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Abstract: 

In the current global climate models (GCM), the nonlinearity effect of subgrid cloud variations on 

the parameterization of warm rain process, e.g., the autoconversion rate, is often treated by 

multiplying the resolved-scale warm ran process rates by a so-called enhancement factor (EF). In 35 

this study, we investigate the subgrid-scale horizontal variations and covariation of cloud water 

content (𝑞𝑐) and cloud droplet number concentration (𝑁𝑐) in marine boundary layer (MBL) clouds 

based on the in-situ measurements from a recent field campaign, and study the implications for the 

autoconversion rate EF in GCMs. Based on a few carefully selected cases from the field campaign, 

we found that in contrast to the enhancing effect of 𝑞𝑐 and 𝑁𝑐 variations that tends to make EF>1, 40 

the strong positive correlation between 𝑞𝑐 and 𝑁𝑐 results in a suppressing effect that makes tends 

to make EF<1. This effect is especially strong at cloud top where the 𝑞𝑐 and 𝑁𝑐 correlation can be 

as high as 0.95. We also found that the physically complete EF that accounts for the covariation 

of 𝑞𝑐  and 𝑁𝑐  has a robust decreasing trend from cloud base to cloud top. Because the 

autoconversion process is most important at the cloud top, this vertical dependence of EF should 45 

be taken into consideration in the GCM parametrization scheme.  
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 48 

1. Introduction  49 

Marine boundary layer (MBL) clouds cover about 1/5 of Earth’s surface and play an important 50 

role the climate system (Wood, 2012). A faithful simulation of MBL clouds in the global climate 51 

model (GCM) is critical for the projection of future climate (Bony and Dufresne, 2005; Bony et 52 

al., 2015; Boucher et al., 2013) and understanding of aerosol-cloud interactions (Carslaw et al., 53 

2013; Lohmann and Feichter, 2005). Unfortunately, it turns out to be an extremely challenging 54 

task. Among others, an important reason is that many physical processes in MBL clouds occur at 55 

the spatial scales much smaller than the typical resolution of GCMs, making the simulation of 56 

these processes in GCMs highly challenging.  57 

Of particular interest in this study is the warm rain process that play an important role in 58 

regulating the lifetime, water budget, and therefore integrated radiative effects of MBL clouds. In 59 

the bulk cloud microphysics schemes that are widely used in GCMs (Morrison and Gettelman, 60 

2008), continuous cloud particle spectrum is often divided into two modes. Droplets smaller than 61 

the “separation size” 𝑟∗ are classified into the cloud mode, which is described by two moments of 62 

droplet size distribution (DSD), the droplet number concentration 𝑁𝑐 (0th moment of DSD) and 63 

droplet liquid water content 𝑞𝑐  (proportional to the 3rd moment). Droplets larger than 𝑟∗  are 64 

classified into a precipitation mode (drizzle or rain), with properties denoted by drop concentration 65 

and water content (𝑁𝑟 and 𝑞𝑟). In a bulk microphysics scheme, the transfer of mass from the cloud 66 

to rain modes as a result of the collision-coalescence process is separated into two terms, 67 

autoconversion and accretion:(
𝜕𝑞𝑟

𝜕𝑡
)

𝑐𝑜𝑎𝑙
= (

𝜕𝑞𝑟

𝜕𝑡
)

𝑎𝑢𝑡𝑜
+ (

𝜕𝑞𝑟

𝜕𝑡
)

𝑎𝑐𝑐
. Autoconversion is defined as the 68 

rate of mass transfer from the cloud to rain mode due to the coalescence of two cloud droplets with 69 

𝑟 < 𝑟∗. Accretion is defined as the rate of mass transfer due to the coalescence of a rain drop with 70 
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𝑟 > 𝑟∗ with a cloud droplet. A number of autoconversion and accretion parameterizations have 71 

been developed, formulated either through numerical fitting of droplet spectra obtained from bin 72 

microphysics LES or parcel model (Khairoutdinov and Kogan, 2000), or through an analytical 73 

simplification of the collection kernel to arrive at expressions that link autoconversion and 74 

accretion with the bulk microphysical variables (Liu and Daum, 2004). For example, a widely used 75 

scheme developed by Khairoutdinov and Kogan (2000) (“KK scheme” hereafter) relates the 76 

autoconversion with 𝑁𝑐 and  𝑞𝑐 as follows: 77 

 (
𝜕𝑞𝑟

𝜕𝑡
)

𝑎𝑢𝑡𝑜
= 𝑓𝑎𝑢𝑡𝑜(𝑞𝑐, 𝑁𝑐) = 𝐶𝑞𝑐

𝛽𝑞
𝑁𝑐

𝛽𝑁 , (1) 

where 𝑞𝑐 and 𝑁𝑐 have units of kg kg−1 and cm−3, respectively; the parameter 𝐶 = 1350, and the 78 

two exponents 𝛽𝑞 = 2.47, 𝛽𝑁 = −1.79 are obtained through a nonlinear regression between the 79 

variables 𝑞𝑐 and 𝑁𝑐 and the autoconversion rate derived from large-eddy simulation (LES) with 80 

bin-microphysics spectra. 81 

Having a highly accurate microphysical parameterization — specifically, highly accurate 82 

local microphysical process rates — is not sufficient for an accurate simulation of warm-rain 83 

processes in GCMs.  Clouds can have significant structures and variations at the spatial scale much 84 

smaller than the typical grid size of GCMs (10 ~ 100 km) (Barker et al., 1996; e.g., Cahalan and 85 

Joseph, 1989; Lebsock et al., 2013; Wood and Hartmann, 2006; Zhang et al., 2019). Therefore, 86 

GCMs need to account for these subgrid-scale variations in order to correctly calculate grid-mean 87 

autoconversion and accretion rates. Pincus and Klein (2000) nicely illustrate this dilemma. Given 88 

subgrid-scale variability represented as a distribution 𝑃(𝑥) of some variable x, for example the 𝑞𝑐 89 

in Eq. (1), a grid-mean process rate is calculated as 〈𝑓(𝑥)〉 = ∫ 𝑓(𝑥)𝑃(𝑥)𝑑𝑥 , where 𝑓(𝑥) is the 90 

formula for the local process rate. For nonlinear process rates such as autoconversion and accretion, 91 

the grid-mean process rates calculated from the subgrid-scale variability does not equal the process 92 
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rate calculated from the grid-mean value of x, i.e., 〈𝑓(𝑥)〉 ≠ 𝑓(〈𝑥〉) . Therefore, calculating 93 

autoconversion and accretion from grid-mean quantities introduces biases arising from subgrid-94 

scale variability. To take this effect into account, a parameter 𝐸 is often introduced as part of the 95 

parameterization such that 〈𝑓(𝑥)〉 = 𝐸 ∙ 𝑓(〈𝑥〉). Following the convention of previous studies, 𝐸 is 96 

referred to as the “enhancement factor” (EF) here. Given the autoconversion parameterization 97 

scheme, the magnitude of EF is primarily determined by cloud horizontal variability within a GCM 98 

grid. Unfortunately, because most GCMs do not resolve subgrid cloud variation, the value of EF 99 

is often simply assumed to be a constant for the lack of better options. The EF for KK 100 

autoconversion scheme due to subgrid 𝑞𝑐 variation is assumed to be 3.2 in the two-moment scheme 101 

by Morrison and Gettelman (2008), which is employed in the widely used Community Atmosphere 102 

Model (CAM).  103 

A number of studies have been carried out to better understand the horizontal variations of 104 

cloud microphysics in MBL cloud and the implications for warm rain simulations in GCMs. Most 105 

of these studies have been focused on the subgrid variation of 𝑞𝑐. Morrison and Gettelman (2008) 106 

and several later studies (Boutle et al., 2014; Hill et al., 2015; Lebsock et al., 2013; Zhang et al., 107 

2019) showed that the subgrid variability 𝑞𝑐 and thereby the EF are dependent on cloud regime 108 

and cloud fraction (𝑓𝑐). They are generally smaller over the closed-cell stratocumulus regime with 109 

higher 𝑓𝑐 and larger over the open-cell cumulus regime that often has a relatively small 𝑓𝑐. The 110 

subgrid variance of 𝑞𝑐 is also dependent on the horizontal scale (𝐿) of a GCM grid. Based on the 111 

combination of in situ and satellite observations, Boutle et al. (2014) found that the subgrid 𝑞𝑐 112 

variance first increases quickly with 𝐿 when 𝐿 is below about 20 km, then increases slow and 113 

seems to approach to a asymptotic value for larger 𝐿. Similar spatial dependence is also reported 114 

in Huang et al. (2014),Huang and Liu (2014), Xie and Zhang (2015), and Wu et al. (2018) which 115 
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are based on the ground radar retrievals from the Department of Energy (DOE) Atmospheric 116 

Radiation Measurement (ARM) sites. The cloud-regime and horizontal-scale dependences have 117 

inspired a few studies to parameterize the subgrid 𝑞𝑐 variance as a function of either 𝑓𝑐 or 𝐿 or a 118 

combination of the two (e.g., Ahlgrimm and Forbes, 2016; Boutle et al., 2014; Hill et al., 2015; 119 

Xie and Zhang, 2015; Zhang et al., 2019).  120 

The aforementioned studies have an important limitation. They consider only the impacts 121 

of subgrid  𝑞𝑐  variations on the EF but ignore the impacts of subgrid variation of 𝑁𝑐  and its 122 

covariation with 𝑞𝑐. Based on cloud fields from large-eddy simulation, Larson and Griffin (2013) 123 

and later Kogan and Mechem (2014; 2016) elucidated that it is important to consider the 124 

covariation of 𝑞𝑐 and 𝑁𝑐 to derive a physically complete and accurate EF for the autoconversion 125 

parameterization. Lately, on the basis of MBL cloud observations from the Moderate Resolution 126 

Imaging Spectroradiometer (MODIS) Zhang et al. (2019) (hereafter referred to as Z19) elucidate 127 

that the subgrid variation of 𝑁𝑐 tends to further increase the EF for the autoconversion process in 128 

addition to the EF due to 𝑞𝑐 variation. The effect of 𝑞𝑐-𝑁𝑐 covariation on the other hand depends 129 

on the sign of the 𝑞𝑐-𝑁𝑐 correlation. A positive 𝑞𝑐-𝑁𝑐 correlation would lead to an EF <1 that 130 

partly offsets the effects of 𝑞𝑐 and 𝑁𝑐 variations. Although Z19 shed important new light on the 131 

EF problem for the warm rain process, their study also suffers from limitations due to the use of 132 

satellite remote sensing data. First, as a passive remote sensing technique, MODIS cloud product 133 

can only retrieve the column-integrated cloud optical thickness and the cloud droplet effective 134 

radius at cloud top, from which the column-integrated cloud liquid water path (LWP) is estimated. 135 

As a result of using LWP, instead vertically resolved observations the vertical dependence of the 136 

𝑞𝑐  and 𝑁𝑐  horizontal variabilities are ignored in Z19. Second, the 𝑁𝑐  retrieval from MODIS is 137 

based on several important assumptions, which can lead to large uncertainties (see review by 138 
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(Grosvenor et al., 2018) ). Furthermore, MODIS cloud retrieval product is known to suffer from 139 

several inherent uncertainties, such as the three-dimensional radiative effects(e.g., Zhang and 140 

Platnick, 2011; Zhang et al., 2012; 2016), which in turn can lead to large uncertainties in the 141 

estimated EF.  142 

This study is a follow up of Z19. To overcome the limitations of satellite observations, we 143 

use the in situ measurements of MBL cloud from a recent DOE field campaign, the Aerosol and 144 

Cloud Experiments in the Eastern North Atlantic (ACE-ENA), to investigate the subgrid variations 145 

of 𝑞𝑐 and 𝑁𝑐, as well as their covariation, and the implications for the simulation of autoconversion 146 

simulation in GCMs. A main focus of this investigation is to understand the vertical dependence 147 

of the 𝑞𝑐 and 𝑁𝑐 horizontal variations within the MBL clouds. This aspect has been neglected in 148 

Z19 as well as most previous studies (Boutle et al., 2014; Lebsock et al., 2013; Xie and Zhang, 149 

n.d.). A variety of microphysical processes, such as adiabatic growth, collision-coalescence, 150 

entrainment mixing, can influence the vertical structure of MBL clouds. At the same time, these 151 

processes also vary horizontally at the subgrid scale of GCMs. As a result, the horizontal variations 152 

of 𝑞𝑐 and 𝑁𝑐, as well as their covariation, and therefore the EFs may depend on the vertical location 153 

inside the MBL clouds. It is important to understand this dependence for several reasons. First, the 154 

warm rain process is usually initialized at cloud top where the autoconversion process of the cloud 155 

droplets gives birth to embryo drizzle drops. The accretion process is, on the other hand, more 156 

important in the lower part of the cloud (Wood, 2005b). Thus, a better understanding of the vertical 157 

dependence of horizontal variations of 𝑞𝑐 and 𝑁𝑐 inside of MBL cloud could help us understand 158 

how the EF should be modeled in the GCMs. Second, a good understanding of the vertical 159 

dependence of 𝑞𝑐  and 𝑁𝑐  variation inside of MBL clouds will also help us understand the 160 

limitations in the previous studies, such as Z19, that use the column-integrated products for the 161 
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study of EF. Finally, this investigation may also be useful for modeling other processes, such as 162 

aerosol-cloud interactions, in the GCMs.  163 

Therefore, our main objectives in this study are to: 1) better understand the horizontal 164 

variations of 𝑞𝑐 and 𝑁𝑐, as well as their covariation in MBL clouds, in particular their dependence 165 

on the vertical height in cloud; 2) elucidate the implications for the EF of the autoconversion 166 

parameterization in GCMs. The rest of the paper is organized as follows: we will describe the data 167 

and observations used in this study in Section 2 and explain how we select the cases from the ACE-168 

ENA campaign for our study in Section 3. We will present cases studies in Section 4 and 5. Finally, 169 

the results and findings from this study will be summarized and discussed in Section 6. 170 

 171 

2. Data and Observations  172 

The data and observations used for this study are from two main sources: the in-situ 173 

measurements from the ACE-ENA campaign and the ground-based observations from the ARM 174 

ENA site. The ENA region is characterized by persistent subtropical MBL clouds that are 175 

influenced by different seasonal meteorological conditions and a variety of aerosol sources (Wood 176 

et al., 2015). A modeling study by Carslaw et al. (2013) found the ENA to be one of regions over 177 

the globe with the largest uncertainty of aerosol indirect effect. As such, the ENA region attracted 178 

substantial attention over the past few decades for aerosol-cloud interaction studies. From April 179 

2009 to December 2010 the DOE ARM program deployed its ARM Mobile Facility (AMF) to the 180 

Graciosa Island (39.09°N, 28.03°W) for a measurement field campaign targeting the properties of 181 

cloud, aerosol and precipitation in the MBL (CAP-MBL) in the Azores region of ENA (Wood et 182 

al., 2015). The measurements from the CAP-MBL campaign have proved highly useful for a 183 

variety of purposes, from understanding the seasonable variability of clouds and aerosols in the 184 
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MBL of the ENA region (Dong et al., 2014; Rémillard et al., 2012) to improving cloud 185 

parameterizations in the GCMs (Zheng et al., 2016) and to validating the space-borne remote 186 

sensing products of MBL clouds (Zhang et al., 2017). The success of the CAP-MBL revealed that 187 

the ENA has an ideal mix of conditions to study the interactions of aerosols and MBL clouds. In 188 

2013 a permanent measurement site is established by the ARM program on Graciosa Island as its 189 

newest permanent atmospheric observatories, also known as the ENA site (Voyles and Mather, 190 

2013).  191 

2.1. In situ measurements from the ACE-ENA campaign 192 

The Aerosol and Cloud Experiments in ENA (ACE-ENA) project was “motivated by the 193 

need for comprehensive in situ characterizations of boundary-layer structure and associated 194 

vertical distributions and horizontal variabilities of low clouds and aerosol over the Azores” 195 

(Wang et al., 2016). The ARM Aerial Facility (AAF) Gulfstream-1 (G-1) aircraft was deployed 196 

during two intensive measurement periods (IOPs), the summer 2017 IOP from June 21 to July 20, 197 

2017 and the winter 2018 IOP from January 15 to February 18, 2018. Over 30 research flights (RF) 198 

were carried out during the two IOPs around the ARM ENA site on Graciosa Island that sampled 199 

a large variety of cloud and aerosol properties along with the meteorological conditions.  200 

Table 1 summarizes the in-situ measurements from the ACE-ENA campaign used in this 201 

study. The location and velocity of G1 aircraft, and the environment meteorological conditions 202 

during the flight (temperature, humidity, and wind velocity) are taken from Aircraft-Integrated 203 

Meteorological Measurement System 20-Hz (AIMMS-20) dataset (Beswick et al., 2008). The size 204 

distribution of cloud droplets, and the corresponding 𝑞𝑐 and 𝑁𝑐 are obtained from the fast cloud 205 

droplet probe (FCDP) measurement. The FCDP measures the concentration and size of cloud 206 

droplets in the diameter size range from 1.5 to 50 µm in 20 size bins with an overall uncertainty 207 
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of size around 3 µm (Lance et al., 2010; SPEC, 2019). Following previous studies (Wood, 2005a), 208 

we adopt a 𝑟∗ = 20 µ𝑚 as the threshold to separate cloud droplets from drizzle drops, i.e., drops 209 

with  𝑟 < 𝑟∗ are considered as cloud droplets. After the separation, the 𝑞𝑐 and 𝑁𝑐 are derived from 210 

the FCDP droplet size distribution measurements. As an evaluation, we compared our FCDP-211 

derived 𝑞𝑐 results with the direct measurements of 𝑞𝑐 from the multi-element water content system 212 

(WCM-2000) also flown during the ACE-ENA and found an excellent agreement. We also 213 

performed a couple of sensitivity tests in which we perturbed the value of 𝑟∗ by 5 µm. The 214 

perturbation shows little impact on the results shown in sections 4 and 5. The cloud droplet 215 

spectrum from the FCDP is available at a frequency of 10 Hz. Since the typical horizontal speed 216 

of the G-1 aircraft during the in-cloud leg is about 100 m s-1, the spatial sampling rate these 217 

instruments is on the order of 10 m for the FCDP.  218 

2.2. Ground observations from ARM ENA site 219 

In addition to the in-situ measurements, ground measurements from the ARM ENA site 220 

are also used to provide ancillary data for our studies. In particular, we will use the Active Remote 221 

Sensing of Cloud Layers product (ARSCL; (Clothiaux et al., 2000; Kollias et al., 2005) which 222 

blends radar observations from the Ka–band ARM zenith cloud radar (KAZR), micropulse lidar 223 

(MPL), and the ceilometer to provide  information on cloud boundaries and the mesoscale structure 224 

of cloud and precipitation. The ARSCL product is used to specify the vertical location of the G1 225 

aircraft and thereby the in-situ measurements with respect to the cloud boundaries, i.e., cloud base 226 

and top (see example in Figure 1). In addition, the radar reflectivity observations from KAZR, 227 

alone with in situ measurements, are used to select the precipitating cases for our study. Note that 228 

the ARSCL product is from the vertically pointing instruments, which sometimes are not 229 
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collocated with the in-situ measurements from G1 aircraft. As explained later in the next section, 230 

only those cases with a reasonable collocation are selected for our study.       231 

3. Case selections   232 

3.1. ACE-ENA flight pattern 233 

The section provides a brief overview of the G1 aircraft flight patterns during the ACE-234 

ENA and explains the method for cases selections for our study using the July 18, 2017 RF as an 235 

example. As shown in Table 2, a variety of MBL conditions were sampled during the two IOPs of 236 

the ACE-ENA campaign, from mostly clear-sky to thin stratus and drizzling stratocumulus. In this 237 

study, we are interested in the RFs that encountered the drizzling stratocumulus clouds, since our 238 

objective is to understand the implications of subgrid cloud variation for the autoconversion 239 

process. The basic flight patterns of G1 aircraft in the ACE-ENA included spirals to obtain vertical 240 

profiles of aerosol and clouds, and legs at multiple altitudes, including below cloud, inside cloud, 241 

at the cloud top, and in the free troposphere. As an example, Figure 1a shows the horizontal 242 

location of the G1 aircraft during the July 18, 2017 RF which is the “golden case” for our study as 243 

explained in the next section. The corresponding vertical track of the aircraft is shown in Figure 244 

1b overlaid on the reflectivity curtain of ground based KAZR. In this RF, the G1 aircraft repeated 245 

multiple times of horizontal level runs in a “V” shape at different vertical levels inside, above and 246 

below the MBL (see Figure 1b). The lower tip of the “V” shape is located at the ENA site on 247 

Graciosa island. The average wind in the upper MBL (i.e., 900 mb) is approximately Northwest. 248 

So, the left side of the V-shape horizontal level runs is along the wind and the right side cross the 249 

wind. Note that the horizontal velocity of the G1 aircraft is approximately 100 m s−1. Since the 250 

duration of these selected “V” shape hlegs is between 580 s and 700 s, their total horizontal length 251 

is roughly 60 km, with each side of the “V” shape ~30 km. These “V” shape horizontal level runs, 252 
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with one side along and the other cross the wind, are a common sampling strategy used in the 253 

ACE-ENA to observe the properties of aerosol and cloud at different vertical levels of the MBL. 254 

In our study we use the vertical location of the G1 aircraft from the AIMMS to identify continuous 255 

horizontal flight tracks which are referred to as the “hleg”. For the July 18, 2017 case, a total of 13 256 

hlegs are identified as shown in Figure 1b. Among them, the hleg 5, 6, 7, 8, 10, 11, and 12 are the 257 

seven V-shape horizontal level runs inside the MBL cloud. Together they provide an excellent set 258 

of samples of the MBL cloud properties at different vertical levels of a GCM grid box of about 30 259 

km. As aforementioned, Boutle et al. (2014) found that the horizontal variance of 𝑞𝑐 increases with 260 

the horizontal scale 𝐿 slowly when 𝐿 is larger than about 20 km. Therefore, although the horizontal 261 

sampling of the selected hlegs is only about 30 km, the lessons learned here could yield useful 262 

insights for larger GCM grid sizes. In addition to the hlegs, we also identified the vertical 263 

penetration legs in each flight, referred to as the “vlegs”, from which we will obtain the vertical 264 

structure of the MBL, along with the properties of cloud and aerosol.   265 

3.2. Case selection  266 

As illustrated in Figure 1 a and b for the July 18, 2017 RF, the criterions we used to select 267 

the RF cases and the hlegs within the RF can be summarized as follows: 268 

• The RF encounters precipitating MBL clouds according to both pilot report and radar 269 

reflectivity observations from the ground-based KAZR.  270 

• The RF samples multiple continuous in-cloud hlegs at different vertical levels with the 271 

horizontal length of at least 10 km and cloud fraction larger than 10% (i.e., the fraction of 272 

a hleg with 𝑞𝑐>0.01g m−3 must exceed 10% of the total length of that hleg) 273 

• Moreover, the selected hlegs must sample the same region repeatedly in terms of horizontal 274 

track but different vertical levels in terms of vertical track. Take the July 18, 2017 case as 275 
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an example. The hleg 5, 6, 7, 8 follow the same “V” shape horizontal track (see Figure 1a) 276 

but sample different vertical levels of the MBL clouds (see Figure 1b). Such hlegs provide 277 

us the horizontal sampling needed to study the subgrid horizontal variations of the cloud 278 

properties and, at the same time, the chance to study the vertical dependence of the 279 

horizontal cloud variations.    280 

• Finally, the RF needs to have at least one vleg and the cloud boundary derived from the 281 

vleg is largely consistent with that derived from the ground-based measurements. This 282 

requirement is to ensure that the vertical locations of the selected hlegs with respect to 283 

cloud boundaries can be specified. For example, as shown in Figure 1b according to the 284 

ground-based observations, the hlegs 5 and 10 of July 18, 2017 case are close to cloud base, 285 

while hlegs 8 and 12 close to cloud top (see also Figure 4).      286 

The above requirements together pose a strong constraint on the observation. Fortunately, thanks 287 

to the careful planning of the RF which had already taken studies like ours into consideration, we 288 

are able to select a total of four RF cases as summarized in Table 3. We will first focus on the 289 

“golden case—July 18, 2017 RF and then investigate if the lessons learned from the July 18, 2017 290 

RF also apply to the other three cases. 291 

4. A study of the July 18, 2017 case 292 

4.1. Horizontal and vertical variations of cloud microphysics 293 

On July 18, 2017, the North Atlantic is controlled by the Icelandic low to the north and the 294 

Azores high to the south (see Figure 2b), which is a common pattern of large-scale circulation 295 

during the summer season in this region (Wood et al., 2015). The Azores is at the southern tip of 296 

the cold air sector of a frontal system where the fair-weather low-level stratocumulus clouds are 297 

dominant (see satellite image in Figure 2a). The RF on this day started around 8:30 UTC and ended 298 
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around 12 UTC. As explained in the previous section, we selected 7 hlegs from this RF that 299 

horizontally sampled the same region repeatedly in a similar “V” shaped track but vertically at 300 

different levels. The radar reflectivity observation from the ground based KAZR during the same 301 

period peaks around 10 dBZ indicating the presence of significant drizzle inside the MBL clouds.  302 

Among the 7 selected hlegs, the hlegs 5, 6, 7 and 8 are 4 consecutive “V” shape tracks, 303 

with hlegs 5 close to cloud base and hleg 8 close to cloud top. The hlegs 10,11 and 12 are another 304 

set of consecutive “V” shape tracks with hlegs 10 and 12 close to cloud base and top, respectively 305 

(see Figure 1). Using 𝑞𝑐 > 0.01 gm−3 as a threshold for cloud, the cloud fraction (𝑓𝑐) of all these 306 

hlegs is close to unity (i.e., overcast), except for the two hlegs close to cloud base (𝑓𝑐=46% for 307 

hleg 5 and 𝑓𝑐=51% for hleg 10). The 𝑞𝑐 and 𝑁𝑐 derived from the in situ FCDP measurements for 308 

these selected hleg are plotted in Figure 3 as a function of UTC time. It is evident from Figure 3 309 

that both 𝑞𝑐 and 𝑁𝑐 have significant horizontal variations. At cloud base (see Figure 3d for hleg 5 310 

and Figure 3g for hleg 10) the 𝑞𝑐 varies from 0.01 gm−3 (i.e., the lower threshold) up to about 0.4 311 

gm−3 and the 𝑁𝑐 from 25 cm−3 up to 150 cm−3, with the mean values around 0.08 gm−3 and 65 312 

cm−3 , respectively. Such strong variations of cloud microphysics could be contributed by a number 313 

of factors. One can see from the ground radar and lidar observations in Figure 1b that the height 314 

of cloud base varies significantly. As a result, the horizonal legs may not really sample the cloud 315 

base. In addition, the variability in updraft at cloud base cloud lead to the variability in the 316 

activation and growth of cloud condensation nuclei (CCN). In the middle of the MBL cloud, i.e., 317 

hleg 6 (Figure 3c), 7 (Figure 3b) and 11 (Figure 3f), the mean value of 𝑞𝑐 is significantly larger 318 

than that of cloud base hlegs while the variability is reduced. The mean value of 𝑞𝑐  keeps 319 

increasing toward cloud top to ~0.73 gm−3 in hleg 8 (Figure 3a) and to ~0.53 gm−3 in hleg 12 320 
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(Figure 3e), respectively. In contrast, the horizontal variability of 𝑞𝑐  seems to increase in 321 

comparison with those observed in mid-level hlegs.  322 

To obtain a further understanding of the vertical variations of cloud microphysics, we 323 

analyzed the cloud microphysics observations from the two green-shaded vlegs 1 and 3 in Figure 324 

1b. The vertical profile of the mean 𝑞𝑐 and 𝑁𝑐 from these two vlegs are shown in Figure 4a and 325 

Figure 4b, respectively, with over-plotted the mean and standard deviation of the 𝑞𝑐  and 𝑁𝑐 326 

derived from the 7 selected hlegs. Overall, the vertical profiles of the 𝑞𝑐 and 𝑁𝑐 are qualitatively 327 

aligned with the classic adiabatic MBL cloud structure (Brenguier et al., 2000; Martin et al., 1994). 328 

That is, the 𝑁𝐶 remains relatively a constant (see Figure 4b) while the 𝑞𝑐 increases approximately 329 

linearly with height from cloud base upward as a result of condensation growth (see Figure 4a,), 330 

except for the very top of the cloud, i.e., the entrainment zone where the dry air entrained from the 331 

above mixes with the humid cloudy air in the MBL. In previous studies, a so-called inverse relative 332 

variance, 𝜈, is often used to quantify the subgrid variations of cloud microphysics. It is defined as 333 

follows   334 

 𝜈𝑋 =
〈𝑋〉2

𝜎𝑋
2 , (2) 

where 𝑋 is either 𝑞𝑐  (i.e., 𝜈𝑋 = 𝜈𝑞𝑐
) or 𝑁𝑐  (i.e., 𝜈𝑋 = 𝜈𝑁𝑐

). 〈𝑋〉 and σX  are the mean value and 335 

standard deviation of 𝑋, respectively. As such the smaller the 𝜈 value the larger the horizontal 336 

variation of 𝑋 in comparison with the mean value. As shown in Figure 4c, the 𝜈𝑞𝑐
 and 𝜈𝑁𝑐

 derived 337 

from the selected hlegs follow a similar vertical pattern: they both increase first from cloud base 338 

upward and then decrease in the entrainment zone, with the turning point somewhere around 1 km 339 

(i.e., around hleg 7 and 11). It indicates that both 𝑞𝑐 and 𝑁𝑐 have significant horizontal variabilities 340 

at cloud base which may be a combined result of horizontal fluctuations of dynamics (e.g., updraft) 341 

and thermodynamics (e.g., temperature and dynamics), as well as horizontal variations of aerosols. 342 
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The horizontal variabilities of both 𝑞𝑐 and 𝑁𝑐 both decrease upward toward cloud top until the 343 

entrainment zone where both variabilities increase again.  344 

So far, in all the analyses above the variations of 𝑞𝑐  and 𝑁𝑐  have been considered 345 

separately and independently. As pointed out in several previous studies, the co-variation of 𝑞𝑐 346 

and 𝑁𝑐 could have an important impact on the EF for the autoconversion process in GCMs (Kogan 347 

and Mechem, 2016; Larson and Griffin, 2013; Zhang et al., 2019). This point will be further 348 

elucidated in detail in the next section. Figure 5 shows the joint distributions of 𝑞𝑐 and 𝑁𝑐 for the 349 

7 selected hlegs and the corresponding linear correlation coefficients as a function of height are 350 

shown in Figure 4d. For the sake of reference, the linear correlation coefficient between ln (𝑞𝑐) 351 

and ln (𝑁𝑐) , i.e., the 𝜌𝐿  that will be introduced later in Eq. (4), is also plotted in Figure 4d. 352 

Looking first at the hlegs 10, 11 and 12, i.e., the 2nd group of consecutive “V” shape legs, there is 353 

a clear increasing trend of the correlation between 𝑞𝑐 and 𝑁𝑐 from cloud bottom (𝜌 = 0.75 for 354 

hleg 10) to cloud top (𝜌 = 0.95 for hleg 12). The picture based on the hlegs 5, 6, 7, and 8 is more 355 

complex. As shown in Figure 5, the joint distributions of 𝑞𝑐 and 𝑁𝑐 of hleg 6 (Figure 5b), hleg 7 356 

(Figure 5c) and, to a less extent, hleg 8 (Figure 5d) all exhibit a clear bimodality. Further analysis 357 

reveals that each of the two modes in these bimodal distributions approximately corresponds to 358 

one side of the “V” shape track. As aforementioned, for all the selected 7 “V” shape hlegs, the left 359 

side is along the wind and the right side across the wind (see Figure 1). To illustrate this difference, 360 

the across-wind side of the hleg is shaded in yellow in Figure 3. It is intriguing to note that the 𝑁𝑐 361 

from the across-wind side of the hleg are systematically larger than those from the along-wind side, 362 

while their 𝑞𝑐  values are largely similar. As a result of this bimodality of 𝑁𝑐 , the correlation 363 

coefficients between 𝑞𝑐 and 𝑁𝑐 is significantly smaller for the hlegs 6 (𝜌 = 0.22) and 7 (𝜌 = 0.31) 364 

in comparison with other hlegs. However, if the two sides of the “V” shape tracks are considered 365 
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separately, then the 𝑞𝑐  and 𝑁𝑐 become more correlated, except for the cross-wind side of hleg 6 366 

which still exhibits to some degree a bimodal joint distributions of 𝑞𝑐   and 𝑁𝑐 . In spite of the 367 

bimodality, there is evidently a general increasing trend of the correlation between 𝑞𝑐  and 𝑁𝑐 from 368 

cloud base toward cloud top. At the cloud top, the 𝑞𝑐  and 𝑁𝑐 correlation coefficient can be as high 369 

as 𝜌 = 0.95 for hleg 12 (see Figure 5e). As explain in the next section, this close correlation 370 

between 𝑞𝑐  and 𝑁𝑐 has important implications for the simulation of autoconversion enhancement 371 

factor.  372 

As a summary, the above phenomenological analysis of the July 18, 2017 RF reveals the 373 

following features of the horizontal and vertical variations of cloud microphysics. Vertically, the 374 

mean values of 𝑞𝑐  and 𝑁𝑐  qualitatively follow the adiabatic structure of MBL cloud, i.e., 𝑞𝑐 375 

increases linear with height and 𝑁𝑐 remains largely invariant above cloud base. Even though the 376 

joint distribution of 𝑞𝑐 and 𝑁𝑐 exhibits a bimodality in several hlegs, their correlation generally 377 

increases with height and can be as high as 𝜌 = 0.95 at cloud top. Horizontally, both 𝑞𝑐 and 𝑁𝑐 378 

have a significant variability at cloud base, which tends to first decrease upward and then increase 379 

in the uppermost part of cloud close to the entrainment zone.   380 

4.2. Implications for the EF for the autoconversion rate parameterization  381 

As explained in the introduction, in GCMs the autoconversion process is usually 382 

parameterized as a highly nonlinear function of 𝑞𝑐 and 𝑁𝑐, e.g., the KK scheme in Eq.  (1). In such 383 

parameterization, an EF is needed to account for the bias caused by the nonlinearity effect. A 384 

variety of methods have been proposed and used in the previous studies to estimate the EF (Larson 385 

and Griffin, 2013; Lebsock et al., 2013; Pincus and Klein, 2000; Zhang et al., 2019). The methods 386 

used in this study are based on Z19. Only the most relevant aspects are recapped here. Readers are 387 

referred to Z19 for detail.  388 

https://doi.org/10.5194/acp-2020-788
Preprint. Discussion started: 11 August 2020
c© Author(s) 2020. CC BY 4.0 License.



 16 

If the subgrid variations of 𝑞𝑐 and 𝑁𝑐, as well as their covariation, are known, then the EF 389 

can be estimated based on its definition as follows 390 

 𝐸 =
∫ ∫ 𝑞𝑐

𝛽𝑞
𝑁𝑐

𝛽𝑁∞

0

∞

0
𝑃(𝑞𝑐, 𝑁𝑐)𝑑𝑞𝑐𝑑𝑁𝑐

〈𝑞𝑐〉𝛽𝑞〈𝑁𝑐〉𝛽𝑁
, 

(3) 

where 〈𝑞𝑐〉 and 〈𝑁𝑐〉 are the grid-mean value, 𝑃(𝑞𝑐 , 𝑁𝑐) is the joint probability density function 391 

(PDF) of 𝑞𝑐 and 𝑁𝑐. Some previous studies approximate the 𝑃(𝑞𝑐, 𝑁𝑐) as a bivariate lognormal 392 

distribution as follows: 393 

 

𝑃(𝑞𝑐, 𝑁𝑐) =
1

2𝜋𝑞𝑐𝑁𝑐𝜎𝑞𝑐
𝜎𝑁𝑐

√1 − 𝜌𝐿
2

𝑒𝑥𝑝 (−
𝜁

2
) 

𝜁 =
1

1 − 𝜌𝐿
2 [(

𝑙𝑛𝑞𝑐 − 𝜇𝑞𝑐

𝜎𝑞𝑐

)

2

− 2𝜌 (
𝑙𝑛𝑞𝑐 − 𝜇𝑞𝑐

𝜎𝑞𝑐

) (
𝑙𝑛𝑁𝑐 − 𝜇𝑁𝑐

𝜎𝑁𝑐

) + (
𝑙𝑛𝑁𝑐 − 𝜇𝑁𝑐

𝜎𝑁𝑐

)

2

], 

(4) 

where 𝜇𝑋 and 𝜎𝑋 are, respectively, the mean and standard deviation of ln (𝑋), where 𝑋 is either 394 

𝑞𝑐 or 𝑁𝑐. 𝜌𝐿 is the linear correlation coefficient between ln (𝑞𝑐) and ln (𝑁𝑐), (Larson and Griffin, 395 

2013; Lebsock et al., 2013; Zhang et al., 2019). It should be noted here that 𝜌𝐿 is fundamentally 396 

different from 𝜌 (i.e., the linear correlation coefficient between 𝑞𝑐 and 𝑁𝑐). On the other hand, we 397 

found that for all the selected hlegs 𝜌 and 𝜌𝐿 are in an excellent agreement (see Figure 4d). In fact, 398 

𝜌 and 𝜌𝐿  can be used interchangeably in the context of this study without any impact on the 399 

conclusions. Nevertheless, interested readers may find more detailed discussion of the relationship 400 

between 𝜌 and 𝜌𝐿 in Larson and Griffin (2013). 401 

Substituting 𝑃(𝑞𝑐, 𝑁𝑐) in Eq. (4) into Eq. (3) yields a formula for EF that consists of the 402 

following three terms 403 

 𝐸 = 𝐸𝑞(𝜈𝑞𝑐
, 𝛽𝑞) ∙ 𝐸𝑁(𝜈𝑁𝑐

, 𝛽𝑁) ∙ 𝐸𝐶𝑂𝑉(𝜌𝐿 , 𝛽𝑞 , 𝛽𝑁𝜈𝑞𝑐
, 𝜈𝑁𝑐

), (5) 
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where 𝐸𝑞(𝜈𝑞𝑐
, 𝛽𝑞) corresponds to the enhancing effect of the subgrid variation of 𝑞𝑐, if 𝑞𝑐 follows 404 

a marginal lognormal distribution, i.e., 𝑃(𝑥) =
1

√2𝜋𝑥𝜎
exp (−

(ln 𝑥−𝜇)2

2𝜎2
). It is a function of the 405 

inverse relative variance ν𝑞  in Eq. (2) as follows: 406 

 𝐸𝑞(𝜈𝑞𝑐
, 𝛽𝑞) = (1 +

1

𝜈𝑞𝑐

)

𝛽𝑞
2−𝛽𝑞

2

. 
(6) 

Similarly, the 𝐸𝑁(ν𝑁𝑐
, 𝛽𝑁) below corresponds to the enhancing effect of the subgrid variation of 407 

𝑁𝑐, if 𝑁𝑐 follows a marginal lognormal distribution,  408 

 𝐸𝑁(𝑣𝑁𝑐
, 𝛽𝑁) = (1 +

1

𝜈𝑁𝑐

)

𝛽𝑁
2 −𝛽𝑁

2

. 
(7) 

The third term 𝐸𝐶𝑂𝑉(𝜌𝐿 , 𝛽𝑞, 𝛽𝑁ν𝑞𝑐
, ν𝑁𝑐

) in Eq. (5)  409 

 𝐸𝐶𝑂𝑉(𝜌𝐿 , 𝛽𝑞 , 𝛽𝑁 , 𝑣𝑞𝑐
, 𝑣𝑁𝑐

) = 𝑒𝑥𝑝(𝜌𝐿𝛽𝑞𝛽𝑁𝜎𝑞𝑐
𝜎𝑁𝑐

), (8) 

corresponds to the impact of the co-variation of 𝑞𝑐 and 𝑁𝑐 on the EF. Because βq > 0 and βN <410 

0, if 𝑞𝑐 and 𝑁𝑐 are negatively correlated (i.e., 𝜌𝐿 < 0) then the 𝐸𝐶𝑂𝑉 > 1 and acts as an enhancing 411 

effect on the autoconversion rate computation. In contrast, if 𝑞𝑐 and 𝑁𝑐 are positively correlated 412 

(i.e., 𝜌𝐿 > 0), then the 𝐸𝐶𝑂𝑉 < 1 which becomes a suppressing effect on the autoconversion rate 413 

computation.  414 

As aforementioned, most previous studies of the EF consider only the impact of subgrid 415 

𝑞𝑐 variation (i.e., only the 𝐸𝑞  term). The impacts of subgrid 𝑁𝑐 variation as well as its covariation 416 

with 𝑞𝑐 have been largely overlooked in observational studies, in which, the 𝐸𝑞  is often derived 417 

from the observed subgrid variation of 𝑞𝑐 based on the definition of EF, i.e.,  418 
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 𝐸𝑞 =
∫ 𝑞𝑐

𝛽𝑞∞

0
𝑃(𝑞𝑐)𝑑𝑞𝑐

〈𝑞𝑐〉𝛽𝑞
, 

(9) 

where 𝑃(𝑞𝑐) is the observed subgrid PDF of 𝑞𝑐. Alternatively, 𝐸𝑞  have also been estimated from 419 

the inverse relative variance ν𝑞  by assuming the subgrid variation of 𝑞𝑐 to follow either the 420 

lognormal distribution, in which case 𝐸𝑞  is given in Eq. (6).  421 

Similar to 𝐸𝑁, if only the effect of subgrid 𝑁𝑐 is considered,  the corresponding 𝐸𝑁 can be 422 

derived from the following two ways, one from the observed subgrid PDF 𝑃(𝑁𝑐) based on the 423 

definition of EF, i.e.,  424 

 𝐸𝑁 =
∫ 𝑁𝑐

𝛽𝑁∞

0
𝑃(𝑁𝑐)𝑑𝑁𝑐

〈𝑁𝑐〉𝛽𝑁
, 

(10) 

and the other based on Eq. (7) from the relative variance ν𝑁𝑐
 by assuming the subgrid 𝑁𝑐 425 

variation to follow the lognormal distribution.   426 

Now, we put the in-situ 𝑞𝑐 and 𝑁𝑐 observations from the selected hlegs in the theoretical 427 

framework of EF described above and investigate the following questions:  428 

1) What is the (“observation-based”) EF derived based on Eq. (3) from the observed joint 429 

PDF 𝑃(𝑞𝑐, 𝑁𝑐)?  430 

2) How well does the (“bi-logarithmic”) EF derived based on Eq. (5) by assuming that 431 

the covariation of 𝑞𝑐 and 𝑁𝑐 follows a bi-variate lognormal agree with the observation-based EF?  432 

3) What is the relative importance of the 𝐸𝑞 , 𝐸𝑁, and 𝐸𝐶𝑂𝑉 terms in Eq. (5) in 433 

determining the value of EF?  434 

4) What is the error of considering only 𝐸𝑞  and omitting the 𝐸𝑁 and 𝐸𝐶𝑂𝑉 terms?  435 

5) How do the observation-based EFs from Eq. (3) and the 𝐸𝑞 , 𝐸𝑁, 𝐸𝐶𝑂𝑉 terms vary with 436 

vertical height in cloud?  437 
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These questions are addressed in the rest of this section. Focusing first on the 𝐸𝑞  in Figure 438 

6a, the 𝐸𝑞  derived from observation based on Eq. (9) (solid circle) shows a clear decreasing trend 439 

with height between cloud base at around 700 m to about 1 km, with value reduced from about 3 440 

to about 1.2. Then, the value of 𝐸𝑞  increases slightly in the cloud top hlegs 8 and 12. The 𝐸𝑞  441 

derived based on Eq. (6) by assuming lognormal distribution (open circle) has a very similar 442 

vertical pattern, although the value is slightly overestimated in comparison with the observation-443 

based result. The vertical pattern of 𝐸𝑞  can be readily explained by how the subgrid variation of 444 

𝑞𝑐 in Figure 4c. The 𝐸𝑁 derived from observation (solid triangle) in Figure 6b shows a similar 445 

vertical pattern as 𝐸𝑞 , i.e., first decreasing with height from cloud base to about 1.2 km and then 446 

increasing with height in the uppermost part of cloud. The 𝐸𝑁  derived based on Eq. (7) by 447 

assuming a lognormal distribution (open triangle) show a large error compared with the 448 

observation-based values, especially at cloud base (i.e., hleg 5 and 10) and cloud top (i.e., hleg 8 449 

and 12).  450 

Using hleg10 as an example, we further investigated the cause for the error in lognormal-451 

based EFs in comparison with those diagnosed from the observation. As shown in Figure 7a the 452 

observed 𝑞𝑐 is slightly negatively skewed in logarithmic space by the small values. Because the 453 

autoconversion rate is proportional to 𝑞𝑐
2.47, the negatively skewed 𝑞𝑐 also leads to a negatively 454 

skewed 𝐸𝑞  in Figure 7b. As a result, the leg-averaged 𝐸𝑞  diagnosed from the observation is slightly 455 

smaller than that derived based on Eq. (6) by assuming a lognormal distribution. The negative 456 

skewness also explains the large error in 𝐸𝑁 for hleg 10 seen on Figure 6b. As shown in Figure 7c 457 

the observed 𝑁𝑐 is also negatively skewed, to a much larger extent in comparison with 𝑞𝑐. Because 458 

the autoconversion rate is proportional to 𝑁𝑐
−1.79, the highly negatively skewed 𝑁𝑐  results in a 459 
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highly positively skewed 𝐸𝑁 in Figure 7d. As a result, the 𝐸𝑁 diagnosed from the observation is 460 

much larger than that derived based on Eq. (7) by assuming a lognormal distribution. 461 

The 𝐸𝑞  and 𝐸𝑁 reflect only the individual contributions of subgrid 𝑞𝑐 and 𝑁𝑐 variations to 462 

the EF. The effect of the covariation of 𝑞𝑐  and 𝑁𝑐 , i.e., the 𝐸𝐶𝑂𝑉  is shown in Figure 6c. 463 

Interestingly, the value of 𝐸𝐶𝑂𝑉 is smaller than unity for all the selected hlegs. As explained in Eq. 464 

(8), 𝐸𝐶𝑂𝑉 < 1  is a result of a positive correlation between 𝑞𝑐  and 𝑁𝑐 , as seen in Figure 4d. 465 

Therefore, in these hlegs the covariation of the 𝑞𝑐 and 𝑁𝑐 has suppressing effect on the EF, in 466 

contrast to the enhancing effect of 𝐸𝑞  and 𝐸𝑁. This result is qualitatively consistent with Z19 who 467 

found that the vertically integrated liquid water path (LWP) of MBL clouds is in general positively 468 

correlated with the 𝑁𝑐 estimated from the MODIS cloud retrieval product and, as a result, 𝐸𝐶𝑂𝑉 <469 

1 over most of the tropical oceans. Because of the relationship in Eq. (8), the value 𝐸𝐶𝑂𝑉  is 470 

evidently negatively proportional to the correlation coefficient 𝜌𝐿 in Figure 4d. The largest value 471 

is seen in hleg 6 and 7 in which the bimodal joint distribution of 𝑞𝑐 and 𝑁𝑐 results in a small 𝜌𝐿. 472 

The smallest 𝐸𝐶𝑂𝑉 = 0.21 is seen in hleg 12, as result of a strong correlation between 𝑞𝑐 and 𝑁𝑐 473 

(𝜌𝐿 = 0.96) and moderate 𝜎𝑞 and 𝜎𝑁.  474 

Finally, the EF that accounts for all factors, including the individual variations of 𝑞𝑐 and 475 

𝑁𝑐, as well as their covariation, is shown in Figure 6d. Focusing first on the observation-based 476 

results (solid star), i.e., 𝐸 in Eq. (3), evidently there is a decreasing trend from cloud base (e.g., 477 

𝐸 = 2.2 for hleg 5 and 𝐸 = 1.59 for hleg 10) to cloud top (e.g., 𝐸 = 1.20 for hleg 8 and 𝐸 = 1.02 478 

for hleg 12). The 𝐸 derived based on Eq. (5) by assuming the bi-variate lognormal distribution 479 

between 𝑞𝑐 and 𝑁𝑐 (i.e., open star in Figure 6d) are generally larger than the observation-based 480 

results, in particularly for hleg 6 and 7. To investigate the reason for this error, we compared the 481 

observed joint PDF between 𝑞𝑐  and 𝑁𝑐  for hleg 7 with the diagnosed bi-variate lognormal 482 
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distribution in Figure 8. As already noted, the observed 𝑞𝑐 and 𝑁𝑐 follow a bimodal distribution 483 

which leads to a rather small correlation coefficient 𝜌𝐿 . The bi-variate lognormal distribution 484 

interprets this small 𝜌𝐿 as an abroad unimodal distribution (dashed contour line), which leads to 485 

an overestimate of EF.  486 

Finally, it is intriguing to note that the value of 𝐸 = 𝐸𝑞 ∙ 𝐸𝑁 ∙ 𝐸𝐶𝑂𝑉  in Figure 6d is 487 

comparable to 𝐸𝑞  Figure 6a, which indicates that the enhancing effect of 𝐸𝑁 > 1 in Figure 6b is 488 

partially canceled by the suppressing effect of 𝐸𝐶𝑂𝑉 < 1 in Figure 6c. As aforementioned, many 489 

previous studies of the EF consider only the effect of 𝐸𝑞  but overlook the effect of 𝐸𝑁 and 𝐸𝐶𝑂𝑉. 490 

The error in the studies would be quite large if it were not for a fortunate error cancellation.  491 

5. Other Selected Cases  492 

In addition to the July 18, 2017 RF, we also found another 3 RFs that meet our criterions 493 

as described in Section 3 for case selection. As summarized in Table 3 and shown in Figure 1c-h, 494 

the July 20, 2017 and Jan. 19, 2018 RFs sampled the MBL clouds around the ENA site repeatedly 495 

in a “V” shape horizontal pattern similar to the July 18, 2017 RF. In contrast, the Feb. 11, 2018 496 

RF is different from the other three cases in two aspects. First, its horizontal sampling pattern is a 497 

simple straight line. Second, the boundary layer is significantly deeper, with a mean cloud top 498 

height around 1.5 km in comparison to the ~ 1 km cloud top height in other RFs. Due to limited 499 

space, we cannot present the detailed case studies of these RFs. Instead, we view them collectively 500 

and investigate whether the lessons learned from the July 18, 2017 RF, especially those about the 501 

EF in Section 4.2, also apply to the other cases.  502 

In order to compare the hlegs from different RFs, we first normalize the altitude of each 503 

hleg with respect to the minimum and maximum values of all selected hlegs in each RF as 504 

follows: 505 
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 𝑧ℎ𝑙𝑒𝑔
∗ =

𝑧ℎ𝑙𝑒𝑔 − 𝑧𝑚𝑖𝑛

𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛
, (11) 

where 𝑧ℎ𝑙𝑒𝑔
∗  is the normalized altitude for each hleg in a RF, 𝑧𝑚𝑖𝑛 and 𝑧𝑚𝑎𝑥 are the altitude of the 506 

lowest and highest hleg in the corresponding RF. Defined this way, 𝑧ℎ𝑙𝑒𝑔
∗  is bounded between 0 507 

and 1. Alternatively, 𝑧ℎ𝑙𝑒𝑔
∗  could also be defined with respect to the averaged cloud top (𝑧𝑡𝑜𝑝) and 508 

base (𝑧𝑏𝑎𝑠𝑒) as inferred from the KAZR or vlegs. However, because of the variation of cloud top 509 

and cloud base heights, as well as the collocation error, the 𝑧ℎ𝑙𝑒𝑔
∗  would often become significantly 510 

larger than 1 or smaller than 0, if 𝑧ℎ𝑙𝑒𝑔
∗  were defined with respect to 𝑧𝑡𝑜𝑝 and 𝑧𝑏𝑎𝑠𝑒 , making results 511 

confusing and difficult to interpret.  512 

Figure 9 shows the observation based EFs for all the selected hlegs from the 4 selected RFs 513 

as a function of the 𝑧ℎ𝑙𝑒𝑔
∗ . As shown in Figure 9a, the 𝐸 derived based on (3) that accounts for the 514 

covariation of 𝑞𝑐 and 𝑁𝑐 has a decreasing trend from cloud base to cloud top. This is consistent 515 

with the result from the July 18, 2017 case in Figure 6d. However, neither the 𝐸𝑞  in Figure 9b nor 516 

the 𝐸𝑁 in Figure 9c shows a clear dependence on 𝑧ℎ𝑙𝑒𝑔
∗  in comparison with the results of July 18th, 517 

2017 case in Figure 6a and b. Note that the 𝐸𝑞  and 𝐸𝑁 are influenced by a number of factors, such 518 

as horizontal distance and cloud fraction, in addition to vertical height. It is possible that the 519 

differences in other factors outweigh the vertical dependence here. Interestingly, the linear 520 

correlation coefficient 𝜌 between 𝑞𝑐 and 𝑁𝑐 in Figure 9d shows an increasing trend with 𝑧ℎ𝑙𝑒𝑔
∗  that 521 

is statistically significant (R-value= 0.50 and P-value=0.02), despite a few outliers including the 522 

aforementioned hleg 6 an 7 from July 18, 2017 case and also the hleg 16 from Jan. 19, 2018 case. 523 

It turns out that the joint distribution of 𝑞𝑐 and 𝑁𝑐 in the hleg 16 of the Jan. 19, 2018 is also bimodal 524 

(similar to Figure 5b and not shown here), leading to a small 𝜌𝐿. Nevertheless, the increasing trend 525 

of 𝜌 with 𝑧ℎ𝑙𝑒𝑔
∗  in Figure 9d is consistent with what we found in the July 18, 2017 case (see Figure 526 
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4d). As evident from Eq. (8), an increase of 𝜌𝐿 would lead to a decrease of 𝐸𝐶𝑂𝑉. Since neither 𝐸𝑞  527 

nor 𝐸𝑁  shows a clear dependence on 𝑧ℎ𝑙𝑒𝑔
∗ , the decrease of 𝐸𝐶𝑂𝑉  with 𝑧ℎ𝑙𝑒𝑔

∗  seems to play an 528 

important role in the determining the value of 𝐸. Another line of evidence supporting this role is 529 

the fact that both 𝐸𝑞  and 𝐸𝑁 are quite large for the cloud top hlegs, while in contrast the values of 530 

corresponding 𝐸 that accounts for the covariation of 𝑞𝑐 and 𝑁𝑐 are much smaller. For example, the 531 

𝐸𝑞  for two hlegs from the Feb. 11, 2018 RF exceeds 8 but the corresponding 𝐸 values are smaller 532 

than 1.2 which is evidently a result of large 𝜌𝐿 and thereby small 𝐸𝐶𝑂𝑉.  533 

As aforementioned, many previous studies of the EF for the autoconversion rate 534 

parameterization consider only the effect of subgrid 𝑞𝑐 variation but ignore the effects of subgrid 535 

𝑁𝑐 variation, and its covariation with 𝑞𝑐. To understand the potential error, we compared the 𝐸𝑞  536 

and 𝐸 both derived based on observations in Figure 10. Apparently, 𝐸𝑞 is significantly larger than 537 

𝐸𝑞  for most of the selected hlegs, which implies that the considering only subgrid 𝑞𝑐 variation 538 

would likely lead to an overestimation of EF. This is an interesting result. Note that 𝐸𝑁 ≥ 1 by 539 

definition and therefore 𝐸𝑞 > 𝐸  is possible only when the covariation of 𝑞𝑐  and 𝑁𝑐  has a 540 

suppressing effect, instead of enhancing. Once again, this result demonstrates the importance of 541 

understanding the covariation of 𝑞𝑐  and 𝑁𝑐  for understanding the EF for autoconversion rate 542 

parameterization.       543 

Having looked at the observation-based EFs, we now check if the EFs derived based on 544 

assumed PDFs (e.g., lognormal or bi-variate lognormal distributions) agree with the observation-545 

based results. As shown in Figure 11a, the 𝐸𝑞  based on Eq. (6) that assumes a lognormal 546 

distribution for the subgrid variation of 𝑞𝑐 is in an excellent agreement with the observation-based 547 

results. In contrast, the comparison is much worse for the 𝐸𝑁 in Figure 11b, which is not surprising 548 

given the results from the July 18, 2017 case in Figure 6b. As one can see from Figure 5, the 549 
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marginal PDF of 𝑁𝑐 is often broad and sometimes even bimodal. The deviation of the observed 550 

𝑁𝑐 PDF from the lognormal distribution is probably the reason for the large difference of 𝐸𝑁 in 551 

Figure 11b. As shown in Figure 11c, the 𝐸 derived based on Eq. (5) by assuming a bi-variate 552 

lognormal function for the joint distribution of 𝑞𝑐 and 𝑁𝑐 tends to be larger than the observation-553 

based results. The reason for this overestimation is because the joint PDF of 𝑞𝑐 and 𝑁𝑐 is often 554 

bimodal as seen in Figure 5. In such case, the small correlation coefficient 𝜌 due to the bimodality 555 

is misinterpreted as a rather broad bi-variate lognormal distribution which in turn leads to an 556 

overestimated 𝐸 value.     557 

6. Summary and Discussion 558 

In this study we derived the horizontal variations of 𝑞𝑐 and 𝑁𝑐, as well as their covariations 559 

in MBL clouds based on the in-situ measurements from the recent ACE-ENA campaign and 560 

investigated the implications for the EF of the autoconversion parameterization in the GCMs. The 561 

main findings can be summarized as follows: 562 

• In the July 18, 2017 case, the vertical variation of the mean values of 𝑞𝑐 and 𝑁𝑐 roughly 563 

follows the adiabatic structure. The horizontal variances of 𝑞𝑐 and 𝑁𝑐 first decrease from 564 

cloud base upward toward the middle of the cloud and then increase in the entrainment 565 

zone. The correlation between of 𝑞𝑐 and 𝑁𝑐 generally increases from cloud base to cloud 566 

top.  567 

• In other selected cases, the horizontal variances of 𝑞𝑐  and 𝑁𝑐  show no statistically 568 

significant dependence on the vertical height in cloud. However, the increasing trend of 569 

the correlation between 𝑞𝑐 and 𝑁𝑐 from cloud base to cloud top remains robust. 570 
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• In a few selected “V” shape hlegs, the 𝑞𝑐  and 𝑁𝑐  follow a bimodal joint distribution 571 

which leads to a poor linear correlation between them. The two modes in the bimodal 572 

distribution correspond to the along-wind and cross-wind sides of the “V” shape hlegs.  573 

• The observation-based physically complete 𝐸 that accounts for the covariation of 𝑞𝑐 and 574 

𝑁𝑐 has a robust decreasing trend from cloud base to cloud top, which can be explained 575 

by the increasing trend of the 𝑞𝑐 and 𝑁𝑐 correlation from cloud base to cloud top. 576 

• The 𝐸  estimated by assuming a monomodal bi-variate lognormal joint distribution 577 

between 𝑞𝑐  and 𝑁𝑐  systematically overestimates the observation-based results, 578 

especially for the hlegs with a bimodal 𝑞𝑐 and 𝑁𝑐 joint distribution. The omission of the 579 

𝑁𝑐 variation and its covariation with 𝑞𝑐 tends to lead to an overestimation of EF despite 580 

the error cancellation.  581 

These results provide the following two new understandings of the EF for the autoconversion 582 

parameterization that have potentially important implications for GCM. First, our study indicates 583 

that the physically complete 𝐸 has a robust decreasing trend from cloud base to cloud top. Because 584 

the autoconversion process is most important at the cloud top, this vertical dependence of EF 585 

should be taken into consideration in the GCM parametrization scheme. Second, our study 586 

indicates that effect of the 𝑞𝑐 and 𝑁𝑐 correlation plays a critical role in determining the EF. Lately 587 

a few novel modeling techniques have been developed to provide the coarse resolution GCMs 588 

information of subgrid cloud variation, such as the PDF-based higher-order turbulence closure 589 

method—Cloud Layer Unified By Binormals, CLUBB (Golaz et al., 2002; Guo et al., 2015; 590 

Larson et al., 2002). These models are able to provide parameterized subgrid variance of 𝑞𝑐 which 591 

can be used in turn to estimate 𝐸𝑞 . However, as shown in our study the 𝐸𝑞 tends to overestimate 592 

the EF.  593 
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Our study has a couple of important limitations. First of all, our results are based on a 594 

handful cases from a single field campaign. The lessons learned here need to be further examined 595 

based on more data or tested in modeling studies. Second, we study provides only a 596 

phenomenological analysis of the horizontal variations cloud microphysics in the MBL clouds and 597 

the implications for the EF. Ongoing modeling research based on a comprehensive LES model is 598 

being conducted to identify and elucidate the process-level physical mechanisms behind our 599 

observational results.  Finally, this study is focused on the KK parameterization in estimating the 600 

enhancement factors resulting from subgrid variability of 𝑞𝑐 , 𝑁𝑐 and 𝑞𝑐 - 𝑁𝑐  covariance. The 601 

specific values are expected to differ when applied to other autoconversion parameterizations with 602 

different power-law exponents.  603 

  604 
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 616 
 617 
Table 1 In situ cloud instruments from ACE-ENA campaign used in this study 618 

Instruments Measurements  Frequency  Resolution  Accuracy  

AIMMS P, T, RH, u,v,w 20 Hz  / / 

F-CDP DSD 2~50 µm  10 Hz  1 -2 µm 2 µm 

2DS DSD 10 ~2500 µm 1 Hz 25 – 150 µm 10 µm 

 619 
 620 
Table 2  conditions of MBL sampled during the two IOPs of ACE-ENA campaign 621 

Conditions 

Sampled 

Research Flights 

IOP1: June-July 2017 IOP2: Jan.-Feb. 2018 

Mostly clear 6/23, 6/29, 7/7 2/16 

Thin Stratus  6/21, 6/25, 6/26, 6/28, 6/30, 7/4, 7/13 1/28, 2/1, 2/10, 2/12 

Solid StCu 7/6, 7/8, 7/15 1/30 

Multi-layer StCu  7/11, 7/12 1/24, 1/29, 2/8 

Drizzling StCu/Cu 7/3, 7/17, 7/18, 7/19, 7/20 1/19, 1/21, 1/25, 1/26, 2/9, 2/11, 2/15, 

2/18, 2/19 

 622 

Table 3 A summary of selected RFs, and the selected hlegs and vlegs within each RF.  623 

Research Flight Sampling pattern Selected hlegs Selected vlegs 

July 18, 2017 IOP1 “V” shape 5, 6, 7, 8, 10, 11, 12 0, 1, 3 

July 20, 2017 IOP1 “V” shape 5, 6, 7, 8, 9, 13, 14 0, 1 

Jan. 19, 2018 IOP2 “V” shape 6, 7, 8, 15, 16 0, 1, 3 

Feb. 11, 2018 IOP2 Straight-line  4, 5, 6, 7, 12, 13 0, 1  

 624 

  625 
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 626 

 627 

Figure 1 Four selected RF from the ACE-ENA for this study. (a) horizontal flight track of the G1 628 

aircraft (red) during the July 18, 2017 RF. Small arrows in the figure indicate the wind vector at 629 

900 mb. (b) vertical flight track of G1(thick black line) overlaid on the radar reflectivity contour 630 

by the ground-based KZAR. The dotted lines in the figure indicate the cloud base and top retrievals 631 

from ground-based radar and CEIL instruments. (c) and (d) same as (a) and (b), except for July 632 

20, 2017 RF. (e) and (f) are for Jan. 19, 2018 RF. (g) and (h) are for Feb. 11, 2018 RF.  633 

  634 
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 635 

 636 

Figure 2 (a) The real color satellite image of the ENA region on July 18, 2017 from the MODIS. 637 

The small red star marks the location of the ARM ENA site on the Graciosa Island; (b) The 638 

averaged sea level pressure (SLP) of the ENA region on July 18, 2017 from the Merra-2 639 

reanalysis.  640 

  641 
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 642 

Figure 3 The horizontal variations of 𝑞𝑐  red) and 𝑁𝑐 (blue) for each selected hleg dervied from 643 

the in situ FCDP instrument. The yellow-shaded time period in each plot corresponds to the 644 

cross-wind side of the “V” shape flight track and the unshaded part corresponds to the along-645 

wind part. Note that plots are ordered such that the (a) hleg 8 and (e) hleg 12 are close to cloud 646 

top; (b) hleg 6, (c) hleg 7 and (f) hleg 11 are sampled in the middle of clouds;  (d) hleg 5 and (g) 647 

hleg 10 are close to cloud base 648 

  649 
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 650 

 651 

 652 

Figure 4 (a) The vertical profiles of 𝑞𝑐 derived from the vlegs (dotted lines) of the July 18, 2017 653 

case. The overplotted red errorbars indicate the mean values and standard deviations of the 𝑞𝐶 654 

derived from the selected hlegs at different vertical levels. (b) same as (a) except for 𝑁𝑐. (c) The 655 

vertical profile of the inverse relative variances (i.e., mean divided by standard deivation) of 𝑁𝑐 656 

(red circle) and 𝑁𝑐 (blue triangle ) derived from the hleg; (d) The vertical profile of the linear 657 

correlation coefficienct between ln (𝑞𝑐) and ln(𝑁𝑐), i.e., 𝜌𝐿 (squre) and linear correlation 658 

coefficienct between 𝑞𝑐 and 𝑁𝑐, i.e., 𝜌 (diamond).  659 

 660 
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 661 

Figure 5 The joint distributions of the 𝑞𝑐 and 𝑁𝑐, along with the marginal histograms, for the 7 662 

selected hleg from the July 18, 2017 RF. Same as Figure 3, the plots are ordered such that the (a) 663 

hleg 8 and (e) hleg 12 are close to cloud top; (b) hleg 6, (c) hleg 7 and (f) hleg 11 are sampled in 664 

the middle of clouds;  (d) hleg 5 and (g) hleg 10 are close to cloud base.  665 

   666 
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 667 

 668 

 669 

Figure 6 (a) 𝐸𝑞  as a function of height derived from observation based on Eq. (9) (solid circle) 670 

and from the inverse relative variance 𝜈𝑞  assuming lognormal distribution based on Eq. (6) (open 671 

circle). (b) 𝐸𝑁 as a function of height derived from observation based on Eq. (10) (solid triangle) 672 

and from the inverse relative variance 𝜈𝑁 assuming lognormal distribution based on Eq. (7) 673 

(open triangle). (c) 𝐸𝐶𝑂𝑉 derived based on Eq. (8) as a function of height. (d) 𝐸 as a function of 674 

height derived from observation based on Eq. (3) (solid star) and based on Eq. (5) assuming a bi-675 

lognormal distribution (open star). The numbers beside the symbols in the figure correspond to 676 

the numbers of the 7 slected hlegs.  677 

  678 
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 679 

 680 

Figure 7 (a) Histogram of ln (𝑞𝑐) based on observations from the hleg 10 (bars) and the lognormal 681 

PDF (dashed line) based on the 𝜇𝑞𝑐
 and 𝜎𝑞𝑐

 of hleg 10. (b) The histogram of ln (𝐸𝑞) diagnosed 682 

from the observed 𝑞𝑐  based on Eq. (9). The two vertical lines correspond to the leg-averaged 683 

ln (𝐸𝑞)  derived based on the observed 𝑞𝑐  (solid) and the lognormal PDF (dashed line), 684 

respectively. (c) Histogram of ln (𝑁𝑐) based on observations from the hleg 10 (bars) and the 685 

lognormal PDF (dashed line) based on the 𝜇𝑁𝑐
 and 𝜎𝑁𝑐

 of hleg 10. (d) The histogram of ln (𝐸𝑁) 686 

diagnosed from the observed 𝑞𝑐 based on Eq. (10). The two vertical lines correspond to the leg-687 

averaged ln (𝐸𝑁) derived based on the observed 𝑁𝑐 (solid) and the lognormal PDF (dashed line), 688 

respectively. 689 

  690 
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 691 

 692 

Figure 8 The joint PDF between ln (𝑞𝑐) and ln (𝑁𝑐) based on observations from hleg 7 (color 693 

contour) in comparison with the bi-variate lognormal PDF (dashed line contour) which is derived 694 

based on the 𝜇𝑞𝑐
, 𝜎𝑞𝑐

, 𝜇𝑁𝑐
 𝜎𝑁𝑐

, and 𝜌𝐿 of hleg 7.  695 

  696 
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 697 

 698 

 699 

 700 

 701 

Figure 9 (a) The observation-based 𝐸 derived from Eq. (3) that accounts for the covariation of 𝑞𝑐 702 

and 𝑁𝑐. (b) The observation-based 𝐸𝑞  derived from Eq. (9) that accounts for only the subgrid 703 

variation of 𝑞𝑐 (c) The observation-based 𝐸𝑁 derived from Eq. (10) that accounts for only the 704 

subgrid variation of  𝑁𝑐. (d) The correlation coefficient between 𝑞𝑐 and 𝑁𝑐. All quantities are 705 

plotted as a function of the normlized height 𝑧ℎ𝑙𝑒𝑔
∗  in Eq. (11). The dashed lines correspond to a 706 

linear fit of the data when the fitting is statistically significant (i.e., P-value < 0.05).  707 

  708 
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 709 

Figure 10 A comparison of observation-based 𝐸 and observation-based 𝐸𝑞 for all the selected 710 

hlegs from all 4 selected RF.  711 

  712 
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 713 

 714 

Figure 11 (a) A comparison of observation-based 𝐸𝑞  derived based on Eq. (9) and 𝐸𝑞  derived 715 

based on Eq. (6) assuming lognormal distribution for subgrid 𝑞𝑐 observations for all the selected 716 

hlegs. 12 (b) A comparison of observation-based 𝐸𝑁 derived based on Eq. (10) and 𝐸𝑁 derived 717 

based on Eq. (7) assuming lognormal distribution or all the selected hlegs. (c) A comparison of 718 

observation-based 𝐸 derived based on Eq. (3) and 𝐸 derived based on Eq. (5) assuming bi-719 

variate lognormal distribution for the subgrid joint distribution of 𝑞𝑐 and 𝑁𝑐.  720 
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