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Abstract: 

In the current global climate models (GCM), the nonlinearity effect of subgrid cloud variations on 

the parameterization of warm rain process, e.g., the autoconversion rate, is often treated by 

multiplying the resolved-scale warm ran process rates by a so-called enhancement factor (EF). In 35 

this study, we investigate the subgrid-scale horizontal variations and covariation of cloud water 

content (𝑞!) and cloud droplet number concentration (𝑁!) in marine boundary layer (MBL) clouds 

based on the in-situ measurements from a recent field campaign and study the implications for the 

autoconversion rate EF in GCMs. Based on a few carefully selected cases from the field campaign, 

we found that in contrast to the enhancing effect of 𝑞! and 𝑁! variations that tends to make EF>1, 40 

the strong positive correlation between 𝑞! and 𝑁! results in a suppressing effect that tends to make 

EF<1. This effect is especially strong at cloud top where the 𝑞! and 𝑁! correlation can be as high 

as 0.95. We also found that the physically complete EF that accounts for the covariation of 𝑞! and 

𝑁! is significantly smaller that its counterpart that accounts only for the subgrid variation of 𝑞!, 

especially at cloud top. Although this study is based on limited cases, it suggests that the subgrid 45 

variations of 𝑁! and its correlation with 𝑞! both need to be considered for an accurate simulation 

of the autoconversion process in GCMs.  
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 49 

1. Introduction  50 

Marine boundary layer (MBL) clouds cover about 1/5 of Earth’s surface and play an important 51 

role the climate system (Wood, 2012). A faithful simulation of MBL clouds in the global climate 52 

model (GCM) is critical for the projection of future climate (Bony and Dufresne, 2005; Bony et 53 

al., 2015; Boucher et al., 2013) and understanding of aerosol-cloud interactions (Carslaw et al., 54 

2013; Lohmann and Feichter, 2005). Unfortunately, it turns out to be an extremely challenging 55 

task. Among others, an important reason is that many physical processes in MBL clouds occur on 56 

spatial scales that are much smaller than the typical resolution of GCMs.  57 

Of particular interest in this study is the warm rain processes that play an important role in 58 

regulating the lifetime, water budget, and therefore integrated radiative effects of MBL clouds. In 59 

the bulk cloud microphysics schemes that are widely used in GCMs (Morrison and Gettelman, 60 

2008), continuous cloud particle spectrum is often divided into two modes. Droplets smaller than 61 

the “separation size” 𝑟∗ are classified into the cloud mode, which is described by two moments of 62 

droplet size distribution (DSD), the droplet number concentration 𝑁! (0th moment of DSD) and 63 

droplet liquid water content 𝑞!  (proportional to the 3rd moment). Droplets larger than 𝑟∗  are 64 

classified into a precipitation mode (drizzle or rain), with properties denoted by drop concentration 65 

and water content (𝑁# and 𝑞#). In a bulk microphysics scheme, the transfer of mass from the cloud 66 

to rain modes as a result of the collision-coalescence process is separated into two terms, 67 
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. Autoconversion is defined as the 68 

rate of mass transfer from the cloud to rain mode due to the coalescence of two cloud droplets with 69 

𝑟 < 𝑟∗. Accretion is defined as the rate of mass transfer due to the coalescence of a rain drop with 70 

𝑟 > 𝑟∗ with a cloud droplet. A number of autoconversion and accretion parameterizations have 71 
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been developed, formulated either through numerical fitting of droplet spectra obtained from bin 72 

microphysics LES or parcel model (Khairoutdinov and Kogan, 2000), or through an analytical 73 

simplification of the collection kernel to arrive at expressions that link autoconversion and 74 

accretion with the bulk microphysical variables (Liu and Daum, 2004). For example, a widely used 75 

scheme developed by Khairoutdinov and Kogan (2000) (“KK scheme” hereafter) relates the 76 

autoconversion with 𝑁! and 	𝑞! as follows: 77 
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where 𝑞! and 𝑁! have units of kg kg-1 and cm-3, respectively; the parameter 𝐶 = 1350, and the 78 

two exponents 𝛽% = 2.47, 𝛽, = −1.79 are obtained through a nonlinear regression between the 79 

variables 𝑞! and 𝑁! and the autoconversion rate derived from large-eddy simulation (LES) with 80 

bin-microphysics spectra. 81 

Having a highly accurate microphysical parameterization — specifically, highly accurate 82 

local microphysical process rates — is not sufficient for an accurate simulation of warm-rain 83 

processes in GCMs.  Clouds can have significant structures and variations at the spatial scale much 84 

smaller than the typical grid size of GCMs (10 ~ 100 km) (Barker et al., 1996; e.g., Cahalan and 85 

Joseph, 1989; Lebsock et al., 2013; Wood and Hartmann, 2006; Zhang et al., 2019). Therefore, 86 

GCMs need to account for these subgrid-scale variations in order to correctly calculate grid-mean 87 

autoconversion and accretion rates. Pincus and Klein (2000) nicely illustrate this dilemma. Given 88 

subgrid-scale variability represented as a distribution 𝑃(𝑥) of some variable x, for example the 𝑞! 89 

in Eq. (1), a grid-mean process rate is calculated as 〈𝑓(𝑥)〉 = ∫ 𝑓(𝑥)𝑃(𝑥)𝑑𝑥 , where 𝑓(𝑥) is the 90 

formula for the local process rate. For nonlinear process rates such as autoconversion and accretion, 91 

the grid-mean process rates calculated from the subgrid-scale variability does not equal the process 92 

rate calculated from the grid-mean value of x, i.e., 〈𝑓(𝑥)〉 ≠ 𝑓(〈𝑥〉) . Therefore, calculating 93 
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autoconversion and accretion from grid-mean quantities introduces biases arising from subgrid-94 

scale variability. To take this effect into account, a parameter 𝐸 is often introduced as part of the 95 

parameterization such that 〈𝑓(𝑥)〉 = 𝐸 ∙ 𝑓(〈𝑥〉). Following the convention of previous studies, 𝐸	is 96 

referred to as the “enhancement factor” (EF) here. Given the autoconversion parameterization 97 

scheme, the magnitude of EF is primarily determined by cloud horizontal variability within a GCM 98 

grid. Unfortunately, because most GCMs do not resolve subgrid cloud variation, the value of EF 99 

is often simply assumed to be a constant for the lack of better options. In the previous generation 100 

of GCMs, the EF for KK autoconversion scheme due to subgrid 𝑞!  variation is often simply 101 

assumed to be a constant. For example, in the widely used Community Atmosphere Model (CAM) 102 

version 5 (CAM5) the EF for autoconversion is assumed to be 3.2 (Morrison and Gettelman, 2008).  103 

A number of studies have been carried out to better understand the horizontal variations of 104 

cloud microphysics in MBL cloud and the implications for warm rain simulations in GCMs. Most 105 

of these studies have been focused on the subgrid variation of 𝑞!. Morrison and Gettelman (2008) 106 

and several later studies (Boutle et al., 2014; Hill et al., 2015; Lebsock et al., 2013; Zhang et al., 107 

2019) showed that the subgrid variability 𝑞! and thereby the EF are dependent on cloud regime 108 

and cloud fraction (𝑓!). They are generally smaller over the closed-cell stratocumulus regime with 109 

higher 𝑓! and larger over the open-cell cumulus regime that often has a relatively small 𝑓!. The 110 

subgrid variance of 𝑞! is also dependent on the horizontal scale (𝐿) of a GCM grid. Based on the 111 

combination of in situ and satellite observations, Boutle et al. (2014) found that the subgrid 𝑞! 112 

variance first increases quickly with 𝐿 when 𝐿 is below about 20 km, then increases slow and 113 

seems to approach to a asymptotic value for larger 𝐿. Similar spatial dependence is also reported 114 

in Huang et al. (2014),Huang and Liu (2014), Xie and Zhang (2015), and Wu et al. (2018) which 115 

are based on the ground radar retrievals from the Department of Energy (DOE) Atmospheric 116 
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Radiation Measurement (ARM) sites. The cloud-regime and horizontal-scale dependences have 117 

inspired a few studies to parameterize the subgrid 𝑞! variance as a function of either 𝑓! or 𝐿 or a 118 

combination of the two (e.g., Ahlgrimm and Forbes, 2016; Boutle et al., 2014; Hill et al., 2015; 119 

Xie and Zhang, 2015; Zhang et al., 2019). Inspired by these studies, several latest-generation 120 

GCMs have adopted the cloud-regime dependent and scale-aware parameterization schemes to 121 

account for the subgrid variability of 𝑞! and thereby the EF (Walters et al., 2019).   122 

However, the aforementioned studies have an important limitation. They consider only the 123 

impacts of subgrid  𝑞! variations on the EF but ignore the impacts of subgrid variation of 𝑁! and 124 

its covariation with 𝑞! . Based on cloud fields from large-eddy simulation, Larson and Griffin 125 

(2013) and later Kogan and Mechem (2014; 2016) elucidated that it is important to consider the 126 

covariation of 𝑞! and 𝑁! to derive a physically complete and accurate EF for the autoconversion 127 

parameterization. Lately, on the basis of MBL cloud observations from the Moderate Resolution 128 

Imaging Spectroradiometer (MODIS) Zhang et al. (2019) (hereafter referred to as Z19) elucidate 129 

that the subgrid variation of 𝑁! tends to further increase the EF for the autoconversion process in 130 

addition to the EF due to 𝑞! variation. The effect of 𝑞!-𝑁! covariation on the other hand depends 131 

on the sign of the 𝑞!-𝑁!  correlation. A positive 𝑞!-𝑁!  correlation would lead to an EF <1 that 132 

partly offsets the effects of 𝑞! and 𝑁! variations. Although Z19 shed important new light on the 133 

EF problem for the warm rain process, their study also suffers from limitations due to the use of 134 

satellite remote sensing data. First, as a passive remote sensing technique, MODIS cloud product 135 

can only retrieve the column-integrated cloud optical thickness and the cloud droplet effective 136 

radius at cloud top, from which the column-integrated cloud liquid water path (LWP) is estimated. 137 

As a result of using LWP, instead vertically resolved observations the vertical dependence of the 138 

𝑞!  and 𝑁!  horizontal variabilities are ignored in Z19. Second, the 𝑁!  retrieval from MODIS is 139 
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based on several important assumptions, which can lead to large uncertainties (see review by 140 

(Grosvenor et al., 2018) ). Furthermore, MODIS cloud retrieval product is known to suffer from 141 

several inherent uncertainties, such as the three-dimensional radiative effects(e.g., Zhang and 142 

Platnick, 2011; Zhang et al., 2012; 2016), which in turn can lead to large uncertainties in the 143 

estimated EF.  144 

This study is a follow up of Z19. To overcome the limitations of satellite observations, we 145 

use the in situ measurements of MBL cloud from a recent DOE field campaign, the Aerosol and 146 

Cloud Experiments in the Eastern North Atlantic (ACE-ENA), to investigate the subgrid variations 147 

of 𝑞! and 𝑁!, as well as their covariation, and the implications for the simulation of autoconversion 148 

simulation in GCMs. A main focus of this investigation is to understand the vertical dependence 149 

of the 𝑞! and 𝑁! horizontal variations within the MBL clouds. This aspect has been neglected in 150 

Z19 as well as most previous studies (Boutle et al., 2014; Lebsock et al., 2013; Xie and Zhang, 151 

2015). A variety of microphysical processes, such as adiabatic growth, collision-coalescence, 152 

entrainment mixing, can influence the vertical structure of MBL clouds. At the same time, these 153 

processes also vary horizontally at the subgrid scale of GCMs. As a result, the horizontal variations 154 

of 𝑞! and 𝑁!, as well as their covariation, and therefore the EFs may depend on the vertical location 155 

inside the MBL clouds. It is important to understand this dependence for several reasons. First, the 156 

warm rain process is usually initialized at cloud top where the autoconversion process of the cloud 157 

droplets gives birth to embryo drizzle drops. The accretion process is, on the other hand, more 158 

important in the lower part of the cloud (Wood, 2005b). Thus, a better understanding of the vertical 159 

dependence of horizontal variations of 𝑞! and 𝑁! inside of MBL cloud could help us understand 160 

how the EF should be modeled in the GCMs for both autoconversion and accretion. Second, a 161 

good understanding of the vertical dependence of 𝑞! and 𝑁! variation inside of MBL clouds will 162 
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also help us understand the limitations in the previous studies, such as Z19, that use the column-163 

integrated products for the study of EF. Finally, this investigation may also be useful for modeling 164 

other processes, such as aerosol-cloud interactions, in the GCMs.  165 

Therefore, our main objectives in this study are to: 1) better understand the horizontal 166 

variations of 𝑞! and 𝑁!, their covariation, and the dependence on vertical height in MBL clouds; 167 

2) elucidate the implications for the EF of the autoconversion parameterization in GCMs. The rest 168 

of the paper is organized as follows: we will describe the data and observations used in this study 169 

in Section 2 and explain how we select the cases from the ACE-ENA campaign for our study in 170 

Section 3. We will present cases studies in Section 4 and 5. Finally, the results and findings from 171 

this study will be summarized and discussed in Section 6. 172 

 173 

2. Data and Observations  174 

The data and observations used for this study are from two main sources: the in-situ 175 

measurements from the ACE-ENA campaign and the ground-based observations from the ARM 176 

ENA site. The ENA region is characterized by persistent subtropical MBL clouds that are 177 

influenced by different seasonal meteorological conditions and a variety of aerosol sources (Wood 178 

et al., 2015). A modeling study by Carslaw et al. (2013) found the ENA to be one of regions over 179 

the globe with the largest uncertainty of aerosol indirect effect. As such, the ENA region attracted 180 

substantial attention over the past few decades for aerosol-cloud interaction studies. From April 181 

2009 to December 2010 the DOE ARM program deployed its ARM Mobile Facility (AMF) to the 182 

Graciosa Island (39.09°N, 28.03°W) for a measurement field campaign targeting the properties of 183 

cloud, aerosol and precipitation in the MBL (CAP-MBL) in the Azores region of ENA (Wood et 184 

al., 2015). The measurements from the CAP-MBL campaign have proved highly useful for a 185 
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variety of purposes, from understanding the seasonal variability of clouds and aerosols in the MBL 186 

of the ENA region (Dong et al., 2014; Rémillard et al., 2012) to improving cloud parameterizations 187 

in the GCMs (Zheng et al., 2016), to validating the space-borne remote sensing products of MBL 188 

clouds (Zhang et al., 2017). The success of the CAP-MBL revealed that the ENA has an ideal mix 189 

of conditions to study the interactions of aerosols and MBL clouds. In 2013 a permanent 190 

measurement site was established by the ARM program on Graciosa Island, and is typically 191 

referred to as the ENA site (Voyles and Mather, 2013).  192 

2.1. In situ measurements from the ACE-ENA campaign 193 

The Aerosol and Cloud Experiments in ENA (ACE-ENA) project was “motivated by the 194 

need for comprehensive in situ characterizations of boundary-layer structure and associated 195 

vertical distributions and horizontal variabilities of low clouds and aerosol over the Azores” 196 

(Wang et al., 2016). The ARM Aerial Facility (AAF) Gulfstream-1 (G-1) aircraft was deployed 197 

during two intensive measurement periods (IOPs), the summer 2017 IOP from June 21 to July 20, 198 

2017 and the winter 2018 IOP from January 15 to February 18, 2018. Over 30 research flights (RF) 199 

were carried out during the two IOPs around the ARM ENA site on Graciosa Island that sampled 200 

a large variety of cloud and aerosol properties along with the meteorological conditions.  201 

Table 1 summarizes the in-situ measurements from the ACE-ENA campaign used in this 202 

study. The location and velocity of G1 aircraft, and the environment meteorological conditions 203 

during the flight (temperature, humidity, and wind velocity) are taken from Aircraft-Integrated 204 

Meteorological Measurement System 20-Hz (AIMMS-20) dataset (Beswick et al., 2008). The size 205 

distribution of cloud droplets, and the corresponding 𝑞! and 𝑁! are obtained from the fast cloud 206 

droplet probe (FCDP) measurement. The FCDP measures the concentration and size of cloud 207 

droplets in the diameter size range from 1.5 to 50 µm in 20 size bins with an overall uncertainty 208 
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of size around 3 µm (Lance et al., 2010; SPEC, 2019). Following previous studies (Wood, 2005a), 209 

we adopt a 𝑟∗ = 20	µ𝑚 as the threshold to separate cloud droplets from drizzle drops, i.e., drops 210 

with  𝑟 < 𝑟∗ are considered as cloud droplets. After the separation, the 𝑞! and 𝑁! are derived from 211 

the FCDP droplet size distribution measurements. As an evaluation, we compared our FCDP-212 

derived 𝑞! results with the direct measurements of 𝑞! from the multi-element water content system 213 

(WCM-2000; (Matthews and Mei, n.d.)) also flown during the ACE-ENA and found a reasonable 214 

agreement (e.g., biases within 20%). We also performed a few sensitivity tests in which we 215 

perturbed the value of 𝑟∗ from 15 µm up to 50 µm. The perturbation shows little impact on the 216 

results shown in sections 4 and 5. The cloud droplet spectrum from the FCDP is available at a 217 

frequency of 10 Hz, which is used in this study. We have also done a sensitivity study, in which 218 

we averaged the FCDP data to 1 Hz and got almost identical results. Since the typical horizontal 219 

speed of the G-1 aircraft during the in-cloud leg is about 100 m s-1, the spatial sampling rate these 220 

instruments is on the order of 10 m for the FCDP at 10 Hz.  221 

2.2. Ground observations from ARM ENA site 222 

In addition to the in-situ measurements, ground measurements from the ARM ENA site 223 

are also used to provide ancillary data for our studies. In particular, we will use the Active Remote 224 

Sensing of Cloud Layers product (ARSCL; (Clothiaux et al., 2000; Kollias et al., 2005) which 225 

blends radar observations from the Ka–band ARM zenith cloud radar (KAZR), micropulse lidar 226 

(MPL), and the ceilometer to provide  information on cloud boundaries and the mesoscale structure 227 

of cloud and precipitation. The ARSCL product is used to specify the vertical location of the G1 228 

aircraft and thereby the in-situ measurements with respect to the cloud boundaries, i.e., cloud base 229 

and top (see example in Figure 1). In addition, the radar reflectivity observations from KAZR, 230 

alone with in situ measurements, are used to select the precipitating cases for our study. Note that 231 
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the ARSCL product is from the vertically pointing instruments, which sometimes are not 232 

collocated with the in-situ measurements from G1 aircraft. As explained later in the next section, 233 

only those cases with a reasonable collocation are selected for our study.       234 

3. Case selections   235 

3.1. ACE-ENA flight pattern 236 

The section provides a brief overview of the G1 aircraft flight patterns during the ACE-237 

ENA and explains the method for cases selections for our study using the July 18, 2017 RF as an 238 

example. As shown in Table 2, a variety of MBL conditions were sampled during the two IOPs of 239 

the ACE-ENA campaign, from mostly clear-sky to thin stratus and drizzling stratocumulus. The 240 

basic flight patterns of G1 aircraft in the ACE-ENA included spirals to obtain vertical profiles of 241 

aerosol and clouds, and legs at multiple altitudes, including below cloud, inside cloud, at the cloud 242 

top, and in the free troposphere. As an example, Figure 1a shows the horizontal location of the G1 243 

aircraft during the July 18, 2017 RF which is the “golden case” for our study as explained in the 244 

next section. The corresponding vertical track of the aircraft is shown in Figure 1b overlaid on the 245 

reflectivity curtain of ground based KAZR. In this RF, the G1 aircraft repeated multiple times of 246 

horizontal level runs in a “V” shape at different vertical levels inside, above and below the MBL 247 

(see Figure 1b). The lower tip of the “V” shape is located at the ENA site on Graciosa island. The 248 

average wind in the upper MBL (i.e., 900 mb) is approximately Northwest. So, the west side of 249 

the V-shape horizontal level runs is along the wind and the east side across the wind. Note that the 250 

horizontal velocity of the G1 aircraft is approximately 100 m s-1. Since the duration of these 251 

selected “V” shape hlegs is between 580 s and 700 s, their total horizontal length is roughly 60 km, 252 

with each side of the “V” shape ~30 km. These “V” shape horizontal level runs, with one side 253 

along and the other across the wind, are a common sampling strategy used in the ACE-ENA to 254 
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observe the properties of aerosol and cloud at different vertical levels of the MBL. In our study we 255 

use the vertical location of the G1 aircraft from the AIMMS to identify continuous horizontal flight 256 

tracks which are referred to as the “hleg”. For the July 18, 2017 case, a total of 13 hlegs are 257 

identified as shown in Figure 1b. Among them, the hleg 5, 6, 7, 8, 10, 11, and 12 are the seven V-258 

shape horizontal level runs inside the MBL cloud. Together they provide an excellent set of 259 

samples of the MBL cloud properties at different vertical levels of a “virtual” GCM grid box of 260 

about 30 km. As aforementioned, Boutle et al. (2014) found that the horizontal variance of 𝑞! 261 

increases with the horizontal scale 𝐿  slowly when 𝐿  is larger than about 20 km. Therefore, 262 

although the horizontal sampling of the selected hlegs is only about 30 km, the lessons learned 263 

here could yield useful insights for larger GCM grid sizes. In addition to the hlegs, we also 264 

identified the vertical penetration legs in each flight, referred to as the “vlegs”, from which we will 265 

obtain the vertical structure of the MBL, along with the properties of cloud and aerosol.   266 

3.2. Case selection  267 

As illustrated in Figure 1 a and b for the July 18, 2017 RF, the criteria we used to select the 268 

RF cases and the hlegs within the RF can be summarized as follows: 269 

• The RF samples multiple continuous in-cloud hlegs at different vertical levels with the 270 

horizontal length of at least 10 km and cloud fraction larger than 10% (i.e., the fraction of 271 

a hleg with 𝑞!>0.01g m-3 must exceed 10% of the total length of that hleg). It is important 272 

to note here that, unless otherwise specified, all the analyses of 𝑞! and 𝑁! are based on in-273 

cloud observations (i.e., in the regions with 𝑞!>0.01g m-3).  274 

• Moreover, the selected hlegs must sample the same region (i.e., the same virtual GCM grid 275 

box) repeatedly in terms of horizontal track but different vertical levels in terms of vertical 276 

track. Take the July 18, 2017 case as an example. The hleg 5, 6, 7, 8 follow the same “V” 277 
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shape horizontal track (see Figure 1a) but sample different vertical levels of the MBL 278 

clouds (see Figure 1b). Such hlegs provide us the horizontal sampling needed to study the 279 

subgrid horizontal variations of the cloud properties and, at the same time, the chance to 280 

study the vertical dependence of the horizontal cloud variations.    281 

• Finally, the RF needs to have at least one vleg and the cloud boundary derived from the 282 

vleg is largely consistent with that derived from the ground-based measurements. This 283 

requirement is to ensure that the vertical locations of the selected hlegs with respect to 284 

cloud boundaries can be specified. For example, as shown in Figure 1b according to the 285 

ground-based observations, the hlegs 5 and 10 of July 18, 2017 case are close to cloud base, 286 

while hlegs 8 and 12 close to cloud top (see also Figure 4).      287 

The above requirements together pose a strong constraint on the observation. Fortunately, thanks 288 

to the careful planning of the RF which had already taken studies like ours into consideration, we 289 

are able to select a total of seven RF cases as summarized in Table 3. The plots of the flight tracks 290 

and ground-based radar observations for the six other RF cases are provided in the supplementary 291 

material (Figure S1—S6). We will first focus on the “golden case—July 18, 2017 RF and then 292 

investigate if the lessons learned from the July 18, 2017 RF also apply to the other three cases. 293 

4. A study of the July 18, 2017 case 294 

4.1. Horizontal and vertical variations of cloud microphysics 295 

On July 18, 2017, the North Atlantic is controlled by the Icelandic low to the north and the 296 

Azores high to the south (see Figure 2b), which is a common pattern of large-scale circulation 297 

during the summer season in this region (Wood et al., 2015). The Azores is at the southern tip of 298 

the cold air sector of a frontal system where the fair-weather low-level stratocumulus clouds are 299 

dominant (see satellite image in Figure 2a). The RF on this day started around 8:30 UTC and ended 300 
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around 12 UTC. As explained in the previous section, we selected 7 hlegs from this RF that 301 

horizontally sampled the same region repeatedly in a similar “V” shaped track but vertically at 302 

different levels. The radar reflectivity observation from the ground based KAZR during the same 303 

period peaks around 10 dBZ indicating the presence of significant drizzle inside the MBL clouds.  304 

Among the 7 selected hlegs, the hlegs 5, 6, 7 and 8 constitute one set of 4 consecutive “V” 305 

shape tracks, with hlegs 5 close to cloud base and hleg 8 close to cloud top. The hlegs 10,11 and 306 

12 are another set of consecutive “V” shape tracks with hlegs 10 and 12 close to cloud base and 307 

top, respectively (see Figure 1). Using 𝑞! > 0.01 gm-3 as a threshold for cloud, the cloud fraction 308 

(𝑓!) of all these hlegs is close to unity (i.e., overcast), except for the two hlegs close to cloud base 309 

(𝑓!=46% for hleg 5 and 𝑓!=51% for hleg 10). The 𝑞!  and 𝑁!  derived from the in situ FCDP 310 

measurements for these selected hleg are plotted in Figure 3 as a function of UTC time. It is evident 311 

from Figure 3 that both 𝑞! and 𝑁! have significant horizontal variations. At cloud base (see Figure 312 

3d for hleg 5 and Figure 3g for hleg 10) the 𝑞! varies from 0.01 gm-3 (i.e., the lower threshold) up 313 

to about 0.4 gm-3 and the 𝑁! from 25 cm-3 up to 150 cm-3, with the mean in-cloud values around 314 

0.08 gm-3 and 65 cm-3 , respectively. Such strong variations of cloud microphysics could be 315 

contributed by a number of factors. One can see from the ground radar and lidar observations in 316 

Figure 1b that the height of cloud base varies significantly. As a result, the horizonal legs may not 317 

really sample the cloud base. In addition, the variability in updraft at cloud base could lead to the 318 

variability in the activation and growth of cloud condensation nuclei (CCN). In the middle of the 319 

MBL cloud, i.e., hleg 6 (Figure 3c), 7 (Figure 3b) and 11 (Figure 3f), the mean value of 𝑞! is 320 

significantly larger than that of cloud base hlegs while the variability is reduced. The mean value 321 

of 𝑞! keeps increasing toward cloud top to ~0.73 gm-3 in hleg 8 (Figure 3a) and to ~0.53 gm-3 in 322 
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hleg 12 (Figure 3e), respectively. In contrast, the horizontal variability of 𝑞! seems to increase in 323 

comparison with those observed in mid-level hlegs.  324 

To obtain a further understanding of the vertical variations of cloud microphysics, we 325 

analyzed the cloud microphysics observations from the two green-shaded vlegs 1 and 3 in Figure 326 

1b. The vertical profile of the mean 𝑞! and 𝑁! from these two vlegs are shown in Figure 4a and 327 

Figure 4b, respectively, with over-plotted the mean and standard deviation of the 𝑞!  and 𝑁! 328 

derived from the 7 selected hlegs. Overall, the vertical profiles of the 𝑞! and 𝑁! are qualitatively 329 

aligned with the classic adiabatic MBL cloud structure (Brenguier et al., 2000; Martin et al., 1994). 330 

That is, the 𝑁-  remains relatively a constant (see Figure 4b) while the 𝑞! increases approximately 331 

linearly with height from cloud base upward as a result of condensation growth (see Figure 4a,), 332 

except for the very top of the cloud, i.e., the entrainment zone where the dry air entrained from the 333 

above mixes with the humid cloudy air in the MBL. In previous studies, a so-called inverse relative 334 

variance, 𝜈, is often used to quantify the subgrid variations of cloud microphysics. It is defined as 335 

follows   336 

 𝜈. =
〈.〉$

1%
$ , (2) 

where 𝑋 is either 𝑞!  (i.e.,	𝜈. = 𝜈%& ) or 𝑁!  (i.e., 𝜈. = 𝜈,& ) (Barker et al., 1996; Lebsock et al., 337 

2013; Zhang et al., 2019). 〈𝑋〉 and σ2  are the mean value and standard deviation of 𝑋, respectively. 338 

As such the smaller the 𝜈 value the larger the horizontal variation of 𝑋 in comparison with the 339 

mean value. As shown in Figure 4c, the 𝜈%&  and 𝜈,&  derived from the selected hlegs follow a 340 

similar vertical pattern: they both increase first from cloud base upward and then decrease in the 341 

entrainment zone, with the turning point somewhere around 1 km (i.e., around hleg 7 and 11). It 342 

indicates that both 𝑞! and 𝑁! have significant horizontal variabilities at cloud base which may be 343 

a combined result of horizontal fluctuations of dynamics (e.g., updraft) and thermodynamics (e.g., 344 
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temperature and dynamics), as well as horizontal variations of aerosols. The horizontal variabilities 345 

of both 𝑞! and 𝑁! both decrease upward toward cloud top until the entrainment zone where both 346 

variabilities increase again.  347 

So far, in all the analyses above the variations of 𝑞!  and 𝑁!  have been considered 348 

separately and independently. As pointed out in several previous studies, the co-variation of 𝑞! 349 

and 𝑁! could have an important impact on the EF for the autoconversion process in GCMs (Kogan 350 

and Mechem, 2016; Larson and Griffin, 2013; Zhang et al., 2019). This point will be further 351 

elucidated in detail in the next section. Figure 5 shows the joint distributions of 𝑞! and 𝑁! for the 352 

7 selected hlegs and the corresponding linear correlation coefficients as a function of height are 353 

shown in Figure 4d. For the sake of reference, the linear correlation coefficient between ln	(𝑞!) 354 

and ln	(𝑁!) , i.e., the 𝜌3  that will be introduced later in Eq. (4), is also plotted in Figure 4d. 355 

Looking first at the hlegs 10, 11 and 12, i.e., the 2nd group of consecutive “V” shape legs, there is 356 

a clear increasing trend of the correlation between 𝑞! and 𝑁! from cloud bottom (𝜌 = 0.75 for 357 

hleg 10) to cloud top (𝜌 = 0.95 for hleg 12). The picture based on the hlegs 5, 6, 7, and 8 is more 358 

complex. As shown in Figure 5, the joint distributions of 𝑞! and 𝑁! of hleg 6 (Figure 5b), hleg 7 359 

(Figure 5c) and, to a less extent, hleg 8 (Figure 5d) all exhibit a clear bimodality. Further analysis 360 

reveals that each of the two modes in these bimodal distributions approximately corresponds to 361 

one side of the “V” shape track. To illustrate this, the east side (i.e., across-wind) of the hleg is 362 

shaded in yellow in Figure 3. It is intriguing to note that the 𝑁! from the east side of the hleg are 363 

systematically larger than those from the west side, while their 𝑞! values are largely similar. It is 364 

unlikely that the bimodality is caused by the along-wind and across-wind difference between the 365 

two sides of the “V” shape track. It is most likely just a coincidence. On the other hand, the bimodal 366 
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joint distribution between 𝑞!  and 𝑁!  is “real” which could be a result of subgrid variations of 367 

updraft, precipitation and/or aerosols.     368 

As a result of the bimodality of 𝑁! , the correlation coefficients between 𝑞!  and 𝑁!  is 369 

significantly smaller for the hlegs 6 (𝜌 = 0.22) and 7 (𝜌 = 0.31) in comparison with other hlegs. 370 

However, if the two sides of the “V” shape tracks are considered separately, then the 𝑞! and 𝑁! 371 

become more correlated, except for the east side of hleg 6 which still exhibits to some degree a 372 

bimodal joint distribution of 𝑞!  and 𝑁!. In spite of the bimodality, there is evidently a general 373 

increasing trend of the correlation between 𝑞! and 𝑁! from cloud base toward cloud top. At the 374 

cloud top, the 𝑞!  and 𝑁! correlation coefficient can be as high as 𝜌 = 0.95 for hleg 12 (see Figure 375 

5e). As explained in the next section, this close correlation between 𝑞!   and 𝑁!  has important 376 

implications for the simulation of autoconversion enhancement factor.  377 

As a summary, the above phenomenological analysis of the July 18, 2017 RF reveals the 378 

following features of the horizontal and vertical variations of cloud microphysics. Vertically, the 379 

mean values of 𝑞!  and 𝑁!  qualitatively follow the adiabatic structure of MBL cloud, i.e., 𝑞! 380 

increases linear with height and 𝑁! remains largely invariant above cloud base. Even though the 381 

joint distribution of 𝑞! and 𝑁! exhibits a bimodality in several hlegs, their correlation generally 382 

increases with height and can be as high as 𝜌 = 0.95 at cloud top. Horizontally, both 𝑞! and 𝑁! 383 

have a significant variability at cloud base, which tends to first decrease upward and then increase 384 

in the uppermost part of cloud close to the entrainment zone. Finally, we have to point out a couple 385 

of important caveats in the above analysis. First, as seen from Figure 1 the selected hlegs are 386 

sampled at different vertical locations and also at different time. For example, the hleg 5 at cloud 387 

base is more than 1 hour apart from the hleg 8 at cloud top (Figure 1a). As a result, the temporal 388 

evolution of clouds is a confounding factor and might be misinterpreted as vertical variations of 389 
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clouds. On the other hand, as shown below, we also observed similar vertical structure of 𝑞! and 390 

𝑁! in other cases. It seems highly unlikely that the temporal evaluations of the clouds in all selected 391 

cases conspire to confound our results in the same way. Based on this consideration, we assume 392 

that the temporal evolution of clouds is an uncertainty that could lead to random errors but does 393 

not impact the overall vertical trend. The second caveat is that due to the very limited vertical 394 

sampling rate of hlegs (i.e., only 3-4 samples) we cannot possibly resolve the detailed vertical 395 

variation of 𝜈%, 𝜈, and 𝜌. Although we have used the word “trend” in the above analysis, it should 396 

be noted that the vertical profile of these parameters may, but more likely may not, be linear. So, 397 

the word “trend” here indicates only the large pattern that can be resolved by the hlegs. Obviously 398 

these two caveats also apply to the analysis below of the EF which is also derived from the hlegs.    399 

4.2. Implications for the EF for the autoconversion rate parameterization  400 

As explained in the introduction, in GCMs the autoconversion process is usually 401 

parameterized as a highly nonlinear function of 𝑞! and 𝑁!, e.g., the KK scheme in Eq.  (1). In such 402 

parameterization, an EF is needed to account for the bias caused by the nonlinearity effect. A 403 

variety of methods have been proposed and used in the previous studies to estimate the EF (Larson 404 

and Griffin, 2013; Lebsock et al., 2013; Pincus and Klein, 2000; Zhang et al., 2019). The methods 405 

used in this study are based on Z19. Only the most relevant aspects are recapped here. Readers are 406 

referred to Z19 for detail.  407 

If the subgrid variations of 𝑞! and 𝑁!, as well as their covariation, are known, then the EF 408 

can be estimated based on its definition as follows 409 

 𝐸 =
∫ ∫ 𝑞!

+"𝑁!
+#4

%&,()*

4
,&,()*

𝑃(𝑞! , 𝑁!)𝑑𝑞!𝑑𝑁!
〈𝑞!〉+"〈𝑁!〉+#

, 
(3) 
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where 〈𝑞!〉 and 〈𝑁!〉 are the grid-mean value, 𝑃(𝑞! , 𝑁!) is the joint probability density function 410 

(PDF) of 𝑞! and 𝑁!. 𝑞!,678 and 𝑁!,678  are the lower limits of the in-cloud value (e.g., 𝑞!,678=0.01 411 

gm–3). Some previous studies approximate the 𝑃(𝑞! , 𝑁!) as a bivariate lognormal distribution as 412 

follows: 413 

 

𝑃(𝑞! , 𝑁!) =
1

2𝜋𝑞!𝑁!𝜎%&𝜎,&O1 − 𝜌3
9
𝑒𝑥𝑝 R−

𝜁
2T 

𝜁 =
1

1 − 𝜌!"
&'
𝑙𝑛𝑞# − 𝜇$!

𝜎$!
-
"

− 2𝜌'
𝑙𝑛𝑞# − 𝜇$!

𝜎$!
-'
𝑙𝑛𝑁# − 𝜇%!

𝜎%!
- + '

𝑙𝑛𝑁# − 𝜇%!
𝜎%!

-
"

1, 

(4) 

where 𝜇. and 𝜎. are, respectively, the mean and standard deviation of ln	(𝑋), where 𝑋 is either 414 

𝑞! or 𝑁!. 𝜌3 is the linear correlation coefficient between ln	(𝑞!) and ln	(𝑁!), (Larson and Griffin, 415 

2013; Lebsock et al., 2013; Zhang et al., 2019). It should be noted here that 𝜌3 is fundamentally 416 

different from 𝜌 (i.e., the linear correlation coefficient between 𝑞! and 𝑁!). On the other hand, we 417 

found that for all the selected hlegs 𝜌 and 𝜌3 are in an excellent agreement (see Figure 4d). In fact, 418 

𝜌 and 𝜌3  can be used interchangeably in the context of this study without any impact on the 419 

conclusions. Nevertheless, interested readers may find more detailed discussion of the relationship 420 

between 𝜌 and 𝜌3 in Larson and Griffin (2013). 421 

Substituting 𝑃(𝑞! , 𝑁!) in Eq. (4) into Eq. (3) yields a formula for EF that consists of the 422 

following three terms 423 

 𝐸 = 𝐸%V𝜈%& , 𝛽%W ∙ 𝐸,V𝜈,& , 𝛽,W ∙ 𝐸-:;V𝜌3 , 𝛽% , 𝛽,𝜈%& , 𝜈,&W, 
(5) 

where 𝐸%V𝜈%& , 𝛽%W corresponds to the enhancing effect of the subgrid variation of 𝑞!, if 𝑞! follows 424 

a marginal lognormal distribution, i.e., 𝑃(𝑥) = <
√9>?1

exp $− (AB ?CD)$

91$
%. It is a function of the 425 

inverse relative variance ν% in Eq. (2) as follows: 426 
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 𝐸%V𝜈%& , 𝛽%W = \1 +
1
𝜈%&
]

+"$C+"
9

.	
(6) 

Similarly, the 𝐸,Vν,& , 𝛽,W below corresponds to the enhancing effect of the subgrid variation of 427 

𝑁!, if 𝑁! follows a marginal lognormal distribution,  428 

 𝐸,V𝑣,& , 𝛽,W = \1 +
1
𝜈,&

]

+#
$C+#
9

.	
(7) 

The third term 𝐸-:;V𝜌3 , 𝛽% , 𝛽,ν%& , ν,&W in Eq. (5)  429 

 𝐸-:;V𝜌3 , 𝛽% , 𝛽, , 𝑣%& , 𝑣,&W = 𝑒𝑥𝑝V𝜌3𝛽%𝛽,𝜎%&𝜎,&W, 
(8) 

corresponds to the impact of the co-variation of 𝑞! and 𝑁! on the EF. Because βF > 0 and βG <430 

0, if 𝑞! and 𝑁! are negatively correlated (i.e., 𝜌3 < 0) then the 𝐸-:; > 1 and acts as an enhancing 431 

effect on the autoconversion rate computation. In contrast, if 𝑞! and 𝑁! are positively correlated 432 

(i.e., 𝜌3 > 0), then the 𝐸-:; < 1 which becomes a suppressing effect on the autoconversion rate 433 

computation.  434 

As aforementioned, most previous studies of the EF consider only the impact of subgrid 435 

𝑞! variation (i.e., only the 𝐸% term). The impacts of subgrid 𝑁! variation as well as its covariation 436 

with 𝑞! have been largely overlooked in observational studies, in which, the 𝐸% is often derived 437 

from the observed subgrid variation of 𝑞! based on the definition of EF, i.e.,  438 

 𝐸% =
∫ 𝑞!

+"4
%&,()*

𝑃(𝑞!)𝑑𝑞!
〈𝑞!〉+"

, 
(9) 

where 𝑃(𝑞!) is the observed subgrid PDF of 𝑞!. Alternatively, 𝐸% have also been estimated from 439 

the inverse relative variance ν% by assuming the subgrid variation of 𝑞! to follow either the 440 

lognormal distribution, in which case 𝐸% is given in Eq. (6).  441 
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Similar to 𝐸,, if only the effect of subgrid 𝑁! is considered, the corresponding 𝐸, can be 442 

derived from the following two ways, one from the observed subgrid PDF 𝑃(𝑁!) based on the 443 

definition of EF, i.e.,  444 

 𝐸, =
∫ 𝑁!

+#4
,&,()*

𝑃(𝑁!)𝑑𝑁!
〈𝑁!〉+#

, 
(10) 

and the other based on Eq. (7) from the relative variance ν,& by assuming the subgrid 𝑁! 445 

variation to follow the lognormal distribution.   446 

Now, we put the in-situ 𝑞! and 𝑁! observations from the selected hlegs in the theoretical 447 

framework of EF described above and investigate the following questions:  448 

1) What is the (“observation-based”) EF derived based on Eq. (3) from the observed joint 449 

PDF 𝑃(𝑞! , 𝑁!)?  450 

2) How well does the (“bi-logarithmic”) EF derived based on Eq. (5) by assuming that 451 

the covariation of 𝑞! and 𝑁! follows a bi-variate lognormal agree with the observation-based EF?  452 

3) What is the relative importance of the 𝐸%, 𝐸,, and 𝐸-:; terms in Eq. (5) in 453 

determining the value of EF?  454 

4) What is the error of considering only 𝐸% and omitting the 𝐸, and 𝐸-:; terms?  455 

5) How do the observation-based EFs from Eq. (3) and the 𝐸%, 𝐸,, 𝐸-:; terms vary with 456 

vertical height in cloud?  457 

These questions are addressed in the rest of this section. Focusing first on the 𝐸% in Figure 458 

6a, the 𝐸% derived from observation based on Eq. (9) (solid circle) shows a clear decreasing trend 459 

with height between cloud base at around 700 m to about 1 km, with value reduced from about 3 460 

to about 1.2. Then, the value of 𝐸%  increases slightly in the cloud top hlegs 8 and 12. The 𝐸% 461 

derived based on Eq. (6) by assuming lognormal distribution (open circle) has a very similar 462 
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vertical pattern, although the value is slightly overestimated on average by 0.07 in comparison 463 

with the observation-based result. The vertical pattern of 𝐸% can be readily explained by how the 464 

subgrid variation of 𝑞! in Figure 4c. The 𝐸, derived from observation (solid triangle) in Figure 6b 465 

shows a similar vertical pattern as 𝐸%, i.e., first decreasing with height from cloud base to about 466 

1.2 km and then increasing with height in the uppermost part of cloud. The 𝐸, derived based on 467 

Eq. (7) by assuming a lognormal distribution (open triangle) significantly underestimate the 468 

observation-based values (mean bias of −4.3), especially at cloud base (i.e., hleg 5 and 10) and 469 

cloud top (i.e., hleg 8 and 12).  470 

Using hleg 10 as an example, we further investigated the cause for the error in lognormal-471 

based EFs in comparison with those diagnosed from the observation. As shown in Figure 7a the 472 

observed 𝑞! is slightly negatively skewed in logarithmic space by the small values. Because the 473 

autoconversion rate is proportional to 𝑞!9.IJ, the negatively skewed 𝑞! also leads to a negatively 474 

skewed 𝐸% in Figure 7b. As a result, the leg-averaged 𝐸% diagnosed from the observation is slightly 475 

smaller than that derived based on Eq. (6) by assuming a lognormal distribution. The negative 476 

skewness also explains the large error in 𝐸, for hleg 10 seen on Figure 6b. As shown in Figure 7c 477 

the observed 𝑁! is also negatively skewed, to a much larger extent in comparison with 𝑞!. Because 478 

the autoconversion rate is proportional to 𝑁!C<.JK, the highly negatively skewed 𝑁!  results in a 479 

highly positively skewed 𝐸, in Figure 7d. As a result, the 𝐸, diagnosed from the observation is 480 

much larger than that derived based on Eq. (7) by assuming a lognormal distribution. 481 

The 𝐸% and 𝐸, reflect only the individual contributions of subgrid 𝑞! and 𝑁! variations to 482 

the EF. The effect of the covariation of 𝑞!  and 𝑁! , i.e., the 𝐸-:;  is shown in Figure 6c. 483 

Interestingly, the value of 𝐸-:; is smaller than unity for all the selected hlegs. As explained in Eq. 484 

(8), 𝐸-:; < 1  is a result of a positive correlation between 𝑞!  and 𝑁! , as seen in Figure 4d. 485 
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Therefore, in these hlegs the covariation of the 𝑞! and 𝑁! has suppressing effect on the EF, in 486 

contrast to the enhancing effect of 𝐸% and 𝐸,. This result is qualitatively consistent with Z19 who 487 

found that the vertically integrated liquid water path (LWP) of MBL clouds is in general positively 488 

correlated with the 𝑁! estimated from the MODIS cloud retrieval product and, as a result, 𝐸-:; <489 

1 over most of the tropical oceans. Because of the relationship in Eq. (8), the value 𝐸-:;  is 490 

evidently negatively proportional to the correlation coefficient 𝜌3 in Figure 4d. The largest value 491 

is seen in hleg 6 and 7 in which the bimodal joint distribution of 𝑞! and 𝑁! results in a small 𝜌3. A 492 

rather small value of 𝐸-:;~0.45 is seen for cloud top hleg 8 and 12, as result of a strong correlation 493 

between 𝑞! and 𝑁! (𝜌3 > 0.9) and moderate 𝜎% and 𝜎,.  494 

Finally, the EF that accounts for all factors, including the individual variations of 𝑞! and 495 

𝑁!, as well as their covariation, is shown in Figure 6d. Focusing first on the observation-based 496 

results (solid star), i.e., 𝐸 in Eq. (3), evidently there is a decreasing trend from cloud base (e.g., 497 

𝐸 = 2.2 for hleg 5 and 𝐸 = 1.59 for hleg 10) to cloud top (e.g., 𝐸 = 1.20 for hleg 8 and 𝐸 = 1.02 498 

for hleg 12). The 𝐸 derived based on Eq. (5) by assuming the bi-variate lognormal distribution 499 

between 𝑞! and 𝑁! (i.e., open star in Figure 6d) are in reasonable agreement with the observation-500 

based results, with a mean bias of −0.09. It is intriguing to note that the value of 𝐸 = 𝐸% ∙ 𝐸, ∙501 

𝐸-:; in Figure 6d is comparable to 𝐸% 	Figure 6a, which indicates that the enhancing effect of 𝐸, >502 

1  in Figure 6b is partially canceled by the suppressing effect of 𝐸-:; < 1  in Figure 6c. As 503 

aforementioned, many previous studies of the EF consider only the effect of 𝐸% but overlook the 504 

effect of 𝐸, and 𝐸-:;. The error in the studies would be quite large if it were not for a fortunate 505 

error cancellation.  506 

5. Other Selected Cases  507 
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In addition to the July 18, 2017 RF, we also found another 6 RFs that meet our criteria as 508 

described in Section 3 for case selection, from non-precipitating (e.g., July 13, 2017 case in Figure 509 

S1), to weakly (e.g., Jan. 26, 2018 case in Figure S4) and heavily precipitating cloud (Feb 11, 2018 510 

case in Figure S6).  Due to limited space, we cannot present the detailed case studies of these RFs. 511 

Instead, we view them collectively and investigate whether the lessons learned from the July 18, 512 

2017 RF, especially those about the EF in Section 4.2, also apply to the other cases.  513 

In order to compare the hlegs from different RFs, we first normalize the altitude of each 514 

hleg with respect to the minimum and maximum values of all selected hlegs in each RF as 515 

follows: 516 

 𝑧L)MN∗ =
𝑧L)MN − 𝑧678
𝑧6(? − 𝑧678

, (11) 

where 𝑧L)MN∗  is the normalized altitude for each hleg in a RF, 𝑧678 and 𝑧6(? are the altitude of the 517 

lowest and highest hleg in the corresponding RF. Defined this way, 𝑧L)MN∗  is bounded between 0 518 

and 1. Alternatively, 𝑧L)MN∗  could also be defined with respect to the averaged cloud top (𝑧&'O) and 519 

base (𝑧P(QM) as inferred from the KAZR or vlegs. However, because of the variation of cloud top 520 

and cloud base heights, as well as the collocation error, the 𝑧L)MN∗  would often become significantly 521 

larger than 1 or smaller than 0, if 𝑧L)MN∗  were defined with respect to 𝑧&'O and 𝑧P(QM, making results 522 

confusing and difficult to interpret.  523 

Figure 8 shows the observation based EFs for all the selected hlegs from the 7 selected RFs 524 

as a function of the 𝑧L)MN∗ . As shown in Figure 8a, the 𝐸 derived based on Eq. (3) that accounts for 525 

the covariation of 𝑞! and 𝑁! has a decreasing trend from cloud base to cloud top. This is consistent 526 

with the result from the July 18, 2017 case in Figure 6d. However, neither the 𝐸% in Figure 8b nor 527 

the 𝐸, in Figure 8c shows a clear dependence on 𝑧L)MN∗  in comparison with the results of July 18th, 528 
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2017 case in Figure 6a and b. Note that the 𝐸% and 𝐸, are influenced by a number of factors, such 529 

as horizontal distance and cloud fraction, in addition to vertical height. It is possible that the 530 

differences in other factors outweigh the vertical dependence here. Interestingly, the linear 531 

correlation coefficient 𝜌 between 𝑞! and 𝑁! in Figure 8d shows an increasing trend with 𝑧L)MN∗  that 532 

is statistically significant (R-value= 0.50  and P-value=0.02), despite a few outliers. This is 533 

consistent with what we found in the July 18, 2017 case (see Figure 4d). As evident from Eq. (8), 534 

an increase of 𝜌3  would lead to a decrease of 𝐸-:; . Since neither 𝐸%  nor 𝐸,  shows a clear 535 

dependence on 𝑧L)MN∗ , the decrease of 𝐸-:;  with 𝑧L)MN∗  seems to play an important role in the 536 

determining the value of 𝐸. Another line of evidence supporting this role is the fact that both 𝐸% 537 

and 𝐸, are quite large for the cloud top hlegs, while in contrast the values of corresponding 𝐸 that 538 

accounts for the covariation of 𝑞! and 𝑁! are much smaller. For example, the 𝐸% for two hlegs 539 

from the Feb. 11, 2018 RF exceeds 8 but the corresponding 𝐸 values are smaller than 1.2 which is 540 

evidently a result of large 𝜌3 and thereby small 𝐸-:;.  541 

As aforementioned, many previous studies of the EF for the autoconversion rate 542 

parameterization consider only the effect of subgrid 𝑞! variation but ignore the effects of subgrid 543 

𝑁! variation, and its covariation with 𝑞!. To understand the potential error, we compared the 𝐸% 544 

and 𝐸 both derived based on observations in Figure 9. Apparently, 𝐸% is significantly larger than 545 

𝐸 for most of the selected hlegs, which implies that the considering only subgrid 𝑞!  variation 546 

would likely lead to an overestimation of EF. This is an interesting result. Note that 𝐸, ≥ 1 by 547 

definition and therefore 𝐸% > 𝐸  is possible only when the covariation of 𝑞!  and 𝑁!  has a 548 

suppressing effect, instead of enhancing. Once again, this result demonstrates the importance of 549 

understanding the covariation of 𝑞!  and 𝑁!  for understanding the EF for autoconversion rate 550 

parameterization.       551 
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Having looked at the observation-based EFs, we now check if the EFs derived based on 552 

assumed PDFs (e.g., lognormal or bi-variate lognormal distributions) agree with the observation-553 

based results. As shown in Figure 10a, the 𝐸%  based on Eq. (6) that assumes a lognormal 554 

distribution for the subgrid variation of 𝑞! is in an excellent agreement with the observation-based 555 

results. In contrast, the comparison is much worse for the 𝐸, in Figure 10b, which is not surprising 556 

given the results from the July 18, 2017 case in Figure 6b. As one can see from Figure 5, the 557 

marginal PDF of 𝑁! is often broad and sometimes even bimodal. The deviation of the observed 558 

𝑁! PDF from the lognormal distribution is probably the reason for the large difference of 𝐸, in 559 

Figure 10b. As shown in Figure 10c, the 𝐸 derived based on Eq. (5) by assuming a bi-variate 560 

lognormal function for the joint distribution of 𝑞! and 𝑁! are in good agreement with observation-561 

based values, which is consistent with the results from the July 18, 2017 case in Figure 6.     562 

6. Summary and Discussion 563 

In this study we derived the horizontal variations of 𝑞! and 𝑁!, as well as their covariations in 564 

MBL clouds based on the in-situ measurements from the recent ACE-ENA campaign and 565 

investigated the implications of subgrid variability as relates to the enhancement of autoconversion 566 

rates. The main findings can be summarized as follows: 567 

• In the July 18, 2017 case, the vertical variation of the mean values of 𝑞! and 𝑁! roughly 568 

follows the adiabatic structure. The horizontal variances of 𝑞! and 𝑁! first decrease from 569 

cloud base upward toward the middle of the cloud and then increase near cloud top. The 570 

correlation between of 𝑞! and 𝑁! generally increases from cloud base to cloud top.  571 

• In other selected cases, the horizontal variances of 𝑞!  and 𝑁!  show no statistically 572 

significant dependence on the vertical height in cloud. However, the increasing trend of 573 

the correlation between 𝑞! and 𝑁! from cloud base to cloud top remains robust. 574 
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• In a few selected “V” shape hlegs, the 𝑞!  and 𝑁!  follow a bimodal joint distribution 575 

which leads to a weak linear correlation between them.  576 

• The observation-based physically complete 𝐸 that accounts for the covariation of 𝑞! and 577 

𝑁! has a robust decreasing trend from cloud base to cloud top, which can be explained 578 

by the increasing trend of the 𝑞! and 𝑁! correlation from cloud base to cloud top. 579 

• The 𝐸  estimated by assuming a monomodal bi-variate lognormal joint distribution 580 

between 𝑞! and 𝑁! agrees well with the observation-based results.  581 

These results provide the following two new understandings of the EF for the autoconversion 582 

parameterization that have potentially important implications for GCM. First, our study indicates 583 

that the physically complete 𝐸 has a robust decreasing trend from cloud base to cloud top. Because 584 

the autoconversion process is most important at the cloud top, this vertical dependence of EF 585 

should be taken into consideration in the GCM parametrization scheme. Second, our study 586 

indicates that effect of the 𝑞! and 𝑁! correlation plays a critical role in determining the EF. Lately 587 

a few novel modeling techniques have been developed to provide the coarse resolution GCMs 588 

information of subgrid cloud variation, such as the PDF-based higher-order turbulence closure 589 

method—Cloud Layer Unified By Binormals, CLUBB (Golaz et al., 2002; Guo et al., 2015; 590 

Larson et al., 2002). These models are able to provide parameterized subgrid variance of 𝑞! which 591 

can be used in turn to estimate 𝐸%. However, as shown in our study the 𝐸% tends to overestimate 592 

the EF.  593 

Our study has a few of important limitations. First of all, our results are based on a handful 594 

cases from a single field campaign. The lessons learned here need to be further examined based 595 

on more data or tested in modeling studies. Second, as pointed out in section 4.1 due to the inherent 596 

sampling limitation of air-borne measurements, the temporal evolution of clouds is an important 597 
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uncertainty and a confounding factor in this study, which needs to be quantified in future studies. 598 

Third, our study provides only a phenomenological analysis of the horizontal variations cloud 599 

microphysics in the MBL clouds and the implications for the EF. Ongoing modeling research 600 

based on a comprehensive LES model is being conducted to identify and elucidate the process-601 

level physical mechanisms behind our observational results.  Finally, this study is focused on the 602 

KK parameterization in estimating the enhancement factors resulting from subgrid variability of 603 

𝑞! , 𝑁!and 𝑞! -𝑁!  covariance. The specific values are expected to differ when applied to other 604 

autoconversion parameterizations with different power-law exponents.  605 

  606 
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 618 
 619 
Table 1 In situ cloud instruments from ACE-ENA campaign used in this study 620 

Instruments Measurements  Frequency  Resolution  Size resolution  
AIMMS P, T, RH, u,v,w 20 Hz  / / 
F-CDP DSD 2~50 µm  10 Hz  1 -2 µm 2 µm 
2DS DSD 10 ~2500 µm 1 Hz 25 – 150 µm 10 µm 

 621 
 622 
Table 2  conditions of MBL sampled during the two IOPs of ACE-ENA campaign 623 

Conditions 
Sampled 

Research Flights 
IOP1: June-July 2017 IOP2: Jan.-Feb. 2018 

Mostly clear 6/23, 6/29, 7/7 2/16 
Thin Stratus  6/21, 6/25, 6/26, 6/28, 6/30, 7/4, 7/13 1/28, 2/1, 2/10, 2/12 
Solid StCu 7/6, 7/8, 7/15 1/30, 2/7 
Multi-layer StCu  7/11, 7/12 1/24, 1/29, 2/8 
Drizzling StCu/Cu 7/3, 7/17, 7/18, 7/19, 7/20 1/19, 1/21, 1/25, 1/26, 2/9, 2/11, 2/15, 

2/18, 2/19 
 624 

Table 3 A summary of selected RFs, and the selected hlegs and vlegs within each RF.  625 

Research 

Flight 

Precipitation Sampling 

pattern 

Selected hlegs Selected 

vlegs 

July 13, 2017  Non- Precipitating Straight-line  3, 4, 5 0, 1, 3 

July 18, 2017  Precipitation 

reaching ground 

“V” shape 5, 6, 7, 8, 10, 11, 12 0, 1, 3 

July 20, 2017  Precipitation 

reaching ground 

“V” shape 5, 6, 7, 8, 9, 13, 14 0, 1 

Jan. 19, 2018  Precipitation 

reaching ground 

“V” shape 6, 7, 8, 15, 16 0, 1, 3 

Jan. 26, 2018  Precipitation only at 

cloud base 

Straight-line  3, 4, 5, 9, 10, 11 0, 1, 3 

Feb. 07, 2018  Non- Precipitating “V” shape 1, 2, 3, 5 0, 1 
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Feb. 11, 2018  Precipitation 

reaching ground 

Straight-line  4, 5, 6, 7, 12, 13 0, 1  

 626 

  627 
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 628 

 629 

Figure 1 (a) horizontal flight track of the G1 aircraft (red) during the July 18, 2017 RF around the 630 
DOE ENA site (yellow star) on the Graciosa Island. The (b) vertical flight track of G1(thick black 631 
line) overlaid on the radar reflectivity contour by the ground-based KZAR. The dotted lines in the 632 
figure indicate the cloud base and top retrievals from ground-based radar and CEIL instruments. 633 
The yellow shaded regions are the “hlegs” and green shaded regions are “vlegs”. See text for their 634 
definitions.   635 

  636 
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 637 

 638 

Figure 2 (a) The real color satellite image of the ENA region on July 18, 2017 from the MODIS. 639 
The small red star marks the location of the ARM ENA site on the Graciosa Island; (b) The 640 
averaged sea level pressure (SLP) of the ENA region on July 18, 2017 from the Merra-2 641 
reanalysis.  642 

  643 
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 644 

Figure 3 The horizontal variations of 𝑞!  red) and 𝑁! (blue) for each selected hleg dervied from 645 
the in situ FCDP instrument. The yellow-shaded time period in each plot corresponds to the 646 
cross-wind side of the “V” shape flight track and the unshaded part corresponds to the along-647 
wind part. Note that plots are ordered such that the (a) hleg 8 and (e) hleg 12 are close to cloud 648 
top; (b) hleg 6, (c) hleg 7 and (f) hleg 11 are sampled in the middle of clouds; (d) hleg 5 and (g) 649 
hleg 10 are close to cloud base 650 

  651 



 33 

 652 
 653 

 654 

Figure 4 (a) The vertical profiles of 𝑞! derived from the vlegs (dotted lines) of the July 18, 2017 655 
case. The overplotted red errorbars indicate the mean values and standard deviations of the 𝑞-  656 
derived from the selected hlegs at different vertical levels. (b) same as (a) except for 𝑁!. (c) The 657 
vertical profile of the inverse relative variances (i.e., mean divided by standard deivation) of 𝑁! 658 
(red circle) and 𝑁! (blue triangle ) derived from the hleg; (d) The vertical profile of the linear 659 
correlation coefficienct between ln	(𝑞!) and ln(𝑁!), i.e., 𝜌3 (squre) and linear correlation 660 
coefficienct between 𝑞! and 𝑁!, i.e., 𝜌 (diamond).  661 

 662 
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 663 

Figure 5 The joint distributions of the 𝑞! and 𝑁!, along with the marginal histograms, for the 7 664 
selected hleg from the July 18, 2017 RF. Same as Figure 3, the plots are ordered such that the (a) 665 
hleg 8 and (e) hleg 12 are close to cloud top; (b) hleg 6, (c) hleg 7 and (f) hleg 11 are sampled in 666 
the middle of clouds;  (d) hleg 5 and (g) hleg 10 are close to cloud base.  667 

   668 
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 669 

 670 

 671 

Figure 6 (a) 𝐸% as a function of height derived from observation based on Eq. (9) (solid circle) 672 
and from the inverse relative variance 𝜈% assuming lognormal distribution based on Eq. (6) (open 673 
circle). (b) 𝐸, as a function of height derived from observation based on Eq. (10) (solid triangle) 674 
and from the inverse relative variance 𝜈, assuming lognormal distribution based on Eq. (7) 675 
(open triangle). (c) 𝐸-:; derived based on Eq. (8) as a function of height. (d) 𝐸 as a function of 676 
height derived from observation based on Eq. (3) (solid star) and based on Eq. (5) assuming a bi-677 
lognormal distribution (open star). The numbers beside the symbols in the figure correspond to 678 
the numbers of the 7 slected hlegs.  679 

  680 
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 681 

 682 
Figure 7 (a) Histogram of ln	(𝑞!) based on observations from the hleg 10 (bars) and the lognormal 683 
PDF (dashed line) based on the 𝜇%& and 𝜎%& of hleg 10. (b) The histogram of ln	(𝐸%) diagnosed 684 
from the observed 𝑞!  based on Eq. (9). The two vertical lines correspond to the leg-averaged 685 
ln	(𝐸%)  derived based on the observed 𝑞!  (solid) and the lognormal PDF (dashed line), 686 
respectively. (c) Histogram of ln	(𝑁!) based on observations from the hleg 10 (bars) and the 687 
lognormal PDF (dashed line) based on the 𝜇,& and 𝜎,& of hleg 10. (d) The histogram of ln	(𝐸,) 688 
diagnosed from the observed 𝑞! based on Eq. (10). The two vertical lines correspond to the leg-689 
averaged ln	(𝐸,) derived based on the observed 𝑁! (solid) and the lognormal PDF (dashed line), 690 
respectively. 691 

  692 
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 693 

 694 

 695 

Figure 8 (a) The observation-based 𝐸 derived from Eq. (3) that accounts for the covariation of 𝑞! 696 
and 𝑁!. (b) The observation-based 𝐸% derived from Eq. (9) that accounts for only the subgrid 697 
variation of 𝑞! (c) The observation-based 𝐸, derived from Eq. (10) that accounts for only the 698 
subgrid variation of  𝑁!. (d) The correlation coefficient between 𝑞! and 𝑁!. All quantities are 699 
plotted as a function of the normlized height 𝑧L)MN∗  in Eq. (11). The dashed lines correspond to a 700 
linear fit of the data when the fitting is statistically significant (i.e., P-value < 0.05).  701 

  702 
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 703 
Figure 9 A comparison of observation-based 𝐸 and observation-based 𝐸% for all the selected 704 
hlegs from all 4 selected RF.  705 

  706 
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 707 

 708 

Figure 10 (a) A comparison of observation-based 𝐸% derived based on Eq. (9) and 𝐸% derived 709 
based on Eq. (6) assuming lognormal distribution for subgrid 𝑞! observations for all the selected 710 
hlegs. 11 (b) A comparison of observation-based 𝐸, derived based on Eq. (10) and 𝐸, derived 711 
based on Eq. (7) assuming lognormal distribution or all the selected hlegs. (c) A comparison of 712 
observation-based 𝐸 derived based on Eq. (3) and 𝐸 derived based on Eq. (5) assuming bi-713 
variate lognormal distribution for the subgrid joint distribution of 𝑞! and 𝑁!.  714 

 715 

  716 
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