

Interactive comment on “Evaluating the sensitivity of radical chemistry and ozone formation to ambient VOCs and NO_x in Beijing” by Lisa K. Whalley et al.

Anonymous Referee #1

Received and published: 28 October 2020

This paper presents the measurements of OH, HO₂, and RO₂ radicals and OH reactivity in central Beijing in the summer of 2017 as part of the APHH campaign. It reports the highest ever observed OH concentration of 2.8×10^7 cm⁻³ in urban area, even slightly higher than that reported in PRD in China by Lu et al. (2012).

Experimental budget analysis of OH, HO₂, RO₂, and RO_x was performed in the similar way as Tan et al. (2019) did in PRD in 2014. Consistent with other studies in China, the authors found a missing OH source under low NO (<0.5 ppb) and high VOC condition. Besides, the authors found the opposite trends in HO₂ budget and RO₂ budget. The HO₂ production rate exceeded the destruction rate by the similar rate as the RO₂

[Printer-friendly version](#)

[Discussion paper](#)

destruction rate exceed production rate. The authors explained the opposite difference as the substantially slower than assumed net propagation rate of RO₂ to HO₂. If only 10% of the RO₂ radicals propagate to HO₂ upon reaction with NO, the HO₂ and RO₂ budget would be closed. The authors also performed a model simulation based on MCM 3.3.1, and found consistent results with the experimental budget analysis, except for the OH radical. The model simulated OH concentration very well due to a cancellation of missing OH source and sinks terms in its budget. The model underpredicted the kOH consistently across all NO_x levels. To understand the model biases, the authors performed several sensitivity tests. The inclusion of heterogeneous loss of HO₂ to aerosol surfaces and CINO₂ chemistry could not entirely explained the HO₂ overestimation and RO₂ underestimation, respectively. Several sensitivity tests were done to see the impact of missing OH reactivity on the modelled radical concentrations by assuming reactants convert OH to CH₃O₂, OHCH₂CHO₂O₂, CH₃(O)O₂, and C96O₂. The authors proposed that missing OH reactivity converted OH to a larger RO₂ that undergo several reaction with NO, before eventually generating HO₂, could improve the agreement between observation and simulation, and they used an α -pinene-derived RO₂ species (C96O₂) as an example.

The results are of interest to the atmospheric chemistry community, enriching the RO_x measurement in megacity, and the paper is worthy of publication. However, there are some critical issues and mistakes have to be addressed and corrected in advance before publication. Also, the paper could be shortened quite a bit and the writing could be more concisely and logically.

Specific comments:

1. Line 337, Alkyl nitrates are not formed from aldehydes + NO₃.
2. According to the Fig.4, the RO₂ neutral reaction rate (RO₂+NO->RO₂) has no dependence towards NO concentration since the P:D(HO₂) showed no tendency towards lower NO. However, as the NO decreased, the competitive reaction of RO₂ with HO₂

[Printer-friendly version](#)[Discussion paper](#)

or RO₂ isomerization would become more and more important, and was even comparable to the rate between RO₂ and NO. Thus, the multiple conversion of one RO₂ to another should be reduced towards low NO.

3. The experimental configuration of RO₂ convertor is missing.
4. In Line 573, the estimated NO concentration in the reactor is 4e13 cm⁻³. The reaction time scale of RO₂+NO reaction is 0.003s. If such large flow was used in the reactor, the conversion to OH could be finished and the OH could further react with NO to form HONO. How do the author account for such conversion?
5. The RO₂ and RO_x budget is missing the part of Cl oxidation.
6. How sensitive of the experimental budget of HO₂ and RO_x radical towards the organic nitrate yield in the reaction of RO₂ and NO? The organic nitrate yield varies from 0.01 to 0.5 among different RO₂ species and it might have notable influence on the RO_x and HO₂ budget. Tan et al. (2019) not only set the yield to 0.05 but also performed the sensitivity tests by varying the yield from 5% to 20%, and notable influence was observed for their study although the bias was still within the experimental errors. Considering the large measured RO₂ concentration, the yields might play significant role on this budget analysis in this study.
7. If it was the case as the author said, 90% of the measured RO₂ would react with NO to produce another RO₂, in which the majority of the RO₂ was probably derived from long-chain alkanes, monoterpenes, and other like-VOCs, this part of RO₂ should be detected in the RO₂-complex. According to Fig 5, the RO₂-complex only made up less than 50% of the total RO₂. Besides, if the multiple bimolecular reaction of RO₂ with NO made up such a proportion (90%), the ozone production would be inconceivably enhanced, but was not embodied in the observed O₃ concentrations.
8. Line 563, Line 574-575, and Table 3, the author attributed the missing OH reactivity to additional reaction converting OH to C₉₆O₂, which is an α -pinene derived RO₂,

[Printer-friendly version](#)[Discussion paper](#)

but C96O2 is formed in the α -pinene reaction with O3 but NOT with OH. How do the authors justify this assumption? Some discussion to make such assumption is needed.

Technical comments:

1. Line 234, the last [RO2] should be out of the right bracket in Eq (6).
2. Line 360, 'production and destruction'.
3. There is no need for 2.4.1.
4. Line 513, $\alpha = 0.87$ seems to be wrong or the description of α was confusing.
5. Conclusion should be section 4.

Interactive comment

References

Lu, K. D., Rohrer, F., Holland, F., Fuchs, H., Bohn, B., Brauers, T., Chang, C. C., Häseler, R., Hu, M., Kita, K., Kondo, Y., Li, X., Lou, S. R., Nehr, S., Shao, M., Zeng, L. M., Wahner, A., Zhang, Y. H., and Hofzumahaus, A.: Observation and modelling of OH and HO₂ concentrations in the Pearl River Delta 2006: a missing OH source in a VOC rich atmosphere, *Atmospheric Chemistry and Physics*, 12, 1541-1569, 10.5194/acp-12-1541-2012, 2012.

Tan, Z., Lu, K., Hofzumahaus, A., Fuchs, H., Bohn, B., Holland, F., Liu, Y., Rohrer, F., Shao, M., Sun, K., Wu, Y., Zeng, L., Zhang, Y., Zou, Q., Kiendler-Scharr, A., Wahner, A., and Zhang, Y.: Experimental budgets of OH, HO₂, and RO₂ radicals and implications for ozone formation in the Pearl River Delta in China 2014, *Atmospheric Chemistry and Physics*, 19, 7129-7150, 10.5194/acp-19-7129-2019, 2019.

Interactive comment on *Atmos. Chem. Phys. Discuss.*, <https://doi.org/10.5194/acp-2020-785>, 2020.

Printer-friendly version

Discussion paper

