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Abstract 24 

We use satellite (GOSAT) and in situ (GLOBALVIEWplus CH4 ObsPack) observations of atmospheric 25 

methane in a joint global inversion of methane sources, sinks, and trends for the 2010-2017 period. The 26 

inversion is done by analytical solution to the Bayesian optimization problem, yielding closed-form 27 

estimates of information content to assess the consistency and complementarity (or redundancy) of the 28 

satellite and in situ datasets. We find that GOSAT and in situ observations are to a large extent 29 

complementary, with GOSAT providing a stronger overall constraint on the global methane distributions, 30 

but in situ observations being more important for northern mid-latitudes and for relaxing global error 31 

correlations between methane emissions and the main methane sink (oxidation by OH radicals). The in- 32 

situ-only and the GOSAT-only inversion alone, achieve respectively 113 and 212 independent pieces of 33 

information (DOFS) for quantifying mean 2010-2017 anthropogenic emissions on 1009 global model 34 

grid elements, and DOFS of 67 and 122 for 2010-2017 emission trends. The joint GOSAT + in situ 35 

inversion achieves DOFS of 262 and 161 respectively for mean emissions and trends. The in situ data 36 

thus increase the global information content from the GOSAT-only inversion by 20-30%. The in-situ-only 37 

and GOSAT-only inversions show consistent corrections to regional methane emissions but are less 38 

consistent in optimizing the global methane budget. The joint inversion finds that oil/gas emissions in the 39 

US and Canada are underestimated relative to the values reported by these countries to the United Nations 40 

Framework Convention on Climate Change (UNFCCC) and used here as prior estimates, while coal 41 

emissions in China are overestimated. Wetland emissions in North America are much lower than in the 42 

mean WetCHARTs inventory used as prior estimate. Oil/gas emissions in the US increase over the 2010-43 

2017 period but decrease in Canada and Europe. The joint inversion yields a global methane emission of 44 

551 Tg a-1 averaged over 2010-2017 and a methane lifetime of 11.2 years against oxidation by 45 

tropospheric OH (86% of the methane sink). 46 

  47 



 

3 
 

1 Introduction 48 

Methane (CH4) is the second most important anthropogenic greenhouse gas, and plays a central role in 49 

atmospheric chemistry as a precursor of tropospheric ozone and a sink of hydroxyl radicals (OH). It is 50 

emitted from many natural and anthropogenic sources that are difficult to quantify (Saunois et al., 2020). 51 

Atmospheric methane observations from satellites and in situ (surface, tower, shipboard, and aircraft) 52 

platforms have been used extensively to infer methane emissions and their trends through inverse analyses 53 

(Houweling et al., 2017). But the information from satellite and in situ observations does not always agree 54 

(Monteil et al., 2013; Bruhwiler et al., 2017) and is hard to compare because of large differences in 55 

observational density, precision, and the actual quantity being measured (Cressot et al., 2014). Here we 56 

use an analytical solution to the Bayesian inverse problem to quantitatively compare and combine the 57 

information from satellite (GOSAT) and in situ (GLOBALVIEWplus CH4 ObsPack) observations for 58 

estimating global methane sources and their trends over the 2010-2017 period, including contributions 59 

from different source sectors and from the methane sink (oxidation by tropospheric OH).  60 

 61 

Inverse analyses of atmospheric methane observations using chemical transport models (CTM) provide a 62 

formal method for inferring methane emissions and their trends (Brasseur and Jacob, 2017). Global 63 

satellite observations of atmospheric methane columns from the shortwave infrared SCIAMACHY and 64 

GOSAT instruments have been widely used for this purpose (Bergamaschi et al., 2013; Wecht et al., 2014; 65 

Turner et al., 2015; Maasakkers et al., 2019; Miller et al., 2019; Lunt et al., 2019). Other inverse analyses 66 

have relied on in situ methane observations that have much higher precision, are more sensitive to surface 67 

emissions, and may include isotopic information, but are much sparser (Pison et al, 2009; Bousquet et al., 68 

2011; Miller et al., 2013; Patra et al., 2016; McNorton et al., 2018).  69 

 70 

A number of inverse analyses have combined in situ and satellite observations (Bergamaschi et al., 2007, 71 

2009, 2013; Fraser et al., 2013; Monteil et al, 2013; Cressot et al., 2014; Houweling et al., 2014; Alexe et 72 

al., 2015; Ganesan et al., 2017; Janardanan et al., 2020), but few of them have compared the information 73 

from the two data streams and then mostly qualitatively. Bergamaschi et al. (2009, 2013), Fraser et al. 74 

(2014), and Alexe et al. (2015) found that surface and satellite methane observations provided consistent 75 

constraints on global methane emissions, but that satellite observations achieved stronger regional 76 

constraints in the tropics. No study to our knowledge has compared the ability of satellite and in situ 77 

observations to attribute long-term methane trends.  78 

 79 

Analytical solution to the inverse problem, as used here, provides closed-form error characterization as 80 

part of the solution, and from there allows derivation of the information content from different 81 

components of the observing system (Rodgers, 2000). Application to satellite observations has been used 82 

to determine where the observations can actually constrain the inverse solution (Turner et al., 2015). The 83 

major obstacle to this analytical solution in the past has been the need to construct the Jacobian matrix 84 

for the CTM forward model, but this is now readily done using massively parallel computing clusters 85 

(Maasakkers et al., 2019). Such a method provides a means to quantify the differences in information 86 
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content between different data streams (e.g., satellite vs. in situ) and from there to contribute to the design 87 

of a better observing system.  88 

 89 

Here we apply satellite observations of atmospheric methane columns from the GOSAT instrument 90 

together with an extensive global compilation of in situ observations (including surface, tower, shipboard, 91 

and aircraft methane measurements) from the GLOBALVIEWplus CH4 ObsPack v1.0 data product 92 

(Cooperative Global Atmospheric Data Integration Project, 2019), to quantify the global distribution of 93 

methane emissions, loss from reaction with OH, and related trends for the 2010-2017 period. We use for 94 

this purpose an analytical inversion method that formally characterizes the information content from the 95 

two data streams, whether that information is consistent, and whether it is complementary or redundant 96 

(Rodgers, 2000; Jacob et al., 2016). Our work provides a comprehensive global perspective on the sources 97 

contributing to 2010-2017 methane emissions and trends, as well as a general framework for synthesizing 98 

the information from satellite and in situ observations.  99 

 100 

2 Methods 101 

Figure 1 summarizes the components of our analytical inversion system, which builds on previous 102 

inversions of GOSAT satellite data by Maasakkers et al. (2019) and Zhang et al. (2020a) but adds the in 103 

situ observations. We apply observations y from GLOBALVIEWplus observations and/or GOSAT 104 

(Section 2.1), with the GEOS-Chem CTM as forward model (Section 2.3), to optimize the state vector 𝒙𝒙 105 

of our inverse problem. The state vector has dimension n = 3378 including mean 2010-2017 non-wetland 106 

methane emissions on the GEOS-Chem 4°× 5° global grid (n1 = 1009), 2010-2017 linear trends for these 107 

emissions on that grid (n2 = 1009), monthly mean wetland methane emissions for individual years in 14 108 

subcontinental regions (n3 = 12× 8 ×14 = 1344), and tropospheric OH concentrations in each hemisphere 109 

for individual years (n4 = 2×8 = 16). Section 2.2 describes the prior state vector estimates (𝒙𝒙𝑨𝑨) and the 110 

prior error covariance matrix (𝑺𝑺𝑨𝑨). We derive posterior estimates 𝒙𝒙� of the state vector and the associated 111 

error covariance matrix 𝑺𝑺� by analytical solution to the Bayesian optimization problem (Section 2.4). We 112 

present results from three inversions using in situ observations only (in-situ-only inversion), GOSAT 113 

observations only (GOSAT-only inversion), and both GOSAT and in situ observations (GOSAT + in situ 114 

inversion).  115 

 116 

2.1 Methane observations  117 

The GLOBALVIEWplus CH4 ObsPack v1.0 data product compiled by the National Oceanic and 118 

Atmospheric Administration (NOAA) Global Monitoring Laboratory includes worldwide high-accuracy 119 

measurements of atmospheric methane concentrations from different observational platforms (surface, 120 

tower, shipboard, and aircraft) (Cooperative Global Atmospheric Data Integration Project, 2019). Here 121 

we use the ensemble of GLOBALVIEWplus observations for 2010-2017. For surface and tower 122 

measurements, we use only daytime (10-16 local time) observations and average them to the 123 

corresponding daytime mean values. We exclude outliers at individual sites that depart by more than three 124 

standard deviations from the mean. We obtain in this manner 157054 observation data points for the 125 
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inversion including 81119 from 103 surface sites, 27433 from 13 towers, 827 from 3 ship cruises, and 126 

47675 from 29 aircraft campaigns. Figure 2a shows the mean methane concentrations in 2010-2017 from 127 

the in situ data. The data are relatively dense in North America and western Europe, with also a few sites 128 

in China, but otherwise mainly measure background concentrations. The number of available surface and 129 

tower observations increases from 10493 in 2010 to 19657 in 2017 with the largest changes in Europe 130 

and Canada. 131 

 132 

GOSAT is a nadir-viewing satellite instrument launched in 2009 that measures the backscattered solar 133 

radiation from a sun-synchronous orbit at around 13:00 local time (Butz et al., 2011; Kuze et al, 2016). 134 

Observing pixels are 10-km in diameter and separated by about 250 km along-track and cross-track in 135 

normal observation mode, with higher-density data collected in targeted observation modes. Methane is 136 

retrieved at the 1.65 µm absorption band. We use dry column methane mixing ratios from the University 137 

of Leicester version 9.0 Proxy XCH4 retrieval (Parker et al., 2020). The retrieval has a single-observation 138 

precision of 13 ppb and a regional bias of 2 ppb (Buchwitz et al., 2015). We use GOSAT data for 2010-139 

2017 including 1.6 million retrievals over land as shown in Figure 2b. We do not use glint data over the 140 

oceans and data poleward of 60o because of seasonal bias and the potential for large errors (Maasakkers 141 

et al., 2019). 142 

 143 

2.2 Prior estimates 144 

Table1 summarizes the prior estimates of the mean 2010-2017 methane emissions used for the state vector, 145 

and Figure 3 shows the spatial patterns. Natural sources include the ensemble mean of the WetCHARTs 146 

inventory version 1.2.1 (Bloom et al., 2017) for wetlands, open fires from the Global Fire Emissions 147 

Database version 4s with seasonal and interannual variability (van der Werf et al., 2017), termites from 148 

Fung et al. (1991), and seeps from Etiope et al. (2019) with global scaling to 2 Tg a-1 from Hmiel et al. 149 

(2020). The default anthropogenic emissions are from EDGAR v4.3.2 (Janssens-Maenhout et al., 2019), 150 

and are superseded for fugitive fuel emissions (oil, gas, coal) by the Scarpelli et al. (2020) inventory 151 

which spatially allocates national emissions reported by countries to the United Nations Framework 152 

Convention of Climate Change (UNFCCC). US anthropogenic emissions are further superseded by the 153 

gridded version of Inventory of U.S. Greenhouse Gas Emissions and Sinks from the Environmental 154 

Protection Agency (EPA GHGI) (Maasakkers et al., 2016). The WetCHARTs wetlands inventory includes 155 

seasonal and interannual variability that is optimized in the inversion through correction to the monthly 156 

emissions. Seasonality from Zhang et al. (2016) is imposed for rice emissions, and temperature-dependent 157 

seasonality is applied to manure emissions (Maasakkers et al., 2016). Other emissions are aseasonal. 158 

 159 

We assume a 50% error standard deviation for all anthropogenic and non-wetland natural emissions on 160 

the 4o latitude ×5o longitude grid, with no spatial error covariance so that their prior error covariance 161 

matrix is diagonal, which is a reasonable assumption for anthropogenic emissions (Maasakkers et al., 162 

2016). We assume 0 ± 10% a-1 as prior estimate for the linear 2010-2017 emission trends on the 4o×5o 163 

grid; a sensitivity test using 0 ± 5% a-1 is also performed. The inclusion of linear trends in state vectors 164 
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allows us to identify the direction of emission change for each 4o ×5o grid in the 8-year period, but it 165 

would not capture high-frequency interannual variability. Prior estimates of monthly mean wetland 166 

methane emissions for individual years in 14 subcontinental regions, along with their error covariance 167 

matrix, are from the WetCHARTs v1.2.1 inventory ensemble (Bloom et al., 2017). The prior methane 168 

emissions total 533 Tg a-1, at the low end of the current top-down estimates (550-594 Tg a-1) for 2008-169 

2017 (Saunois et al., 2020), and this largely reflects the downward revision of global seep emissions by 170 

Hmiel et al. (2020).  171 

 172 

Prior monthly 3-D fields of global tropospheric OH concentrations are taken from a GEOS-Chem 173 

simulation with full chemistry (Wecht et al., 2014) that yields a methane lifetime 𝜏𝜏CH4
OH  due to oxidation 174 

by tropospheric OH of 10.6 years and an inter-hemispheric OH ratio (North to South) of 1.16. The 175 

methane lifetime is consistent with the value of 11.2±1.3 years inferred from methylchloroform 176 

observations (Prather et al., 2012), while the inter-hemispheric OH ratio lies between the observed range 177 

of 0.97±0.12 (Patra et al., 2014) and the recent multi-model estimates of 1.3±0.1 (Zhao et al., 2019). We 178 

assume no interannual variability in this prior OH field. We assume 10% as prior error standard deviation 179 

for the hemispheric OH concentrations in individual years, based on Holmes et al. (2013), and also 180 

conduct a sensitivity test assuming 5%. Corrections to OH in the inversion are applied as a hemispheric 181 

scaling factor for individual years, without changing the spatial or temporal pattern of the original fields. 182 

Zhang et al. (2018) conducted methane inversions with twelve different OH fields from the ACCMIP 183 

model ensemble (Naik et al., 2013) and found no significant difference in results with the GEOS-Chem 184 

OH fields used here except for two outlier models. 185 

 186 

2.3 Forward Model 187 

We use the GEOS-Chem 12.5.0 (http://geos-chem.org) global CTM (Bey et al., 2001; Wecht et al., 2014; 188 

Maasakkers et al., 2019) as forward model to simulate atmospheric methane concentrations and their 189 

sensitivity to the state vector elements. The model is driven by MERRA-2 reanalysis meteorological fields 190 

from the NASA Global Modeling and Assimilation Office (GMAO) (Gelaro et al., 2017). The methane 191 

sink is computed within the model from 3-D tropospheric oxidant fields including OH (optimized in the 192 

inversion), Cl atoms (Wang et al., 2019), 2-D stratospheric oxidant fields (Murray et al., 2012), and soil 193 

uptake (Murguia-Flores et al., 2018). We conduct GEOS-Chem model simulations for 2010-2017 at 194 

global 4°× 5° resolution with 47 vertical layers extending to the mesosphere.  195 

 196 

GEOS-Chem has excessive methane in the high-latitudes stratosphere, a flaw common to many models 197 

(Patra et al., 2011) especially at coarse model resolution. Following Zhang et al. (2020), we compute 198 

correction factors to GEOS-Chem stratospheric methane subcolumns as a function of season and 199 

equivalent latitude to match the measurements from the solar occultation ACE-FTS v3.6 instrument 200 

(Waymark et al., 2014; Koo et al., 2017). As shown in Zhang et al. (2020), the correction can be up to 10% 201 

at high latitudes during winter and spring. We apply the correction factors before the inversion to avoid 202 

wrongly attributing this model transport bias to methane emissions and loss. Figure S1 shows that the 203 
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systematic differences in the posterior scaling factors of non-wetland emissions with vs. without bias 204 

correction are more prominent at the northern high latitudes, as also shown in Stanevich et al. (2020), but 205 

the global total emissions only differ by 1%.  206 

 207 

Initial GEOS-Chem methane concentrations on January 1, 2010 are adjusted to have unbiased  zonal 208 

mean relative to GOSAT observations for January 2010, and we find that the resulting model values are 209 

also unbiased relative to the GLOBALVIEWplus in situ observations in January 2010. In this manner, 210 

model discrepancies with observations over the 2010-2017 period can be attributed to model errors in 211 

emissions or OH over that period, instead of error in initial conditions. We archive model methane dry 212 

mixing ratios at each location and time of the in situ and GOSAT datasets for 2010-2017.  213 

 214 

As forward model F for the inversion, GEOS-Chem relates the state vector x to the atmospheric 215 

concentrations y as 𝒚𝒚 = 𝑭𝑭(𝒙𝒙) (Fig.1). The simulation of observations with the prior estimates of state 216 

vectors (𝒙𝒙𝑨𝑨 ) in 2010-2017 diagnoses systematic errors in comparison to observations that enable 217 

improved estimate of the state vector through the inversion. In addition, the random component of the 218 

discrepancy can be used to estimate the observation error (sum of instrument error, representation error, 219 

and forward model error) in the Bayesian optimization problem using the residual error method (Heald et 220 

al., 2004). The method assumes that the systematic component of the model bias (𝐲𝐲 − 𝑭𝑭(𝒙𝒙𝑨𝑨)������������� ) for 221 

individual years, where the overbar denotes the temporal average in a 4°× 5° grid cell (for GOSAT) or for 222 

an observation platform (for in situ observations), is to be corrected in the inversion, while the residual 223 

term (ε0 = 𝒚𝒚 − 𝑭𝑭(𝒙𝒙𝑨𝑨) − 𝐲𝐲 − 𝑭𝑭(𝒙𝒙𝑨𝑨)������������� ) represents the random observation error. Here we applied this 224 

method to construct the observation error covariance matrix 𝑺𝑺𝒐𝒐 from the statistics of ε0. For in-situ 225 

observations, we derive ε0 separately for the ensemble of background surface sites (Dlugokencky et al., 226 

1994), non-background sites, tower sites, shipboard measurements, and aircraft measurements, while for 227 

GOSAT observations ε0 is calculated for each 4°× 5° grid cell. 228 

 229 

We find that the mean standard deviation of the random observation error (ε0) for the GLOBALVIEWplus 230 

in situ data averages 36 ppbv (20 and 45 ppbv for background and non-background surface observations, 231 

68 ppbv for tower observations, 10 ppbv for shipboard observations, 24 ppbv for aircraft observations), 232 

compared to 13 ppbv for GOSAT. The observation error for in situ observations is dominated by the 233 

forward model error while for GOSAT it is dominated by the instrument error. The forward model error 234 

is higher for surface concentrations near source regions than for columns or other in situ observations 235 

measuring background, because the amplitude of methane variability is much higher (Cusworth et al., 236 

2018) and more challenging for a model at 4°× 5° resolution to capture. We assume that 𝑺𝑺𝒐𝒐 is diagonal 237 

in the absence of better objective information, but in fact some error correlation between different 238 

observations could be expected to arise from transport and source aggregation errors in the forward model. 239 

This is considered by introducing a regularization factor 𝛾𝛾 in the minimization of the cost function for 240 

the inversion (Section 2.4). 241 

 242 
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2.4 Analytical Inversion 243 

The Bayesian solution to the state vector optimization problem assuming Gaussian prior and observation 244 

errors involves minimizing the cost function 𝐽𝐽(𝒙𝒙): 245 

𝐽𝐽(𝒙𝒙) = (𝒙𝒙 − 𝒙𝒙𝑨𝑨)𝑇𝑇𝑺𝑺𝑨𝑨−1(𝒙𝒙 − 𝒙𝒙𝑨𝑨) + 𝛾𝛾(𝒚𝒚 − 𝑭𝑭(𝒙𝒙))𝑇𝑇𝑺𝑺𝑶𝑶−1(𝒚𝒚 − 𝑭𝑭(𝒙𝒙)) (1), 246 

where 𝒙𝒙 is the state vector, 𝒙𝒙𝑨𝑨 denotes the prior estimate of 𝒙𝒙, 𝑺𝑺𝑨𝑨 is the prior error covariance matrix, 247 

𝒚𝒚 is the observation vector, 𝑭𝑭(𝒙𝒙) represents the GEOS-Chem simulation of 𝒚𝒚, 𝑺𝑺𝑶𝑶 is the observation 248 

error covariance matrix, and 𝛾𝛾  is a regularization factor. The need for 𝛾𝛾  in 𝐽𝐽(𝒙𝒙)  is to avoid giving 249 

excessive weighting to observations, due to the likely underestimation of 𝑺𝑺𝑶𝑶  when unknown error 250 

correlations are not included in its construction (Zhang et al., 2018; Maasakkers et al., 2019). γ here plays 251 

the same role as the regularization parameter in Tikhonov methods (Brasseur and Jacob, 2017) and reflects 252 

our inability to properly quantify the magnitude of errors. 253 

 254 

Minimization of the cost function in equation (1) has an analytical solution if the forward model is linear 255 

(Rodgers, 2000). The optimization of methane emission and its trends is strictly linear by design because 256 

we use prescribed monthly 3-D OH fields as described in Section 2.2. There is some non-linearity 257 

regarding the optimization of OH, because the sensitivity of the methane concentration to changes in OH 258 

concentrations depends on the methane concentration through first-order loss, but we assume that the 259 

variability of methane concentration is sufficiently small that this non-linearity is negligible (we verify 260 

this assumption below). We thus express the GEOS-Chem forward model as 𝒚𝒚 = 𝑲𝑲𝒙𝒙 + 𝒄𝒄, where 𝑲𝑲 =261 

𝜕𝜕𝒚𝒚/𝜕𝜕𝒙𝒙  represents the Jacobian matrix and 𝒄𝒄  is an initialization constant. We construct the Jacobian 262 

matrix 𝑲𝑲  explicitly by conducting GEOS-Chem simulations with each element of the state vector 263 

perturbed separately. For the linear emission trend elements, this is done by perturbing the 2010-2017 264 

emission trend in each grid cell from 0% (the best prior estimate) to 10% a-1; for OH, this is done by 265 

perturbing yearly hemispheric OH fields by 20% without modifying the spatial or seasonal distribution. 266 

Comparison of the resulting Jacobian matrix to GEOS-Chem as F(x) – Kx - c shows a negligible residual 267 

difference of 2±3 ppb, verifying the assumption of linearity.  268 

 269 

 270 

Minimizing the Bayesian cost function by solving 𝑑𝑑𝐽𝐽(𝒙𝒙)/𝑑𝑑𝒙𝒙 = 0 yields closed-form expressions for the 271 

posterior estimate of the state vector 𝒙𝒙� with error covariance matrix 𝑺𝑺�: 272 

𝒙𝒙� = 𝒙𝒙𝑨𝑨 + 𝑮𝑮(𝒚𝒚 − 𝑲𝑲𝒙𝒙𝑨𝑨) (2), 273 

𝑺𝑺� = (𝛾𝛾𝑲𝑲𝑇𝑇𝑺𝑺𝑶𝑶−1𝑲𝑲 + 𝑺𝑺𝑨𝑨−1)−1 (3), 274 

 275 

where 𝑮𝑮 is the gain matrix,  276 

𝐆𝐆 = 𝜕𝜕𝒙𝒙�
𝜕𝜕𝒚𝒚

=  (𝛾𝛾𝑲𝑲𝑇𝑇𝑺𝑺𝑶𝑶−1𝑲𝑲 + 𝑺𝑺𝑨𝑨−1)−1𝛾𝛾𝑲𝑲𝑇𝑇𝑺𝑺𝑶𝑶−1 (4). 277 

 278 

From the posterior error covariance matrix one can derive the averaging kernel matrix describing the 279 

sensitivity of the posterior estimate to the true state: 280 
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𝑨𝑨 = 𝜕𝜕𝒙𝒙�
𝜕𝜕𝒙𝒙

=  𝑰𝑰𝒏𝒏 − 𝑺𝑺�𝑺𝑺𝑨𝑨−𝟏𝟏 (5). 281 

The trace of A quantifies the degrees of freedom for signal (DOFS), which represents the number of 282 

pieces of independent information gained from the observing system for constraining the state vector 283 

(Rodgers, 2000). 284 

 285 

We choose the value of the regularization parameter 𝛾𝛾 in order to avoid overfitting to the observations 286 

when the number m of observations is much larger than the number n of state vector elements, and the 287 

error covariance of the observations cannot be properly quantified. Overfitting would be implied by a 288 

highly unlikely departure of the posterior solution from the prior estimate, which can be indicated from 289 

the posterior cost function. For a given state vector element i, the expected value of (𝒙𝒙𝒊𝒊 − 𝒙𝒙𝑨𝑨𝒊𝒊)𝟐𝟐 is the 290 

prior error variance σ𝐴𝐴𝑖𝑖2. For an n-dimensional state vector with a diagonal prior error covariance matrix, 291 

the state component JA of the cost function is the sum of n random normal elements 292 

𝐽𝐽𝐴𝐴(𝒙𝒙) = (𝒙𝒙 − 𝒙𝒙𝑨𝑨)𝑻𝑻𝑺𝑺𝑨𝑨−𝟏𝟏(𝒙𝒙 − 𝒙𝒙𝑨𝑨) = ∑ (𝒙𝒙𝒊𝒊−𝒙𝒙𝑨𝑨𝒊𝒊)𝟐𝟐

σ𝐴𝐴𝑖𝑖2𝒏𝒏  (6), 293 

and its pdf is given by the Chi-square distribution with n degrees of freedom (n=3378 in this case), with 294 

an expected value of n and a standard deviation of √2𝑛𝑛 . One can apply the same reasoning to the 295 

observation component 𝐽𝐽𝑂𝑂 of the posterior cost function, 296 

𝐽𝐽𝑂𝑂(𝒙𝒙) = (𝒚𝒚 − 𝑲𝑲𝒙𝒙)𝑇𝑇𝑺𝑺𝑶𝑶−1(𝒚𝒚 − 𝑲𝑲𝒙𝒙) =  ∑ (𝐲𝐲𝒊𝒊−𝑲𝑲𝒙𝒙𝒊𝒊)𝟐𝟐

σ𝑂𝑂𝑖𝑖2𝒎𝒎  (7),  297 

whose pdf follows a chi-square distribution with m degrees of freedom. However, this component is less 298 

sensitive to the choice of γ because of the large random error component for individual observations.  299 

 300 

Figure 4 shows the dependences of 𝐽𝐽𝐴𝐴(𝒙𝒙�) and 𝐽𝐽𝑂𝑂(𝒙𝒙�) on the choice of the regularization parameter γ, for 301 

the in situ and GOSAT observations. The in situ observations are sufficiently sparse that γ = 1 (no 302 

regularization) is expected. In the case of GOSAT, however, γ = 1 would yield 𝐽𝐽𝐴𝐴(𝒙𝒙�) = 6𝑛𝑛 ≫ 𝑛𝑛 ± √2𝑛𝑛 303 

which indicates overfitting, while γ = 0.1 yields 𝐽𝐽𝐴𝐴(𝒙𝒙�) ≈ 𝑛𝑛 which is the expected value and is used here. 304 

This can be explained by the high observation density of GOSAT, such that error correlation between 305 

individual observations through the forward model may be expected and would have a large effect on the 306 

solution. Maasakkers et al. (2019) found that 𝛾𝛾 = 0.05  and 𝛾𝛾 = 0.1  gave similar solutions in their 307 

global inversions of GOSAT data. We also conduct sensitivity tests using 𝛾𝛾 = 0.5 for in situ observations 308 

and 𝛾𝛾 = 0.05 for GOSAT observations. 309 

 310 

The analytical solution to the Bayesian optimization problem, as done here, has several advantages 311 

relative to the more commonly used variational (numerical) solution. (1) It finds the true minimum in the 312 

cost function, rather than an approximation that may be sensitive to the choice of initial estimate. (2) It 313 

identifies the information content of the inversion and the ability to constrain each state vector element. 314 

(3) It enables a range of sensitivity analyses, modifying the prior estimates, modifying the error covariance 315 

matrices, adding/subtracting observations, etc. at minimal computational cost. We will make use of these 316 
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advantages in comparing the ability of the in-situ-only, GOSAT-only, and GOSAT + in situ inversions, 317 

and to test how choices in cost-function construction affect our conclusions including changing the 318 

regularization parameter 𝛾𝛾 , changing the prior error estimates, and using different types of in-situ 319 

observations. Our analysis will focus on results from the base inversions with the default settings, but we 320 

will use results from the sensitivity inversions to address specific issues. 321 

 322 

A requirement of the analytical approach is that the Jacobian matrix be explicitly constructed, requiring 323 

n + 1 forward model runs. Building the Jacobian matrix for the 3378 state vectors in this 8-year period 324 

study requires about one million core hours (8 cores × 36 hours per simulation × 3378 simulations). 325 

However, this construction is readily done in parallel on high-performance computing clusters. 326 

 327 

Our inversion returns posterior emission estimates and their temporal trends on a 4°× 5° grid for non-328 

wetland emissions, and monthly mean wetland emissions for individual years in 14 subcontinental regions. 329 

We cannot separate individual sectors within a 4°×5° grid cell because they will all have the same response 330 

function (Jacobian column). However, we can aggregate results spatially and by sector in a way that 331 

retains the error covariance of the solution (Maasakkers et al., 2019). Consider a reduced state vector xred 332 

representing a linear combination of the original state vector elements that may be a sum over a particular 333 

region or the globe, and may be weighted by the contributions from individual sectors following the prior 334 

distribution. The linear transformation from the posterior full-dimension state vector 𝒙𝒙� to the reduced 335 

state vector 𝒙𝒙�𝒓𝒓𝒓𝒓𝒓𝒓 is defined by a summation matrix W 336 

𝒙𝒙�𝒓𝒓𝒓𝒓𝒓𝒓 =  𝑾𝑾𝒙𝒙� (8). 337 

 338 

The posterior error covariance and averaging kernel matrices for the reduced state vector can then be 339 

calculated as: 340 

𝑺𝑺�𝒓𝒓𝒓𝒓𝒓𝒓 =  𝑾𝑾𝑺𝑺�𝑾𝑾𝑻𝑻 (9), 341 

𝑨𝑨𝒓𝒓𝒓𝒓𝒓𝒓 =  𝑾𝑾𝑨𝑨𝑾𝑾∗ (10), 342 

where 𝑾𝑾∗ =  𝑾𝑾𝑻𝑻(𝑾𝑾 𝑾𝑾𝑻𝑻)−𝟏𝟏  (Calisesi et al., 2005). 𝑺𝑺�𝒓𝒓𝒓𝒓𝒓𝒓  provides a means to determine error 343 

correlations between aggregates of quantities optimized by the inversion, e.g., between global methane 344 

emissions and global OH concentrations. Ared provides a means to determine the ability of the inversion 345 

to constrain an aggregated term (e.g., emissions from a particular sector).  346 

 347 

3. Results and discussion 348 

3.1 Ability to fit the in situ and GOSAT data  349 

We will present results from three different inversions for 2010-2017: (1) using only in situ observations 350 

(in-situ-only inversion), (2) using only GOSAT observations (GOSAT-only inversion), and (3) using both 351 

GOSAT and in situ observations (GOSAT + in situ inversion). Here we first evaluate the ability of these 352 

different inversions to fit the in situ and GOSAT observations, including when the data are not used in the 353 

inversion (consistency check). This is done by conducting GEOS-Chem simulations with posterior values 354 

for the state vectors and comparing to observations.  355 
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 356 

Figures 5 and 6 show the resulting comparisons for the in situ observations, arranged by type of platform 357 

(Fig.5), and by latitude bands and months (panels (a)-(d) in Fig.6). The model simulation with prior 358 

estimates shows a 30-60 ppb low bias for all in situ platforms growing with time. The in-situ-only 359 

inversion effectively corrects this bias and its trend, and also significantly improves the correlations across 360 

all platforms. The GOSAT-only inversion performs comparably in correcting the 2010-2017 trend for the 361 

independent in-situ data (Fig.6c) and bias for background observations (e.g. aircraft observations in the 362 

Southern Hemisphere (Fig.S2)), but there is a low bias at northern mid-latitudes reflecting surface and 363 

tower data in North America and Europe. As we will see, the in situ observations are important for 364 

optimizing emissions in these regions. 365 

 366 

Figure 6 also compares the fits to the GOSAT observations (panels (e)-(h)). The GOSAT-only inversion 367 

corrects the bias and trend in the prior simulation at all latitudes. The in-situ-only inversion corrects the 368 

trends, but biases low to the GOSAT observations by about 10 ppbv with larger bias in the Southern 369 

Hemisphere due to the sparsity of in situ observation there. The comparison suggests that in situ and 370 

GOSAT observations are largely consistent for informing the global methane change but also have some 371 

complementarity for the inversion. The GOSAT + in situ joint inversion shows good agreement with both 372 

the in situ and GOSAT observations.  373 

 374 

Figure 7a further evaluates the global methane growth rate as determined by the methane budget 375 

imbalance for individual years in 2010-2017 from the three inversions. The observed methane growth 376 

rate inferred from the NOAA sites (https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/, last access: 20 June 377 

2020) averages 7.2±2.8 ppb a-1 over the period, peaking in 2014, and overall accelerating with higher 378 

growth in 2015-2017 than in 2010-2013. We find that all posterior simulations show comparable mean 379 

methane growth rate (7.7±3.7 ppb a-1 for in-situ-only inversion, 8.8±2.2 ppb a-1 for GOSAT-only inversion, 380 

and 8.3±1.8 ppb a-1 for the GOSAT + in situ inversion). However, the in-situ-only inversion overestimates 381 

the increasing trend in the methane growth rate, largely driven by the year 2017, and fails to fit its 382 

interannual variability. This may reflect the heavy weighting of the in situ observations toward northern 383 

mid-latitudes. GOSAT observations in the inversion do much better in capturing the observed methane 384 

interannual variability and trend. Adding in situ observations to GOSAT observations provides a better fit 385 

in 2015 than GOSAT-only inversion but has an insignificant effect in other years. Zhang et al. (2020a) 386 

interpreted the trend and interannual variability in the GOSAT-only inversion as due to a combination of 387 

anthropogenic emissions, wetlands, and OH concentrations.  388 

 389 

3.2 Anthropogenic methane emissions  390 

Figure 8 shows the averaging kernel sensitivities (diagonal elements of the averaging kernel matrix) and 391 

posterior scaling factors for the non-wetland emissions (dominated by anthropogenic emissions) in the 392 

in-situ-only, GOSAT-only, and GOSAT + in situ joint inversions. The DOFS (trace of the averaging kernel 393 

matrix) quantify the number of independent pieces of information from the inversion, starting from 1009 394 
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unknowns for anthropogenic emissions (Figure 1). The DOFS are 113 for the in-situ-only inversion, 212 395 

for the GOSAT-only inversion, and 262 for the GOSAT + in situ joint inversion. The higher DOFS from 396 

the joint inversion indicate that the satellite and in situ observations have complementarity but also some 397 

redundancy. Strict complementarity would imply a DOFS of 325=113+212. We find that 75% of the in 398 

situ information is at northern mid-latitudes (30-60°N, DOFS=82, calculated as the sum of averaging 399 

kernel sensitivities in that latitude band) where the observations are densest, with another 9% (DOFS=10) 400 

at 60-90°N. GOSAT provides more information than do in situ observations at northern mid-latitudes 401 

(DOFS=96) and dominates in the tropics (DOFS=105). This dominance of satellites for informing 402 

methane sources in the tropics has been pointed out in previous studies (Bergamaschi et al., 2013; Monteil 403 

et al., 2013; Fraser et al., 2013; Alexe et al., 2015). We find that the DOFS from the in-situ-only inversion 404 

observations are mostly (85%) from the surface and tower measurements (Fig.S3). 405 

 406 

We investigate further the inversion results for northern mid-latitudes where most of the information of 407 

in situ observations is contained including for the US, Canada, Europe, and China. Table 2 gives the 408 

optimization of anthropogenic methane emissions (calculated as the difference between total non-wetland 409 

emissions and the non-wetland natural emissions) in these regions. Figure 9 shows the optimization by 410 

source sectors, assuming that (1) the partitioning between sectors of non-wetland emissions in individual 411 

grid cells is correct in the prior inventory (this does not assume that the prior distribution of sectoral 412 

emissions is correct), (2) the scaling factors are to be applied equally to all sectors in a grid cell. These 413 

assumptions are adequate when the sectors are spatially separated but are more prone to error when they 414 

spatially overlap. Figure 9 also shows the averaging kernel sensitivities of emission sectors (diagonal 415 

terms of 𝑨𝑨𝒓𝒓𝒓𝒓𝒓𝒓 derived from Equations (8) and (10)), measuring the ability of the inversion to optimize 416 

different emissions sectors, and the DOFS for each inversion summed over the region. Wetland methane 417 

emissions are optimized separately as will be discussed in Section 3.3. 418 

 419 

Inspection of the DOFS shows that the in situ observations are more effective than GOSAT for optimizing 420 

US anthropogenic methane emissions (DOFS=41 vs. DOFS=22) and this applies to all sectors (Figure 9). 421 

The averaging kernel sensitivities panel in Figure 9 shows that US results from the joint GOSAT + in situ 422 

inversion are mostly determined by the in situ observations. The joint GOSAT + in situ inversion increases 423 

anthropogenic US emissions from 28 Tg a-1 in the prior EPA GHGI to 36 Tg a-1, with most of the increase 424 

driven by oil/gas sources in the central US. Averaging kernel sensitivity for major sectors is large (0.63-425 

0.93), indicating that the posterior estimates are mostly determined by the observations rather than by the 426 

prior estimates. The underestimate of oil/gas emissions in the EPA GHGI has been reported before in 427 

local observations and higher-resolution inversions (Miller et al., 2013; Turner et al., 2015; Alvarez et al., 428 

2018; Cui et al., 2019; Maasakkers et al., 2020). 429 

 430 

The in situ observations are also more effective than GOSAT in optimizing anthropogenic methane 431 

emissions in Canada (DOFS=21 vs. DOFS=6), particularly in Alberta where oil/gas emissions are high 432 

(Fig.8). This reflects in part our exclusion of GOSAT data poleward of 60°N. Oil/gas emissions in Canada 433 
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increase by a factor of 2 in the GOSAT + in situ inversion to 4.5 Tg a-1 compared to UNFCCC prior 434 

estimate, with an averaging kernel sensitivity of 0.57 (Fig.9). Total anthropogenic emissions increase 435 

from 5 Tg a-1 to 8 Tg a-1. 436 

 437 

In situ and GOSAT observations show comparable ability in optimizing the total anthropogenic emissions 438 

in Europe (DOFS=16~18). They agree that prior anthropogenic methane emissions are too high in 439 

northern Europe but disagree in southern Europe. Averaging kernel sensitivities from the insitu-only 440 

inversion are slightly weaker than for the US and Canada because of the lower density of in situ sites. The 441 

Integrated Carbon Observation system (ICOS) network (https://www.icos-cp.eu/, last access: 17 July 442 

2020) has increased substantially the number of available methane observations in Europe since 2017 so 443 

that future inversions should expect a stronger constraint from in situ observations. Total European 444 

anthropogenic emissions decrease from 27 Tg a-1 to 23 Tg a-1 in the GOSAT + in situ joint inversion, with 445 

decreases for all sectors but this may reflect the inability of our 4°× 5° resolution to effectively separate 446 

emission sectors.  447 

 448 

The only other region where in situ observations provide significant information is China, though the 449 

corresponding DOFS=13 is less than for GOSAT (DOFS=22). Both inversions agree that emissions must 450 

be greatly decreased from the prior estimate, and the joint inversion (DOFS=28) has stronger power in 451 

doing so. The posterior 2010-2017 Chinese anthropogenic emission is 43 Tg a-1 in the joint inversion, 452 

compared to 63 Tg a-1 in the prior estimate. Our results agree with a recent study by Janardanan et al. 453 

(2020), which also used GOSAT and surface observations to estimate a mean 2011-2017 anthropogenic 454 

methane emission in China of 46±9 Tg a-1. The downward correction is mainly driven by a 40% decrease 455 

in coal emissions from 19 Tg a-1 to 11 Tg a-1 (Fig. 9). Previous inversions using the EDGAR inventory 456 

(>20 Tg a-1) as prior estimate found a similar correction (Alexe et al., 2015; Thompson et al., 2015; Turner 457 

et al., 2015; Maasakkers et al., 2019; Miller et al., 2019). In our case, the prior estimate of coal emissions 458 

(19 Tg a-1) is the value reported by China to the UNFCCC and we find that it is still too high. A recent 459 

inventory by Sheng et al. (2019) gives a coal emission estimate of 15 Tg a-1 for China in 2010-2016.  460 

 461 

3.3 Wetland methane emissions 462 

The inversion optimizes wetland emissions for the 14 regions of Figure 3 and for 96 individual months 463 

covering 2010-2017, amounting to 1344 state vector elements. Results from the in-situ-only, GOSAT-464 

only, and GOSAT + in situ inversions yield DOFS of 221, 183, and 301 respectively. In situ observations 465 

provide more information for boreal wetlands while GOSAT dominates for tropical wetlands.  466 

 467 

Zhang et al. (2020a) give a detailed analysis of GOSAT-only inversion results for tropical wetlands. Here 468 

we analyzed further the boreal/temperate North America wetlands, where in situ observations provide 469 

significant added information (Figure 10). Both in situ and GOSAT observations agree that the prior 470 

WetCHARTs emissions are too high. The posterior estimates from the GOSAT + in situ inversion are 4.5 471 

and 2.0 Tg a-1 for boreal and temperate North America, respectively, compared to 12.8 and 6.9 Tg a-1 in 472 

https://www.icos-cp.eu/
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WetCHARTs. Posterior boreal wetland CH4 emissions for North America are on the lower end but within 473 

the WetCHARTs estimates (WetCHARTs models range 3~33 Tg a-1); however, posterior temperate CH4 474 

emissions for North America are outside the WetCHARTs range (3~12 Tg a-1). The correction for boreal 475 

North America is particularly large in May-June, which can potentially be attributed to suppression of 476 

wetland emissions by either snow cover (Pickett-Heaps et al., 2011) or frozen soils (Zona et al., 2016). 477 

The WetCHARTs emission overestimate for temperate North America (mainly coastal wetlands in the 478 

eastern US) has been reported before from inversions using aircraft data (Sheng et al., 2018) and GOSAT 479 

data (Maasakkers et al., 2020).  480 

 481 

3.4 Anthropogenic methane emission trends 482 

Figure 11 presents the 2010-2017 trends (% a-1) of anthropogenic methane emissions from the three 483 

inversions, and the corresponding averaging kernel sensitivities. The GOSAT + in situ inversion has a 484 

DOFS = 161 for quantifying the spatial distribution of the trends. Most of that information is from GOSAT 485 

(DOFS = 122) but in situ observations add significant information. Information from in situ observations 486 

is concentrated in the US, Canada, Europe, and China. Table 2 summarizes the trends for the four regions. 487 

Figure 12 shows the trends disaggregated by sectors, using the same procedure as for Figure 9.  488 

 489 

In situ observations provide stronger constraints than GOSAT on anthropogenic emission trends in the 490 

US (DOFS=29 vs. DOFS=12). They agree on the upward trend in the eastern US as also found in 491 

Maasakkers et al. (2020) which used GOSAT in a high resolution inversion to interpret methane trends in 492 

the US in 2010-2015. However, they show opposite trends (positive trend from in-situ-only inversion but 493 

negative from GOSAT-only inversion) in total emissions and in the central south US (Table 2, Fig. 11). 494 

The GOSAT + in situ joint inversion (DOFS=31) estimates that US anthropogenic methane emissions 495 

increased by 0.4 Tg a-1 a-1 (1.1% a-1) from 2010 to 2017, with the largest contribution from oil/gas 496 

emissions (0.3 Tg a-1 a-1, 2.5% a-1). This posterior trend is much smaller than previous studies showing 497 

large increases in US oil/gas emissions (2.1–4.4 Tg a-1 a-1) inferred from ethane/propane levels (Franco 498 

et al., 2016; Hausmann et al., 2016; Helmig et al., 2016), but is more consistent with a recent study by 499 

Lan et al. (2019) of 0.3±0.1 Tg a-1 a-1 in 2006-2015 based on long-term in situ measurements. The 500 

inversion also reveals rising emissions from oil/gas in the central south US, including the Permian Basin 501 

which is currently the largest oil-producing basin in the US (Zhang et al., 2020b).  502 

 503 

We find that anthropogenic emissions in Canada decrease over the 2010-2017 period by 0.2 Tg a-1 a-1 504 

(2.5% a-1) in the GOSAT + in situ joint inversion, mostly driven by oil/gas emissions in Alberta and 505 

livestock emissions (Figs. 11-12). Anthropogenic emissions in Europe decrease by 0.4 Tg a-1 a-1 (1.7 % a-506 
1).  507 

 508 

All three inversions show increases of Chinese anthropogenic methane emissions over 2010-2017 by 0.1-509 

0.4 Tg a-1 a-1 (0.3-0.9% a-1), but the spatial patterns and source attributions are different. The largest 510 

difference is for coal mining emissions in the North China Plain, where in situ observations indicate a 511 
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decrease of -0.8 Tg a-1 a-1 while GOSAT shows an increase of 0.1 Tg a-1 a-1. A previous GOSAT inversion 512 

study found a large increase of coal mining emissions in China over 2010-2015 (Miller et al., 2019). 513 

However, a recent bottom-up inventory estimates that Chinese coal emission peaked in 2012 and 514 

decreased afterward, leading to no significant overall trend for 2010-2016 (Sheng et al., 2019). Our 515 

inversion assumes linear trends in emissions over 2010-2017 but that may not be appropriate for China. 516 

 517 

3.5 Global methane budget for 2010-2017 518 

Table 1 shows the optimized global anthropogenic emissions from different sectors as determined by the 519 

joint GOSAT + in situ inversion. Corrections to the global prior estimates are mostly determined by 520 

GOSAT (Fig. 8). They include upward corrections to livestock and rice methane emissions, and 521 

downward correction to the coal mining emissions driven by overestimation in China. The joint inversion 522 

also estimates a global increase in anthropogenic emissions by 1.7±0.6 Tg a-1 a-1 (0.5% a-1) in 2010-2017, 523 

dominantly driven by trends in the tropics (Fig. 11).  524 

 525 

A number of previous studies have analyzed surface observations to interpret global methane budgets and 526 

trends (Dlugokencky et al., 2009; Bruhwiler et al., 2014; Houweling et al., 2017). As shown in Figure 6, 527 

our in-situ-only inversion can fit the GOSAT observations of global methane distribution and trend, 528 

indicating that the in situ data provide useful information on the global budget. Here we examine whether 529 

this information adds to that from GOSAT. For this purpose and following Maasakkers et al. (2019), we 530 

collapse the full state vector to a reduced state vector (𝒙𝒙�𝒓𝒓𝒓𝒓𝒓𝒓) that contains global mean methane emissions 531 

and OH as elements, and derive the associated error covariance matrix (𝑺𝑺�𝒓𝒓𝒓𝒓𝒓𝒓) as introduced in Section 532 

2.4.  533 

 534 

Figure 13 shows the joint probability density functions (PDFs) of the mean anthropogenic methane 535 

emissions and methane lifetime against oxidation by tropospheric OH from the three inversions. There is 536 

strong negative correlation (r=-0.72) between the optimization of methane emissions and OH in the 537 

GOSAT-only inversion, and somewhat less in the in-situ-only inversion (r=-0.53), although the posterior 538 

error variance is larger due to the lower data density as indicated by the axes of the ellipses. A sensitivity 539 

inversion using only the surface and tower measurements in the in-situ-only inversion yields r=-0.37 540 

(Fig.13b). It indicates that in situ observations, in particular surface and tower measurements, are more 541 

effective than the satellite observations in constraining methane emissions independently from the sink 542 

by OH. A likely reason is that surface measurements in source regions are more sensitive to methane 543 

emissions than are column measurements. We also find that the in-situ-only inversion yields a larger 544 

interannual variability of posterior OH concentrations and thus methane lifetime than the GOSAT-only 545 

inversion (Fig.7b and Fig.S4). This is because the number and location of the observations varies from 546 

year to year, particularly for aircraft campaigns and ship cruises. 547 

 548 

Comparison of the posterior PDFs between the GOSAT-only and in-situ-only inversions implies that the 549 

two are inconsistent in optimizing global methane budgets, since the 99% probability contours do not 550 
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overlap (Fig.13a). A possible cause is that the posterior error covariance matrix underestimates the actual 551 

error variance due to its assumption of independent identically distributed (IID) observational errors 552 

(Brasseur and Jacob, 2017), and this would particularly affect the global budget which sums emission 553 

results for individual grid cells. Remarkably, the solution from the GOSAT + in situ joint inversion is 554 

more in agreement with in situ observations than GOSAT, and does not lie between these two solutions. 555 

Inspection of Figure 6c shows that the GOSAT-only inversion is biased low relative to in situ observations 556 

at northern mid-latitudes and biased high in the southern hemisphere, implying that both emissions and 557 

OH concentrations are too low. On the other hand, Figure 6f indicates either underestimation of emissions 558 

or overestimation of OH concentrations in the in-situ-only inversion, and the former one is more likely as 559 

GOSAT measurements used here are over land which should be more sensitive to emissions than OH loss. 560 

Ingestion of both observations in the GOSAT + in situ inversion thus enhances both the methane emissions 561 

and OH concentrations compared to the in-situ-only and GOSAT-only inversion to correct these biases. 562 

It also narrows the posterior error of mean anthropogenic emissions and methane lifetime against 563 

tropospheric OH by 20% and 50% compared to the GOSAT-only and in-situ-only inversions, respectively 564 

(Fig. 13a). Thus we find that the GOSAT and in situ observations are complementary in quantifying the 565 

global budget.  566 

 567 

Table 3 summarizes the global mean methane budget in 2010-2017. The GOSAT + in situ joint inversion 568 

estimates a total methane emission of 551 Tg a-1, of which 371 Tg a-1 are anthropogenic, and a total sink 569 

of 529 Tg a-1. The total emission is within the 550-594 Tg a-1 range of top-down estimates but lower than 570 

the 594-881 Tg a-1 range of bottom-up estimates reported for the 2008-2017 decade by the Global Carbon 571 

Project (Saunois et al., 2020). Our joint inversion yields a methane lifetime against OH oxidation of 11.2 572 

years, consistent with the observationally-based estimate of 11.2±1.3 years (Prather et al., 2012), and 573 

pushes the northern to southern hemispheric OH ratio (1.06 in GOSAT + in situ inversion versus 1.16 in 574 

prior estimate) closer to the values of 0.97±0.12 inferred from methyl chloroform observations (Patra et 575 

al., 2014). 576 

 577 

We examine in Figure 13b the sensitivity of the global methane budget optimization to the choice of 578 

different regularization parameter 𝛾𝛾  (and therefore observation error 𝑺𝑺𝑶𝑶 ) and prior error of methane 579 

emission trends and OH concentrations. We find that reducing 𝛾𝛾 or prior errors of trend and OH by 50% 580 

yields consistent estimates of anthropogenic emissions and OH concentrations as compared to the default 581 

inversion, with differences within 3%. Decreasing the weighting of observations in the inversion (i.e. 582 

assuming larger observation error) enlarges the posterior error and pushes the posterior estimates closer 583 

to the prior estimates. Assuming a lower prior error for OH concentration from 10% to 5% results in lower 584 

methane lifetime (closer to the prior) and higher emissions, and also reduces the error correlation between 585 

the optimization of methane emissions and OH, while assuming a lower prior error for non-wetland 586 

emission trends leads to an opposite effect. Our results are consistent with Maasakkers et al. (2019), which 587 

shows that different assumptions of error distribution and magnitude tin their analyses have relatively 588 

small results. We also find that having the shipboard and aircraft measurements in the in-situ-only 589 
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inversion pushes the estimate to be more consistent with the GOSAT-only inversion (Fig.13b), implying 590 

that the shipboard and aircraft measurements by emphasizing the methane in the remote atmosphere play 591 

a similar role as satellite measurements in global methane budget optimization. 592 

 593 

4 Conclusions 594 

We quantified and attributed global sources, sinks, and trends of atmospheric methane for 2010-2017 by 595 

inversions of GOSAT satellite data and the GLOBALVIEWplus in situ methane observations from surface 596 

sites, towers, ships, and aircraft. The inversions use an analytical solution to Bayesian optimization 597 

problem including closed-form error covariance matrices from which the detailed information content of 598 

the inversion can be derived. We conduct inversions using GOSAT and in situ data separately and 599 

combined. In this manner we are able to quantify the consistency and complementarity (or redundancy) 600 

of the satellite and in situ observations. 601 

 602 

We find that the GOSAT-only inversion can generally fit the in situ data and the in-situ-only inversion 603 

can generally fit the GOSAT data, indicating consistency between the two data sets. However, the 604 

GOSAT-only inversion has difficulty fitting the in situ observations in source regions (US and Europe), 605 

while -the in-situ-only inversion cannot reproduce the interannual variability of the methane growth rate 606 

due to the heavy weighting of in situ data to northern mid-latitudes. The GOSAT + in situ inversion shows 607 

the best fit to the ensemble of observations. 608 

 609 

GOSAT and in situ observations have complementarity in constraining global emissions. GOSAT 610 

provides stronger constraints than in situ observations for the tropics, while in situ observations are more 611 

important in the US, Canada, Europe, and northern China where observations are most dense. The 612 

GOSAT-only and in-situ-only inversions also show consistent corrections to regional methane emissions 613 

in the US, Europe, and China. The joint GOSAT + in situ inversion indicates large underestimates of 614 

oil/gas emissions in the US and Canada, and large overestimates of coal emissions in China, relative to 615 

the national inventories reported to the United Nations Framework Convention on Climate Change 616 

(UNFCCC) and used here as prior estimates for our inversions. Emissions from boreal wetlands are 617 

overestimated in the mean WetCHARTs inventory used as prior estimate, particularly in May-June when 618 

snow cover and frozen soils inhibit methane emission.  619 

 620 

Our inversions indicate increasing trends in US anthropogenic emissions driven by oil/gas production but 621 

decreasing trends in Canada (oil/gas) and Europe. Joint inversion of GOSAT + in situ data shows a weak 622 

decreasing trend in Chinese coal emissions for 2010-2017, consistent with a recent bottom-up inventory 623 

(Sheng et al., 2019).  624 

 625 

We find that GOSAT and in situ observations are also complementary in constraining the global methane 626 

budget. While the global budget information relies more on GOSAT observations, information from the 627 

in situ observations at northern mid-latitudes avoids the large error correlations between methane 628 
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emissions and sink from OH and also corrects the underestimation of both emission and OH in the 629 

GOSAT-only inversion. Our joint GOSAT + in situ inversion yields global methane emissions and loss of 630 

551 and 529 Tg a-1 a-1 averaged over 2010-2017, and a methane lifetime of 11.2 years.  631 

 632 

Our study presents a framework to integrate satellite and in situ data in analytical inversions. We conclude 633 

that on the basis of the present observation system, in situ and satellite observations are complementary 634 

for constraining global methane budgets and regional emissions. Satellite observations of atmospheric 635 

methane are presently expanding with the new availability of global daily data from the TROPOMI 636 

instrument launched in October 2017 (Hu et al., 2018). This will call for re-evaluating the role of in situ 637 

observations for constraining regional and global methane budgets, as can be done with the methods 638 

presented here. In situ observations will in any case continue to play a critical role for documenting long-639 

term trends of methane with consistent calibration, for observation of oceanic and polar regions where 640 

satellites have limited capability, for high-frequency measurements in source regions giving insight into 641 

the magnitude and intermittency of local emissions, and for independent validation of satellite-based 642 

inversions.  643 

 644 

Data availability 645 

The GLOBALVIEWplus CH4 ObsPack v1.0 data product is available at 646 

https://www.esrl.noaa.gov/gmd/ccgg/obspack/data.php?id=obspack_ch4_1_GLOBALVIEWplus_v1.0_647 

2019-01-08 (last access: July 17, 2020). The GOSAT proxy satellite methane observations are available 648 

at https://doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb (last access: July 17, 2020). Modeling 649 

data can be accessed by contacting the corresponding authors Xiao Lu (xiaolu@g.harvard.edu) and 650 
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Table 1. Global sources and sinks of atmospheric methane, 2010-2017a.  969 

 Prior b Posterior c  
Total sources [Tg a-1] 533 551 

Natural Sources   
Wetlands 161 148 
Open fires 14 16 
Termites 12 14 
Seeps 2 2 
Anthropogenic sources   
Livestock 117 136 
Oil 42 40 
Natural gas 25 30 
Coal mining 31 23 
Rice cultivation 38 44 
Wastewater 37 42 
Landfills 30 31 
Other Anthropogenic 25 25 

   
Total Sinks [Tg a-1] 540 529 

Tropospheric OH 468 456 
Stratospheric loss d 33 33 
Soil uptake d 34 34 
Tropospheric Cl d 5 5 

a 8-year mean values for 2010-2017. 970 
b Prior natural source estimates (2000-2017 means) are from Bloom et al. (2017) for wetlands, Etiope et al. (2019) and 971 
Hmiel et al. (2020) for seeps, Fung et al. (1991) for termite emissions, van der Werf et al. (2017) for open fire emissions. 972 
Prior anthropogenic source estimates for 2012 are from EDGAR v4.3.2 (Janssens-Maenhout et al., 2017) except from 973 
Scarpelli et al. (2020) for fuel exploitation (oil, gas, coal), and are overwritten for the US with the gridded EPA inventory 974 
of Maasakkers et al. (2016). The prior tropospheric OH concentration field is from Wecht et al. (2014) and yields a 975 
methane lifetime against oxidation by tropospheric OH of 10.6 years. 976 
c From the joint inversion of GOSAT and in situ data 977 
d These minor sinks are not optimized by the inversion. 978 
  979 
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Table 2. Anthropogenic methane emissions and trends, 2010-2017 a 980 

Inversions In-situ-only 
inversion 

GOSAT-only 
inversion 

GOSAT+in situ 
inversion 

US b (prior: 28 Tg a-1) 
Posterior (Tg a-1) 35 31 36 
2010-2017 trend (Tg a-1 a-1) 0.5 -0.1 0.4 
    

Canada (prior: 5 Tg a-1) 
Posterior (Tg a-1) 8 5 8 
2010-2017 trend (Tg a-1 a-1) -0.2 -0.0 -0.2 
    

Europe c (prior: 27 Tg a-1) 
Posterior (Tg a-1) 28 17 23 
2010-2017 trend (Tg a-1 a-1) 0.1 -0.6 -0.4 
    

China (prior: 63 Tg a-1) 
Posterior (Tg a-1) 45 46 43 
2010-2017 trend (Tg a-1 a-1) 0.3 0.4 0.1 

a Posterior estimates of mean 2010-2017 emissions and trends for the in-situ-only, GOSAT-only, and GOSAT + in situ 981 
joint inversions. 982 
b Including contiguous US and Alaska. 983 
c Europe is defined as west of 30oE, excluding Russia. 984 
 985 
 986 
  987 
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Table 3. Optimized global methane budget, 2010-2017. 988 
 989 

Inversions In-situ-only 
inversion 

GOSAT-only 
inversion 

GOSAT+in situ 
inversion 

Total sources [Tg a-1] 515 504 551 
Anthropogenic a 359 333 371 
Seeps, termites 15 15 16 
Open fires 15 16 16 
Wetlands 126 140 148 

Total sinks [Tg a-1] 496 480 529 
Tropospheric OHb   423 408   456 

Other losses c 73 72 73 
Mean imbalance [Tg a-1] 19 24 22 

a See Table 1 for sectoral breakdown from the joint inversion. 990 
b Methane lifetime against oxidation by tropospheric OH is 11.2±0.1 years in the GOSAT + in situ inversion. 991 
c Soils, stratosphere, and oxidation by tropospheric Cl. 992 
  993 
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 994 
 995 
Figure 1. Analytical inversion framework. The inversion is applied to GOSAT and GLOBALVIEWplus 996 
in situ observations for 2010-2017. GEOS-Chem is the chemical transport model (CTM) used as forward 997 
model for the inversion. γ is a regularization factor in the Bayesian cost function (see text). 998 
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 1000 
 1001 
 1002 

Figure.2 Mean 2010-2017 methane observations from the GLOBALVIEWplus ObsPack data product 1003 
and from GOSAT. The GLOBALVIEWplus in situ data are local dry mixing ratios and are averaged over 1004 
the 4°×5° model grid for visibility. The GOSAT data are dry column mixing ratios on a 1°×1° grid from 1005 
the University of Leicester version 9 Proxy XCH4 retrieval (Parker et al., 2020), excluding observations 1006 
over oceans and poleward of 60°N. Note the difference in color scale between panels. 1007 
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 1009 

Figure 3. Prior estimates of mean 2010-2017 methane emissions. The top panel shows the non-wetland 1010 
emissions on the 4o×5o grid used for the inversion. The bottom panel shows the wetland emissions and 1011 
the 14 subcontinental wetland regions used for the inversion following Bloom et al. (2017). 1012 
  1013 
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 1014 

 1015 
Figure 4. Optimization of the regularization parameter γ in the Bayesian cost function (Equation (1)). 1016 

The figure shows the posterior observation component 𝐽𝐽𝑂𝑂(𝒙𝒙�) = (𝒚𝒚 − 𝑲𝑲𝒙𝒙�)𝑇𝑇𝑺𝑺𝑶𝑶−1(𝒚𝒚 − 𝑲𝑲𝒙𝒙�) and the 1017 
posterior state component 𝐽𝐽𝐴𝐴(𝒙𝒙�) = (𝒙𝒙� − 𝒙𝒙𝑨𝑨)𝑻𝑻𝑺𝑺𝑨𝑨−𝟏𝟏(𝒙𝒙� − 𝒙𝒙𝑨𝑨)  for the insitu-only and GOSAT-only 1018 
inversions.  1019 
  1020 
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 1021 

 1022 

 1023 
 1024 
Figure 5. Ability of the inversions to fit the in situ methane observations. Panels (a)-(d) compare the 1025 
surface, tower, shipboard, and aircraft observations in 2010-2017 to the GEOS-Chem simulation using 1026 
the prior (black) and posterior estimates of methane emissions and OH concentrations from the in-situ-1027 
only inversion (red, dots not shown), GOSAT-only inversion (blue dots not shown), and GOSAT + in situ 1028 
joint inversion (purple). The numbers (N) of observations from each platform, the mean bias (MB), and 1029 
the correlation coefficients (r) between the observed and simulated values are shown inset.  1030 
  1031 
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 1032 

 1033 

 1034 
Figure 6. Ability of the inversions to fit the in situ methane observations and GOSAT satellite 1035 
observations. Panels (a)-(d) show the monthly time series of the differences between observed and 1036 
simulated in situ methane concentrations averaged over different latitude bands from 2010 to 2017. Panels 1037 
(e)-(h) are the same as panels (a)-(d) but for GOSAT methane concentrations. 1038 
 1039 
  1040 
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 1041 

 1042 
Figure 7. (a) Annual global growth rate of atmospheric methane, 2010-2017. Results from our three 1043 
different inversions (in-situ-only, GOSAT-only, GOSAT + in situ) are compared to the observed growth 1044 
rates inferred from the NOAA surface observational network 1045 
(https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/, last access: 20 June, 2020). Mean annual growth rates 1046 
and standard deviations from the different inversions are shown inset. (b). Methane lifetime against 1047 
oxidation by tropospheric OH, 2010-2017, from the three different inversions. Mean lifetime and standard 1048 
deviations are shown inset. The methane lifetime in the prior estimate is 10.6 years. 1049 
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 1051 

 1052 
Figure 8. Optimization of mean 2010-2017 non-wetland (mainly anthropogenic) emissions. The in-situ-1053 
only inversion uses in situ observations, the GOSAT-only inversion uses GOSAT satellite observations, 1054 
and the GOSAT + in situ inversion uses both. The left panels show the averaging kernel sensitivities 1055 
(diagonal elements of the averaging kernel matrix) for each inversion, with the degrees of freedom for 1056 
signal (DOFS, defined as the trace of the averaging kernel matrix) given inset. The right panels show the 1057 
correction factors to the prior emissions (Figure 3a). Wetland emissions are corrected separately (see text).  1058 
  1059 
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 1060 

Figure 9. Optimization of anthropogenic methane emissions by source sectors in the in-situ-only, 1061 
GOSAT-only, and GOSAT + in situ inversions. The left panel shows the averaging kernel sensitivities for 1062 
each emission sector (see text for description), the right panel shows the emissions. Europe is defined as 1063 
west of 30oE, which excludes Russia.  1064 
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 1066 
Figure 10. Wetland emissions in boreal and temperate North America (regions 2 and 3 of Figure 3). Prior 1067 
and posterior estimates of the monthly mean wetland emissions averaged over 2010-2017 from different 1068 
inversions are shown. Annual mean emissions and the degree of freedom for signal (DOFS) for monthly 1069 
emissions in individual years are shown inset. Note differences in scale between panels. Negative 1070 
emissions are allowed statistically by the inversion but are likely not physical. 1071 
  1072 
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 1073 
 1074 
Figure 11. Same as Figure 8 but for optimization of non-wetland (mainly anthropogenic) emission trends 1075 
(% a-1) in 2010-2017. 1076 
  1077 
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 1078 

Figure 12. Optimization by sector of regional anthropogenic methane emission trends in 2010-2017. Bars 1079 
and diamonds represent trends in Gg a-1 a-1 (bottom axis) and % a-1 (top axis) over the 2010-2017 period 1080 
from the GOSAT + in situ joint inversion.  1081 
  1082 
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 1083 
 1084 

 1085 
Figure 13. Joint probability density functions (PDFs) of global mean anthropogenic methane emission 1086 
and methane lifetime against oxidation by tropospheric OH optimized by different inversions. Panel (a) 1087 
shows the results from the prior and the three base inversions. The prior estimates are shown in grey with 1088 
bars representing the prior error standard deviation. The thick contours show probabilities of 0.99 1089 
(outermost), 0.7, 0.5, 0.3, and 0.1 (innermost). The error correlation coefficients are given inset. Panel (b) 1090 
shows the 0.99 probability contours from the three base inversions along with the same contours for ten 1091 
additional sensitivity inversions using reduced values of the regularization parameter γ (0.05 instead of 1092 
0.1 for GOSAT, 0.5 instead of 1 for in situ); reduced errors for the methane emission trends on the 4°×5° 1093 
grid (5% a-1 instead of 10% a-1); reduced errors on annual hemispheric mean OH concentrations (5% 1094 
instead of 10%); or surface and tower data only in the in-situ-only inversion. 1095 
 1096 


