS. As expected, the results of our analysis show that the intensity of the signal380

increases upward throughout the mesosphere with a maximum at 0.01 hPa in model data and observations of H2O and CO.

However, as our analysis is limited to 0.01 hPa, the actual maximum could be higher. Thus, the variability of H2O and CO in the

mesosphere is strongly determined by the solar irradiance variability over the 11-year solar cycle, with a decrease in H2O and

an increase in CO at solar maximum, and vice versa during solar minimum. Also, our results suggest that atmospheric transport

is important for the latitudinal distribution of the considered species with a high sensitivity to solar irradiance variability. The385

comparison of the latitude-pressure distribution of the solar signal in H2O for the 1992-2017 period between models and

observations shows that the SOCOL model demonstrates a good agreement with the signal of the GOZCARDS observations,

yet with different signal strength. In the case of CO for 2005-2017, the better representation is given by the CMAM model

since WACCM and SOCOL show an unexpected shift of the signal to the North. The solar signal in EMAC CO is close to

Aura/MLS but has a second peak in the same latitude range as WACCM and SOCOL. The line plots over the tropics in Figures390

6 and 8, both in absolute and relative terms, show similar model results compared to observations in CMAM and WACCM

H2O as well as in SOCOL and WACCM CO.

Overall, our analysis of the solar signal in H2O and CO shows that the solar signal response in the tropics is confined to the

mesosphere as we analyzed the solar signal up to 80 km. The H2O and CO solar signals over the tropics decay with decreasing

altitude and become negligible close to the stratopause in all considered data sets. Besides 10% of the variance attributed to the395

solar signal variability, the semiannual oscillation dominates the tropical mesosphere.

To sum up, our study demonstrates how state-of-the-art models represent solar signal responses, but also what the weak

points of model simulations are. The inter-comparison showed limitations in current simulations, which require a process-

oriented validation involving the model teams. These findings strongly suggest continuing the model inter-comparison studies

as those within SPARC, IGAC, and SOLARIS-HEPPA to improve the representation of the solar signal in global CCMs.400

Data availability

We provide all LMG results on the Mendeley Data portal (Kuchar, 2020). The CCM results are generally available at the

CCMI-1 data archive (http://data.ceda.ac.uk/), except for CMAM, which is available here:

ftp://crd-data-donnees-rdc.ec.gc.ca/pub/CCCMA/dplummer/CMAM39-SD_month/.

The SOCOLv3-SD data used in this study are not available at the British Atmospheric Data Centre (BADC), they are in general405

not publicly available. At the BADC, CCMI-1 SOCOLv3 data can only be found.
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