
Dear Dr. Patrick Jöckel, 
Thank you very much for handling our manuscript. Please find below our 
itemized responses to the reviewers’ comments and a marked-up manuscript. We 
have addressed all the comments raised by both reviewers and incorporated them 
in the revised manuscript. We believe this work will be an important contribution 
to the community. 

Thank you for your consideration. 

Sincerely, 
Xiao Lu et al. 

----------------------------------------------------------- 
Reviewer #1 Dr. Julia Marshall 
Comment [1-1]: This paper presents an analysis of the global methane budget and trend from 2010-
2017 by simultaneously optimizing the source distributions, the OH sink (through hemispheric 
scaling factors), and linear trends using an analytical inversion approach with the GEOS-Chem 
model. Overall it is clearly written and structured and the figures are sufficiently clear and complete. 
From the subject matter it fits well within the scope of ACP. 

At first glance this paper seems extremely similar in approach and content to Maasakkers et al. 
(2019) who used a very similar setup with the same model over an overlapping period (2010-2015) 
to do basically the same thing. The main difference that I can see is that here surface measurements 
are also included as a data constraint in order to show their complementarity (and consistency). 
Response [1-1]: We thank Dr. Julia Marshall for the positive and valuable comments. All of 
them have been implemented in the revised manuscript. 

As mentioned by the reviewer, the main improvement in our work relative to Maasakkers 
et al. (2019) is adding the in situ observations in the analytical inversion framework, 
comparing their ability and result with the satellite-based inversion, and quantifying the 
maximum information from the joint inversion. Such information is extremely important for 
a better understanding of the methane budgets and for the design of methane observing 
systems, yet it has not been addressed in previous studies to the best of our knowledge. In 
addition, our analytical inversion as done here implements a number of improvements to the 
Maasakkers et al. (2019) methodology, including in particular (1) separate optimization of 
subcontinental wetland emissions from other emission sectors to resolve their seasonal and 
interannual variability; (2) optimization of annual hemispheric OH concentrations rather 
than mean value of the period. Achieving these improvements increases the number of state 
vectors (and therefore computational costs) by 60%. We believe this work delivers sufficiently 
novel and important knowledge to the community. 

Comment [1-2]: There’s something a bit worrying showing up in Figure 6. Figure 6 seems to show 
that the both the in-situ-only and GOSAT-only inversions overestimate concentrations in the 
southern hemisphere and underestimate them in the northern hemisphere (more in the mid-latitudes 
in NH than in the Arctic). Interestingly, this consistent latitude-dependent bias does not seem to be 
present in the priors, or at least not as strongly. (Note that the 60-90N and 60-90S curves are more 



or less on top of each other when compared to the observations for the prior runs.) The fact that they 
then diverge so systematically after optimisation seems to imply that something is going wrong with 
the OH hemispheric optimisation - or is there another explanation? 

Interestingly this pattern appears least distinct when considering the in-situ-only posterior 
sampled at GOSAT locations, whereas it is most pronounced in the GOSAT-only posterior. Can you 
explain this? Does this have something to do with the seasonal latitudinal coverage of the GOSAT 
measurements? In the comparison of the GOSAT-informed concentrations (both with and without 
the in-situ data) to the ObsPack measurements (panels 6c and 6d, less evident in 6b) there seems to 
be almost an temporal anti-correlation in the model-data mismatch between the 30-60N stations and 
the 60-90N stations. 

It seems to represent a systematic error in the interhemispheric gradient, which can be 
explained through either the distribution of the sink, the distribution of the sources, or errors in the 
transport – or most likely a combination of all three. However as both the sink and the sources are 
being optimised, it seems surprising that such a zonally dependent offset is emerging. Even if there 
are transport errors (and there always are), I would expect a solution to emerge that was consistent 
with the interhemispheric gradient of the measurements. Of course the OH sink is only being 
optimised as a hemispheric scaling: might this reflect a problem in the spatial or temporal 
distribution that is being scaled? Still, usually the fluxes will adapt to compensate, provided they 
have sufficient flexibility. The fact that Zhang et al. (2018) found the inversion results to be not so 
sensitive to different OH fields suggests that this is not the case. 

Some explanation of the source of this systematic error should be included. The only mention 
of transport errors is the claim that the regularisation factor gamma should help account for error 
correlations in the observations due to transport and source aggregation errors. Interestingly this 
does not seem to appear in the very similar simulations from the same group with a similar set-up, 
as seen in Figure 3d of Maasakkers et al. (2019). 
Response [1-2]: Thank you very much for pointing this out. We figure out that the hemispheric 
bias as shown in the original Figure 6 is because the posterior hemispheric OH scaling factors 
were not correctly implemented in the posterior model simulation. We have corrected the 
implementation, rerun the posterior model simulation, and updated Figures 5-7 and Tables 1 
and 3 in the text. As shown in the updated Figures 6b and 6g, the latitude-dependent bias 
between the observed and modeled methane concentration has been corrected for the ingested 
methane observations, indicating that there is no systematic error in the inversion. The 
updates do not influence the analyses or conclusions. We apologize for the confusion. 

Figure 6f shows that the in-situ-only inversion biases low to GOSAT observations, and 
Figure 6c shows that the GOSAT-only inversion overestimates in-situ observations in the 
Southern Hemisphere while underestimates them in the Northern Hemisphere. These 
discrepancies, as already presented in the original texts and figure, do not reflect systematic 
error in the inversion, but rather provide insights on the consistency and complementarity 
between the two observations in the methane inversion, as analyzed in Section 3.5 and in 
[Response #1-3]. We have revised the text to clarify.  
 We now state in Section 3.1 “…The in-situ-only inversion effectively corrects this bias 
and its trend, and also significantly improves the correlations across all platforms. The 
GOSAT-only inversion performs comparably in correcting the 2010-2017 trend for the 
independent in-situ data (Fig.6c) and bias for background observations (e.g. aircraft 



observations in the Southern Hemisphere (Fig.S2)), but there is a low bias at northern mid-
latitudes reflecting surface and tower data in North America and Europe. As we will see, the 
in situ observations are important for optimizing emissions in these regions. 
 
… The GOSAT-only inversion corrects the bias and trend in the prior simulation at all 
latitudes. The in-situ-only inversion corrects the trends, but biases low to the GOSAT 
observations by about 10 ppbv with larger bias in the Southern Hemisphere due to the sparsity 
of in situ observation there. The comparison suggests that in situ and GOSAT observations 
are largely consistent for informing the global methane change but also have some 
complementarity for the inversion….”  
  

 
Figure 6. Ability of the inversions to fit the in situ methane observations and GOSAT satellite 
observations. Panels (a)-(d) show the monthly time series of the differences between observed and 
simulated in situ methane concentrations averaged over different latitude bands from 2010 to 2017. 
Panels (e)-(h) are the same as panels (a)-(d) but for GOSAT methane concentrations. 
 
 
Comment [1-3]: Perhaps the most interesting (while also troubling) result is in Figure 13: the 
negative correlation between methane lifetime and estimated (anthropogenic) emissions is not in 
and of itself surprising. What is surprising is the fact that none of the three solutions are in any way 
consistent with each another. This can be explained by an underestimating of the posterior error 
covariances, as the authors do in L505-509. The fact that the GOSAT+in situ result does not lie 
somehow between the GOSAT-only and in-situ-only result is, however, worrying. The authors 
suggest that this is due to a correction of a bias in the GOSAT-only inversion by ingesting the in-
situ measurements. This bias was diagnosed as being in both the OH (too low, because the methane 
in the SH was overestimated) and the fluxes (too low, because the methane in the NH mid-latitudes 
was underestimated). From this perspective it makes some sense that it would correct in the direction 
that it did, but why would it overshoot the in-situ-only solution? Is there some fundamental 
inconsistency in the two types of measurements (or an error in the model) that makes it impossible 
to match them both simultaneously? 

This result seems to suggest that the measurements themselves are not really consistent with 
each other, which the paper claimed to set out to test (L91-94). Thus this result seems to contradict 



the conclusion that "the GOSAT and in situ data are generally consistent and can fit each other 
independently through our inversions" (L535-536). Even if the concentrations in the different 
inversion come closer to each other, is the result really consistent if the emissions and the lifetime 
are so very divergent?  
Response [1-3]: The fact that the GOSAT+in situ result does not lie between the GOSAT-only 
and in-situ-only result (Fig.13) can be inferred from Figures 6c and 6f. Figure 6c suggests that 
both emissions and OH concentrations are too low in the GOSAT-only inversion, as the 
reviewer understands, while Figure 6f indicates either underestimation of emissions or 
overestimation of OH concentrations in the in-situ-only inversion, and the former one is more 
likely as GOSAT measurements used here are over land which should be more sensitive to 
emissions than OH loss. The GOSAT + in situ joint inversion thus has to enhance both the 
methane emissions and OH concentrations compared to the In-situ-only and GOSAT-only 
inversions to correct these biases. We have revised the text accordingly in Section 3.5 to clarify 
this issue. 

We agree with the reviewer that Figure 13 indicates that the measurements are not 
consistent with each other in optimizing the global methane budget, as stated in the original 
text (L505-506) “Comparison of the posterior PDFs between the GOSAT-only and In situ-only 
inversions implies that the two are inconsistent, since the 99% probability contour does not 
overlap (Fig.13)”. We have removed “the GOSAT and in situ data are generally consistent and 
can fit each other independently through our inversions (L535-536)” which caused confusion. 
We have revised several places to clarify that the observations are consistent in correcting 
regional methane emissions in the inversion but are less consistent in terms of informing global 
methane budgets. 

In the abstract, we now state “The in-situ-only and GOSAT-only inversions show 
consistent corrections to regional methane emissions but are less consistent in optimizing the 
global methane budget.” 

In Section 3.5, we now state “Comparison of the posterior PDFs between the GOSAT-
only and In-situ-only inversions implies that the two are inconsistent in optimizing global 
methane budgets, since the 99% probability contours do not overlap (Fig.13a). ... Remarkably, 
the solution from the GOSAT + in situ joint inversion is more in agreement with in situ 
observations than GOSAT, and does not lie between these two solutions. Inspection of Figure 
6c shows that the GOSAT-only inversion is biased low relative to in situ observations at 
northern mid-latitudes and biased high in the southern hemisphere, implying that both 
emissions and OH concentrations are too low. On the other hand, Figure 6f indicates either 
underestimation of emissions or overestimation of OH concentrations in the in-situ-only 
inversion, and the former one is more likely as GOSAT measurements used here are over land 
which should be more sensitive to emissions than OH loss. Ingestion of both observations in 
the GOSAT + in situ inversion thus enhances both the methane emissions and OH 
concentrations compared to the in-situ-only and GOSAT-only inversion to correct these biases. 
It also narrows the posterior error of mean anthropogenic emissions and methane lifetime 
against tropospheric OH by 20% and 50% compared to the GOSAT-only and in-situ-only 
inversions, respectively (Fig. 13a). Thus we find that the GOSAT and in situ observations are 
complementary in quantifying the global budget. ” 

In the conclusion, we now state “We find that the GOSAT-only inversion can generally 



fit the in situ data and the in-situ-only inversion can generally fit the GOSAT data, indicating 
consistency between the two data sets. However, …”, “The GOSAT-only and in-situ-only 
inversions also show consistent corrections to regional methane emissions in the US, Europe, 
and China.”, and “GOSAT and in situ observations have complementarity in constraining 
global emissions.” 
 
Comments [1-4]: While trying to understand this rather surprising result I realised that I would like 
to see some more figures: OH was scaled per hemisphere per year (16 state vector values). A time 
series of these scaling factors (perhaps as an additional panel or two in Figure 7?) would be 
interesting to see, rather than just an average lifetime over the whole period (similar to Figure 7d in 
Maasakkers et al. (2019)). This might also help convince me that scaling OH based on surface-based 
methane measurements alone makes sense - do the OH scaling factors in this case stay close to one 
throughout? 
    Another plot that might help convince the reader of the adequacy of the transport model and 
the improvement of the sources and sinks would be geographical (zonal + altitude?) plot of the 
model-data mismatch for aircraft data presented in Figure 5d. Even if it has to go into a supplement, 
it would be a useful piece of information for the reader to assess if this very surprising result might 
make sense. 

Once these concerns are addressed, I think the paper would be appropriate for publication in 
ACP. 
Response [1-4]: Thank you for the advice, we have added the two figures (Fig.7b and Fig.S2) 
and revised the text accordingly.  

1) We present the posterior methane lifetime (as an indicator of OH scaling factors) in 
Figure 7b. We now state in Section 3.5 “We also find that the in-situ-only inversion yields a 
larger interannual variability of posterior OH concentrations and thus methane lifetime than 
the GOSAT-only inversion (Fig.7b), due to the heterogeneous spatial and temporal 
distribution of the in situ observations.”.  



 
Figure 7. (a) Annual global growth rate of atmospheric methane, 2010-2017. Results from our three 
different inversions (In-situ-only, GOSAT-only, GOSAT + in situ) are compared to the observed 
growth rates inferred from the NOAA surface observational network 
(https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/, last access: 20 June, 2020). Mean annual growth 
rates and standard deviations from the different inversions are shown inset. (b). Methane lifetime 
against oxidation by tropospheric OH, 2010-2017, from the three different inversions. Mean lifetime 
and standard deviations are shown inset. The methane lifetime in the prior estimate is 10.6 years. 

 
2) We present the model-observation bias for aircraft data for the prior and posterior 

simulation in Fig.S2, and state in Section 3.1 “The GOSAT-only inversion performs 
comparably in correcting the 2010-2017 trend for the independent in-situ data (Fig.6c) and 
bias for background observations (e.g. aircraft observations in the Southern Hemisphere 
(Fig.S2))” 

https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/


 
Figure S2. Differences between simulated and observed aircraft methane concentrations from the 
GLOBALVIEWplus ObsPack data product using GEOS-Chem with prior estimates and with 
posterior estimates from the in-situ-only, GOSAT-only, and GOSAT + in situ inversions. 
 
Comments [1-5]: Minor comments: I would recommend adding how many independent pieces of 
information are contained in the GLOBALVIEW measurements alone to the abstract. This 
information is contained in the paper, but the way the numbers are presented in the abstract (which 
is as far as some readers get), it rather underplays the observation constraint brought about by the 
in-situ measurements alone. 
Response [1-5]: We have revised accordingly in the abstract “The in-situ-only and the GOSAT-
only inversion alone, achieve respectively 113 and 212 independent pieces of information 
(DOFS) for quantifying mean 2010-2017 anthropogenic emissions on 1009 global model grid 
elements, and DOFS of 67 and 122 for 2010-2017 emission trends. The joint GOSAT + in situ 
inversion achieves DOFS of 262 and 161 respectively for mean emissions and trends. The in 
situ data thus increase the global information content from the GOSAT-only inversion by 20-
30%.” 
 
Comments [1-6]: One point that should be added into the discussion: When looking at the ability 
of a measurement system to assess long-term trends it is critical to consider the length of time over 
which these measurements are available. In this case, the surface-based network still has an 
advantage, and does not suffer from the same comparability issues that can arise when new 
sensors/sampling are introduced. This is mentioned briefly in lines 567-568, but they are first 
mentioned as a method for satellite validation. Unless this measurements are being made across a 
profile (such as AirCore or aircraft), I cannot see how this could be the case. 
Response [1-6]: We agree. We now rephrased in the Section 3.5 “In situ observations will in 
any case continue to play a critical role for documenting long-term trends of methane with 



consistent calibration, …”. 
 
Comments [1-7]: In line 475-476 you mention in passing that your optimisation approach can only 
solve for constant linear trends over the whole inversions period, which may not be appropriate for 
China. I wonder if it is really appropriate for other regions either? This is a clear drawback to the 
choice of state vector in your analytical inversion setup, and should be more clearly stated as such. 
If you want to test if this lack of trend is consistent with the findings of Sheng et al. (2019), showing 
an increase to 2012 and a decrease afterwards, perhaps you could perform the same inversion but 
broken up into two chunks: 2010-2012 and 2013-2017. Yes, this would require new transport 
simulations, but it would be interesting to check the robustness of the other trends as well. However 
this might be beyond the scope of the current study. (Perhaps something to add to the discussion?) 
Response [1-7]: We agree, and indeed separating the inversions into two or more chunks will 
increase significantly the computational costs. We have clarified this limitation in Section 2.2: 
“The inclusion of linear trends in state vectors allows us to identify the direction of emission 
change for each 4o ×5o grid in the 8-year period, but it would not capture high-frequency 
interannual variability.” 
 
Comments [1-8]: I noticed that the panels labelled "China" and "Canada" in Figure 12 are identical. 
I suspect that they’re both showing the results for Canada? In any case, this should be checked 
carefully and corrected. 
Response [1-8]: Thanks for pointing it out. We had corrected the figure before it was posted 
on ACP Discussion. 
 
Typographical/language remarks: 
Comments [1-8]: Co-author Hartmut Boesch’s last name is misspelled. 
Response[1-8]: Corrected 
 
Comments [1-9]:L127: with largest -> with the largest 
Response[1-9]: Corrected 
 
Comments [1-10]:L162: WETCHART -> WETCHARTS 
Response[1-10]: Corrected 
 
Comments [1-11]:L169: "full-chemistry" should not be hyphenated here (not a compound adjective 
before the noun) 
Response[1-11]: Corrected 
 
Comments [1-12]:L172: closed -> close 
Response[1-12]: It has been rephrased. 
 
Comments [1-13]:L218: challenged -> challenging 
Response[1-13]: Corrected 
 
Comments [1-14]:L225: Bayesian -> The Bayesian 



Response[1-14]: Corrected 
 
Comments [1-15]:L231: underestimate -> underestimation 
Response[1-15]: Corrected 
 
Comments [1-16]:L238: change -> changes 
Response[1-16]: Corrected 
 
Comments [1-17]:L266: be somewhat deviated -> deviate somewhat; overfit -> overfitting 
Response[1-17]: It has been removed. 
 
Comments [1-18]:L278: overfit -> overfitting 
Response[1-18]: Corrected 
 
Comments [1-19]:L284: Analytical solution -> The analytical solution 
Response[1-19]: Corrected 
 
Comments [1-20]:L288: I would suggest adding a colon after "analyses" 
Response[1-20]: Corrected 
 
Comments [1-21]:L290: capitalisation of "In situ-only" seems odd. Perhaps "in-situ-only" would 
be better as a compound adjective. 
Response[1-21]: Corrected 
 
Comments [1-22]:L339: year -> years 
Response[1-22]: Corrected 
 
Comments [1-23]:L345: by year -> by the year 
Response[1-23]: Corrected 
 
Comments [1-24]:L349: has insignificant -> has an insignificant 
Response[1-24]: Corrected 
 
Comments [1-25]:L364: higher information than in situ observations -> more information than do 
in situ observations 
Response[1-25]: Corrected 
 
Comments [1-26]:L375: I guess that ".," should just be ","? 
Response[1-26]: Corrected 
 
Comments [1-27]:L392: In situ observation is -> The in situ observations are 
Response[1-27]: Corrected 
 
Comments [1-28]:L418: Thompton -> Thompson 



Response[1-28]: Corrected 
 
Comments [1-29]:L453: US -> the US 
Response[1-29]: Corrected 
 
Comments [1-30]: Figure 11: I guess this percentage change is over the full period (rather than per 
year)? This should be clarified in the caption label. It also makes it a bit hard to compare to the text, 
where % trend per year is given. I assume that this is not a compounding percentage change, but 
rather the total percentage change divided by the number of years? In any case, this should be 
clarified. 
Response [1-30]: Figure 11 shows the percentage change per year that derive directly from the 
inversions. We now state in the figure caption “Figure 11. Same as Figure 8 but for 
optimization of non-wetland (mainly anthropogenic) emission trends (% a-1) in 2010-2017.”. 
 
Comments [1-31]:L501-502: This might seem like a small thing, but this is one of the most 
interesting findings of the paper, and as such should be perfectly clear. I would suggest the following 
change in phrasing: "are more effective than the satellite observations in independently constraining 
methane emissions from the sink by OH." -> "are more effective than the satellite observations in 
constraining methane emissions independently from the OH sink." 
Response [1-31]: We have rephrased as suggested.  
 
Comments [1-32]:L553: weak -> a weak 
Response[1-32]: Corrected 
 
Comments [1-33]:L560: remove "the" 
Response[1-33]: Corrected 
 
Comments [1-34]:L561: and methane lifetime -> and a methane lifetime 
Response[1-34]: Corrected 
 
  



Reviewer #2 
Comments [2-1]: "Global methane budget and trend, 2010–2017: complementarity of inverse 
analyses using in situ (GLOBALVIEWplus CH4 ObsPack) and satellite (GOSAT) observations" 
presents long-term global inversions based on different available observation datasets. The authors 
present an inversion system based on the analytical solution of the Bayesian Gaussian problem 
which allow to better understand the weight of each piece in the system. The authors analyze the 
outputs thoroughly and use relevant comprehensive metrics to assess the usefulness of each type of 
observations. 
 
The manuscript is well written, well structured and of significant importance for the community to 
be published in ACP after some weaknesses are properly addressed. Main problems are detailed in 
dedicated sections below and technical revisions are listed in Sect. 5. Overall, the manuscript is of 
high quality but falls short of properly exploiting the full potential of the system presented here. 
Sensitivity tests and additional inversions should be added to the manuscript (without computing 
additional response functions) to prove fully relevant to the community and to stand out of more 
regular inversion papers. It can be done with relatively little efforts considering all the material and 
the quality of the background work done to reach the present submitted manuscript. 
Response [2-1]: We thank the reviewer for the positive and valuable comments. All of them 
have been implemented in the revised manuscript. In particular, we have performed a number 
of additional inversions to test the sensitivity of our results to the choices in cost-function 
construction (e.g. usage of observations, error assumption of the observations and state). 
Please see our itemized responses below. 
 
Comments [2-2]: 1 Bias correction: p.7 l.191: Bias correction is mentioned. This is a critical point. 
It may have a huge impact on the inversions. Putting it under the carpet in one line is a little bit 
short. Please add details on this aspect and possibly some quantification of the impact of such a bias 
correction. Is the bias correction put in the constant c in eq. (2)? Or is it use on-line in the 
computation of GEOS-Chem? Or posterior to it? What is the impact on the response functions? If 
it is the constant c, please include (at least in supplement) your results with/without/with another 
bias correction to really see how sensitive your results are to that aspect. 
Response [2-2]: Thanks for pointing it out. The bias correction is done off-line before the 
inversion. We have added the text briefly describing the procedures for bias correction, and a 
Figure S1 to show the influence of bias correction. We now state in Section 2.3 “GEOS-Chem 
has excessive methane in the high-latitudes stratosphere, a flaw common to many models 
(Patra et al., 2011) especially at coarse model resolution. Following Zhang et al. (2020), we 
compute correction factors to GEOS-Chem stratospheric methane subcolumns as a function 
of season and equivalent latitude to match the measurements from the solar occultation ACE-
FTS v3.6 instrument (Waymark et al., 2014; Koo et al., 2017). As shown in Zhang et al. (2020), 
the correction can be up to 10% at high latitudes during winter and spring. We apply the 
correction factors before the inversion to avoid wrongly attributing this model transport bias 
to methane emissions and loss. Figure S1 shows that the systematic differences in the posterior 
scaling factors of non-wetland emissions with vs. without bias correction are more prominent 
at the northern high latitudes, as also shown in Stanevich et al. (2020), but the global total 
emissions only differ by 1%. ” 



 

 
 
Figure S1. Posterior scaling factors of non-wetland methane emissions from GOSAT-only inversion 
(a) with GOSAT stratospheric bias corrections and (b) without GOSAT stratospheric bias corrections. 
 
 
Reference: 
Stanevich, I., Jones, D. B. A., Strong, K., Parker, R. J., Boesch, H., Wunch, D., Notholt, J., Petri, C., 

Warneke, T., Sussmann, R., Schneider, M., Hase, F., Kivi, R., Deutscher, N. M., Velazco, V. A., 
Walker, K. A., and Deng, F.: Characterizing model errors in chemical transport modeling of 
methane: impact of model resolution in versions v9-02 of GEOS-Chem and v35j of its adjoint 
model, Geosci. Model Dev., 13, 3839–3862, https://doi.org/10.5194/gmd-13-3839-2020, 2020. 

 
Zhang, Y., Jacob, D. J., Lu, X., Maasakkers, J. D., Scarpelli, T. R., Sheng, J.-X., Shen, L., Qu, Z., 

Sulprizio, M. P., Chang, J., Bloom, A. A., Ma, S., Worden, J., Parker, R. J., and Boesch, H.: 
Attribution of the accelerating increase in atmospheric methane during 2010–2018 by inverse 
analysis of GOSAT observations, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-
2020-964, in review, 2020. 

 
Comments [2-3]: 2 Non-linearity of GEOS-Chem and OH chemistry. This is a little bit harsh to 
neglect it straight away. Could you run forward runs with your different posterior states and compare 
with what you get with the matrices Kx to have an idea of how negligible it is? 
Response [2-3]: The GEOS-Chem methane simulation used prescribed monthly 3-D fields of 
global tropospheric OH concentrations taken from a GEOS-Chem simulation with full 
chemistry. With this regard the optimization of methane emissions is strictly linear. The only 
non-linearity emerges regarding the optimization of OH, because the sensitivity of the 
methane concentration to changes in OH concentrations depends on the methane 
concentration through first-order loss, but the variability of methane concentration is 
sufficiently small so that this non-linearity is negligible. We have tested that the 𝐊𝐊𝒙𝒙�  and 
posterior simulation of y has a small mean difference of 2±3 ppbv. We now state in Section 2.4 
“The optimization of methane emission and its trends is strictly linear by design because we 
use prescribed monthly 3-D OH fields as described in Section 2.2. There is some non-linearity 
regarding the optimization of OH, because the sensitivity of the methane concentration to 
changes in OH concentrations depends on the methane concentration through first-order loss, 



but we assume that the variability of methane concentration is sufficiently small that this non-
linearity is negligible (we verify this assumption below)…. Comparison of the resulting 
Jacobian matrix to GEOS-Chem as F(x) – Kx - c shows a negligible residual difference of 2±3 
ppb, verifying the assumption of linearity.” 
 
Comments [2-4]: 3 Regularization term: The authors use a regularization term to correct for ill-
specified observation errors. However, their estimation is based on approximate matrices. Why not 
using the rigorous Chi-square criterion? such as in Desroziers et Ivanov (2001, https://rmets. 
onlinelibrary.wiley.com/doi/10.1002/qj.49712757417) 
Response [2-4]: Thanks for pointing it out. We have made the revision to estimate the optimal 
value of the regularization parameter in the context of the Chi-square distribution. We have 
also tested the impact of using different regularization parameters on the global methane 
budget as discussed in [Response #2-5]. 

We now state in Section 2.4 “... For a given state vector element i, the expected value of 
(𝒙𝒙𝒊𝒊 − 𝒙𝒙𝑨𝑨𝒊𝒊)𝟐𝟐  is the prior error variance 𝛔𝛔𝑨𝑨𝒊𝒊𝟐𝟐 . For an n-dimensional state vector with a 
diagonal prior error covariance matrix, the state component JA of the cost function is the sum 
of n random normal elements 

𝑱𝑱𝑨𝑨(𝒙𝒙) = (𝒙𝒙 − 𝒙𝒙𝑨𝑨)𝑻𝑻𝑺𝑺𝑨𝑨−𝟏𝟏(𝒙𝒙 − 𝒙𝒙𝑨𝑨) = ∑ (𝒙𝒙𝒊𝒊−𝒙𝒙𝑨𝑨𝒊𝒊)𝟐𝟐

𝛔𝛔𝑨𝑨𝒊𝒊𝟐𝟐𝒏𝒏  (6), 

and its pdf is given by the Chi-square distribution with n degrees of freedom (n=3378 in 
this case), with an expected value of n and a standard deviation of √𝟐𝟐𝒏𝒏. One can apply the 
same reasoning to the observation component 𝑱𝑱𝑶𝑶 of the posterior cost function, 

𝑱𝑱𝑶𝑶(𝒙𝒙) = (𝒚𝒚 − 𝑲𝑲𝒙𝒙)𝑻𝑻𝑺𝑺𝑶𝑶−𝟏𝟏(𝒚𝒚 − 𝑲𝑲𝒙𝒙) =  ∑ (𝐲𝐲𝒊𝒊−𝑲𝑲𝒙𝒙𝒊𝒊)𝟐𝟐

𝛔𝛔𝑶𝑶𝒊𝒊𝟐𝟐𝒎𝒎  (7),  

whose pdf follows a chi-square distribution with m degrees of freedom. However, this 
component is less sensitive to the choice of γ because of the large random error component for 
individual observations.  

 
Figure 4 shows the dependences of 𝑱𝑱𝑨𝑨(𝒙𝒙�) and 𝑱𝑱𝑶𝑶(𝒙𝒙�) on the choice of the regularization 

parameter γ, for the in situ and GOSAT observations. The in situ observations are sufficiently 
sparse that γ = 1 (no regularization) is expected. In the case of GOSAT, however, γ = 1 would 
yield 𝑱𝑱𝑨𝑨(𝒙𝒙�) = 𝟔𝟔𝒏𝒏 ≫ 𝒏𝒏 ± √𝟐𝟐𝒏𝒏  which indicates overfitting, while γ = 0.1 yields 𝑱𝑱𝑨𝑨(𝒙𝒙�) ≈ 𝒏𝒏 
which is the expected value and is used here….” 
 
Comments [2-5]: 4 Computation cost and sensitivity tests. It is nowhere stated what is the 
computation cost of the system (computing response functions on the one hand, solving the matrix 
products on the other hand). Once the response functions are computed it is in principle quite 
straightforward to change parameters in the R/B matrices to see the impact. 

I think the main strength of the system presented here comes from this very fact (otherwise, a 
variational inversion would give posterior fluxes at reduced cost, even if DOFS can be retrieved 
easily). This is a critical limitation of the present paper. 

Different horizontal and temporal correlations should be tested in the prior matrix, as well as 
standard deviation of errors, to see the impact of such modifications, given that we never really 
know how good are our prior/obs errors. 

https://rmets/


More critically are observation errors. Even though the observation data set is very large, it 
should be possible to imagine a matrix that is diagonal only by block, allowing to consider 
correlations between GOSAT neighbour observations, while keeping it possible to compute the 
inverse easily. As stated by the authors, the inversions are not consistent with each others (Fig. 13). 
This comes probably from ill-specified error matrices, which the authors have the tools to inquire 
into. 
Response [2-5]: Thank you for pointing it out. 
1) We have added the following text in Section 2.4 (Analytical Inversion) to clarify the 
computation cost of the system “A requirement of the analytical approach is that the Jacobian 
matrix be explicitly constructed, requiring n + 1 forward model runs. Building the Jacobian 
matrix for the 3378 state vectors in this 8-year period study requires about one million core 
hours (8 cores × 36 hours per simulation × 3378 simulations). However, this construction is 
readily done in parallel on high-performance computing clusters.”. 
 
2) We have also conducted a number of additional inversions to examine the results with 
different error assumption and ingestion of observations. For the prior standard deviation of 
state vectors (non-wetland emission trends and OH), we test their different magnitude 
(decrease by 50%) but not their distributions (correlations) due to the lack of objective 
information on the later. For the observation error, the ability to test off-diagonal assumption 
is also limited by the calculation of 𝑺𝑺𝑶𝑶−𝟏𝟏  which involves inverting a matrix with ~1012 
elements. Therefore we test the unknown observation error correlations by changing the 
regularization parameter 𝜸𝜸.  

We have added a new Figure 13b, and now state in Section 2.4 “We will make use of these 
advantages in comparing the ability of the in-situ-only, GOSAT-only, and GOSAT + in situ 
inversions, and to test how choices in cost-function construction affect our conclusions 
including changing the regularization parameter 𝜸𝜸, changing the prior error estimates, and 
using different types of in-situ observations. Our analysis will focus on results from the base 
inversions with the default settings, but we will use results from the sensitivity inversions to 
address specific issues.”. 

And in Section 3.5 we state “We examine in Figure 13b the sensitivity of the global 
methane budget optimization to the choice of different regularization parameter  𝜸𝜸  (and 
therefore observation error 𝑺𝑺𝑶𝑶 ) and prior error of methane emission trends and OH 
concentrations. We find that reducing 𝜸𝜸  or prior errors of trend and OH by 50% yields 
consistent estimates of anthropogenic emissions and OH concentrations as compared to the 
default inversion, with differences within 3%. Decreasing the weighting of observations in the 
inversion (i.e. assuming larger observation error) enlarges the posterior error and pushes the 
posterior estimates closer to the prior estimates. Assuming a lower prior error for OH 
concentration from 10% to 5% results in lower methane lifetime (closer to the prior) and 
higher emissions, and also reduces the error correlation between the optimization of methane 
emissions and OH, while assuming a lower prior error for non-wetland emission trends leads 
to an opposite effect. Our results are consistent with Maasakkers et al. (2019), which shows 
that different assumptions of error distribution and magnitude tin their analyses have 
relatively small results. We also find that having the shipboard and aircraft measurements in 
the in-situ-only inversion pushes the estimate to be more consistent with the GOSAT-only 



inversion (Fig.13b), implying that the shipboard and aircraft measurements by emphasizing 
the methane in the remote atmosphere play a similar role as satellite measurements in global 
methane budget optimization.” 

 

 
Figure 13. Joint probability density functions (PDFs) of global mean anthropogenic methane 
emission and methane lifetime against oxidation by tropospheric OH optimized by different 
inversions. Panel (a) shows the results from the prior and the three base inversions. The prior 
estimates are shown in grey with bars representing the prior error standard deviation. The thick 
contours show probabilities of 0.99 (outermost), 0.7, 0.5, 0.3, and 0.1 (innermost). The error 
correlation coefficients are given inset. Panel (b) shows the 0.99 probability contours from the three 
base inversions along with the same contours for ten additional sensitivity inversions using reduced 
values of the regularization parameter γ (0.05 instead of 0.1 for GOSAT, 0.5 instead of 1 for in situ); 
reduced errors for the methane emission trends on the 4°×5° grid (5% a-1 instead of 10% a-1); 
reduced errors on annual hemispheric mean OH concentrations (5% instead of 10%); or surface and 
tower data only in the in-situ-only inversion. 
 
Comments [2-6]: 5 Technical comments. p.4 l.89: aircraft measurements: those can be particularly 
challenging to ingest inversion systems as CTMs never really excel in representing the vertical 
distribution of CH4 concentrations. Plus it is never clearly stated whether or not they are really used 
in the inversion or only in the posterior evaluation. Please discuss more about the aircraft 
measurements and justify better their use (is it only vertical profiles, very hard to assimilate? or 
transects, easier to use?) 
Response [2-6]: Thank you for pointing it out.  
1) The aircraft measurements are used in the inversions, as stated in the original text (L122-
124) “We obtain in this manner 157054 observation data points for the inversion including 
81119 from 103 surface sites, 27433 from 13 towers, 827 from 3 ship cruises, and 47675 from 
29 aircraft campaigns.”. We have added a Figure S2 to also address [Comment #1-4], which 
shows that the posterior model can well fit the aircraft methane measurements measuring the 
background (e.g. in the Southern Hemisphere), but indeed some discrepancies emerge in the 
northern mid-latitudes, reflecting the difficulty in modeling methane vertical distributions or 
optimizing emissions near source. 
 
2) We have also added an additional inversion using only surface and tower observations in 
the inversion and compared the results with the In-situ-only inversion (which ingest all in situ 
observations) in Fig.S3 and Fig.13b. Comparison of Figure S3 to Figure 8a-b shows that 



adding the aircraft and shipboard observations to the surface and tower observations 
increases the DOFS for constraining non-wetland methane emissions from 96 to 113 (18%), 
and reflects the upward correction in the South America which is consistent with the GOSAT-
only inversion (Fig.8d). We also find in the Figure 13b that adding the aircraft and shipboard 
measurements pushes the inversed global methane and OH levels more consistent with the 
GOSAT-only inversion, however, it makes the inversion less effective in optimizing the global 
methane budget and OH. These results thus illustrate the ability of aircraft and shipboard 
measurements in the inversion. 

We now state in Section 3.2 “We find that the DOFS from the in-situ-only inversion 
observations are mostly (85%) from the surface and tower measurements (Fig.S3).”  

We also state in Section 3.5 “…A sensitivity inversion using only the surface and tower 
measurements in the In-situ-only inversion yields r=-0.37 (Fig.13b). It indicates that in situ 
observations, in particular surface and tower measurements, are more effective than the 
satellite observations in constraining methane emissions independently from the sink by OH.”, 
and “We also find that having the shipboard and aircraft measurements in the in-situ-only 
inversion pushes the estimate to be more consistent with the GOSAT-only inversion (Fig.13b), 
implying that the shipboard and aircraft measurements by emphasizing the methane in the 
remote atmosphere play a similar role as satellite measurements in global methane budget 
optimization.” 
 

 
Figure S3. Same as Figure 8a and 8b but from a sensitivity inversion using only surface and tower 

methane observations. 
 
Comments [2-7]: p.4 l.104: how exactly the linear trend are computed as response functions? same 
for OH? A start of explanation is given p.8, but additional information would be welcome. 
Response [2-7]: We now state in the text to introduce the construction of response functions 
(Jacobian matrix 𝑲𝑲 ) in Section 2.4: “We construct the Jacobian matrix 𝑲𝑲  explicitly by 
conducting GEOS-Chem simulations with each element of the state vector perturbed 
separately. For the linear emission trend elements, this is done by perturbing the 2010-2017 
emission trend in each grid cell from 0% (the best prior estimate) to 10% a-1; for OH, this is 
done by perturbing yearly hemispheric OH fields by 20% without modifying the spatial or 
seasonal distribution.” 
 
Comments [2-8]: p.7 l.163: What is the corresponding total error on the prior budget when using 
your prior distributed errors? Please represent it on Fig. 13 



Response [2-8]: We have revised Fig.13 accordingly. 
 
Comments [2-9]: p.8 l.208-213: observation error: it is not clear what ensembles are taken. Do you 
separate each station? Some regions for GOSAT? etc. 
Response [2-9]: We now state in Section 2.3: “For in-situ observations, we derive 𝛆𝛆𝟎𝟎 
separately for the ensemble of background surface sites (Dlugokencky et al., 1994), non-
background sites, tower sites, shipboard measurements, and aircraft measurements, while for 
GOSAT observations 𝛆𝛆𝟎𝟎 is calculated for each 4°× 5° grid cell.”   
 
Reference 
Dlugokencky, E. J., Steele, L. P., Lang, P. M., and Masarie, K. A.: The growth rate and distribution 

of atmospheric methane, J. Geophys. Res., 99, 17021, http://doi.org/10.1029/94jd01245, 1994. 
 
Comments [2-10]: p.9 l.284: not correct. The other way around. the analytical solution is the 
solution of the Bayesian Gaussian problem. The cost function is derived from the formulation of the 
Gaussian problem when the analytical solution cannot be computed explicitly. Actually, writing the 
cost function in Eq. (1) in a paper using analytical inversions is superfluous; the factor gamma can 
be introduced differently. 
Response [2-10]: We have rephrased as “The analytical solution to the Bayesian optimization 
problem, as done here, has several advantages relative to the more commonly used variational 
(numerical) solution.” 
 
Comments [2-11]: p.11 l.376: This warning should also be repeated in the method section. Actually 
as response functions are computed for each pixels individually, why not duplicating the 
corresponding time series to separate sectors in the target vector? This would not add new response 
functions to compute and allow you to assess how good is the distribution in sectors. You could 
even imagine specifying different correlation lengths to different sectors. 
Response [2-11]: We cannot separate sectors at the level of individual grid cells because they 
will all have the same response function. We can separate sectors for ensembles of grid cells 
and this is precisely what we do with the matrix W. We have added the following text in Section 
2.4 “We cannot separate individual sectors within a 4°×5° grid cell because they will all have 
the same response function (Jacobian column). However, we can aggregate results spatially 
and by sector…” 
 
Comments [2-12]: p.11 l.382: Is GEOS-Chem really suitable with very coarse resolution to 
constrain US emissions? the resolution is fine for background sites, but what about sites nearby 
emission hotspots. Representation errors will likely bias your results at such stations, making it very 
important to filter properly data prior to the inversion. 
Response [2-12]: Thanks for pointing it out. We agree that representation errors will likely 
bias results at stations near source regions, and it is important to filter properly data prior to 
the inversion. As already mentioned in Section 2.1, we address this problem by “For surface 
and tower measurements, we use only daytime (10-16 local time) observations and average 
them to the corresponding daytime mean values. We exclude outliers at individual sites that 
depart by more than three standard deviations from the mean.”. Still this might be insufficient 



to properly interpret sites nearby emission hotspots. A high-resolution inversion (e.g. Turner 
et al., 2015; Sheng et al., 2018) would be preferable to better interpret the in-situ observations 
near emission hotspots and to understand the spatial pattern of US anthropogenic methane 
emissions. 
 
Reference: 
Sheng, J.-X., Jacob, D. J., Turner, A. J., Maasakkers, J. D., Sulprizio, M. P., Bloom, A. A., Andrews, A. 

E., and Wunch, D.: High-resolution inversion of methane emissions in the Southeast US using 
SEAC&lt;sup&gt;4&lt;/sup&gt;RS aircraft observations of atmospheric methane: anthropogenic 
and wetland sources, Atmos. Chem. Phys., 18, 6483-6491, http://doi.org/10.5194/acp-18-6483-
2018, 2018. 

Turner, A. J., Jacob, D. J., Wecht, K. J., Maasakkers, J. D., Lundgren, E., Andrews, A. E., Biraud, S. C., 
Boesch, H., Bowman, K. W., Deutscher, N. M., Dubey, M. K., Griffith, D. W. T., Hase, F., Kuze, A., 
Notholt, J., Ohyama, H., Parker, R., Payne, V. H., Sussmann, R., Sweeney, C., Velazco, V. A., 
Warneke, T., Wennberg, P. O., and Wunch, D.: Estimating global and North American methane 
emissions with high spatial resolution using GOSAT satellite data, Atmos. Chem. Phys., 15, 7049-
7069, http://doi.org/10.5194/acp-15-7049-2015, 2015. 
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Abstract 24 

We use satellite (GOSAT) and in situ (GLOBALVIEWplus CH4 ObsPack) observations of atmospheric 25 

methane in a joint global inversion of methane sources, sinks, and trends for the 2010-2017 period. The 26 

inversion is done by analytical solution to the Bayesian optimization problem, yielding closed-form 27 

estimates of information content to assess the consistency and complementarity (or redundancy) of the 28 

satellite and in situ datasets. We find that GOSAT and in situ observations are to a large extent 29 

complementary, with GOSAT providing a stronger overall constraint on the global methane distributions, 30 

but in situ observations being more important for northern mid-latitudes and for relaxing global error 31 

correlations between methane emissions and the main methane sink (oxidation by OH radicals). The in- 32 

situ-only and the GOSAT-only observationsinversion alone, achieve respectively 113 and 212 33 

independent pieces of information (DOFS) for quantifying mean 2010-2017 anthropogenic emissions on 34 

1009 global model grid elements, and a DOFS of 67 and 122 for 2010-2017 emission trends. Adding the 35 

in situ data increases the DOFS by about 20-30%, The joint GOSAT + in situ inversion achieves DOFS 36 

ofto 262 and 161 respectively for mean emissions and trends. The in situ data thus increase the global 37 

information content from the GOSAT-only inversion by 20-30%. The in-situ-only and GOSAT-only 38 

inversions show consistent corrections to regional methane emissions but are less consistent in optimizing 39 

the global methane budget. OurThe joint inversion finds that oil/gas emissions in the US and Canada are 40 

underestimated relative to the values reported by these countries to the United Nations Framework 41 

Convention on Climate Change (UNFCCC) and used here as prior estimates, while coal emissions in 42 

China are overestimated. Wetland emissions in North America are much lower than in the mean 43 

WetCHARTs inventory used as prior estimate. Oil/gas emissions in the US increase over the 2010-2017 44 

period but decrease in Canada and Europe. OurThe joint GOSAT+in situ inversion yields a global 45 

methane emission of 551 Tg a-1 averaged over 2010-2017 and a methane lifetime of 11.2 years against 46 

oxidation by tropospheric OH (86% of the methane sink). 47 

  48 
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1 Introduction 49 

Methane (CH4) is the second most important anthropogenic greenhouse gas, and plays a central role in 50 

atmospheric chemistry as a precursor of tropospheric ozone and a sink of hydroxyl radicals (OH). It is 51 

emitted from many natural and anthropogenic sources that are difficult to quantify (Saunois et al., 2020). 52 

Atmospheric methane observations from satellites and in situ (surface, tower, shipboard, and aircraft) 53 

platforms have been used extensively to infer methane emissions and their trends through inverse analyses 54 

(Houweling et al., 2017). But the information from satellite and in situ observations does not always agree 55 

(Monteil et al., 2013; Bruhwiler et al., 2017) and is hard to compare because of large differences in 56 

observational density, precision, and the actual quantity being measured (Cressot et al., 2014). Here we 57 

use an analytical solution to the Bayesian inverse problem to quantitatively compare and combine the 58 

information from satellite (GOSAT) and in situ (GLOBALVIEWplus CH4 ObsPack) observations for 59 

estimating global methane sources and their trends over the 2010-2017 period, including contributions 60 

from different source sectors and from the methane sink (oxidation by tropospheric OH).  61 

 62 

Inverse analyses of atmospheric methane observations using chemical transport models (CTM) provide a 63 

formal method for inferring methane emissions and their trends (Brasseur and Jacob, 2017). Global 64 

satellite observations of atmospheric methane columns from the shortwave infrared SCIAMACHY and 65 

GOSAT instruments have been widely used for this purpose (Bergamaschi et al., 2013; Wecht et al., 2014; 66 

Turner et al., 2015; Maasakkers et al., 2019; Miller et al., 2019; Lunt et al., 2019). Other inverse analyses 67 

have relied on in situ methane observations that have much higher precision, are more sensitive to surface 68 

emissions, and may include isotopic information, but are much sparser (Pison et al, 2009; Bousquet et al., 69 

2011; Miller et al., 2013; Patra et al., 2016; McNorton et al., 2018).  70 

 71 

A number of inverse analyses have combined in situ and satellite observations (Bergamaschi et al., 2007, 72 

2009, 2013; Fraser et al., 2013; Monteil et al, 2013; Cressot et al., 2014; Houweling et al., 2014; Alexe et 73 

al., 2015; Ganesan et al., 2017; Janardanan et al., 2020), but few of them have compared the information 74 

from the two data streams and then mostly qualitatively. Bergamaschi et al. (2009, 2013), Fraser et al. 75 

(2014), and Alexe et al. (2015) found that surface and satellite methane observations provided consistent 76 

constraints on global methane emissions, but that satellite observations achieved stronger regional 77 

constraints in the tropics. No study to our knowledge has compared the ability of satellite and in situ 78 

observations to attribute long-term methane trends.  79 

 80 

Analytical solution to the inverse problem, as used here, provides closed-form error characterization as 81 

part of the solution, and from there allows derivation of the information content from different 82 

components of the observing system (Rodgers, 2000). Application to satellite observations has been used 83 

to determine where the observations can actually constrain the inverse solution (Turner et al., 2015). The 84 

major obstacle to this analytical solution in the past has been the need to construct the Jacobian matrix 85 

for the CTM forward model, but this is now readily done using massively parallel computing clusters 86 

(Maasakkers et al., 2019). Such a method provides a means to quantify the differences in information 87 
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content between different data streams (e.g., satellite vs. in situ) and from there to contribute to the design 88 

of a better observing system.  89 

 90 

Here we apply satellite observations of atmospheric methane columns from the GOSAT instrument 91 

together with an extensive global compilation of in situ observations (including surface, tower, shipboard, 92 

and aircraft methane measurements) from the GLOBALVIEWplus CH4 ObsPack v1.0 data product 93 

(Cooperative Global Atmospheric Data Integration Project, 2019), to quantify the global distribution of 94 

methane emissions, loss from reaction with OH, and related trends for the 2010-2017 period. We use for 95 

this purpose an analytical inversion method that formally characterizes the information content from the 96 

two data streams, whether that information is consistent, and whether it is complementary or redundant 97 

(Rodgers, 2000; Jacob et al., 2016). Our work provides a comprehensive global perspective on the sources 98 

contributing to 2010-2017 methane emissions and trends, as well as a general framework for synthesizing 99 

the information from satellite and in situ observations.  100 

 101 

2 Methods 102 

Figure 1 summarizes the components of our analytical inversion system, which builds on previous 103 

inversions of GOSAT satellite data by Maasakkers et al. (2019) and Zhang et al. (2020a2019) but adds 104 

the in situ observations. We apply observations y from GLOBALVIEWplus observations and/or GOSAT 105 

(Section 2.1), with the GEOS-Chem CTM as forward model (Section 2.3), to optimize the state vector 𝒙𝒙 106 

of our inverse problem. The state vector has dimension n = 3378 including mean 2010-2017 non-wetland 107 

methane emissions on the GEOS-Chem 4°× 5° global grid (n1 = 1009), 2010-2017 linear trends for these 108 

emissions on that grid (n2 = 1009), monthly mean wetland methane emissions for individual years in 14 109 

subcontinental regions (n3 = 12× 8 ×14 = 1344), and tropospheric OH concentrations in each hemisphere 110 

for individual years (n4 = 2×8 = 16). Section 2.2 describes the prior state vector estimates (𝒙𝒙𝑨𝑨) and the 111 

prior error covariance matrix (𝑺𝑺𝑨𝑨). We derive posterior estimates 𝒙𝒙� of the state vector and the associated 112 

error covariance matrix 𝑺𝑺� by analytical solution to the Bayesian optimization problem (Section 2.4). We 113 

present results from three inversions using in situ observations only (In in-situ-only inversion), GOSAT 114 

observations only (GOSAT-only inversion), and both GOSAT and in situ observations (GOSAT + in situ 115 

inversion).  116 

 117 

2.1 Methane observations  118 

The GLOBALVIEWplus CH4 ObsPack v1.0 data product compiled by the National Oceanic and 119 

Atmospheric Administration (NOAA) Global Monitoring Laboratory includes worldwide high-accuracy 120 

measurements of atmospheric methane concentrations from different observational platforms (surface, 121 

tower, shipboard, and aircraft) (Cooperative Global Atmospheric Data Integration Project, 2019). Here 122 

we use the ensemble of GLOBALVIEWplus observations for 2010-2017. For surface and tower 123 

measurements, we use only daytime (10-16 local time) observations and average them to the 124 

corresponding daytime mean values. We exclude outliers at individual sites that depart by more than three 125 

standard deviations from the mean. We obtain in this manner 157054 observation data points for the 126 
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inversion including 81119 from 103 surface sites, 27433 from 13 towers, 827 from 3 ship cruises, and 127 

47675 from 29 aircraft campaigns. Figure 2a shows the mean methane concentrations in 2010-2017 from 128 

the in situ data. The data are relatively dense in North America and western Europe, with also a few sites 129 

in China, but otherwise mainly measure background concentrations. The number of available surface and 130 

tower observations increases from 10493 in 2010 to 19657 in 2017 with the largest changes in Europe 131 

and Canada. 132 

 133 

GOSAT is a nadir-viewing satellite instrument launched in in space since 2009 that measures the 134 

backscattered solar radiation from a sun-synchronous orbit at around 13:00 local time (Butz et al., 2011; 135 

Kuze et al, 2016). Observing pixels are 10-km in diameter and separated by about 250 km along-track 136 

and cross-track in normal observation mode, with higher-density data collected in targeted observation 137 

modes. Methane is retrieved at the 1.65 µm absorption band. We use dry column methane mixing ratios 138 

from the University of Leicester version 9.0 Proxy XCH4 retrieval (Parker et al., 2020). The retrieval has 139 

a single-observation precision of 13 ppb and a regional bias of 2 ppb (Buchwitz et al., 2015). We use 140 

GOSAT data for 2010-2017 including 1.6 million retrievals over land as shown in Figure 2b. We do not 141 

use glint data over the oceans and data poleward of 60oN because of seasonal bias and the potential for 142 

large errors (Maasakkers et al., 2019). 143 

 144 

2.2 Prior estimates 145 

Table1 summarizes the prior estimates of the mean 2010-2017 methane emissions used for the state vector, 146 

and Figure 3 shows the spatial patterns. Natural sources include the ensemble mean of the WetCHARTsS 147 

inventory version 1.2.1 (Bloom et al., 2017) for wetlands, open fires from the Global Fire Emissions 148 

Database version 4s with seasonal and interannual variability (van der Werf et al., 2017), termites from 149 

Fung et al. (1991), and seeps from Etiope et al. (2019) with global scaling to 2 Tg a-1 from Hmiel et al. 150 

(2020). The default anthropogenic emissions are from EDGAR v4.3.2 (Janssens-Maenhout et al., 2019), 151 

and are superseded for fugitive fuel emissions (oil, gas, coal) by the Scarpelli et al. (2020) inventory 152 

which spatially allocates national emissions reported by countries to the United Nations Framework 153 

Convention of Climate Change (UNFCCC). US anthropogenic emissions are further superseded by the 154 

gridded version of Inventory of U.S. Greenhouse Gas Emissions and Sinks from the Environmental 155 

Protection Agency (EPA GHGI) (Maasakkers et al., 2016). The WetCHARTsS wetlands inventory 156 

includes seasonal and interannual variability that is optimized in the inversion through correction to the 157 

monthly emissions. Seasonality from Zhang et al. (2016) is imposed for rice emissions, and temperature-158 

dependent seasonality is applied to manure emissions (Maasakkers et al., 2016). Other emissions are 159 

aseasonal. 160 

 161 

We assume a 50% error standard deviation for all anthropogenic and non-wetland natural emissions on 162 

the 4o latitude ×5o longitude grid, with no spatial error covariance so that their prior error covariance 163 

matrix is diagonal, which is a reasonable assumption for anthropogenic emissions (Maasakkers et al., 164 

2016). We assume 0 ± 10% a-1 as prior estimate for the linear 2010-2017 emission trends on the 4o×5o 165 
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grid; a sensitivity test using 0 ± 5% a-1 is also performed. The inclusion of linear trends in state vectors 166 

allows us to identify the direction of emission change for each 4o ×5o grid in the 8-year period, but it 167 

would not capture high-frequency interannual variability. Prior estimates of monthly mean wetland 168 

methane emissions for individual years in 14 subcontinental regions, along with their error covariance 169 

matrix, are from the WetCHARTs v1.2.1 inventory ensemble (Bloom et al., 2017). The prior methane 170 

emissions total 533 Tg a-1, at the low end of the current top-down estimates (538-593550-594 Tg a-1) for 171 

2008-2017 (Saunois et al., 2020), and this largely reflects the downward revision of global seep emissions 172 

by Hmiel et al. (2020).  173 

 174 

Prior monthly 3-D fields of global tropospheric OH concentrations are taken from a GEOS-Chem 175 

simulation with full -chemistry (Wecht et al., 2014) that yields a methane lifetime 𝜏𝜏CH4
OH  due to oxidation 176 

by tropospheric OH of 10.6±1.1 years and an inter-hemispheric OH ratio (North to South) of 1.16. The 177 

methane lifetime is consistent with the value of 11.2±1.3 years inferred from methylchloroform 178 

observations (Prather et al., 2012), while the inter-hemispheric OH ratio is slightly higher than thelies 179 

between the observed range of 0.97±0.12 (Patra et al., 2014) and the but closed to recent multi-model 180 

estimates of 1.3±0.1 (Zhao et al., 2019). We assume no interannual variability in this prior OH field. We 181 

assumeuse 10% as prior error standard deviation for the hemispheric OH concentrations in individual 182 

years, based on Holmes et al. (2013), and also conduct a sensitivity test assuming 5%. Corrections to OH 183 

in the inversion are applied as a hemispheric scaling factor for individual years, without changing the 184 

spatial or temporal pattern of the original fields. Zhang et al. (2018) conducted methane inversions with 185 

twelve different OH fields from the ACCMIP model ensemble (Naik et al., 2013) and found no significant 186 

difference in results with the GEOS-Chem OH fields used here except for two outlier models. 187 

 188 

2.3 Forward Model 189 

We use the GEOS-Chem 12.5.0 (http://geos-chem.org) global CTM (Bey et al., 2001; Wecht et al., 2014; 190 

Maasakkers et al., 2019) as forward model to simulate atmospheric methane concentrations and their 191 

sensitivity to the state vector elements. The model is driven by MERRA-2 reanalysis meteorological fields 192 

from the NASA Global Modeling and Assimilation Office (GMAO) (Gelaro et al., 2017). The methane 193 

sink is computed within the model from 3-D tropospheric oxidant fields including OH (optimized in the 194 

inversion), Cl atoms (Wang et al., 2019), 2-D stratospheric oxidant fields (Murray et al., 2012), and soil 195 

uptake (Murguia-Flores et al., 2018). We conduct GEOS-Chem model simulations for 2010-2017 at 196 

global 4°× 5° resolution with 47 vertical layers extending to the mesosphere.  197 

 198 

GEOS-Chem has excessive methane in the high-latitudes stratosphere, a flaw common to many models 199 

(Patra et al., 2011) especially at coarse model resolution. Following Zhang et al. (2020), we compute 200 

correction factors to GEOS-Chem stratospheric methane subcolumns as a function of season and 201 

equivalent latitude to match the measurements from the solar occultation ACE-FTS v3.6 instrument 202 

(Waymark et al., 2014; Koo et al., 2017). As shown in Zhang et al. (2020), the correction can be up to 10% 203 

at high latitudes during winter and spring. We apply the correction factors before the inversion to avoid 204 
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wrongly attributing this model transport bias to methane emissions and loss. Figure S1 shows that the 205 

systematic differences in the posterior scaling factors of non-wetland emissions with vs. without bias 206 

correction are more prominent at the northern high latitudes, as also shown in Stanevich et al. (2020), but 207 

the global total emissions only differ by 1%, and we correct for this bias, with stratospheric methane 208 

profiles measured by the solar occultation ACE-FTS v3.6 instrument (Waymark et al., 2014; Koo et al., 209 

2017) following Zhang et al. (2019).  210 

 211 

Initial model conditionsGEOS-Chem methane concentrations on January 1, 2010 are set to be adjusted to 212 

have unbiased in zonal mean relative to GOSAT observations for January 2010, and we find that they the 213 

resulting model values are also unbiased relative to the GLOBALVIEWplus in situ observations in 214 

January 2010. In this manner, model discrepancies with observations over the 2010-2017 period can be 215 

attributed to model errors in emissions or OH over that period, instead of error in initial conditions. We 216 

archive model methane dry mixing ratios at each location and time of the in situ and GOSAT datasets for 217 

2010-2017.  218 

 219 

As forward model F for the inversion, GEOS-Chem relates the state vector x to the atmospheric 220 

concentrations y as 𝒚𝒚 = 𝑭𝑭(𝒙𝒙) (Fig.1). The simulation of observations with the prior estimates of state 221 

vectors (𝒙𝒙𝑨𝑨 ) in 2010-2017 diagnoses systematic errors in comparison to observations that enable 222 

improved estimate of the state vector through the inversion. In addition, the random component of the 223 

discrepancy can be used to estimate the observation error (sum of instrument error, representation error, 224 

and forward model error) in the Bayesian optimization problem using the residual error method (Heald et 225 

al., 2004). The method assumes that the systematic component of the model bias (𝐲𝐲 − 𝑭𝑭(𝒙𝒙𝑨𝑨)������������� ) for 226 

individual years, where the overbar denotes the temporal average in a 4°× 5° grid cell (for GOSAT) or for 227 

an observation platform (for in situ observations), is to be corrected in the inversion, while the residual 228 

term (ε0 = 𝒚𝒚 − 𝑭𝑭(𝒙𝒙𝑨𝑨) − 𝐲𝐲 − 𝑭𝑭(𝒙𝒙𝑨𝑨)������������� ) represents the random observation error. Here we applied this 229 

method to construct the observation error covariance matrix 𝑺𝑺𝒐𝒐 from the statistics of ε0. For in-situ 230 

observations, we derive ε0 separately for the ensemble of background surface sites (Dlugokencky et al., 231 

1994), non-background sites, tower sites, shipboard measurements, and aircraft measurements, while for 232 

GOSAT observations ε0 is calculated for each 4°× 5° grid cell. 233 

 234 

We find that the mean standard deviation of the random observation error (ε0) for the GLOBALVIEWplus 235 

in situ data averages 36 ppbv (20 and 45 ppbv for background and non-background surface observations, 236 

68 ppbv for tower observations, 10 ppbv for shipboard observations, 24 ppbv for aircraft observations), 237 

compared to 13 ppbv for GOSAT. The observation error for in situ observations is dominated by the 238 

forward model error while for GOSAT it is dominated by the instrument error. The forward model error 239 

is higher for surface concentrations near source regions than for columns or other in situ observations 240 

measuring background, because the amplitude of methane variability is much higher (Cusworth et al., 241 

2018) and more challenginged for a model at 4°× 5° resolution to capture. We assume that 𝑺𝑺𝒐𝒐 is diagonal 242 

in the absence of better objective information, but in fact some error correlation between different 243 
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observations could be expected to arise from transport and source aggregation errors in the forward model. 244 

This is considered by introducing a regularization factor 𝛾𝛾 in the minimization of the cost function for 245 

the inversion (Section 2.4). 246 

 247 

2.4 Analytical Inversion 248 

The Bayesian solution to the state vector optimization problem assuming Gaussian prior and observation 249 

errors involves minimizing the cost function 𝐽𝐽(𝒙𝒙): 250 

𝐽𝐽(𝒙𝒙) = (𝒙𝒙 − 𝒙𝒙𝑨𝑨)𝑇𝑇𝑺𝑺𝑨𝑨−1(𝒙𝒙 − 𝒙𝒙𝑨𝑨) + 𝛾𝛾(𝒚𝒚 − 𝑭𝑭(𝒙𝒙))𝑇𝑇𝑺𝑺𝑶𝑶−1(𝒚𝒚 − 𝑭𝑭(𝒙𝒙)) (1), 251 

where 𝒙𝒙 is the state vector, 𝒙𝒙𝑨𝑨 denotes the prior estimate of 𝒙𝒙, 𝑺𝑺𝑨𝑨 is the prior error covariance matrix, 252 

𝒚𝒚 is the observation vector, 𝑭𝑭(𝒙𝒙) represents the GEOS-Chem simulation of 𝒚𝒚, 𝑺𝑺𝑶𝑶 is the observation 253 

error covariance matrix, and 𝛾𝛾  is a regularization factor. The need for 𝛾𝛾  in 𝐽𝐽(𝒙𝒙)  is to avoid giving 254 

excessive weighting to observations, due to the likely underestimatione of 𝑺𝑺𝑶𝑶  when unknown error 255 

correlations are not included in its construction (Zhang et al., 2018; Maasakkers et al., 2019). γ here plays 256 

the same role as the regularization parameter in Tikhonov methods (Brasseur and Jacob, 2017) and reflects 257 

our inability to properly quantify the magnitude of errors. 258 

 259 

Minimization of the cost function in equation (1) has an analytical solution if the forward model is linear 260 

(Rodgers, 2000). The inverse problem here is not strictly linear The optimization of methane emission 261 

and its trends is strictly linear by design because we use prescribed monthly 3-D OH fields as described 262 

in Section 2.2. There is some non-linearity regarding the optimization of OH, because the sensitivity of 263 

the methane concentration to changes in OH concentrations depends on the methane concentration 264 

through first-order loss,. The but we assume that the variability of methane concentration is sufficiently 265 

small that this non-linearity is negligible (we verify this assumption below). We thus express the GEOS-266 

Chem forward model as 𝒚𝒚 = 𝑲𝑲𝒙𝒙 + 𝒄𝒄, where 𝑲𝑲 = 𝜕𝜕𝒚𝒚/𝜕𝜕𝒙𝒙 represents the Jacobian matrix and 𝒄𝒄 is an 267 

initialization constant. We construct the Jacobian matrix 𝑲𝑲  explicitly by conducting GEOS-Chem 268 

simulations with each element of the state vector perturbed separately. For the linear emission trend 269 

elements, this is done by perturbing the 2010-2017 emission trend in each grid cell from 0% (the best 270 

prior estimate) to 10% a-1; for OH, this is done by perturbing yearly hemispheric OH fields by 20% 271 

without modifying the spatial or seasonal distribution. Comparison of the resulting Jacobian matrix to 272 

GEOS-Chem as F(x) – Kx - c shows a negligible residual difference of 2±3 ppb, verifying the assumption 273 

of linearity.  274 

 275 

 276 

Minimizing the Bayesian cost function by solving 𝑑𝑑𝐽𝐽(𝒙𝒙)/𝑑𝑑𝒙𝒙 = 0 yields closed-form expressions for the 277 

posterior estimate of the state vector 𝒙𝒙� and itswith error covariance matrix 𝑺𝑺�: 278 

𝒙𝒙� = 𝒙𝒙𝑨𝑨 + 𝑮𝑮(𝒚𝒚 − 𝑲𝑲𝒙𝒙𝑨𝑨) (2), 279 

𝑺𝑺� = (𝛾𝛾𝑲𝑲𝑇𝑇𝑺𝑺𝑶𝑶−1𝑲𝑲 + 𝑺𝑺𝑨𝑨−1)−1 (3), 280 

 281 

where 𝑮𝑮 is the gain matrix,  282 
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𝐆𝐆 = 𝜕𝜕𝒙𝒙�
𝜕𝜕𝒚𝒚

=  (𝛾𝛾𝑲𝑲𝑇𝑇𝑺𝑺𝑶𝑶−1𝑲𝑲 + 𝑺𝑺𝑨𝑨−1)−1𝛾𝛾𝑲𝑲𝑇𝑇𝑺𝑺𝑶𝑶−1 (4). 283 

 284 

From the posterior error covariance matrix one can derive the averaging kernel matrix describing the 285 

sensitivity of the posterior estimate to the true state: 286 

𝑨𝑨 = 𝜕𝜕𝒙𝒙�
𝜕𝜕𝒙𝒙

=  𝑰𝑰𝒏𝒏 − 𝑺𝑺�𝑺𝑺𝑨𝑨−𝟏𝟏 (5). 287 

The trace of A quantifies the degrees of freedom for signal (DOFS), which represents the number of 288 

pieces of independent information gained from the observing system for constraining the state vector 289 

(Rodgers, 2000). 290 

 291 

We choose the value of the regularization parameter 𝛾𝛾 in order to avoid overfitting to the observations 292 

when the number m of observations is much larger than the number n of state vector elements, and the 293 

error covariance of the observations cannot be properly quantified. Overfitting would be implied by a 294 

highly unlikely departure of the posterior solution from the prior estimate, which can be indicated from 295 

the posterior cost function. For a given state vector element i, the expected value of (𝒙𝒙𝒊𝒊 − 𝒙𝒙𝑨𝑨𝒊𝒊)𝟐𝟐 is the 296 

prior error variance σ𝐴𝐴𝑖𝑖2. For an n-dimensional state vector with a diagonal prior error covariance matrix, 297 

the state component JA of the cost function is the sum of n random normal elements 298 

 299 

𝐽𝐽𝐴𝐴(𝒙𝒙) = (𝒙𝒙 − 𝒙𝒙𝑨𝑨)𝑻𝑻𝑺𝑺𝑨𝑨−𝟏𝟏(𝒙𝒙 − 𝒙𝒙𝑨𝑨) = ∑ (𝒙𝒙𝒊𝒊−𝒙𝒙𝑨𝑨𝒊𝒊)𝟐𝟐

σ𝐴𝐴𝑖𝑖2𝒏𝒏  (6), 300 

and its pdf is given by the Chi-square distribution with n degrees of freedom (n=3378 in this case), with 301 

an expected value of n and a standard deviation of √2𝑛𝑛 . One can apply the same reasoning to the 302 

observation component 𝐽𝐽𝑂𝑂 of the posterior cost function, 303 

𝐽𝐽𝑂𝑂(𝒙𝒙) = (𝒚𝒚 − 𝑲𝑲𝒙𝒙)𝑇𝑇𝑺𝑺𝑶𝑶−1(𝒚𝒚 − 𝑲𝑲𝒙𝒙) =  ∑ (𝐲𝐲𝒊𝒊−𝑲𝑲𝒙𝒙𝒊𝒊)𝟐𝟐

σ𝑂𝑂𝑖𝑖2𝒎𝒎  (7),  304 

whose pdf follows a chi-square distribution with m degrees of freedom. However, this component is less 305 

sensitive to the choice of γ because of the large random error component for individual observations.  306 

 307 

We choose the value for the regularization parameter 𝛾𝛾 in order to achieve a solution most consistent 308 

with the estimated error on the prior estimates. For a given state vector element i, the expected value of 309 

(𝒙𝒙�𝒊𝒊 − 𝒙𝒙𝑨𝑨𝒊𝒊)𝟐𝟐  is the prior error variance σ𝐴𝐴𝑖𝑖2 . For a diagonal prior error covariance matrix, the state 310 

component JA of the posterior cost function is  311 

𝐽𝐽𝐴𝐴(𝒙𝒙�) = (𝒙𝒙� − 𝒙𝒙𝑨𝑨)𝑻𝑻𝑺𝑺𝑨𝑨−𝟏𝟏(𝒙𝒙� − 𝒙𝒙𝑨𝑨) = ∑ (𝒙𝒙�𝒊𝒊−𝒙𝒙𝑨𝑨𝒊𝒊)𝟐𝟐

σ𝐴𝐴𝑖𝑖2𝒏𝒏 ≈ 𝑛𝑛 (6), 312 

   313 

where n is the number of state vector elements. In our case the prior error covariance matrix is not strictly 314 

diagonal because of covariance for the wetland terms (Bloom et al., 2017), so one may expect 𝐽𝐽𝐴𝐴(𝒙𝒙�) to 315 

be somewhat deviated from n. Nevertheless, 𝐽𝐽𝐴𝐴(𝒙𝒙�) ≫ 𝑛𝑛 implies overfit to the observations because the 316 

posterior state vector estimates are far outside the estimated errors on the prior estimates.  317 
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 318 

One can apply the same reasoning to the observation component 𝐽𝐽𝑂𝑂 of the posterior cost function, 319 

𝐽𝐽𝑂𝑂(𝒙𝒙�) = (𝒚𝒚 − 𝑲𝑲𝒙𝒙�)𝑇𝑇𝑺𝑺𝑶𝑶−1(𝒚𝒚 − 𝑲𝑲𝒙𝒙�) ≈ 𝑚𝑚 (7),  320 

 321 

where m is the number of observations. However, this component is less sensitive to the choice of γ 322 

because of the large random error component for individual observations.  323 

 324 

Figure 4 shows the dependences of 𝐽𝐽𝐴𝐴(𝒙𝒙�) and 𝐽𝐽𝑂𝑂(𝒙𝒙�) on the choice of the regularization parameter γ, for 325 

the in situ and GOSAT observations. The in situ observations are sufficiently sparse that γ = 1 (no 326 

regularization) is expectedprovides the best solution. In the case of GOSAT, however, γ = 1 would yield 327 

𝐽𝐽𝐴𝐴(𝒙𝒙�) = 6𝑛𝑛 ≫ 𝑛𝑛 ± √2𝑛𝑛  which indicates overfitting, while γ = 0.1 yields 𝐽𝐽𝐴𝐴(𝒙𝒙�) ≈ 𝑛𝑛  which is the 328 

expected value and is used here. This can be explained by the high observation density of GOSAT, such 329 

that error correlation between individual observations through the forward model may be expected and 330 

would have a large effect on the solution. Maasakkers et al. (2019) found that 𝛾𝛾 = 0.05 and 𝛾𝛾 = 0.1 331 

gave similar solutions in their global inversions of GOSAT data. We also conduct sensitivity tests using 332 

𝛾𝛾 = 0.5 for in situ observations and 𝛾𝛾 = 0.05 for GOSAT observations. 333 

 334 

The Aanalytical solution to the cost function minimizationBayesian optimization problem, as done here, 335 

has several advantages relative to the more commonly used variational (numerical) solution approach for 336 

finding the minimum. (1) It finds the true minimum in the cost function, rather than an approximation 337 

that may be sensitive to the choice of initial estimate. (2) It identifies the information content of the 338 

inversion and the ability to constrain each state vector element. (3) It enables a range of sensitivity 339 

analyses, modifying the prior estimates, modifying the error covariance matrices, adding/subtracting 340 

observations, etc. at minimal computational cost. We will make use of these advantages in comparing the 341 

ability of the iIn- situ-only, GOSAT-only, and GOSAT + in situ inversions, and to test how choices in 342 

cost-function construction affect our conclusions including changing the regularization parameter 𝛾𝛾 , 343 

changing the prior error estimates, and using different types of in-situ observations. Our analysis will 344 

focus on results from the base inversions with the default settings, but we will use results from the 345 

sensitivity inversions to address specific issues. 346 

 347 

A requirement of the analytical approach is that the Jacobian matrix be explicitly constructed, requiring 348 

n + 1 forward model runs. Building the Jacobian matrix for the 3378 state vectors in this 8-year period 349 

study requires about one million core hours (8 cores × 36 hours per simulation × 3378 simulations). 350 

However, this construction is readily done in parallel on high-performance computing clusters. 351 

 352 

Our inversion returns posterior emission estimates and their temporal trends on a 4°× 5° grid for non-353 

wetland emissions, and monthly mean wetland emissions for individual years in 14 subcontinental regions.  354 

We cannot separate individual sectors within a 4°×5° grid cell because they will all have the same response 355 

function (Jacobian column). However, Wwe can aggregate these results spatially and by sector in a way 356 
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that retains the error covariance of the solution (Maasakkers et al., 2019). Consider a reduced state vector 357 

xred representing a linear combination of the original state vector elements that may be a sum over a 358 

particular region or the globe, and may be weighted by the contributions from individual sectors following 359 

the prior distribution. The linear transformation from the posterior full-dimension state vector 𝒙𝒙� to the 360 

reduced state vector 𝒙𝒙�𝒓𝒓𝒓𝒓𝒓𝒓 is defined by a summation matrix W 361 

𝒙𝒙�𝒓𝒓𝒓𝒓𝒓𝒓 =  𝑾𝑾𝒙𝒙� (8). 362 

 363 

The posterior error covariance and averaging kernel matrices for the reduced state vector can then be 364 

calculated as: 365 

𝑺𝑺�𝒓𝒓𝒓𝒓𝒓𝒓 =  𝑾𝑾𝑺𝑺�𝑾𝑾𝑻𝑻 (9), 366 

𝑨𝑨𝒓𝒓𝒓𝒓𝒓𝒓 =  𝑾𝑾𝑨𝑨𝑾𝑾∗ (10), 367 

where 𝑾𝑾∗ =  𝑾𝑾𝑻𝑻(𝑾𝑾 𝑾𝑾𝑻𝑻)−𝟏𝟏  (Calisesi et al., 2005). 𝑺𝑺�𝒓𝒓𝒓𝒓𝒓𝒓  provides a means to determine error 368 

correlations between aggregates of quantities optimized by the inversion, e.g., between global methane 369 

emissions and global OH concentrations. Ared provides a means to determine the ability of the inversion 370 

to constrain an aggregated term (e.g., emissions from a particular sector).  371 

 372 

3. Results and discussion 373 

3.1 Ability to fit the in situ and GOSAT data  374 

We will present results from three different inversions for 2010-2017: (1) using only in situ observations 375 

(Inin- situ-only inversion), (2) using only GOSAT observations (GOSAT-only inversion), and (3) using 376 

both GOSAT and in situ observations (GOSAT + in situ inversion). Here we first evaluate the ability of 377 

these different inversions to fit the in situ and GOSAT observations, including when the data are not used 378 

in the inversion (consistency check). This is done by conducting GEOS-Chem simulations with posterior 379 

values for the state vectors and comparing to observations.  380 

 381 

Figures 5 and 6 show the resulting comparisons for the in situ observations, arranged by type of platform 382 

(Fig.5), and by latitude bands and months (panels (a)-(d) in Fig.6). The model simulation with prior 383 

estimates shows a 30-60 ppb low bias for all in situ platforms growing with time. The Inin- situ-only 384 

inversion effectively corrects this bias and its trend, and also significantly improves the correlations across 385 

all platforms. The GOSAT-only inversion performs comparably in correcting the bias for the independent 386 

aircraft data measuring the background, and also corrects the 2010-2017 trend, but still shows notable 387 

low bias at northern mid-latitudes because of difficulty in fitting the surface and tower data in the US and 388 

Europe that are adjacent to methane sources.  The GOSAT-only inversion performs comparably in 389 

correcting the 2010-2017 trend for the independent in-situ data (Fig.6c) and bias for background 390 

observations (e.g. aircraft observations in the Southern Hemisphere (Fig.S2)), but there is a low bias at 391 

northern mid-latitudes reflecting surface and tower data in North America and Europe. As we will see, 392 

the in situ observations are important for optimizing emissions in these regions. 393 

 394 

Figure 6 also compares the fits to the GOSAT observations (panels (e)-(h)). Both the In situ-only and 395 
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GOSAT-only inversions correct the bias and trend in the prior simulation at all latitudesThe GOSAT-only 396 

inversion corrects the bias and trend in the prior simulation at all latitudes. The in-situ-only inversion 397 

corrects the trends, but biases low to the GOSAT observations by about 10 ppbv with larger bias in the 398 

Southern Hemisphere due to the sparsity of in situ observation there. The comparison suggests that in situ 399 

and GOSAT observations are largely consistent for informing the global methane change but also have 400 

some complementarity for the inversion. An important implication is that the in situ observations, even 401 

though sparse and mostly at northern mid-latitudes, can still inform the global methane levels. The 402 

GOSAT + in situ joint inversion shows good agreement with both the in situ and GOSAT observations.  403 

 404 

Figure 7a further evaluates the global methane growth rate as determined by the methane budget 405 

imbalance for individual years in 2010-2017 from the three inversions. The observed methane growth 406 

rate inferred from the NOAA sites (https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/, last access: 20 June 407 

2020) averages 7.2±2.8 ppb a-1 over the period, peaking in 2014, and overall accelerating with higher 408 

growth in 2015-2017 than in 2010-2013. We find that all posterior simulations show comparable mean 409 

methane growth rate (7.7±3.7 ppb a-1 for iIn- situ-only inversion, 8.8±2.2 ppb a-1 for GOSAT-only 410 

inversion, and 8.3±1.8 ppb a-1 for the GOSAT + in situ inversion). However, the iIn- situ-only inversion 411 

overestimates the increasing trend in the methane growth rate, largely driven by the year 2017, and fails 412 

to fit its interannual variability. This may reflect the heavy weighting of the in situ observations toward 413 

northern mid-latitudes. GOSAT observations in the inversion do much better in capturing the observed 414 

methane interannual variability and trend. Adding in situ observations to GOSAT observations provides 415 

a better fit in 2015 than GOSAT-only inversion but has an insignificant effect in other years. Zhang et al. 416 

(2020a2019) interpreted the trend and interannual variability in the GOSAT-only inversion as due to a 417 

combination of anthropogenic emissions, wetlands, and OH concentrations.  418 

 419 

3.2 Anthropogenic methane emissions  420 

Figure 8 shows the averaging kernel sensitivities (diagonal elements of the averaging kernel matrix) and 421 

posterior scaling factors for the non-wetland emissions (dominated by anthropogenic emissions) in the 422 

iIn- situ-only, GOSAT-only, and GOSAT + in situ joint inversions. The DOFS (trace of the averaging 423 

kernel matrix) quantify the number of independent pieces of information from the inversion, starting from 424 

1009 unknowns for anthropogenic emissions (Figure 1). The DOFS are 113 for the iIn- situ-only inversion, 425 

212 for the GOSAT-only inversion, and 262 for the GOSAT + in situ joint inversion. The higher DOFS 426 

from the joint inversion indicate that the satellite and in situ observations have complementarity but also 427 

some redundancy. Strict complementarity would imply a DOFS of 325=113+212. We find that 75% of 428 

the in situ information is at northern mid-latitudes (30-60°N, DOFS=82, calculated as the sum of 429 

averaging kernel sensitivities in that latitude band) where the observations are densest, with another 9% 430 

(DOFS=10) at 60-90°N. GOSAT provides higher more information than do in situ observations at 431 

northern mid-latitudes (DOFS=96) and dominates in the tropics (DOFS=105). This dominance of 432 

satellites for informing methane sources in the tropics has been pointed out in previous studies 433 

(Bergamaschi et al., 2013; Monteil et al., 2013; Fraser et al., 2013; Alexe et al., 2015). We find that the 434 
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DOFS from the in-situ-only inversion observations are mostly (85%) from the surface and tower 435 

measurements (Fig.S3). 436 

 437 

We investigate further the inversion results for northern mid-latitudes where most of the information of 438 

in situ observations is contained including for the US, Canada, Europe, and China. Table 2 gives the 439 

optimization of anthropogenic methane emissions (calculated as the difference between total non-wetland 440 

emissions and the non-wetland natural emissions) in these regions. Figure 9 shows the optimization by 441 

source sectors, assuming that (1) the partitioning between sectors of non-wetland emissions in individual 442 

grid cells is correct in the prior inventory (this does not assume that the prior distribution of sectoral 443 

emissions is correct)., (2) the scaling factors are to be applied equally to all sectors in a grid cell. These 444 

assumptions are adequate when the sectors are spatially separated but are more prone to error when they 445 

spatially overlap. Figure 9 also shows the averaging kernel sensitivities of emission sectors (diagonal 446 

terms of 𝑨𝑨𝒓𝒓𝒓𝒓𝒓𝒓 derived from Equations (8) and (10)), measuring the ability of the inversion to optimize 447 

different emissions sectors, and the DOFS for each inversion summed over the region. Wetland methane 448 

emissions are optimized separately as will be discussed in Section 3.3. 449 

 450 

Inspection of the DOFS shows that the in situ observations are more effective than GOSAT for optimizing 451 

US anthropogenic methane emissions (DOFS=41 vs. DOFS=22) and this applies to all sectors (Figure 9). 452 

The averaging kernel sensitivities panel in Figure 9 shows that US results from the joint GOSAT + in situ 453 

inversion are mostly determined by the in situ observations. The joint GOSAT + in situ inversion increases 454 

anthropogenic US emissions from 28 Tg a-1 in the prior EPA GHGI to 36 Tg a-1, with most of the increase 455 

driven by livestock and oil/gas sources in the central US. Averaging kernel sensitivity for major sectors 456 

is large (0.63-0.93), indicating that the posterior estimates are mostly determined by the observations 457 

rather than by the prior estimates. The underestimate of oil/gas emissions in the EPA GHGI has been 458 

reported before in local observations and higher-resolution inversions (Miller et al., 2013; Turner et al., 459 

2015; (Alvarez et al., 2018; Cui et al., 2019; Maasakkers et al., 2020). 460 

 461 

The Iin situ observations areis also more effective than GOSAT in optimizing anthropogenic methane 462 

emissions in Canada (DOFS=21 vs. DOFS=6), particularly in Alberta where oil/gas emissions are high 463 

(Fig.8). This reflects in part our exclusion of GOSAT data poleward of 60°N. Oil/gas emissions in Canada 464 

increase by a factor of 2 in the GOSAT + in situ inversion to 4.5 Tg a-1 compared to UNFCCC the ICF 465 

(2015) prior estimate, with an averaging kernel sensitivity of 0.57 (Fig.9). Total anthropogenic emissions 466 

increase from 5 Tg a-1 to 8 Tg a-1. 467 

 468 

In situ and GOSAT observations show comparable ability in optimizing the total anthropogenic emissions 469 

in Europe (DOFS=16~18). They agree that prior anthropogenic methane emissions are too high in 470 

northern Europe but disagree in southern Europe. Averaging kernel sensitivities from the Inin situ-only 471 

inversion are slightly weaker than for the US and Canada because of the lower density of in situ sites. The 472 

Integrated Carbon Observation system (ICOS) network (https://www.icos-cp.eu/, last access: 17 July 473 

https://www.icos-cp.eu/
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2020) has increased substantially the number of available methane observations in Europe since 2017 so 474 

that future inversions should expect a stronger constraint from in situ observations. Total European 475 

anthropogenic emissions decrease from 27 Tg a-1 to 23 Tg a-1 in the GOSAT + in situ joint inversion, with 476 

decreases for all sectors but this may reflect the inability of our 4°× 5° resolution to effectively separate 477 

emission sectors.  478 

 479 

The only other region where in situ observations provides significant information is China, though the 480 

corresponding DOFS=13 is less than for GOSAT (DOFS=22). Both inversions agree that emissions must 481 

be greatly decreased from the prior estimate, and the joint inversion (DOFS=28) has stronger power in 482 

doing so. The posterior 2010-2017 Chinese anthropogenic emission is 43 Tg a-1 in the joint inversion, 483 

compared to 63 Tg a-1 in the prior estimate. Our results agree with a recent study by Janardanan et al. 484 

(2020), which also used GOSAT and surface observations to estimate a mean 2011-2017 anthropogenic 485 

methane emission in China of 46±9 Tg a-1. The downward correction is mainly driven by a 40% decrease 486 

in coal emissions from 19 Tg a-1 to 11 Tg a-1 (Fig. 9). Previous inversions using the EDGAR inventory 487 

(>20 Tg a-1) as prior estimate found a similar correction (Alexe et al., 2015; Thompston et al., 2015; 488 

Turner et al., 2015; Maasakkers et al., 2019; Miller et al., 2019). In our case, the prior estimate of coal 489 

emissions (19 Tg a-1) is the value reported by China to the UNFCCC and we find that it is still too high. 490 

A recent inventory by Sheng et al. (2019) gives a coal emission estimate of 15 Tg a-1 for China in 2010-491 

2016.  492 

 493 

3.3 Wetland methane emissions 494 

The inversion optimizes wetland emissions for the 14 regions of Figure 3 and for 96 individual months 495 

covering 2010-2017, amounting to 1344 state vector elements. Results from the iIn- situ-only, GOSAT-496 

only, and GOSAT + in situ inversions yield DOFS of 221, 183, and 301 respectively. In situ observations 497 

provide more information for boreal wetlands while GOSAT dominates for tropical wetlands.  498 

 499 

Zhang et al. (2020a) give a detailed analysis of GOSAT-only inversion results for tropical wetlands. 500 

WHere we analyzed further the boreal/temperate North America wetlands, where in situ observations 501 

provide significant added information (Figure 10). Both in situ and GOSAT observations agree that the 502 

prior WetCHARTs emissions are too high. The posterior estimates from the GOSAT + in situ inversion 503 

are 4.5 and 2.0 Tg a-1 for boreal and temperate North America, respectively, compared to 12.8 and 6.9 Tg 504 

a-1 in WetCHARTs. Posterior boreal wetland CH4 emissions for North America are on the lower end but 505 

within the WetCHARTs estimates (WetCHARTs models range 3~33 Tg a-1); however, posterior temperate 506 

CH4 emissions for North America are lower and outside the WetCHARTs range (3~12 Tg a-1). The 507 

correction for boreal North America is particularly large in May-June, which can potentially be attributed 508 

to suppression of wetland emissions by either snow cover (Pickett-Heaps et al., 2011) or by frozen soils 509 

(Zona et al., 2016). The WetCHARTs emission overestimate for temperate North America (mainly coastal 510 

wetlands in the eastern US) has been reported before from inversions using aircraft data (Sheng et al., 511 

2018) and GOSAT data (Maasakkers et al., 2020).  512 
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 513 

3.4 Anthropogenic methane emission trends 514 

Figure 11 presents the 2010-2017 trends (% a-1) of anthropogenic methane emissions from the three 515 

inversions, and the corresponding averaging kernel sensitivities. The GOSAT + in situ inversion has a 516 

DOFS = 161 for quantifying the spatial distribution of the trends. Most of that information is from GOSAT 517 

(DOFS = 122) but in situ observations add significant information. Information from in situ observations 518 

is concentrated in the US, Canada, Europe, and China. Table 2 summarizes the trends for the four regions. 519 

Figure 12 shows the trends disaggregated by sectors, using the same procedure as for Figure 9.  520 

 521 

In situ observations provide stronger constraints than GOSAT on anthropogenic emission trends in the 522 

US (DOFS=29 vs. DOFS=12). They agree on the upward trend in the eastern US as also found in 523 

Maasakkers et al. (2020) which used GOSAT in a high resolution inversion to interpret methane trends in 524 

the US in 2010-2015. However, they show opposite trends (positive trend from iIn- situ-only inversion 525 

but negative from GOSAT-only inversion) in total emissions and in the central south US (Table 2, Fig. 526 

11). The GOSAT + in situ joint inversion (DOFS=31) estimates that US anthropogenic methane emissions 527 

increased by 0.4 Tg a-1 a-1 (1.1% a-1) from 2010 to 2017, with the largest contribution from oil/gas 528 

emissions (0.3 Tg a-1 a-1, 2.5% a-1). This posterior trend is much smaller than previous studies showing 529 

large increases in US oil/gas emissions (2.1–4.4 Tg a-1 a-1) inferred from ethane/propane levels (Franco 530 

et al., 2016; Hausmann et al., 2016; Helmig et al., 2016), but is more consistent with a recent study by 531 

Lan et al. (2019) of 0.3±0.1 Tg a-1 a-1 in 2006-2015 based on long-term in situ measurements. The 532 

inversion also reveals rising emissions from oil/gas in the central south US, including the Permian Basin 533 

which is currently the largest oil-producing basin in the US (Zhang et al., 2020b).  534 

 535 

We find that anthropogenic emissions in Canada decrease over the 2010-2017 period by 0.2 Tg a-1 a-1 536 

(2.5% a-1) in the GOSAT + in situ joint inversion, mostly driven by oil/gas emissions in Alberta and 537 

livestock emissions (Figs. 11-12). Anthropogenic emissions in Europe decrease by 0.4 Tg a-1 a-1 (1.7 % a-538 
1).  539 

 540 

All three inversions show increases of Chinese anthropogenic methane emissions over 2010-2017 by 0.1-541 

0.4 Tg a-1 a-1 (0.3-0.9% a-1), but the spatial patterns and source attributions are different. The largest 542 

difference is for coal mining emissions in the North China Plain, where in situ observations indicate a 543 

decrease ofby -0.8 Tg a-1 a-1 while GOSAT shows an increase ofby 0.1 Tg a-1 a-1. A previous GOSAT 544 

inversion study found a large increase of coal mining emissions in China over 2010-2015 (Miller et al., 545 

2019). However, a recent bottom-up inventory estimates that Chinese coal emission peaked in 2012 and 546 

decreased afterward, leading to no significant overall trend for 2010-2016 (Sheng et al., 2019). Our 547 

inversion assumes linear trends in emissions over 2010-2017 but that may not be appropriate for China. 548 

 549 

3.5 Global methane budget for 2010-2017 550 

Table 1 shows the optimized global anthropogenic emissions from different sectors as determined by the 551 
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joint GOSAT + in situ inversion. Corrections to the global prior estimates are mostly determined by 552 

GOSAT (Fig. 8). They include upward corrections to livestock and rice methane emissions, and 553 

downward correction to the coal mining emissions driven by overestimation in China. The joint inversion 554 

also estimates a global increase in anthropogenic emissions by 1.7±0.6 Tg a-1 a-1 (0.5% a-1) in 2010-2017, 555 

dominantly driven by trends in the tropics (Fig. 11).  556 

 557 

A number of previous studies have analyzed surface observations to interpret global methane budgets and 558 

trends (Dlugokencky et al., 2009; Bruhwiler et al., 2014; Houweling et al., 2017). As shown in Figure 6, 559 

our iIn- situ-only inversion can fit the GOSAT observations of global methane distribution and trend, 560 

indicating that the in situ data provide useful information on the global budget. Here we examine whether 561 

this information adds to that from GOSAT. For this purpose and following Maasakkers et al. (2019), we 562 

collapse the full state vector to a reduced state vector (𝒙𝒙�𝒓𝒓𝒓𝒓𝒓𝒓) that contains global mean methane emissions 563 

and OH as elements, and derive the associated error covariance matrix (𝑺𝑺�𝒓𝒓𝒓𝒓𝒓𝒓) as introduced in Section 564 

2.4.  565 

 566 

Figure 13 shows the joint probability density functions (PDFs) of the mean anthropogenic methane 567 

emissions and methane lifetime against oxidation by tropospheric OH from the three inversions. There is 568 

strong negative correlation (r=-0.72) between the optimization of methane emissions and OH in the 569 

GOSAT-only inversion, and somewhat less in the iIn- situ-only inversion (r=-0.53), although the posterior 570 

error variance is larger due to the lower data density as indicated by the axes of the ellipses. A sensitivity 571 

inversion using only the surface and tower measurements in the iIn -situ-only inversion yields r=-0.37 572 

6(Fig.13b). It indicates that in situ observations, in particular surface and tower measurements, are more 573 

effective than the satellite observations in independently constraining methane emissions independently 574 

from the sink by OH. A likely reason is that surface measurements in source regions are more sensitive 575 

to methane emissions than are column measurements. We also find that the in-situ-only inversion yields 576 

a larger interannual variability of posterior OH concentrations and thus methane lifetime than the GOSAT-577 

only inversion (Fig.7b), due to the heterogeneous spatial and temporal distribution of the in situ 578 

observations. 579 

 580 

Comparison of the posterior PDFs between the GOSAT-only and iIn- situ-only inversions implies that the 581 

two are inconsistent in optimizing global methane budgets, since the 99% probability contours does not 582 

overlap (Fig.13a)., Abut this is likely because possible cause is that the posterior error covariance matrix 583 

underestimates the actual error variance in particular for global budget errors due to its assumption of 584 

independent identically distributed (IID) observational errors (Brasseur and Jacob, 2017), and this would 585 

particularly affect the global budget which sums emission results for individual grid cells.. Remarkably, 586 

the solution from the GOSAT + in situ joint inversion is more in agreement with in situ observations than 587 

GOSAT, and does not lie between these two solutions. Inspection of Figure 6c shows that the GOSAT-588 

only inversion is biased low relative to in situ observations at northern mid-latitudes and biased high in 589 

the southern hemisphere, implying that both emissions and OH concentrations are too low. On the other 590 
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hand, Figure 6f indicates either underestimation of emissions or overestimation of OH concentrations in 591 

the in-situ-only inversion, and the former one is more likely as GOSAT measurements used here are over 592 

land which should be more sensitive to emissions than OH loss. Ingestion of both observations in the 593 

GOSAT + in situ inversion thus enhances both the methane emissions and OH concentrations compared 594 

to the in-situ-only and GOSAT-only inversion to correct these biases. It also narrows the posterior error 595 

of mean anthropogenic emissions and methane lifetime against tropospheric OH by 20% and 50% 596 

compared to the GOSAT-only and in-situ-only inversions, respectively (Fig. 13a).Ingestion of the in situ 597 

observations in the inversion corrects that bias, and narrows the posterior error of mean anthropogenic 598 

emissions and methane lifetime against tropospheric OH by 30% (Fig. 13), compared to the GOSAT-only 599 

inversion.  Thus we find that the GOSAT and in situ observations are complementary in quantifying the 600 

global budget.  601 

 602 

Table 3 summarizes the global mean methane budget in 2010-2017. The GOSAT + in situ joint inversion 603 

estimates a total methane emission of 551±2 Tg a-1, of which 371 Tg a-1 are anthropogenic, and a total 604 

sink of 528529±2 Tg a-1. The total emission is at the low end ofwithin the 538-593550-594 Tg a-1 range 605 

of top-down estimates but lower than the 594-881 Tg a-1 range of bottom-up estimates reported for the 606 

2008-2017 decade by the Global Carbon Project (Saunois et al., 2020). Our joint inversion yields a 607 

methane lifetime against OH oxidation of 11.2±0.1 years, compared toconsistent with the observationally-608 

based estimate of 11.2±1.3 years (Prather et al., 2012), and pushes the northern to southern hemispheric 609 

OH ratio (1.060.98 in GOSAT + in situ inversion versus 1.16 in prior estimate) closer to observed the 610 

values of (0.97±0.12) inferred from methyl chloroform observations (Patra et al., 2014). 611 

 612 

We examine in Figure 13b the sensitivity of the global methane budget optimization to the choice of 613 

different regularization parameter 𝛾𝛾  (and therefore observation error 𝑺𝑺𝑶𝑶 ) and prior error of methane 614 

emission trends and OH concentrations. We find that reducing 𝛾𝛾 or prior errors of trend and OH by 50% 615 

yields consistent estimates of anthropogenic emissions and OH concentrations as compared to the default 616 

inversion, with differences within 3%. Decreasing the weighting of observations in the inversion (i.e. 617 

assuming larger observation error) enlarges the posterior error and pushes the posterior estimates closer 618 

to the prior estimates. Assuming a lower prior error for OH concentration from 10% to 5% results in lower 619 

methane lifetime (closer to the prior) and higher emissions, and also reduces the error correlation between 620 

the optimization of methane emissions and OH, while assuming a lower prior error for non-wetland 621 

emission trends leads to an opposite effect. Our results are consistent with Maasakkers et al. (2019), which 622 

shows that different assumptions of error distribution and magnitude tin their analyses have relatively 623 

small results. We also find that having the shipboard and aircraft measurements in the in-situ-only 624 

inversion pushes the estimate to be more consistent with the GOSAT-only inversion (Fig.13b), implying 625 

that the shipboard and aircraft measurements by emphasizing the methane in the remote atmosphere play 626 

a similar role as satellite measurements in global methane budget optimization. 627 

 628 

4 Conclusions 629 
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We quantifiedy and attributed global sources, sinks, and trends of atmospheric methane for 2010-2017 by 630 

inversions of GOSAT satellite data and the GLOBALVIEWplus in situ methane observations from surface 631 

sites, towers, ships, and aircraft. The inversions use an analytical solution to Bayesian optimization 632 

problem including closed-form error covariance matrices from which the detailed information content of 633 

the inversion can be derived. We conduct inversions using GOSAT and in situ data separately and 634 

combined. In this manner we are able to quantify the consistency and complementarity (or redundancy) 635 

of the satellite and in situ observations. 636 

 637 

We find that the GOSAT and in situ data are generally consistent and can fit each other independently 638 

through our inversions. Nevertheless, We find that the GOSAT-only inversion can generally fit the in situ 639 

data and the in-situ-only inversion can generally fit the GOSAT data, indicating consistency between the 640 

two data sets. However, the GOSAT-only inversion has difficulty fittingto fit the in situ observations in 641 

source regions (US and Europe), while In- the in-situ-only inversion s could notcannot reproduce the 642 

interannual variability of the methane growth rate due to its the heavy weighting of in situ data to the 643 

northern mid-latitudes. The GOSAT + in situ inversion shows the best agreement with fit to the ensemble 644 

of observations. 645 

 646 

GOSAT and in situ observations are to a large extent complementary in terms of have complementarity 647 

in constraining global emissions. GOSAT provides stronger constraints than in situ observations for the 648 

tropics, while in situ observations are more important in the US, Canada, Europe, and northern China 649 

where observations are most dense. The GOSAT-only and in-situ-only inversions also show consistent 650 

corrections to regional methane emissions in the US, Europe, and China. The joint GOSAT + in situ 651 

inversion indicatesreveals large underestimates of oil/gas emissions in the US and Canada, and large 652 

overestimates of coal emissions in China, relative to the national inventories reported to the United 653 

Nations Framework Convention on Climate Change (UNFCCC) and used here as prior estimates for our 654 

inversions. Emissions from boreal wetlands are overestimated in the mean WetCHARTs inventory used 655 

as prior estimate, particularly in May-June when snow cover and frozen soils inhibit methane emission.  656 

 657 

Our inversions estimate indicate increasing trends in US anthropogenic emissions driven by oil/gas 658 

production but decreasing trends in Canada (oil/gas) and Europe. Joint inversion of GOSAT and + in situ 659 

data shows a weak decreasing trend in Chinese coal emissions for 2010-2017, consistent with a recent 660 

bottom-up inventory (Sheng et al., 2019).  661 

 662 

We find that GOSAT and in situ observations are also complementary in constraining the global methane 663 

budget. While the global budget information relies more on GOSAT observations, information from the 664 

in situ observations at northern mid-latitudes avoids the large error correlations between methane 665 

emissions and sink from OH and also corrects the underestimation of both emission and OH in the 666 

GOSAT-only inversion. Our joint GOSAT + in situ inversion yields the global methane emissions and 667 

loss of 551±2 and 5298±2 Tg a-1 a-1 averaged over 2010-2017, and a methane lifetime of 11.2±0.1 years.  668 
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 669 

Our study presents a framework to integrate satellite and in situ data in analytical inversions. We conclude 670 

that on the basis of the present observation system, in situ and satellite observations are complementary 671 

for constraining global methane budgets and regional emissions. Satellite observations of atmospheric 672 

methane are presently expanding with the new availability of global daily data from the TROPOMI 673 

instrument launched in October 20178 (Hu et al., 2018). This will call for re-evaluating the role of in situ 674 

observations for constraining regional and global methane budgets, as can be done with the methods 675 

presented here. In situ observations will in any case continue to play a critical role for documenting long-676 

term trends of methane with consistent calibration, for observation of oceanic and polar regions where 677 

satellites have limited capability, for high-frequency measurements in source regions giving insight into 678 

the magnitude and intermittency of local emissions, and for independent validation of satellite-based 679 

inversions. In situ observations as presented in this paper will continue to play a critical role for satellite 680 

validation and for quantification of long-term trends. Their role for source characterization in supplement 681 

to satellite data will need to be re-evaluated as satellite observations expand, and the framework presented 682 

in this paper provides a means for doing so.  683 
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Table 1. Global sources and sinks of atmospheric methane, 2010-2017a.  1021 

 Prior b Posterior c  
Total sources [Tg a-1] 533 551 

Natural Sources   
Wetlands 161 148 
Open fires 14 16 
Termites 12 14 
Seeps 2 2 
Anthropogenic sources   
Livestock 117 136 
Oil 42 40 
Natural gas 25 30 
Coal mining 31 23 
Rice cultivation 38 44 
Wastewater 37 42 
Landfills 30 31 
Other Anthropogenic 25 25 

   
Total Sinks [Tg a-1] 540 528529 

Tropospheric OH 468 455456 
Stratospheric loss d 33 33 
Soil uptake d 34 34 
Tropospheric Cl d 5 5 

a 8-year mean values for 2010-2017. 1022 
b Prior natural source estimates (2000-2017 means) are from Bloom et al. (2017) for wetlands, Etiope et al. (2019) and 1023 
Hmiel et al. (2020) for seeps, Fung et al. (1991) for termite emissions, van der Werf et al. (2017) for open fire emissions. 1024 
Prior anthropogenic source estimates for 2012 are from EDGAR v4.3.2 (Janssens-Maenhout et al., 2017) except from 1025 
Scarpelli et al. (2020) for fuel exploitation (oil, gas, coal), and are overwritten for the US with the gridded EPA inventory 1026 
of Maasakkers et al. (2016). The prior tropospheric OH concentration field is from Wecht et al. (2014) and yields a 1027 
methane lifetime against oxidation by tropospheric OH of 10.6 years. 1028 
c From the joint inversion of GOSAT and in situ data 1029 
d These minor sinks are not optimized by the inversion. 1030 
  1031 
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Table 2. Anthropogenic methane emissions and trends, 2010-2017 a 1032 

Inversions In- situ-only 
inversion 

GOSAT-only 
inversion 

GOSAT+in situ 
inversion 

US b (prior: 28 Tg a-1) 
Posterior (Tg a-1) 35 31 36 
2010-2017 trend (Tg a-1 a-1) 0.5 -0.1 0.4 
    

Canada (prior: 5 Tg a-1) 
Posterior (Tg a-1) 8 5 8 
2010-2017 trend (Tg a-1 a-1) -0.2 -0.0 -0.2 
    

Europe c (prior: 27 Tg a-1) 
Posterior (Tg a-1) 28 17 23 
2010-2017 trend (Tg a-1 a-1) 0.1 -0.6 -0.4 
    

China (prior: 63 Tg a-1) 
Posterior (Tg a-1) 45 46 43 
2010-2017 trend (Tg a-1 a-1) 0.3 0.4 0.1 

a Posterior estimates of mean 2010-2017 emissions and trends for the iIn- situ-only, GOSAT-only, and GOSAT + in situ 1033 
joint inversions. 1034 
b Including contiguous US and Alaska. 1035 
c Europe is defined as west of 30oE, excluding Russia. 1036 
 1037 
 1038 
  1039 
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Table 3. Optimized global methane budget, 2010-2017. 1040 
 1041 

Inversions In- situ-only 
inversion 

GOSAT-only 
inversion 

GOSAT+in situ 
inversion 

Total sources [Tg a-1] 515±4d 504±3d 551±2d 
Anthropogenic a 359 333 371 
Seeps, termites 15 15 16 
Open fires 15 16 16 
Wetlands 126 140 148 

Total sinks [Tg a-1] 496494±4e 480478±3e 529528±2e 
Tropospheric OHb   421423 406408   456455 

Other losses c 73 72 73 
Mean imbalance [Tg a-1] 2119 2624 2322 

a See Table 1 for sectoral breakdown from the joint inversion. 1042 
b Methane lifetime against oxidation by tropospheric OH is 11.2±0.1 years in the GOSAT + in situ inversion. 1043 
c Soils, stratosphere, and oxidation by tropospheric Cl. 1044 
d Error standard deviation estimated from the quadrature of error variance of non-wetland emissions and wetland 1045 
emissions. 1046 
e Error standard deviation only accounts for the uncertainty in oxidation by tropospheric OH. 1047 
  1048 
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 1049 
 1050 
Figure 1. Analytical inversion framework. The inversion is applied to GOSAT and GLOBALVIEWplus 1051 
in situ observations for 2010-2017. GEOS-Chem is the chemical transport model (CTM) used as forward 1052 
model for the inversion. γ is a regularization factor in the Bayesian cost function (see text). 1053 
  1054 
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 1055 
 1056 
 1057 

Figure.2 Mean 2010-2017 methane observations from the GLOBALVIEWplus ObsPack data product 1058 
and from GOSAT. The GLOBALVIEWplus in situ data are local dry mixing ratios and are averaged over 1059 
the 4°×5° model grid for visibility. The GOSAT data are dry column mixing ratios on a 1°×1° grid from 1060 
the University of Leicester version 9 Proxy XCH4 retrieval (Parker et al., 2020), excluding observations 1061 
over oceans and poleward of 60°N. Note the difference in color scale between panels. 1062 
  1063 
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 1064 

Figure 3. Prior estimates of mean 2010-2017 methane emissions. The top panel shows the non-wetland 1065 
emissions on the 4o×5o grid used for the inversion. The bottom panel shows the wetland emissions and 1066 
the 14 subcontinental wetland regions used for the inversion following Bloom et al. (2017). 1067 
  1068 
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 1069 

 1070 
Figure 4. Optimization of the regularization parameter γ in the Bayesian cost function (Equation (1)). 1071 

The figure shows the posterior observation component 𝐽𝐽𝑂𝑂(𝒙𝒙�) = (𝒚𝒚 − 𝑲𝑲𝒙𝒙�)𝑇𝑇𝑺𝑺𝑶𝑶−1(𝒚𝒚 − 𝑲𝑲𝒙𝒙�) and the 1072 
posterior state component 𝐽𝐽𝐴𝐴(𝒙𝒙�) = (𝒙𝒙� − 𝒙𝒙𝑨𝑨)𝑻𝑻𝑺𝑺𝑨𝑨−𝟏𝟏(𝒙𝒙� − 𝒙𝒙𝑨𝑨)  for the Inin situ-only and GOSAT-only 1073 
inversions.  1074 
  1075 
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 1076 

 1077 

 1078 
 1079 
Figure 5. Ability of the inversions to fit the in situ methane observations. Panels (a)-(d) compare the 1080 
surface, tower, shipboard, and aircraft observations in 2010-2017 to the GEOS-Chem simulation using 1081 
the prior (black) and posterior estimates of methane emissions and OH concentrations from the iIn- situ-1082 
only inversion (red, dots not shown), GOSAT-only inversion (blue dots not shown), and GOSAT + in situ 1083 
joint inversion (purple). The numbers (N) of observations from each platform, the mean bias (MB), and 1084 
the correlation coefficients (r) between the observed and simulated values are shown inset.  1085 
  1086 
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 1087 

 1088 

 1089 
Figure 6. Ability of the inversions to fit the in situ methane observations and GOSAT satellite 1090 
observations. Panels (a)-(d) show the monthly time series of the differences between observed and 1091 
simulated in situ methane concentrations averaged over different latitude bands from 2010 to 2017. Panels 1092 
(e)-(h) are the same as panels (a)-(d) but for GOSAT methane concentrations. 1093 
 1094 
  1095 
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 1096 

 1097 

Figure 7. (a) Annual global growth rate of atmospheric methane, 2010-2017. Results from our three 1098 
different inversions (iIn- situ-only, GOSAT-only, GOSAT + in situ) are compared to the observed growth 1099 
rates inferred from the NOAA surface observational network 1100 
(https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/, last access: 20 June, 2020). Mean annual growth rates 1101 
and standard deviations from the different inversions are shown inset. (b). Methane lifetime against 1102 
oxidation by tropospheric OH, 2010-2017, from the three different inversions. Mean lifetime and standard 1103 
deviations are shown inset. The methane lifetime in the prior estimate is 10.6 years. 1104 

https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/
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 1105 

 1106 

 1107 
Figure 8. Optimization of mean 2010-2017 non-wetland (mainly anthropogenic) emissions. The iIn- situ-1108 
only inversion uses in situ observations, the GOSAT-only inversion uses GOSAT satellite observations, 1109 
and the GOSAT + in situ inversion uses both. The left panels show the averaging kernel sensitivities 1110 
(diagonal elements of the averaging kernel matrix) for each inversion, with the degrees of freedom for 1111 
signal (DOFS, defined as the trace of the averaging kernel matrix) given inset. The right panels show the 1112 
correction factors to the prior emissions (Figure 3a). Wetland emissions are corrected separately (see text).  1113 
  1114 
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 1115 

Figure 9. Optimization of anthropogenic methane emissions by source sectors in the iIn- situ-only, 1116 
GOSAT-only, and GOSAT + in situ inversions. The left panel shows the averaging kernel sensitivities for 1117 
each emission sector (see text for description), the right panel shows the emissions. Europe is defined as 1118 
west of 30oE, which excludes Russia.  1119 

1120 
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 1121 
Figure 10. Wetland emissions in boreal and temperate North America (regions 2 and 3 of Figure 3). Prior 1122 
and posterior estimates of the monthly mean wetland emissions averaged over 2010-2017 from different 1123 
inversions are shown. Annual mean emissions and the degree of freedom for signal (DOFS) for monthly 1124 
emissions in individual years are shown inset. Note differences in scale between panels. Negative 1125 
emissions are allowed statistically by the inversion but are likely not physical. 1126 
  1127 
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 1128 
 1129 
Figure 11. Same as Figure 8 but for optimization of non-wetland (mainly anthropogenic) emission trends 1130 
(% a-1) in 2010-2017. 1131 
  1132 
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 1133 

Figure 12. Optimization by sector of regional anthropogenic methane emission trends in 2010-2017. Bars 1134 
and diamonds represent trends in Gg a-1 a-1 (bottom axis) and % a-1 (top axis) over the 2010-2017 period 1135 
from the GOSAT + in situ joint inversion.  1136 
  1137 
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 1138 

 1139 

 1140 
Figure 13. Joint probability density functions (PDFs) of global mean anthropogenic methane emission 1141 
and methane lifetime against oxidation by tropospheric OH optimized by the three different inversions. 1142 
Panel (a) shows the results from the prior and the three base inversions. The prior estimates are shown in 1143 
grey with bars representing the prior error standard deviation. The thick contours show probabilities of 1144 
0.99 (outermost), 0.7, 0.5, 0.3, and 0.1 (innermost). from the three base inversions. The error correlation 1145 
coefficients are given inset. Panel (b) shows the 0.99 probability contours from the three base inversions 1146 
along with the same contours for ten additional sensitivity inversions using reduced values of the 1147 
regularization parameter γ (0.05 instead of 0.1 for GOSAT, 0.5 instead of 1 for in situ); reduced errors for 1148 
the methane emission trends on the 4°×5° grid (5% a-1 instead of 10% a-1); reduced errors on annual 1149 
hemispheric mean OH concentrations (5% instead of 10%); or surface and tower data only in the in-situ-1150 
only inversion. 1151 
  1152 
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 1153 

 1154 
Figure S1. Posterior scaling factors of non-wetland methane emissions from GOSAT-only inversion (a) 1155 
with GOSAT stratospheric bias corrections and (b) without GOSAT stratospheric bias corrections. 1156 
 1157 
 1158 

 1159 

Figure S2. Differences between simulated and observed aircraft methane concentrations from the 1160 

GLOBALVIEWplus ObsPack data product using GEOS-Chem with prior estimates and with posterior 1161 

estimates from the in-situ-only, GOSAT-only, and GOSAT + in situ inversions. 1162 
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 1164 

Figure S3. Same as Figure 8a and 8b but from a sensitivity inversion using only surface and tower 1165 

methane observations. 1166 


