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Abstract. Atmospheric aerosols can exist in amorphous semi-solid or glassy phase states whose viscosity varies with atmo-

spheric temperature and relative humidity. The temperature and humidity dependence of viscosity has been hypothesized to be

predictable from the combination of a water-organic binary mixing rule of the glass transition temperature, a glass transition

temperature scaled viscosity fragility parameterization, and a water uptake parameterization. This work presents a closure study

between predicted and observed viscosity for sucrose and citric acid. Viscosity and glass transition temperature as a function of5

water content are compiled from literature data and used to constrain the fragility parameterization. New measurements char-

acterizing viscosity of sub-100 nm particles using the dimer relaxation method are presented. These measurements extend the

available data of temperature and humidity dependent viscosity to−28ºC. Predicted relationships agree well with observations

at room temperature and with measured isopleths of constant viscosity at ~107 Pa s and warmer than −28ºC. Discrepancies at

colder temperatures are observed for sucrose particle. Simulations with the kinetic multi-layer model of gas-particle interac-10

tions suggest that the observed deviations at colder temperature for sucrose can be attributed to kinetic limitations associated

with water uptake at the timescales of the dimer relaxation experiments. Using the available information, updated equilibrium

phase-state diagrams (−80ºC < T < 40ºC and 0<RH < 100%) for sucrose and citric acid are constructed and associated

equilibration timescales are identified.

1 Introduction15

Atmospheric aerosols affect the Earth’s energy budget by absorbing or scattering solar radiation (direct effect) or by acting as a

cloud condensation nuclei or as ice nuclei (indirect effect) (McCormick and Ludwig, 1967; Zobrist et al., 2008). Atmospheric

particles also affect human health by causing cardiovascular, respiratory, and allergic diseases (Mar et al., 2000; Pope et al.,

2004; Kelly and Fussell, 2011). Atmospheric aerosols can be composed of a mixture of organic or inorganic components. The

organic mass fractions can represent up to 90% of total submicron non-refactory atmospheric particle mass (Zhang et al., 2007;20

Jimenez et al., 2009).

Viscosity affects the equilibration timescale of a particle with respect to gas-particle exchange (Zobrist et al., 2011; Zaveri

et al., 2018; Li and Shiraiwa, 2019; Ullmann et al., 2019; Vander Wall et al., 2020). For highly viscous particles, gas-particle

exchange rates are slow. This, in turn, may prevent chemical degradation of reactive compounds bound within the interior of
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viscous particles (Shrivastava et al., 2017) and may increase the time for solid surfaces to facilitate heterogeneous ice nucleation25

(Berkemeier et al., 2014; Ignatius et al., 2016).

Viscosity varies over 17 orders of magnitude from 10−5 Pa s, corresponding to a gas, to 1012 Pa s, corresponding to a glass.

Viscosity exponentially increases with decreasing temperature (Fulcher, 1925). The temperature where viscosity reaches 1012

Pa s is sometimes equated with the glass transition temperature (Tg) measured through differential calorimetery (Debenedetti

and Stillinger, 2001). Equilibrium water uptake causes the condensed phase water fraction to increase with increasing water30

activity or ambient relative humidity (RH). The water mass fraction depends on the particle hygroscopicity. With increasing

water fraction, viscosity decreases as water can acts as a plasticizer. A substantial number of studies investigated the influence

of relative humidity on viscosity for organic particles mimics at room temperature (Power et al., 2013; Renbaum-Wolff et al.,

2013; Song et al., 2015; DeRieux et al., 2018). These studies generally show high viscosity or glassy conditions at low RH, a

strong decrease in viscosity with increasing RH, and viscosity approaching that of a liquid at RH > 90%.35

The glass transition temperature of mixtures can be obtained through semi-empirical mixing rules (Gordon and Taylor,

1952). Zobrist et al. (2008) combined mixing rules and water activity vs. composition relationships to identify the glass tran-

sition temperature as a function of temperature and RH. The Tg −RH relationship defines phase-state diagram delineating

glassy states at cold temperature and low RH, and semi-solid or liquid at warm temperature and high relative humidity. The dry

particle Tg is influenced by compound molecular weight (Koop et al., 2011; Shiraiwa et al., 2017), atomic oxygen-to-carbon40

ratio (Koop et al., 2011; Saukko et al., 2012; Dette et al., 2014; Shiraiwa et al., 2017; DeRieux et al., 2018), and functional

group composition (Sastri and Rao, 1992; Rothfuss and Petters, 2017b). Dry Tg also correlates with vapor pressure or volatil-

ity of the compound (Rothfuss and Petters, 2017b; Champion et al., 2019; Zhang et al., 2019; Li et al., 2020). The Tg −RH
relationship is controlled by the temperature and RH dependence of the hygroscopicty parameter (Thomas et al., 1979; Koop

et al., 2011; Berkemeier et al., 2014; Rothfuss and Petters, 2017a; Petters et al., 2019) and empirical constants constraining the45

mixing rule.

Rothfuss and Petters (2017a) extended the Tg −RH phase state diagram to include isopleths of constant viscosity (η). The

η1012 Pa s isopleth is equivalent to the Tg−RH line. Viscosity isopleths with lower viscosity are offset from the Tg−RH line.

The extended phase-state diagram maps out the semi-solid regime, defined as 102 to 1012 Pa s of the state space. Experimental

measurements of viscosity isopleths in the 106− 107 Pa s range have been made for sucrose (Rothfuss and Petters, 2017a),50

sucrose-citric acid and sucrose-NaNO3 mixtures (Marsh et al., 2018), and secondary organic aerosols (Järvinen et al., 2016;

Petters et al., 2019).

Rothfuss and Petters (2017a) and Marsh et al. (2018) modeled the viscosity isopleths based on the Tg−RH relationship, the

measured temperature dependence of viscosity as parameterized through the Vogel-Fulcher-Tamman (VFT) model (Fulcher,

1925), and conjecturing that the slope of the VFT model is independent of particle composition. Shiraiwa et al. (2017) and55

DeRieux et al. (2018) used a similar model to compute viscosity based on fragility relationships. Fragility relationships scale

viscosity by Tg and are related to the VFT relationship (Angell, 1995). An implicit assumption in these works is that the

fragility relationship is independent of the water content, which is identical to the conjecture that the slope of the VFT model

is independent of water content.
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In summary, there are four types of empirical relationships that are commonly used to characterize the amorphous state:60

glass transition temperature vs. water weight fraction, viscosity vs. temperature, viscosity vs. RH at constant temperature, and

viscosity isopleths as function of temperature and RH. These relationships are related through a phase diagram model that

involves a water/organic binary mixing rule of the glass transition temperature, a glass transition temperature scaled viscosity

fragility parameterization, and a water uptake parameterization.

In this work we perform a closure study that tests for consistency between these four state-spaces and the phase diagram65

model for sucrose and citric acid. Sucrose and citric acid are selected because extensive data are available for a wide range

of water contents and temperatures. These data are compiled from the literature and are used to constrain the inputs of the in

mixing rule and fragility relationships. The resulting model is compared with the data in all of the state spaces. Limited data

are available to constrain viscosity isopleths at temperatures below ambient. New measurements are performed to measure

viscosity isopleths at T >−30ºC. To this end the dimer, coagulation, isolation, and coalescence (DCIC) method (Rothfuss70

and Petters, 2016) was modified to extend the temperature range where this method can be applied. The method identifies the

temperature and RH when dimer particles relax into spheres. Equilibrium water uptake is assumed when retrieving viscosity

from this method. Model simulations using the kinetic multi-layer model of gas-particle interactions in aerosol (KM-GAP)

model (Shiraiwa et al., 2012) are used to identify conditions where the equilibration timescale is similar to, or exceeds the time

available for dimer relaxation. The combined work yields updated equilibrium phase-state diagrams (−80ºC < T < 40ºC and75

0<RH < 100%) and equilibration timescales for sucrose and citric acid.

2 Methods

2.1 Viscosity Measurement

The DCIC technique has been described extensively in prior publications (Champion et al., 2019; Marsh et al., 2018; Rothfuss

and Petters, 2016, 2017a; Rothfuss et al., 2019; Petters, 2018; Tandon et al., 2019; Petters et al., 2019). The basic concept is80

briefly introduced and then modifications made to enable low temperature measurements will be described. Dimer particles

were generated using the dual tandem differential mobility analyzer (DMA) technique. Two DMAs were used to create mobility

selected size-selected particles of opposite charge. The streams from the two DMAs were merged and passed into a coalescence

chamber where some of the particles coagulated. Dimer particles formed from +1 and −1 or +2 and −2 coagulation events

are charge neutral. The aerosol was passed through an electrostatic precipitator. Neutral dimer particles were transmitted, thus85

isolating dimer particles. Coagulated and coalesced particles are spherical while coagulated and not coalesced particles are rod

shaped. The dimer particles were passed through temperature controlled volume (thermal conditioner) to alter the thermody-

namic state for a short amount of time. Subsequently the size distribution was measured using a scanning mobility particle

sizer. Rod shaped particles have a large apparent mobility diameter due to increased drag force. The altered thermodynamic

state, defined by an increase in either temperature or relative humidity, may induce partial or complete coalescence, which90

was observed as a change in the mode diameter of the dimer mobility size distribution. The observed mode of the mobility

size distribution was converted to a particle shape parameter, the shape parameter was graphed against temperature, and the
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Figure 1. Schematic view of the experimental setup for sucrose/citric acid experiments.

observed relationship was fit to a logistic curve

ξ = 4− 3
2
erfc

(
T −T0

σ
√

2

)
(1)

where ξ is the shape parameter, erfc is the complementary error function, σ is the spread parameter, T is the temperature95

and T0 is the midpoint of coalescence relaxation. The shape parameter was converted to viscosity using the Frenkel sintering

theory (Pokluda et al., 1997; Rothfuss and Petters, 2016). Example logistic curves including data for sucrose and citric acid

aerosol are given in prior work (Rothfuss and Petters, 2016, 2017a; Marsh et al., 2018; Rothfuss et al., 2019; Tandon et al.,

2019; Petters et al., 2019) and the supporting information.

The relationship between shape factor and viscosity scales with particle diameter, surface tension, and residence time in100

the thermal conditioner. Surface tension values used in the conversion are identical to those used in Marsh et al. (2018). In

this study we increased the volume of the thermal conditioner to increase the residence time from t= 5 s used in previous

studies to t= 60 s. The rationale for this increase was to decrease the potential sensitivity of dimer coalescence to kinetic

limitations of water uptake. The monomer particle mobility diameters are 90 nm, slightly larger than those used in previous

studies. Increasing the residence time and monomer particle diameter also increases the measured viscosity from ~5× 106 Pa105

s in previous work to ~4× 107 Pa s in this work.
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Figure 1 depicts the schematic of the experimental setup. To facilitate cold-temperature measurements several modifications

were made to the instrument. The particle drying technique was improved. All DMA flows were switched to N2 boiled off

from dewar. To accommodate the larger thermal load required to control the increased thermal conditioner volume, the cooling

system of SMPS was revised. Settings specific to this study are now discussed.110

Dimer particles are composed of a polyethylene monomer and either a sucrose or citric acid monomer particle. Polyethylene

particles were generated using an evaporation-condensation system that is described in Tandon et al. (2019) and Rothfuss

et al. (2019). Citric acid (≥99.5%, Sigma Aldrich, St. Louis, MO, USA) and sucrose (≥99.5%, Sigma Aldrich, St. Louis,

MO, USA) were dissolved in HPLC grade water (5 g of solute in 100 ml of HPLC Grade submicron filtered water, Fischer

Scientific, USA) and atomized using a constant output atomizer (TSI 3076). Particles generated by atomization were dried115

using Silica gel diffusion dryers and passed through a 210Po neutralizer to establish charge equilibrium. Additional drying was

achieved by passing particles through a U-type glasses embedded in a chilled bath held at ≈−30ºC. The output flow from

the U-type glass was split and passed to the dual tandem DMA. DMA 1 was connected to a negative polarity power supply to

select positively charged particles, and DMA 2 was connected to a positive power supply to select negatively charged particles.

The DMAs were operated at a 5 L min−1: 0.75 L min−1 sheath-to-sample flow ratio. The flows from the two DMAs were120

merged and then split between a CPC with a flow rate of 0.5 L min−1 and the coalescence chamber with a flow rate of 1 L

min−1. The coalescence chamber was shielded with lead to prevent spontaneous particle decharging from naturally occurring

ionizing radiation (Rothfuss et al., 2019) and was placed inside the freezer to maintain dimers at cold enough temperature to

prevent coalescence before reaching the thermal conditioner. The freezer temperature could be varied between−8ºC and 18ºC.

Temperature control was achieved by using a circulating bath chiller (Neslab ULT 90) that transported heat exchange fluid125

through an aspirated car radiator placed inside the freezer. Also placed inside the freezer were the electrostatic precipitator

(operated at 1500V potential) and the scanning mobility particle sizer, operated at a sheath to-sample-flow ratio of 3:0.5 L

min−1 (DMA 3). Operation of the SMPS at subzero temperature was previously described in Wright et al. (2016) and Petters

et al. (2019). Placing the coalescence chamber and SMPS in the freezer enables measurement of uncoalesced dimer particles

for systems that otherwise would coalesce well below ambient temperature.130

The RH in the instrument was measured using three resistance based RH (Rotronic HC2) sensors placed at various points

inside the flow path in the freezer. From the flow exiting the thermal conditioner, 0.5 L min−1 was transmitted through an RH

sensor and subsequently to a chilled mirror hygrometer outside the freezer which was measuring dew or frost point tempera-

ture (GE Optica 4-stage with ±0.2ºC accuracy and a lower limit of detection of −65ºC). Readings < 0ºC were interpreted as

frost point temperature. The critical value for the experiment are the vapor pressure and temperature inside the thermal condi-135

tioner. Temperature of the thermal conditioner was monitored using thermistors mounted at the outside of the metal chamber.

Vapor pressure was derived from a combination of the chilled mirror measurement and the Rotronic measurements. For low

vapor pressures, the chilled mirror measurements are slow and accurate, while the resistance RH measurements are fast and

sometimes biased. Derivation of RH from these measurements is described in detail in the supporting online information.
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Table 1. Model parameters. Source: (a)(Rothfuss and Petters, 2017b), (b)(Koop et al., 2011), (c)supporting information, (d)(Rothfuss and

Petters, 2017a), (e)(Marsh et al., 2018)

Parameters Compounds

citric acid sucrose water

Glass transition temperature, Tg Tg,s = 286± 5(a) K Tg,s = 341± 18(a) K Tg,w = 136(b) K

Gordon-Taylor constant, kGT 3.4± 0.5(c) 5.25± 0.5(c,d)

surface tension, σ 0.065(e) Jm-2 0.08(d) Jm-2

2.2 Phase Diagram Model140

The phase diagram model is described in detail in previous publications (Rothfuss and Petters, 2017a; DeRieux et al., 2018)

and only briefly summarized here. The relationship between solute weight fraction and relative humidity is computed using a

hygroscopicity parameterization (Mikhailov et al., 2013)

ws =
(

1.0 +κm
aw

1− aw

)−1

(2)

where ws is the solute weight fraction, 1−ws is the water weight fraction, aw is the water activity and taken to be aw =145

RH/100%, κm is the mass-based hygroscopicity parameter. The effect of particle curvature on water content is not considered.

The hygroscopicity parameter depends on water activity and temperature. This dependency is computed from the water activity

parameterizations reported in Zobrist et al. (2008) and Lienhard et al. (2012) as described and visualized in the supporting

information.

The glass transition temperature of the mixture is computed using the Gordon-Taylor mixing rule (Gordon and Taylor, 1952)150

Tg =
[1−ws(RH)]Tg,w + 1

kGT
ws(RH)Tg,s

1−ws(RH) + 1
kGT

ws(RH)
(3)

where Tg,w is the glass transition temperature of water, Tg,s is the glass transition temperature of solute, kGT is the Gordon-

Taylor constant and ws(RH) is computed using Eq. (2).

η(T,RH) = exp10

(
−5 +0.434

[
39.17DA

DAT/Tg + 39.17T/Tg − 39.17

])
(4)

where η(T,RH) is the viscosity, DA is the fragility parameter, T is the temperature, Tg is computed using Eq. (3). If Tg/T155

exceeds 1 the compound is a glass and Tg/T is set to 1 to ensure numerical stability for all input conditions. Table 1 summarizes

the input parameters for sucrose and citric acid used in this study.

2.3 Data Summary

Experimental data were fitted with Eq. (1) to determine T0 and σ. Temperature and RH corresponding to shape factors

ξ = 1.5, ξ = 2.5, and ξ = 3.5 and the associated viscosities are summarized in Table 2. To compute fragility, the temperature160
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Table 2. Data summary for each experiment. The viscosity is evaluated at ξ = 1.5, 2.5 and 3.5. The corresponding viscosity is calculated

based on the surface tension (Table 1), size (90 nm), and coagulating time (60 s). The second column includes an experiment identifier to

link the figures in the supplement and the data repository. T0±σ corresponds to the midpoint of the relaxation as determined from the fit

of the data to Eq. (1). RH ± s corresponds to the standard deviation in RH in the interval [T0−σ,T0 +σ]. The temperatures and standard

deviation in columns ξ = 1.5 and ξ = 3.5 correspond to the mean and standard deviation in the interval [(T0−σ)− 1,(T0−σ)+ 1] and

[(T0 +σ)− 1,(T0 +σ)+ 1], respectively and their corresponding RH values.

ξ = 1.5 ξ = 2.5 ξ = 3.5

η = 1.2× 107 Pa s η = 3.8× 107 Pa s η = 1.6× 108 Pa s

# Citric Acid T (ºC) RH (%) T0±σ (ºC) RH ± s (%) T (ºC) RH (%)

1 1_20190508CA15 35.0± 0.6 1.4± 0.08 25.8± 11.7 2.7± 1.3 15.2± 0.6 5.4± 0.1

2 2_20190509CA16 −24.1± 0.6 73.8± 9.1 −22.7± 1.1 54.6± 5.4 −22.0± 0.6 49.7± 4.1

3 3_20190520CA19 −23.8± 0.6 54.9± 1.6 −22.4± 1.4 49.6± 4.0 −21.1± 0.6 44.1± 2.6

4 4_20190524CA22 −25.9± 0.6 75.6± 3.5 −20.4± 5.3 52.9± 12.2 −15.6± 0.6 35.3± 1.1

5 5_20190528CA23 −30.0± 0.4 73.8± 6.5 −28.1± 1.9 60.2± 8.3. −26.3± 0.7 48.8± 3.3

6 6_20190529CA24 −28.8± 0.04 52.5± 3.1 −29.3± 0.3 53.2± 1.7 −29.8± 0.02 60.8± 6.3

7 7_20190531CA26 −28.0± 0.6 66.2± 7.1 −25.4± 2.9 53.8± 7.9 −22.5± 0.7 41.9± 2.6

8 8_20190603CA27 −16.4± 0.7 52.9± 3.5 −14.9± 1.4 44.3± 4.4 −13.6± 0.6 38.8± 2.4

9 9_20190604CA28 11.6± 0.6 13.7± 0.5 8.7± 2.5 16.9± 1.9 6.1± 0.8 20.2± 1.1

Sucrose η = 1.5× 107 Pa s η = 4.8× 107 Pa s η = 1.9× 108 Pa s

10 10_20190429S10 −22.4± 0.4 58.9± 11.3 −21.0± 1.5 59.0± 7.5 −19.4± 0.5 50.9± 2.7

11 11_20190521S20 −24.1± 0.7 58.8± 2.4 −26.5± 2.2 67.1± 5.5 −29.4± 0.7 77.7± 2.7

12 12_20190529S24 −30.1± 0.5 81.5± 6.8 −28.5± 1.2 73.6± 5.5 −27.2± 0.7 66.6± 3.8

was normalized by the average Tg calculated from Eq. (3). Detailed data for each experiment listed in Table 2 are provided in

the supporting online information and data repository. Discussion of these data is provided in the Results section.

2.4 KM-GAP Simulations

The time to achieve gas-particle equilibrium is computed using the simulations of the kinetic multi-layer model of gas-particle

interactions in aerosols and clouds (KM-GAP) (Li and Shiraiwa, 2019; Shiraiwa et al., 2012). KM-GAP consists of multiple165

model layers: gas phase, near-surface gas phase, sorption layer, quasi-static surface layer, and a number of bulk layers. The

model includes gas-phase diffusion, adsorption and desorption at the particle surface-bulk exchange, and diffusion through

bulk layers. The diffusion coefficient of water (DH20) is treated as composition dependent. Parameterizations of DH20 for

the sucrose-water system applies the method in Zobrist et al. (2011). The estimation of DH20 in citric acid particles uses a

semi-empirical method in Berkemeier et al. (2014) that utilizes the VFT equation and assumes the citric acid aqueous solutions170
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are chemically similar to the sucrose-water system. A total of 2500 simulations were performed for a single compound. The

model was initialized with T , RH on an equidistant grid with −90< T < 90ºC and 0<RH < 100% and 50 points in each

dimension. The time to reach equilibrium, τ , is defined when the variability in composition throughout the drop is <±1%.

This equilibrium timescale depends on the volatility, bulk-phase diffusivity, surface accommodation coefficient, and particle

size (Shiraiwa and Seinfeld, 2012). Contour curves denoting constant time to equilibrium are derived from the 2D scalar field.175

2.5 Literature data

Literature data were either digitized from graphs or taken from tables in the cited publications and tabulated. The sources are

listed sequentially for each of the figures in this manuscript.

2.5.1 Figure 2

Figure 2a: Tg/T data for 64 wt %, 80 wt % and 100 wt % denoted as ref.1 in the figure are taken from Fig. 12 in Angell (2002);180

86 wt %, 60 wt %, and 50 wt % denoted as ref.2 in the figure are digitized from Fig. 4 in Longinotti and Corti (2008) where

the data are presented as viscosity and temperature value with respect to the weight percent. The data were normalized by Tg

calculated from the Gordon-Taylor mixing rule Eq. (3) and the parameters in Table 1. Then, the viscosity and Tg/T points

are plotted where the temperature range is between −5ºC to 60ºC for 50 wt % of solutions, −10ºC to 94ºC for 60 wt % of

solutions, and 5ºC to 80ºC for 86 wt % of solutions. The data points denoted as ref3 are calculated as follows: The viscosity185

and T values are read from Table S1 in Rothfuss and Petters (2017a) for 100 % dry data points (where RH is assumed as

0.8 %), then by using the hygroscopicity parameter, κm which is calculated through the polynomial coefficients from Table

S1.1 in Marsh et al. (2018), the weight percent of the solution is calculated. Then, it is converted into Tg by Eq. (3) by using

the corresponding constants for sucrose taken from Table 1. Thus, the viscosity and Tg/T points are plotted against viscosity

where the temperature range is between 78.5ºC to 86.8ºC. Figure 2b: The raw data denoted as ref5−11 is collected and taken190

in temperature, viscosity and weight percent form that their Tg values are calculated via Eq. (3) by using the corresponding

constants for citric acid taken from Table 1. These data points (ref5−11) are as follows: the data denoted as ref5 is taken from

Table 2 in Simion et al. (2014) at around room temperature including 298.15 K, 303.15 K, 308.15 K and 313.15 K; the data

points denoted as ref6 are taken from Table 3 in Laguerie et al. (1976) at 25ºC; the data points denoted as ref7are taken from

Table 2.17 in Apelblat (2014) at 298.15 K, 300.65 K, 308.15 K, and 313.15 K; the data points denoted as ref8are taken from195

Table 1 in Omran et al. (2019) at 20ºC; the data points denoted as ref9 and ref10 are taken from pp. 5-126 in Haynes and Lide

(2011) and read from Table SI.29 in Song et al. (2016), respectively, at 293.15 K; the data points denoted as ref11are digitized

from Fig. 4 in Maltini and Anese (1995) at 240 K and 227 K. Then for each point, their Tg/T is calculated and plotted against

their viscosity. The literature summary for Tg of sucrose and citric acid as denoted as ref4 and ref12 is taken from Table S1

in Rothfuss and Petters (2017b) and in Marsh et al. (2018), respectively, note that their error range corresponds to the values200

given in Table S1 in Rothfuss and Petters (2017b).

8

https://doi.org/10.5194/acp-2020-768
Preprint. Discussion started: 18 August 2020
c© Author(s) 2020. CC BY 4.0 License.



2.5.2 Figure 3

Figure 3a and 3b are adapted from Fig. 5c in Gervasi et al. (2020). The RH values (aw) of the sucrose and citric acid solutions

are calculated using the Eq. (2) where the hygroscopicity parameter, κm is calculated by Table 1. The relation between weight

percent of the solute and RH is derived by using the parameterization of κm by using the water activity parameterizations of205

Zobrist et al. (2008) and Lienhard et al. (2012) from the original literature data (Apelblat, 2014; Först et al., 2002; Haynes and

Lide, 2011; Laguerie et al., 1976; Omran et al., 2019; Quintas et al., 2006; Simion et al., 2014; Swindells et al., 1958; Telis

et al., 2007). Figure 3a: The calculated RH values for sucrose solutions from Eq. (2) are as follows: the sucrose weight percent

and viscosity points (by viscometer) at 20ºC are taken from Table 1 in Telis et al. (2007); the weight percent and viscosity

points (by viscometer) at 20ºC are digitized from Fig. 1 in Först et al. (2002); the weight percent and viscosity points are taken210

from CRC Handbook (Haynes and Lide, 2011); the weight percent and viscosity points (by viscometer) are digitized from Fig.

2 in Quintas et al. (2006); the weight percent and viscosity points (by viscometer) are taken from Table 131 in Swindells et al.

(1958). RH(aw) data points are read directly from the Table 1 in Mazurkiewicz et al. (2001) where the viscosity is measured

by viscometer, and from Table SI.4 in Song et al. (2016) where the viscosity is measured by aerosol optical tweezers. RH and

viscosity points (aerosol optical tweezers) digitized from Fig. 4a in Power et al. (2013).215

Figure 3b: The calculated RH values for citric acid solutions from Eq. (2) are follows as: the weight percent and viscosity

points are taken from Table 2 in Simion et al. (2014) at 298.15 K, 303.15 K and 3018.25 K; weight percent and viscosity

points (by viscometer) are from Table 1 in Omran et al. (2019); weight percent and viscosity points are taken from pp. 5-126

in CRC Handbook (Haynes and Lide, 2011); weight percent and viscosity points (by viscometer) are taken from the Table 3 in

Laguerie et al. (1976); weight percent and viscosity points are taken from Table 2.17 in Apelblat (2014). The RH and viscosity220

points (measured by aerosol optical tweezer) are read from Table SI.29 in Song et al. (2016).

2.5.3 Figure 4

Figure 4a: are digitized from Fig. 3a in Power et al. (2013), from Fig. 5 in Rothfuss and Petters (2017a), digitized from Fig. 1 in

Jansson et al. (2005), from Table 2 in Luyet and Rasmussen (1968), from Table 2 in Saleki-Gerhardt and Zografi (1994); read

from Table 2 in Elamin et al. (1995). The citric acid data for Figure 4b are tabulated in Marsh et al. (2018); read from Table225

1 in Lu and Zografi (1997); from Table 2 in Lienhard et al. (2012); from Table1 in Summers and Enever (1980); the literature

range for Tg of citric acid is taken from Rothfuss and Petters (2017b).

2.5.4 Figure S1 (Supporting Information)

Figure S1a: The data is read from Table 2 in Elamin et al. (1995), from Table 2 in Saleki-Gerhardt and Zografi (1994), digitized

from Fig. 1 in Jansson et al. (2005); read from Fig. 2 in Maltini and Anese (1995). Figure S1b: The citric acid data are from230

Table 1 in Summers and Enever (1980); Fig. 5 in Murray (2008); read from Table 2 and digitized from Fig. 1 in Lienhard et al.

(2012); read from Table 1 in Lu and Zografi (1997).
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Figure 2. Angell representation of viscosity scaled by Tg for the (a) sucrose-water system and (b) citric acid-water system. Solid lines are

fitted relations using the fragility parameterization. Black and red data points are from the literature: 1(Longinotti and Corti, 2008), 2(Angell,

2002), 3(Rothfuss and Petters, 2017a), 4(Rothfuss and Petters, 2017b) 5(Simion et al., 2014), 6(Laguerie et al., 1976), 7(Apelblat, 2014),
8(Omran et al., 2019), 9(Haynes and Lide, 2011), 10(Song et al., 2016), 11(Maltini and Anese, 1995), 12(Marsh et al., 2018). Red colors

correspond to aqueous solutions with 0-90 wt % of solute and black colors correspond to 90-100 wt % of solute. Blue colors represent results

from this study. The error bar on Tg correspond to ±18 K and ±5 K uncertainty for sucrose and citric acid, respectively.

3 Results

Figure 2 shows the Angell representation of viscosity scaled by Tg for sucrose and citric acid. The sucrose data show two

apparent regimes, one for aqueous solutions and one for dry sucrose. Dry sucrose thermally decomposes at 456 K (Šimkovic235

et al., 2003) or Tg/T = 0.74, thus explaining the limited range of available measurements. The stratification along a single

fragility parameter model for aqueous sucrose solutions over a wide range of solute wt % is remarkable. Angell (2002) noted

the systematic difference in fragility between dry sucrose and aqueous solutions based on the two data points at ~102 to ~103

Pa s. Since these measurements approach the decomposition temperature, Angell (2002) considered the possibility that these

measurements are not representative of sucrose. The more recent measurements by Rothfuss and Petters (2017a) using the240

DCIC method suggest that dry sucrose has indeed a lower fragility than aqueous sucrose solutions. The data for citric acid

aqueous solutions are more scattered. The observed data from this study using sub-100 nm particles are within the range of

the published bulk data. Dry citric acid data are not available in the literature or from our DCIC measurements. The dimer

relaxation occurs at T ≈ 10ºC in the DCIC system. Drying to RH = 0% at that temperature is currently not possible and low

fractions of hygroscopically bound water are expected to be present. Despite the scatter, no systematic variation of fragility245

with solute wt % is observed.
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Figure 3. Influence of RH on viscosity for the (a) sucrose and (b) citric acid at room temperature. Symbols correspond to experimental data

from different investigators. The colored lines corresponds to the model prediction from Eq. (4) using the fragility curves shown in Fig. 2.

Figure 3 summarizes the data showing the influence of RH on viscosity at room temperature. Similar summaries have been

presented elsewhere (Song et al., 2016; Gervasi et al., 2020). In general, the data investigating the same viscosity range agree

within 0.5 orders of magnitude. Few measurements at η > 102 Pa s are available. Song et al. (2016) and Power et al. (2013)

report viscosity for sucrose in this range. Song et al. (2016), Marsh et al. (2018) and this study show citric acid measurements250

at η > 106 Pa s and approaching dry conditions. These measurements agree within ±24% when viscosity is expressed as

log10 of its value. Predicted viscosity computed via Eq. (4) evaluated at T = 20ºC and fragility parameters in Figure 2 are

in excellent agreement with the data at RH > 40%. At RH < 40% the model slightly overestimates the data. The reasons

for the small discrepancy are not entirely clear. Possible explanations are a bias in the holographic optical tweezer data,

variations in fragility that are not captured with a single parameter representation of fragility, and uncertainty in the aerosol255

water content associated with the particle. For the latter, the variability in κm with RH may be insufficiently described by the

water activity parameterization. Accurate estimates of water content at low RH, especially below 10%, remain highly uncertain

due to experimental challenges (Kreidenweis et al., 2008). Whichever the case, the difference between measurements and

model does not appear to be substantially larger than the scatter in the data.

Figure 4 shows the variation of viscosity with temperature and RH. The glass transition data coincide with 1012 Pa s line260

by the definitions of the Tg vs. wt % fits and the wt % vs. water activity relationships used to relate RH and mass fraction.

Deviations from the 1012 Pa s line of three out of four citric acid data points reported by Summers and Enever (1980) mirror the

deviations in Gordon-Taylor mixing plot (see Figure 1 in the supporting information). The viscosity isopleth corresponding to

the measurements are shown as a shaded band due to the mismatch in viscosity from prior studies (Rothfuss and Petters, 2017a;
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Figure 4. The Symbols show glass transition (blue) and viscosity data (gold) as a function of temperature and RH. Viscosity data from Power

et al. (surcrose) and Marsh et al. (citric acid) are from holographic optical tweezer (HOT) measurement. Viscosity data from Rothfuss and

Petters (2017a) and this study are from the DCIC method. Data lines correspond contours computed from the computed η(T,RH) field

evaluated for 1012 Pa s (blue), 5× 106 to 4.8× 107 Pa s for sucrose (gold shaded area) and 5× 106 to 3.8× 107 Pa s for citric acid (gold

shaded area) and 104 to 10−2 Pa s (black).

Marsh et al., 2018) using shorter coalescence time than in this study. The uncertainty due to this mismatch is less than the scatter265

in the data. The measured viscosity data are in reasonable agreement with the modeled isopleth, except for the coldest data point

(T =−28.5ºC). Sucrose measurements at even colder temperature were attempted by unsuccessful; no dimer coalescence was

observed. The citric acid isopleths show significant curvature when compared to sucrose, with an upward inflection near−20ºC.

This curvature is caused by a decrease in hygroscopicity, i.e. κm in that temperature range. (The temperature dependence of

κm is shown in Figure 2 in the supporting information). Excellent agreement between measurements and the modeled isopleth270

is observed between 8.7ºC and 28.5ºC. Measurements between −14.9ºC and 8.7ºC were attempted but unsuccessful due to

lacking ability to precisely control the dewpoint temperature of the flows exiting the coalescence chamber. At T <−14.9ºC,

the inferred viscosity from the DCIC method is in good agreement with the viscosity isoplethes predicted by the model (Eq.

4), but the data are more scattered.

Figure 5 summarizes the KM-GAP model simulations. At warm temperatures/high relative humidity the equilibration275

timescale is near instantaneous. The equilibration timescale increases with decreasing temperature and decreasing RH, with

temperature dominating the effect. The interplay of the measured temperature/RH from the DCIC measurements and equili-

bration timescale is complex. If water uptake is kinetically limited, sintering is slowed and a higher than expected viscosity

would be inferred from DCIC data. To first order we expect that the measurements start showing a bias when the equilibration
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Figure 5. Colored lines correspond to equilibration timscale as predicted by the KM-GAP model simulations. The black shaded area shows

the region between 5×106 to 4.8×107 Pa s for sucrose, and 5×106 to 4.8×107 Pa s for citric acid. The contours are limited−60< T < 80ºC

and 0<RH < 90% due to numerical instability outside this domain.
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Figure 6. Time to reach equilibrium viscosity along the viscosity isopleth shown in Figure 5. The shading corresponds to the range 5× 106

to 4.8× 107 (sucrose, blue shaded area) and 5× 106 to 3.8× 107 (citric acid, red shaded area).
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timescale approaches the coalescence timescale (60 s). Figure 6 shows the modeled equilibration timescale evaluate along the280

viscosity isopleths characterized by the DCIC experiments. The figure suggests that sucrose equilibration timescales approach

and exceed the available coalescence time at T .−30ºC. Thus the systematic divergence of the data and viscosity model for

sucrose at the coldest measured temperatures shown in Figure 4 is explained by kinetic limitations of water uptake. Figure 6

also shows that no kinetic limitations are expected for citric acid at the temperatures probed in this work, which is consistent

with the data.285

4 Discussion

Figure 7 shows a false-color representation of the phase diagrams for sucrose and citric acid using a perceptually uniform

colormap (Kovesi, 2015). The information is identical to the contours in graphed in Figure 4. Blue colors indicate glassy states,

red color indicates liquid states and in-between colors semi-solid states. The utility of this diagram is to visualize and quantify

easily the phase state and viscosity for a wide range of conditions.290

The strong curvature of the viscosity isopleth in the temperature/RH state space for citric acid is caused by the temperature

and water content dependence of κm. As noted in previous work (Rothfuss and Petters, 2017a), there is a need to accurately

predict the mass fraction of water at low temperature and at low RH to fully characterize the phase diagram. Although this is

not an issue here, there are only few studies that quantify equilibrium water content in that regime. For example, measurements

of water uptake by secondary organic aerosol (Varutbangkul et al., 2006; Jurányi et al., 2009; Petters et al., 2009; Good et al.,295

2010; Massoli et al., 2010; Chu et al., 2014; Pajunoja et al., 2015) have focused on RH > 50% and room temperature. The lack

of appropriate water activity data remains an impediment to fully characterize the phase diagram for other organic aerosols,

including limiting full confidence in predictions of phase state in large scale atmospheric models.

The central tenet of this study is the hypothesis that a phase diagram model that involves a water/organic binary mixing rule

of the glass transition temperature, a glass transition temperature scaled viscosity fragility parameterization, and a water uptake300

parameterization connects the four common state spaces used to characterize the amorphous state: glass transition temperature

vs. water weight fraction, viscosity vs. temperature, viscosity vs. RH at constant temperature, and viscosity isopleths as function

of temperature and RH. This hypothesis is supported for sucrose and citric acid, based on the synthesis of data from a wide

range of sources. A key ingredient of the phase diagram model is that the fragility of sucrose and citric acid only weakly

depend on water content. This is an empirical and perhaps surprising observation noted previously (Angell, 2002; Longinotti305

and Corti, 2008) that greatly simplifies the prediction of viscosity. Differences in fragility for dry and aqueous sucrose are

apparent in Figure 3. However, the potential dependence of the fragility of organic compounds on water content and the

potential dependence of fragility in systems with multiple dry components at different mass ratios will require rigorous testing

before it can be confidently applied for other compound classes.

This work also reports new measurements of viscosity at sub-zero temperatures using the dimer coagulation isolation and310

coalescence (DCIC) method. Several modifications were made to the system to enable measurements to ~−30ºC. These include

longer coalescence timescale and a more involved drying and temperature control system. Although the data shown here
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Figure 7. False color representation of viscosity predicted by the phase diagram model.

demonstrate that it is feasible, precise temperature and humidity control through the entire system remain challenging. A

consequence of this limitation is that the data collected with the DCIC method are not uniformly spaced along the entire ~107

Pa s viscosity isopleth shown in Figure 4. In addition to technical constraints related to cooling and drying the DMA and315

coalescence system, water equilibration timescales present a limit to the lowest temperature that can be studied. Increasing

the time in the coalescence chamber to >> 60 s is challenging due to the nature of the flow-through system. The exact lower

temperature limit depends on the system studied. Lienhard et al. (2015) summarize the temperature dependence of the water

diffusion coefficient in pure component model mixtures. In their compilation of model systems sucrose has the most resistance

to diffusion. Based on this we expect that the DCIC method can probably safely be used for T &−30ºC.320

5 Conclusions

Literature data of four common empirical state-spaces used to characterize the amorphous phase diagram were compiled

including (1) glass transition temperature vs. water weight fraction, (2) viscosity vs. temperature, (3) viscosity vs. RH at

constant temperature, and (4) viscosity isopleths as function of temperature and RH. The dimer coagulation, isolation, and

coalescence method (DCIC) was modified to enable measurement of viscosity isopleths at sub-zero temperatures down to325

−30ºC. Colder temperatures might be accessible using this method for substances that do not show kinetic limitations to

water uptake. New measurements of the temperature and RH dependence for sucrose and citric acid were obtained using the

DCIC method. The new measurements experimentally constrain the ~107 Pa s viscosity isopleths. Closure between the four

state spaces using a semi-empirical phase diagram model is achieved. A critical component of the phase diagram model is the
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application of the Angell fragility representation of viscosity, i.e. viscosity scaled by the ratio of temperature and glass transition330

temperature. The data suggest that fragility is independent of water content for sucrose and citric acid, with the exception

of anhydrous sucrose. Kinetic limitations for sucrose were observed at temperatures <−28ºC. No kinetic limitations were

observed for citric acid. The observation related to kinetic limitations are consistent with equilibration timescales predicted by

the KM-GAP model.
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