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Abstract. Based on intensive sounding, surface sensible heat flux, solar radiation, and soil moisture observational datasets 

from the Third Tibetan Plateau Atmospheric Scientific Experiment and the routine meteorological operational sounding and 

total cloudiness datasets in the Tibetan Plateau (TP) for the period 2013-2015, we investigate the features of summer 10 

atmospheric boundary layer (ABL) over the TP and its major influential factors. It is found that the convective boundary 

layer (CBL) and the neutral boundary layer (NBL) show remarkable diurnal variations over the TP, while the stable 

boundary layer (SBL) diurnal variation is weak. In the early morning, the ABL height distribution is narrow, with a small 

west-east difference. The SBL accounts for 85% of the TP ABL. At noon, there is a wide distribution in the ABL height up 

to 4000 m. The CBL accounts for 77% of the TP ABL, with more than 50% of the CBL height above 1900 m. The ABL 15 

height exhibits a large west-east difference, with a mean height above 2000 m in the western TP and around 1500 m in the 

eastern TP. In the late afternoon, the CBL and SBL dominate the western and eastern TP, respectively, resulting in a larger 

west-east difference of 1054.2 m between the western and eastern TP. The high ABL height in a cold environment over the 

western TP (relative to the plain areas) is similar to that in some extreme hot and arid areas such as Dunhuang and 

Taklimakan Deserts. For the western (eastern) TP, there is low (high) total cloud coverage, with large (small) solar radiation 20 

at the surface and dry (wet) soil. These features result in high (low) sensible heat flux and thus promotes (inhibits) the local 

ABL development. 

1 Introduction 

The Atmospheric boundary layer (ABL) commonly refers to the bottom layer of the troposphere that is directly affected by 

the underlying surface conditions with a response time scale of one hour or less (Stull, 1998). The ABL, as the interface for 25 

the exchanges of water vapour, momentum, heat, and matter between the surface and the free atmosphere, plays important 

roles in weather, climate, and the transport of air pollution (Stull, 1988; Garratt, 1992; Huang et al., 2007; Miao et al., 2015). 

The ABL height is a key variable for diagnosing turbulent mixing, vertical disturbance, convective transmission, 

atmospheric pollutant dispersion, and atmospheric environmental capacity (Seibert et al., 2000; Guo et al., 2009; Dai et al., 
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2014; Pal et al., 2015). Therefore, the accurate specification of the ABL height is essential to develop weather, climate, and 30 

air pollution prediction models. 

 

The ABL can generally be divided into three types, that is, the convective boundary layer (CBL), the stable boundary layer 

(SBL), and the neutral boundary layer (NBL) (Stull, 1998). During the daytime, when sufficient solar radiation reaches the 

surface, the CBL usually dominates (Chen et al., 1997), with unstable thermal stratification and vigorous turbulence. At 35 

night, infrared cooling at the surface results in the nocturnal SBL (Zhang et al., 2011a; Miao et al., 2015), with ground-based 

temperature inversion and weak turbulent motion. The NBL occurs mainly in high wind conditions, particularly combining 

with thick and extended cloud coverage, and also occurs during the sunrise and sunset transition periods, with turbulence of 

almost the same intensity in all directions (Blay-Carreras et al., 2014). 

 40 

The ABL height can be calculated from temperature, humidity, and wind profiles (Seibert et al., 2000; Seidel et al., 2010; 

Davy, 2018). The CBL height is generally less than 2000–3000 m and the SBL thickness is not more than 400–500 m 

(Garratt, 1992). The ABL height shows an obvious spatial variation due to differences in topography, thermal properties of 

the underlying surface, and weather conditions. For example, the CBL can grow to as high as 4700 m in New Delhi before 

the outbreak of the South Asian monsoon, whereas it may only reach 900 m in Bangalore during the monsoon period 45 

(Raman et al., 1990). Seidel et al. (2012) pointed out that a large east-west spatial gradient of the ABL height at sunset in the 

United States may be related to a difference in the solar altitude angle with respect to latitude. Guo et al. (2016) identified 

three large-scale spatial patterns in the ABL height in China, that is, a west-east gradient during sunrise, an east-west 

gradient during sunset, and a south-north gradient at noon. The reasons for the first two patterns are similar to those observed 

in the United States shown in Seidel et al. (2012), while the south-north gradient may be related to local surface and 50 

hydrological processes (Guo et al., 2016; Zhang et al., 2017). 

 

The Tibetan Plateau (TP) with an average elevation exceeding 4500 m has complex land surface processes and boundary 

layer structures (Tao and Ding, 1981; Yanai and Li, 1994; Xu et al., 2002; Yang et al., 2004; Li et al., 2007; Sun et al., 2007; 

Zhao et al., 2018). The ABL height is generally higher compared to some plains areas (with the ABL height of 1000–1500 m) 55 

(Zhao et al., 1992). Some studies have addressed that the ABL height in the TP can be as high as 2000–3000 m (Ye et al., 

1979; Xu et al., 2002; Zhang et al., 2003). Song et al. (1984) examined the ABL height at Gaize station of the western TP is 

above 3000 m, while the ABL heights obtained by Li et al. (2000), Liu et al. (2001), and Lü et al. (2008) are lower in the 

central TP (between 400 m and 1800 m at Dangxiong station and 1750 m at Namucuo Lake). Moreover, there is a significant 

difference in the ABL height over the TP between dry and rainy seasons (Zuo et al., 2004). Li et al. (2011) found that the 60 

ABL height at Naqu station is 2211–4430 m in the dry season and 1006–2212 m in the rainy season. Chen et al. (2013, 2016) 

observed the super-thick ABL at Gaize station during winter, with the ABL height above 5000 m. These results show that 

the ABL height over the TP varies greatly with position and season. 
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Although observations in the TP and studies on the local ABL features have made progress, routine meteorological 65 

operational sounding observations are scarce over the western TP, owing to its high elevations, naturally harsh 

environmental conditions, and less-developed logistics. The previous studies on the ABL over the western TP are often 

based on a short-time experimental observational data at Gaize in one summer (Song et al., 1984; Chen et al., 2013). Thus 

the interpretation of their results has certain limitations. Moreover, there are significant differences in surface properties and 

climatic conditions between the eastern and western TP (Wang et al., 2016). However, few studies have examined this west-70 

east difference in ABL due to the scarce data in the western TP. To obtain a longer observational data in the western TP, the 

Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III) beginning in 2013 has deployed routine sounding 

systems at Shiquanhe, Gaize, and Shenzha stations of the western TP (Fig. 1), which fills in the data gaps in the operational 

sounding network over the western TP (Zhao et al., 2018). Compared to the previous field experiments over the TP, the 

TIPEX-III has a wider and longer coverage of sounding observations over the western TP, providing valuable observational 75 

data for studying the ABL features. 

 

This study utilizes the TIPEX-III sounding observational data to investigate the features of the ABL height over the TP, 

compares differences in the ABL height between the western and eastern parts of the TP, and analyzes the major factors 

affecting the ABL height. The remainder of this paper is organized as follows. Main features of data and methods are 80 

described in Section 2. In Section 3, the characteristics of the ABL height over the eastern and western TP and their regional 

differences are analyzed in detail. Section 4 gives major factors affecting the ABL height over the TP and the west-east 

differences. Discussions and conclusions are given in Section 5. 

2 Data and analysis methods 

The TIPEX-III carried out the intensive routine meteorological sounding observations at Shiquanhe (SQH), Gaize (GZ), and 85 

Shenza (SZ) stations of the western TP (marked by red dots in Fig. 1) since the 2013 summer (Zhao et al., 2018). These 

intensive observations have been applied in research on the vertical structure of the upper troposphere and lower stratosphere 

at Gaize station during the rainy season and effects of assimilating the intensive sounding data on downstream rainfall (Hong 

et al., 2016; Yu et al., 2018; Zhao et al., 2018; Zhao et al., 2019b). These intensive sounding data and the routine 

meteorological operational sounding data at 16 stations of the central-eastern TP from the China Meteorological 90 

Administration (marked by black dots in Fig. 1) are utilized in this study. The sounding observations were carried out at 

08:00 Beijing Time (BJT; 00:00 UTC), 14:00 BJT (06:00 UTC), and 20:00 BJT (12:00 UTC) each day for the above 

intensive and operational sounding stations, including vertical profiles of temperature, humidity, and wind direction and 

speed. After the quality of the sounding observational data, we finally select the periods from 15 June to 31 July 2013, from 

15 June to 31 August 2014, and from 1 June to 31 August 2015 in this study. There are a total of 11,635 sounding profiles 95 
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(Fig. 1a) and 4757, 2049, and 4841 profiles separately at 08:00 BJT (Fig. 1b), 14:00 BJT (Fig. 1c), and 20:00 BJT (Fig. 1d) 

for 19 stations over the TP. Meanwhile, it is noted that there is a large difference in the sample number between the intensive 

and operational observation records at 08:00 BJT and 20:00 BJT (Fig. 1b and d), which is called the original dataset for 

convenience. Thus we also select the operational observation records that correspond to the intensive observation records 

(called the test group dataset for convenience) at these two times and repeat the related analyses, obtaining the similar results 100 

(shown in Section 3.2), which shows that the difference in the sample number between the intensive and operational 

observation records does not change our conclusions. 

 

To analyze the factors affecting the ABL in the TP, we use the TIPEX-III 30-min mean surface sensible heat flux (SHF), 

downward solar radiation, and 5-cm soil volume moisture content at SQH (bare soil with few obstacles), Naqu (NQ; alpine 105 

steppe), and Linzhi (LZ; alpine meadow with few shrubs and trees) stations in the 2014-2015 summers (Wang et al., 2016; 

Zhao et al., 2018; Li et al., 2019, 2020). In addition, the operational observation of total cloudiness (cloud cover) at 02:00 

BJT, 08:00 BJT, 14:00 BJT, and 20:00 BJT from the China Meteorological Administration are also used. 

 

We use the potential temperature gradient method proposed by Liu et al. (2010) to calculate the ABL height. Following Liu 110 

et al. (2010), Zhang et al. (2017), and Zhao et al. (2019a), the original sounding observation data are interpolated to new 

profiles with a vertical resolution of 5 hPa (corresponding to a vertical interval of about 50 m in the ABL) for the ABL 

classification and height calculation. On the basis of a potential temperature difference (PTD) between the fifth layer (~250 

m; θ5) and the second layer (~50 m; θ2), the ABL is classified as follows. 

𝑃𝑇𝐷 = 𝜃5 − 𝜃2 {
< −σ,   for CBL
> +σ,   for SBL
   𝑒𝑙𝑠𝑒, for NBL

. 115 

Here σ is a critical value. Consistent with Liu et al. (2010) and Zhang et al. (2017), σ is set to 1.0 K. The ABL height is also 

calculated on the basis of their methods. For both the CBL and NBL, the ABL height is calculated as the height at which an 

air parcel rising adiabatically from the surface becomes neutrally buoyant (Stull 1988). The SBL height is defined as the 

lower of the heights of both the thermal stable layer from the surface and the maximum wind shear in the low-level jet 

stream. 120 

3 Characteristics of the ABL height over the eastern and western TP 

3.1 A general characteristic of the ABL height 

Diurnal variation is an important feature of the ABL, which consists of different periods of daytime, nighttime, and diurnal 

transitions (from day to night and from night to day) (Liu et al., 2010). In the central TP (near 90°E), 08:00 BJT, 14:00 BJT, 

and 20:00 BJT correspond to 06:00 (the early morning), 12:00 (noon), and 18:00 (the late afternoon) local standard time, 125 
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respectively. To reveal a difference in the ABL height between the eastern TP (ETP) and the western TP (WTP), we divide 

all sounding stations over the TP into two groups. One is for the WTP (to the west of 92.5°E) with 8 stations, and the other is 

for the ETP (to the east of this longitude) with 11 stations. 

 

Figure 2a-c shows the horizontal distribution of the mean ABL height over the TP at 08:00 BJT, 14:00 BJT, and 20:00 BJT, 130 

respectively. In the early morning (08:00 BJT) (Fig. 2a), the ABL height is generally low (<450 m) over the TP and shows a 

relatively homogeneous feature. At this moment, the distribution of the ABL height is narrow, with a frequency peak of 35% 

at the ABL height of 300 m (Fig. 2d) and 78.5% (99.6%) of the ABL height below 500 m (1000 m) (Fig. 2e). Figure 2f 

displays the zonal sections of the ABL height along 32°N. In this figure, the ABL height varies between 218.4 m and 433.9 

m from east to west, not showing a remarkable west-east difference. 135 

 

At noon (14:00 BJT) (Fig. 2b), the ABL height remarkably increases over the TP, with an average of 1887.7 m, and exhibits 

a large west-east difference. There is a wide distribution of the ABL height up to 4000 m, with a relatively flat peak between 

900 m and 2900 m (Fig. 2d) and only 17.8% (more than 50%) of the ABL height below 1000 m (above 1900 m) (Fig. 2e). 

The regional mean ABL height is 2124.2 m in the WTP and 1693.5 m in the ETP, with a mean difference of 430.7 m 140 

between the WTP and the ETP. Along 32°N, the ABL height remarkably increases from 1379.4 m at GanZ station to 2504.2 

m at SQH station, with the west-east difference exceeding 1200 m (Fig. 2f). 

 

In the late afternoon (20:00 BJT) (Fig. 2c), the ABL height continues to increase in the WTP, with the regional mean height > 

2000 m, while it begins to decrease in the ETP, with the regional mean height < 1000 m. This result indicates a larger west-145 

east difference of 1054.2 m between the WTP and the ETP. Especially, the ABL height is 602 m at HY station and 2920.6 m 

at SQH, with a difference above 2000 m between these two stations (Fig. 2f). At this moment, the frequency of the high 

ABL height decreases. The frequency peak is 12.8% at the ABL height of 300 m (Fig. 2d) and 50% of the ABL heights are 

less than 1000 m (Fig. 2e). It is evident that in daytime the ABL height exhibits an increasing trend from east to west in the 

TP. This west-east difference increases from noon to the late afternoon. The ABL height reaches the maximum in the late 150 

afternoon. 

3.2 Characteristics of SBL, NBL, and CBL heights 

We further examine the characteristics of different ABL types. Figure 3a-c shows the spatial distribution of the SBL height 

at 00:80 BJT, 14:00 BJT, and 20:00 BJT. It is obvious that the SBL height is generally low and varies between 200 m and 

730 m, with a mean height of 336.0 m at 08:00 BJT, 356.0 m at 14:00 BJT, and 321.9 m at 20:00 BJT, not showing a 155 

remarkable diurnal variation. For the NBL and CBL, their boundary layer heights are still low in the early morning (Fig. 3d 

and 3g), with the ABL height < 450 m. In daytime, the NBL and CBL heights remarkably increase, especially in the WTP, 

with an increasing trend from east to west. At 14:00 BJT (Fig. 3e and 3h), there is a regional mean NBL/CBL height of 
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2074.6 m/2191.4 m in the WTP and 1594.8 m/1788.0 m in the ETP, with a difference of 479.8 m/403.4 m between the WTP 

and the ETP. At 20:00 BJT (Fig. 3f and 3i), the NBL/CBL height continues to increase in the WTP, with a regional mean of 160 

2092.0 m/2192.2 m, while the NBL/CBL height decreases in the ETP, with a regional mean of 1423.1 m/1237.2 m. For the 

NBL and CBL, there are larger differences of 668.9 m and 955.0 m in the ABL height between the WTP and ETP, 

respectively. 

 

Figure 4 shows the distribution of occurrence frequency of different ABL types at 08:00 BJT, 14:00 BJT, and 20:00 BJT. It 165 

is clear that the occurrence frequency shows significant diurnal variations for the SBL and CBL. At 08:00 BJT, the 

occurrence frequency of the SBL/CBL is large/little (Fig. 4a/Fig. 4g), with a mean value 84.9%/8.5% over the TP. At 14:00 

BJT, the occurrence of the SBL/CBL remarkably decreases/increases, accounting for 3.1%/76.9% of the ABL (Fig. 4b/Fig. 

4h). At 20:00 BJT, the SBL/CBL mainly occurs in the ETP/WTP (Fig. 4c/Fig. 4i), with a regional mean of 35.0%/65.0%. 

This feature is likely related to a difference in the solar elevation angle with respect to longitude because night begins earlier 170 

in the WTP than in the ETP, which supports an earlier transition from the daytime CBL to the nighttime SBL in the east 

(Seidel et al., 2012; Guo et al., 2016). However, the NBL shows a relatively weaker diurnal variation over the TP (Fig. 4d-f), 

with the mean occurrence frequency of 6.4%, 20.0%, and 25.5% at 08:00 BJT, 14:00 BJT, and 20:00 BJT, respectively. 

 

Figure 5 shows the ABL height-occurrence frequency relationship for the SBL, NBL, and CBL at 08:00 BJT, 14:00 BJT, 175 

and 20:00 BJT. For the SBL, the frequency distribution of the ABL height shows the similar feature at three measurement 

times (Fig. 5a-c) and is characterized by a narrow single mode, with the frequency peaks of 39.0%, 28.1%, and 36.6% at the 

boundary layer height of 200 m, 300 m, and 300 m at 08:00 BJT, 14:00 BJT, and 20:00 BJT, respectively. It is found that the 

SBL height above 80% is < 600 m and the cumulative frequency of the SBL height exceeding 1000 m is little (near zero) at 

these three times (Fig. 5d, e, and f). The ABL heights of the NBL and CBL show large variations. At 08:00 BJT (Fig. 5a), 180 

the distributions of the NBL and CBL height are narrow, with the frequency peaks of 27.5% and 35.1% at the ABL height of 

300 m for NBL and CBL, respectively, similar to that of the SBL, which is possibly due to the initial development of the 

CBL and NBL. At 14:00 BJT (Fig. 5b), there is a wide distribution of the ABL height up to 4000 m, with a relatively flat 

peak between 1000 m and 3000 m. This result is remarkably different from a single peak of the SBL. The frequency of the 

NBL height is generally less than 5% between 500 m and 3000 m (Fig. 5b), with a frequency peak of 6.1% at 1000 m, and 185 

more than 50% NBL height exceeds 1700 m (Fig. 5e). The height of the CBL is higher, with a frequency peak near 4.5% 

between 1500 m and 2500 m (Fig. 5b). More than 50% CBL height is above 2000 m (Fig. 5e). This feature is also seen at 

20:00 BJT (Fig. 5c and 5f). The distributions of the NBL and CBL heights are still wide but the frequency of the high ABL 

height decreases, with the frequency peak below 500 m. 

 190 

Because the CBL height shows a remarkable west-east difference in the TP at both 14:00 BJT and 20:00 BJT (shown in Fig. 

3h-i), we analyze the cross section of the occurrence frequency of the CBL height along 32°N for these two times (Fig. 6a), 
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in which the cross section includes SQH, GZ, SZ, NQ, CD, GanZ, and HY stations. In this figure, generally speaking, the 

high CBL tends to occur more frequently in the WTP than in the ETP. For the ETP, the high frequency of the CBL height 

mainly occurs below 1400 m, with the peak of 14.4% at the height of 350 m. The occurrence frequency of the CBL height 195 

above 2000 m is low (<2%). For the WTP, there are two main peaks of the occurrence frequency. One strong peak (4%-10%) 

corresponds to the high CBL between 2500 m and 3500 m, especially at SQH station, and another weak peak appears 

between 200 m and 1000 m. The occurrence frequency is low for the CBL height between 1000 m and 2500 m. Figure 6b 

shows the cross section of the cumulative occurrence frequency of the CBL height along 32°N. As illustrated in Fig. 6b, the 

cumulative frequency contours gradually go upward from east to west. The eastern TP is dominated by a low CBL height, 200 

with the 50% CBL height below 1000 m, and there is only the 5% CBL height above 2500 m. For the western TP, there are 

larger CBL heights, with almost 50% CBL extending upward to more than 2500 m, almost 10% reaching 4000 m or higher, 

and only 15% CBL below 1000 m. The above features indicate a significant difference between the ETP and the WTP in the 

frequency distribution of the ABL height over the TP. 

 205 

To investigate an effect of differences in the sample profiles shown in Fig. 1b and d, we use the test group dataset to repeat 

the above analyses. Figures 7a and b show the scatter plots of the occurrence frequency of the SBL, NBL, and CBL from the 

original and test group datasets at each of 19 stations at 08:00 BJT and 20:00 BJT, respectively. It is seen that the correlation 

coefficients between the two datasets are 0.92-0.99, with root-mean-square errors (RMSEs) between 1.1% and 2.7%. The 

similar results are also seen in the SBL, NBL, and CBL heights at 08:00 BJT (Fig. 7c) and 20:00 BJT (Fig. 7d). The 210 

correlation coefficients in the ABL height are 0.90-0.99. The RMSE of the SBL height is 14 m and 25 m at 08:00 and 20:00 

BJT, respectively. The RMSE of the CBL and NBL heights are 54-59 m at 08:00 BJT and 99-107m at 20:00 BJT. These 

high correlations and little errors show that the difference in the sample number does not change our conclusions. 

 

From the foregoing analysis, the ABL height in the TP shows a remarkable diurnal variation and spatial difference, 215 

especially for both NBL and CBL. From noon to the late afternoon, there are larger NBL and CBL heights in the WTP 

compared to the ETP, with the differences of 668.9 m and 955.0 m between the WTP and the ETP at 20:00 BJT, respectively. 

Then, which factors contribute to these differences in ABL between the WTP and ETP? In the following section, we 

examine some factors that may be responsible for to the ABL height over the TP. 

4 Factors responsible for the ABL height over the TP 220 

A lot of studies have addressed effects of surface sensible heat flux (SHF), soil volume moisture content (VWC), downward 

solar radiation flux (DSR), and the total cloud cover (CLD) on ABL height (Liu, et al., 2004; Brooks and Rogers, 2006; 

Zhao et al., 2011; Sanchez-Mejia and Papuga, 2014; Rihani et al., 2015; Lin et al., 2016; Zhang et al., 2017; Zhang et al., 

2019; Qiao et al., 2019). To investigate a possible reason for the difference in the ABL height between the eastern and 
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western TP, we utilize the TIPEX-III SHF, DSR, VWC and CLD observations at SQH, NQ, and LZ stations, analyzing the 225 

relationships between the above variables and the ABL height. 

 

Figure 8a-c shows the scatter plots between the 6-hour mean SHF and the ABL height at SQH, NQ, and LZ stations. As 

shown in this figure, the correlation is 0.80, 081, and 0.71 (significant at the 99% confidence level) at the three stations, 

respectively. That is, when SHF is strong, the turbulent motion is strong and the ABL height develops, which supports the 230 

result of Zhang et al. (2011b). Their result shows a significant correlation of 0.78 in the arid area of Northwest China 

between the ABL thickness and the cumulative SHF. Figure 9a and b further present the features of the ABL height and SHF 

at SQH, NQ, and LZ stations. The maximum value of SHF is 270 W/m2, 165 W/m2, and 100 W/m2 at SQH, NQ and GZ 

stations, respectively, and has a large difference (105 W/m2) between SQH and NQ stations. This result indicates a 

decreasing trend of SHF from west to east in the TP, consistent with a reduction of the ABL height from SQH via NQ to LZ 235 

station (shown in Figs. 3 and 9a). In addition, Fig. 10 demonstrates the diurnal variations of SHF and the ABL height at SQH, 

NQ, and LZ stations. It is clear that the peak of the SHF diurnal variation occurs earlier compared to that of the ABL height 

at SQH station. The maximum ABL height occurs near 20:00 BJT (approximately 17:20 LST), corresponding to a stronger 

SHF. At LZ station, however, the ABL height at 20:00 BJT (18:20 LST) corresponds to a negative SHF. This difference in 

SHF between SQH and LZ stations is possibly associated with more cloud cover (reducing the solar radiance at the surface) 240 

and one-hour time difference (an earlier transition to night at LZ station). Consequently, the difference in the ABL height 

between the WTP and ETP may be attributed to a west-east difference in SHF that is a direct thermal factor affecting the 

ABL development in the TP. 

 

The solar radiation at the surface is an important component of the surface energy budget, affecting land surface temperature 245 

and SHF. We show the scatter plots between the 6-hour mean DSR and the ABL height at SQH, NQ, and LZ stations (Fig. 

8d-f). The ABL height is highly correlated with the 6-hour average of DSR at these stations, with the correlation coefficients 

of 0.86, 081, and 0.73, respectively, which is equivalent to those of SHF. The mean DSR shows a decreasing trend from 

SQH (510 W/m2) to LZ (200 W/m2) station. Since the solar irradiance at the surface is negatively associated with the local 

cloud cover (Guo et al., 2011; Lin et al., 2016; Li et al., 2017; Zhang et al., 2017), the cloud cover is also correlated to the 250 

ABL height. Figure 8g-i show that the 6-hour mean CLD has significant correlations of -0.56, -0.65, and -0.54 with the ABL 

height at SQH, NQ, and LZ stations, respectively. A decrease of the mean ABL height from SQH to LZ station (Fig. 9a) is 

corresponded to an increase of cloud cover (Fig. 9d) and a decrease of DSR (Fig. 9c). When cloud cover is between 0 and 

20%, the mean ABL height for the NBL and CBL is 2019 m /2732 m in the ETP/WTP and when cloud cover is >80%, the 

ABL height decreases to 741 m /1626 m in the ETP/WTP (Fig. 11). Therefore, the increased cloud cover inhibits the 255 

development of both the NBL and CBL. The difference in cloud cover between the WTP and ETP contributes to the west-

east distribution of DSR and SHF, also finally contributing to the ABL development. Corresponding to more cloud cover in 

the ETP, the local ABL is more closely associated with atmospheric moisture processes. 
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Soil moisture is also an important factor affecting SHF. Low soil moisture generally coincides with a high surface sensible 260 

heat flux, which facilitates the ABL development (e.g., McCumber and Pielke, 1981; Sanchez-Mejia and Papuga, 2014; 

Rihani et al., 2015). Figure 8j-l shows that the relationship between the ABL height and the 6-hour mean VWC at SQH, NQ, 

and LZ stations. The ABL height at LZ station is negatively correlated to the local soil moisture, with a significant 

correlation coefficient of -0.45, which indicates that the ABL height is lower when surface soil is moister. However, the 

negative correlation is weaker at SQH station, with a correlation coefficient of -0.21. This difference between the WTP and 265 

the ETP is associated with the climatic feature of the local soil moisture. The surface type transitions from alpine meadow 

with few shrubs and trees or alpine steppe in the ETP to bare soil with few obstacles in the WTP (Lin et al., 1981; Wang et 

al., 2016). Accordingly, soil moisture decreases gradually from the ETP to the WTP (Fig. 9e), with a mean soil moisture 

below 0.10 m3/m3 at SQH station and 0.38 m3/m3 at LZ station. Little soil moisture in the WTP has a weak modulation to the 

local surface heat flux, which results in a weak correlation between the ABL height and soil moisture in the WTP. 270 

5 Summary and discussion 

Using the summer TIPEX-III intensive and meteorological operational observational datasets, we examine the ABL features 

and the relationships of the ABL height with surface sensible heat flux, solar radiation, cloud cover, and soil moisture in the 

TP region. The main conclusions are summarized as follows. 

 275 

The ABL height exhibits diurnal variations and regional differences in the TP, which are weak for SBL and remarkable for 

both NBL and CBL. In the early morning, the ABL height is generally low over the TP, not showing a large west-east 

difference, and the distribution of the ABL height is narrow, with 78.5% of the ABL height < 500 m. At noon, the CBL and 

NBL heights remarkably increase and have a wide distribution in the ABL height up to 4000 m, with more than 50% of the 

ABL height exceeding 1900 m. The height exhibits a large west-east difference. At this moment, the distribution of the SBL 280 

height is also narrow, with the cumulative frequency of 80% at the height of 500 m, and the west-east difference is not 

obvious. In the late afternoon, there are a narrow distribution of the SBL height and wide ones of the NBL and CBL heights. 

The ABL height continues to increase in the WTP, while it begins to decrease in the ETP. This feature results in a larger 

west-east difference in the ABL height. In spite of a cold environment in the TP (relative to plain areas), the WTP still has 

the ABL height above 2000 m, which is similar to some extreme hot and arid areas such as Dunhuang and Taklimakan 285 

Deserts. In the ETP, the ABL is similar to that in North China (1500-1900 m) and is generally larger compared to the East 

Asian summer monsoon region (＜1500 m) such as the Yangtze River Delta and the Pearl River Delta (Zhang et al., 2011; 

Guo et al., 2016; Zhang et al., 2017; Qiao et al., 2019). 
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For the SBL and CBL, the occurrence frequency shows remarkable diurnal variations. Most (few) of the SBL (CBL) in the 290 

TP occur in the early morning and its occurrence frequency rapidly decreases (increases) at noon, accounting for 3.6% 

(76.9%) of the ABL. Moreover, possibly due to a difference in the solar elevation angle with respect to longitude in the late 

afternoon, the SBL and CBL dominates the ETP and WTP, respectively. However, the NBL shows a relatively weak diurnal 

variation over the TP, with the mean occurrence frequency of 6.4% in the early morning and around 20% at noon and in the 

late afternoon. 295 

 

The ABL height is significantly correlated to SHF, DSR, and cloud cover in the TP and to soil moisture in the ETP. The 

west-east reduction in the ABL height is closely associated with the decreasing trends in both SHF and DSR and the 

increasing trends in both cloud cover and soil moisture from west to east. The above factors affecting the WET and ETP 

ABL heights are summarized in Fig. 12. That is, in the WTP (ETP), with low (high) cloud cover, there is larger (smaller) 300 

downward solar radiation at the surface. Meanwhile, corresponding to bare soil (alpine meadow or steppe) in the WTP (ETP), 

there is a dry (wet) soil condition. These features cause high (low) sensible heat flux, thus promoting (inhibiting) the local 

ABL development. 

 

It is noted that the peak ABL height can drop from 3000–4000 m for a deep CBL in the WTP to 1000–2000 m for a shallow 305 

CBL in the ETP. Such a steep inhomogeneous distribution of the ABL height may trigger local mesoscale circulation and 

precipitation (Segal et al., 1992; Goutorbe et al., 1997; Huang et al., 2009; Zhang et al., 2019; Qiao et al., 2019). Therefore, 

the influences of west-east differences in the ABL height over the TP on the local weather and climate should be further 

studied in the future. 

 310 
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 465 

 

Figure 1: Distribution of sounding stations, in which the number indicates sounding profiles at each station at (a) all times, (b) 

08:00 BJT, (c) 14:00 BJT, and (d) 20:00 BJT in the study period. Red (black) dots represent intensive (operational) sites. Some 

letters are for the abbreviated names of stations. The green line is for the topography above 3 km. 
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 470 

Figure 2: Spatial distribution of the mean ABL height for all types at (a) 00:08 BJT, (b) 14:00 BJT, and (c) 20:00 BJT in the study 

period; (d) the regional mean frequency and (e) cumulative frequency distributions of the ABL height over the TP at 08:00 BJT, 

14:00 BJT, and 20:00 BJT; (f) the west-east cross section of the ABL height along 32°N (red line shown in (c)) at 08:00 BJT, 14:00 
BJT, and 20:00 BJT. 

 475 

 

Figure 3: Same as in Fig. 2a but for the SBL (top), NBL (middle), and CBL (bottom) at 08:00 BJT, 14:00 BJT, and 20:00 BJT. 
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Figure 4: Same as in Fig. 3 but for the occurrence frequency. 480 

 

Figure 5: The regional mean frequency distributions of the ABL height over the TP for the CBL (blue), NBL (red), and SBL 

(black) in the study period at (a) 08:00 BJT, (b) 14:00 BJT, and (c) 20:00 BJT; and (d)-(f) same as in (a)-(c) but for the cumulative 
frequency distributions. 
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 485 

Figure 6: The west-east cross section of frequency (a) and cumulative frequency (b) distributions of the CBL height along 32°N in 
daytime (14:00 and 20:00 BJT). 

 

Figure 7: The scatter plots of the occurrence frequency of the SBL, NBL, and CBL from the original and test group datasets at 
each of 19 stations at (a) 08:00 BJT and (b) 20:00 BJT; and (c)-(d) same as in (a)-(b) but for the ABL height. 490 
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Figure 8: Scatter plots of the ABL height and the 6-hour average of surface sensible heat flux (SHF) (a-c), surface downward solar 

radiation flux (DSR) (d-f), total cloud coverage (CLD) (g-i), and surface soil volume moisture content (VWC) (j-l) at 08:00 BJT, 

14:00 BJT, and 20:00BJT at SQH (top), NQ (middle), and LZ (bottom) stations in the study period. The correlation coefficient (R) 
is given in each panel. 495 

 

Figure 9: (a) The ABL height, (b) SHF, (c) DSR, (d) CLD, and (e) VWC at SQH, NQ, and LZ stations in the study period. 

Horizontal bars show the 5th, 25th, 50th, 75th, and 95th percentile values and “×” symbols show the corresponding mean value. 
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Figure 10: Diurnal variations of surface sensible heat flux (blue) and the ABL height (red) at (a) SQH, (b) NQ, and (c) LZ stations 500 
averaged over the study period. 

 

Figure 11: The mean ABL height (for the NBL and CBL) and CLD over the ETP (blue) and WTP (red) in daytime (14:00 BJT and 
20:00 BJT). 
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Figure 12: A schematic diagram for relationships between the ABL height and the influential factors in the ETP and the WTP. 
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