
Reviewer #2 
Comments [2-1]: "Global methane budget and trend, 2010–2017: complementarity of inverse 
analyses using in situ (GLOBALVIEWplus CH4 ObsPack) and satellite (GOSAT) observations" 
presents long-term global inversions based on different available observation datasets. The authors 
present an inversion system based on the analytical solution of the Bayesian Gaussian problem 
which allow to better understand the weight of each piece in the system. The authors analyze the 
outputs thoroughly and use relevant comprehensive metrics to assess the usefulness of each type of 
observations. 
 
The manuscript is well written, well structured and of significant importance for the community to 
be published in ACP after some weaknesses are properly addressed. Main problems are detailed in 
dedicated sections below and technical revisions are listed in Sect. 5. Overall, the manuscript is of 
high quality but falls short of properly exploiting the full potential of the system presented here. 
Sensitivity tests and additional inversions should be added to the manuscript (without computing 
additional response functions) to prove fully relevant to the community and to stand out of more 
regular inversion papers. It can be done with relatively little efforts considering all the material and 
the quality of the background work done to reach the present submitted manuscript. 
Response [2-1]: We thank the reviewer for the positive and valuable comments. All of them 
have been implemented in the revised manuscript. In particular, we have performed a number 
of additional inversions to test the sensitivity of our results to the choices in cost-function 
construction (e.g. usage of observations, error assumption of the observations and state). 
Please see our itemized responses below. 
 
Comments [2-2]: 1 Bias correction: p.7 l.191: Bias correction is mentioned. This is a critical point. 
It may have a huge impact on the inversions. Putting it under the carpet in one line is a little bit 
short. Please add details on this aspect and possibly some quantification of the impact of such a bias 
correction. Is the bias correction put in the constant c in eq. (2)? Or is it use on-line in the 
computation of GEOS-Chem? Or posterior to it? What is the impact on the response functions? If 
it is the constant c, please include (at least in supplement) your results with/without/with another 
bias correction to really see how sensitive your results are to that aspect. 
Response [2-2]: Thanks for pointing it out. The bias correction is done off-line before the 
inversion. We have added the text briefly describing the procedures for bias correction, and a 
Figure S1 to show the influence of bias correction. We now state in Section 2.3 “GEOS-Chem 
has excessive methane in the high-latitudes stratosphere, a flaw common to many models 
(Patra et al., 2011) especially at coarse model resolution. Following Zhang et al. (2020), we 
compute correction factors to GEOS-Chem stratospheric methane subcolumns as a function 
of season and equivalent latitude to match the measurements from the solar occultation ACE-
FTS v3.6 instrument (Waymark et al., 2014; Koo et al., 2017). As shown in Zhang et al. (2020), 
the correction can be up to 10% at high latitudes during winter and spring. We apply the 
correction factors before the inversion to avoid wrongly attributing this model transport bias 
to methane emissions and loss. Figure S1 shows that the systematic differences in the posterior 
scaling factors of non-wetland emissions with vs. without bias correction are more prominent 
at the northern high latitudes, as also shown in Stanevich et al. (2020), but the global total 
emissions only differ by 1%. ” 



 

 
 
Figure S1. Posterior scaling factors of non-wetland methane emissions from GOSAT-only inversion 
(a) with GOSAT stratospheric bias corrections and (b) without GOSAT stratospheric bias corrections. 
 
 
Reference: 
Stanevich, I., Jones, D. B. A., Strong, K., Parker, R. J., Boesch, H., Wunch, D., Notholt, J., Petri, C., 

Warneke, T., Sussmann, R., Schneider, M., Hase, F., Kivi, R., Deutscher, N. M., Velazco, V. A., 
Walker, K. A., and Deng, F.: Characterizing model errors in chemical transport modeling of 
methane: impact of model resolution in versions v9-02 of GEOS-Chem and v35j of its adjoint 
model, Geosci. Model Dev., 13, 3839–3862, https://doi.org/10.5194/gmd-13-3839-2020, 2020. 

 
Zhang, Y., Jacob, D. J., Lu, X., Maasakkers, J. D., Scarpelli, T. R., Sheng, J.-X., Shen, L., Qu, Z., 

Sulprizio, M. P., Chang, J., Bloom, A. A., Ma, S., Worden, J., Parker, R. J., and Boesch, H.: 
Attribution of the accelerating increase in atmospheric methane during 2010–2018 by inverse 
analysis of GOSAT observations, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-
2020-964, in review, 2020. 

 
Comments [2-3]: 2 Non-linearity of GEOS-Chem and OH chemistry. This is a little bit harsh to 
neglect it straight away. Could you run forward runs with your different posterior states and compare 
with what you get with the matrices Kx to have an idea of how negligible it is? 
Response [2-3]: The GEOS-Chem methane simulation used prescribed monthly 3-D fields of 
global tropospheric OH concentrations taken from a GEOS-Chem simulation with full 
chemistry. With this regard the optimization of methane emissions is strictly linear. The only 
non-linearity emerges regarding the optimization of OH, because the sensitivity of the 
methane concentration to changes in OH concentrations depends on the methane 
concentration through first-order loss, but the variability of methane concentration is 
sufficiently small so that this non-linearity is negligible. We have tested that the 𝐊𝐊𝒙𝒙�  and 
posterior simulation of y has a small mean difference of 2±3 ppbv. We now state in Section 2.4 
“The optimization of methane emission and its trends is strictly linear by design because we 
use prescribed monthly 3-D OH fields as described in Section 2.2. There is some non-linearity 
regarding the optimization of OH, because the sensitivity of the methane concentration to 
changes in OH concentrations depends on the methane concentration through first-order loss, 



but we assume that the variability of methane concentration is sufficiently small that this non-
linearity is negligible (we verify this assumption below)…. Comparison of the resulting 
Jacobian matrix to GEOS-Chem as F(x) – Kx - c shows a negligible residual difference of 2±3 
ppb, verifying the assumption of linearity.” 
 
Comments [2-4]: 3 Regularization term: The authors use a regularization term to correct for ill-
specified observation errors. However, their estimation is based on approximate matrices. Why not 
using the rigorous Chi-square criterion? such as in Desroziers et Ivanov (2001, https://rmets. 
onlinelibrary.wiley.com/doi/10.1002/qj.49712757417) 
Response [2-4]: Thanks for pointing it out. We have made the revision to estimate the optimal 
value of the regularization parameter in the context of the Chi-square distribution. We have 
also tested the impact of using different regularization parameters on the global methane 
budget as discussed in [Response #2-5]. 

We now state in Section 2.4 “... For a given state vector element i, the expected value of 
(𝒙𝒙𝒊𝒊 − 𝒙𝒙𝑨𝑨𝒊𝒊)𝟐𝟐  is the prior error variance 𝛔𝛔𝑨𝑨𝒊𝒊𝟐𝟐 . For an n-dimensional state vector with a 
diagonal prior error covariance matrix, the state component JA of the cost function is the sum 
of n random normal elements 

𝑱𝑱𝑨𝑨(𝒙𝒙) = (𝒙𝒙 − 𝒙𝒙𝑨𝑨)𝑻𝑻𝑺𝑺𝑨𝑨−𝟏𝟏(𝒙𝒙 − 𝒙𝒙𝑨𝑨) = ∑ (𝒙𝒙𝒊𝒊−𝒙𝒙𝑨𝑨𝒊𝒊)𝟐𝟐

𝛔𝛔𝑨𝑨𝒊𝒊𝟐𝟐𝒏𝒏  (6), 

and its pdf is given by the Chi-square distribution with n degrees of freedom (n=3378 in 
this case), with an expected value of n and a standard deviation of √𝟐𝟐𝒏𝒏. One can apply the 
same reasoning to the observation component 𝑱𝑱𝑶𝑶 of the posterior cost function, 

𝑱𝑱𝑶𝑶(𝒙𝒙) = (𝒚𝒚 − 𝑲𝑲𝒙𝒙)𝑻𝑻𝑺𝑺𝑶𝑶−𝟏𝟏(𝒚𝒚 − 𝑲𝑲𝒙𝒙) =  ∑ (𝐲𝐲𝒊𝒊−𝑲𝑲𝒙𝒙𝒊𝒊)𝟐𝟐

𝛔𝛔𝑶𝑶𝒊𝒊𝟐𝟐𝒎𝒎  (7),  

whose pdf follows a chi-square distribution with m degrees of freedom. However, this 
component is less sensitive to the choice of γ because of the large random error component for 
individual observations.  

 
Figure 4 shows the dependences of 𝑱𝑱𝑨𝑨(𝒙𝒙�) and 𝑱𝑱𝑶𝑶(𝒙𝒙�) on the choice of the regularization 

parameter γ, for the in situ and GOSAT observations. The in situ observations are sufficiently 
sparse that γ = 1 (no regularization) is expected. In the case of GOSAT, however, γ = 1 would 
yield 𝑱𝑱𝑨𝑨(𝒙𝒙�) = 𝟔𝟔𝒏𝒏 ≫ 𝒏𝒏 ± √𝟐𝟐𝒏𝒏  which indicates overfitting, while γ = 0.1 yields 𝑱𝑱𝑨𝑨(𝒙𝒙�) ≈ 𝒏𝒏 
which is the expected value and is used here….” 
 
Comments [2-5]: 4 Computation cost and sensitivity tests. It is nowhere stated what is the 
computation cost of the system (computing response functions on the one hand, solving the matrix 
products on the other hand). Once the response functions are computed it is in principle quite 
straightforward to change parameters in the R/B matrices to see the impact. 

I think the main strength of the system presented here comes from this very fact (otherwise, a 
variational inversion would give posterior fluxes at reduced cost, even if DOFS can be retrieved 
easily). This is a critical limitation of the present paper. 

Different horizontal and temporal correlations should be tested in the prior matrix, as well as 
standard deviation of errors, to see the impact of such modifications, given that we never really 
know how good are our prior/obs errors. 

https://rmets/


More critically are observation errors. Even though the observation data set is very large, it 
should be possible to imagine a matrix that is diagonal only by block, allowing to consider 
correlations between GOSAT neighbour observations, while keeping it possible to compute the 
inverse easily. As stated by the authors, the inversions are not consistent with each others (Fig. 13). 
This comes probably from ill-specified error matrices, which the authors have the tools to inquire 
into. 
Response [2-5]: Thank you for pointing it out. 
1) We have added the following text in Section 2.4 (Analytical Inversion) to clarify the 
computation cost of the system “A requirement of the analytical approach is that the Jacobian 
matrix be explicitly constructed, requiring n + 1 forward model runs. Building the Jacobian 
matrix for the 3378 state vectors in this 8-year period study requires about one million core 
hours (8 cores × 36 hours per simulation × 3378 simulations). However, this construction is 
readily done in parallel on high-performance computing clusters.”. 
 
2) We have also conducted a number of additional inversions to examine the results with 
different error assumption and ingestion of observations. For the prior standard deviation of 
state vectors (non-wetland emission trends and OH), we test their different magnitude 
(decrease by 50%) but not their distributions (correlations) due to the lack of objective 
information on the later. For the observation error, the ability to test off-diagonal assumption 
is also limited by the calculation of 𝑺𝑺𝑶𝑶−𝟏𝟏  which involves inverting a matrix with ~1012 
elements. Therefore we test the unknown observation error correlations by changing the 
regularization parameter 𝜸𝜸.  

We have added a new Figure 13b, and now state in Section 2.4 “We will make use of these 
advantages in comparing the ability of the in-situ-only, GOSAT-only, and GOSAT + in situ 
inversions, and to test how choices in cost-function construction affect our conclusions 
including changing the regularization parameter 𝜸𝜸, changing the prior error estimates, and 
using different types of in-situ observations. Our analysis will focus on results from the base 
inversions with the default settings, but we will use results from the sensitivity inversions to 
address specific issues.”. 

And in Section 3.5 we state “We examine in Figure 13b the sensitivity of the global 
methane budget optimization to the choice of different regularization parameter  𝜸𝜸  (and 
therefore observation error 𝑺𝑺𝑶𝑶 ) and prior error of methane emission trends and OH 
concentrations. We find that reducing 𝜸𝜸  or prior errors of trend and OH by 50% yields 
consistent estimates of anthropogenic emissions and OH concentrations as compared to the 
default inversion, with differences within 3%. Decreasing the weighting of observations in the 
inversion (i.e. assuming larger observation error) enlarges the posterior error and pushes the 
posterior estimates closer to the prior estimates. Assuming a lower prior error for OH 
concentration from 10% to 5% results in lower methane lifetime (closer to the prior) and 
higher emissions, and also reduces the error correlation between the optimization of methane 
emissions and OH, while assuming a lower prior error for non-wetland emission trends leads 
to an opposite effect. Our results are consistent with Maasakkers et al. (2019), which shows 
that different assumptions of error distribution and magnitude tin their analyses have 
relatively small results. We also find that having the shipboard and aircraft measurements in 
the in-situ-only inversion pushes the estimate to be more consistent with the GOSAT-only 



inversion (Fig.13b), implying that the shipboard and aircraft measurements by emphasizing 
the methane in the remote atmosphere play a similar role as satellite measurements in global 
methane budget optimization.” 

 

 
Figure 13. Joint probability density functions (PDFs) of global mean anthropogenic methane 
emission and methane lifetime against oxidation by tropospheric OH optimized by different 
inversions. Panel (a) shows the results from the prior and the three base inversions. The prior 
estimates are shown in grey with bars representing the prior error standard deviation. The thick 
contours show probabilities of 0.99 (outermost), 0.7, 0.5, 0.3, and 0.1 (innermost). The error 
correlation coefficients are given inset. Panel (b) shows the 0.99 probability contours from the three 
base inversions along with the same contours for ten additional sensitivity inversions using reduced 
values of the regularization parameter γ (0.05 instead of 0.1 for GOSAT, 0.5 instead of 1 for in situ); 
reduced errors for the methane emission trends on the 4°×5° grid (5% a-1 instead of 10% a-1); 
reduced errors on annual hemispheric mean OH concentrations (5% instead of 10%); or surface and 
tower data only in the in-situ-only inversion. 
 
Comments [2-6]: 5 Technical comments. p.4 l.89: aircraft measurements: those can be particularly 
challenging to ingest inversion systems as CTMs never really excel in representing the vertical 
distribution of CH4 concentrations. Plus it is never clearly stated whether or not they are really used 
in the inversion or only in the posterior evaluation. Please discuss more about the aircraft 
measurements and justify better their use (is it only vertical profiles, very hard to assimilate? or 
transects, easier to use?) 
Response [2-6]: Thank you for pointing it out.  
1) The aircraft measurements are used in the inversions, as stated in the original text (L122-
124) “We obtain in this manner 157054 observation data points for the inversion including 
81119 from 103 surface sites, 27433 from 13 towers, 827 from 3 ship cruises, and 47675 from 
29 aircraft campaigns.”. We have added a Figure S2 to also address [Comment #1-4], which 
shows that the posterior model can well fit the aircraft methane measurements measuring the 
background (e.g. in the Southern Hemisphere), but indeed some discrepancies emerge in the 
northern mid-latitudes, reflecting the difficulty in modeling methane vertical distributions or 
optimizing emissions near source. 
 
2) We have also added an additional inversion using only surface and tower observations in 
the inversion and compared the results with the In-situ-only inversion (which ingest all in situ 
observations) in Fig.S3 and Fig.13b. Comparison of Figure S3 to Figure 8a-b shows that 



adding the aircraft and shipboard observations to the surface and tower observations 
increases the DOFS for constraining non-wetland methane emissions from 96 to 113 (18%), 
and reflects the upward correction in the South America which is consistent with the GOSAT-
only inversion (Fig.8d). We also find in the Figure 13b that adding the aircraft and shipboard 
measurements pushes the inversed global methane and OH levels more consistent with the 
GOSAT-only inversion, however, it makes the inversion less effective in optimizing the global 
methane budget and OH. These results thus illustrate the ability of aircraft and shipboard 
measurements in the inversion. 

We now state in Section 3.2 “We find that the DOFS from the in-situ-only inversion 
observations are mostly (85%) from the surface and tower measurements (Fig.S3).”  

We also state in Section 3.5 “…A sensitivity inversion using only the surface and tower 
measurements in the In-situ-only inversion yields r=-0.37 (Fig.13b). It indicates that in situ 
observations, in particular surface and tower measurements, are more effective than the 
satellite observations in constraining methane emissions independently from the sink by OH.”, 
and “We also find that having the shipboard and aircraft measurements in the in-situ-only 
inversion pushes the estimate to be more consistent with the GOSAT-only inversion (Fig.13b), 
implying that the shipboard and aircraft measurements by emphasizing the methane in the 
remote atmosphere play a similar role as satellite measurements in global methane budget 
optimization.” 
 

 
Figure S3. Same as Figure 8a and 8b but from a sensitivity inversion using only surface and tower 

methane observations. 
 
Comments [2-7]: p.4 l.104: how exactly the linear trend are computed as response functions? same 
for OH? A start of explanation is given p.8, but additional information would be welcome. 
Response [2-7]: We now state in the text to introduce the construction of response functions 
(Jacobian matrix 𝑲𝑲 ) in Section 2.4: “We construct the Jacobian matrix 𝑲𝑲  explicitly by 
conducting GEOS-Chem simulations with each element of the state vector perturbed 
separately. For the linear emission trend elements, this is done by perturbing the 2010-2017 
emission trend in each grid cell from 0% (the best prior estimate) to 10% a-1; for OH, this is 
done by perturbing yearly hemispheric OH fields by 20% without modifying the spatial or 
seasonal distribution.” 
 
Comments [2-8]: p.7 l.163: What is the corresponding total error on the prior budget when using 
your prior distributed errors? Please represent it on Fig. 13 



Response [2-8]: We have revised Fig.13 accordingly. 
 
Comments [2-9]: p.8 l.208-213: observation error: it is not clear what ensembles are taken. Do you 
separate each station? Some regions for GOSAT? etc. 
Response [2-9]: We now state in Section 2.3: “For in-situ observations, we derive 𝛆𝛆𝟎𝟎 
separately for the ensemble of background surface sites (Dlugokencky et al., 1994), non-
background sites, tower sites, shipboard measurements, and aircraft measurements, while for 
GOSAT observations 𝛆𝛆𝟎𝟎 is calculated for each 4°× 5° grid cell.”   
 
Reference 
Dlugokencky, E. J., Steele, L. P., Lang, P. M., and Masarie, K. A.: The growth rate and distribution 

of atmospheric methane, J. Geophys. Res., 99, 17021, http://doi.org/10.1029/94jd01245, 1994. 
 
Comments [2-10]: p.9 l.284: not correct. The other way around. the analytical solution is the 
solution of the Bayesian Gaussian problem. The cost function is derived from the formulation of the 
Gaussian problem when the analytical solution cannot be computed explicitly. Actually, writing the 
cost function in Eq. (1) in a paper using analytical inversions is superfluous; the factor gamma can 
be introduced differently. 
Response [2-10]: We have rephrased as “The analytical solution to the Bayesian optimization 
problem, as done here, has several advantages relative to the more commonly used variational 
(numerical) solution.” 
 
Comments [2-11]: p.11 l.376: This warning should also be repeated in the method section. Actually 
as response functions are computed for each pixels individually, why not duplicating the 
corresponding time series to separate sectors in the target vector? This would not add new response 
functions to compute and allow you to assess how good is the distribution in sectors. You could 
even imagine specifying different correlation lengths to different sectors. 
Response [2-11]: We cannot separate sectors at the level of individual grid cells because they 
will all have the same response function. We can separate sectors for ensembles of grid cells 
and this is precisely what we do with the matrix W. We have added the following text in Section 
2.4 “We cannot separate individual sectors within a 4°×5° grid cell because they will all have 
the same response function (Jacobian column). However, we can aggregate results spatially 
and by sector…” 
 
Comments [2-12]: p.11 l.382: Is GEOS-Chem really suitable with very coarse resolution to 
constrain US emissions? the resolution is fine for background sites, but what about sites nearby 
emission hotspots. Representation errors will likely bias your results at such stations, making it very 
important to filter properly data prior to the inversion. 
Response [2-12]: Thanks for pointing it out. We agree that representation errors will likely 
bias results at stations near source regions, and it is important to filter properly data prior to 
the inversion. As already mentioned in Section 2.1, we address this problem by “For surface 
and tower measurements, we use only daytime (10-16 local time) observations and average 
them to the corresponding daytime mean values. We exclude outliers at individual sites that 
depart by more than three standard deviations from the mean.”. Still this might be insufficient 



to properly interpret sites nearby emission hotspots. A high-resolution inversion (e.g. Turner 
et al., 2015; Sheng et al., 2018) would be preferable to better interpret the in-situ observations 
near emission hotspots and to understand the spatial pattern of US anthropogenic methane 
emissions. 
 
Reference: 
Sheng, J.-X., Jacob, D. J., Turner, A. J., Maasakkers, J. D., Sulprizio, M. P., Bloom, A. A., Andrews, A. 

E., and Wunch, D.: High-resolution inversion of methane emissions in the Southeast US using 
SEAC&lt;sup&gt;4&lt;/sup&gt;RS aircraft observations of atmospheric methane: anthropogenic 
and wetland sources, Atmos. Chem. Phys., 18, 6483-6491, http://doi.org/10.5194/acp-18-6483-
2018, 2018. 

Turner, A. J., Jacob, D. J., Wecht, K. J., Maasakkers, J. D., Lundgren, E., Andrews, A. E., Biraud, S. C., 
Boesch, H., Bowman, K. W., Deutscher, N. M., Dubey, M. K., Griffith, D. W. T., Hase, F., Kuze, A., 
Notholt, J., Ohyama, H., Parker, R., Payne, V. H., Sussmann, R., Sweeney, C., Velazco, V. A., 
Warneke, T., Wennberg, P. O., and Wunch, D.: Estimating global and North American methane 
emissions with high spatial resolution using GOSAT satellite data, Atmos. Chem. Phys., 15, 7049-
7069, http://doi.org/10.5194/acp-15-7049-2015, 2015. 

 


