Supplements

Fig. S1. Diurnal variarions of RH for the three PBL types in both seasons. The solid circles, lines and whiskers denote the mean, median, $25^{\text {th }}, 75^{\text {th }}$ percentile respectively.

Fig. S2. BC core MMD as a function of PM_{1} in winter (a) and summer (b) for the three PBL types, with solid circles, whiskers denoting the median, $25^{\text {th }}, 75^{\text {th }}$ percentiles.

Fig. S3. Diurnal variarions of BC core CMD (a-c), BC coated CMD (d-f) and BC $\mathrm{D}_{\mathrm{p}} / \mathrm{D}_{\mathrm{c}}(\mathrm{g}-\mathrm{i})$ for the three PBL types in both seasons. The solid circles, lines and whiskers denote the mean, median, $25^{\text {th }}, 75^{\text {th }}$ percentile respectively.

Fig. S4. Diurnal variarion of $\operatorname{SSA}_{550}(\mathrm{a}-\mathrm{c}), \mathrm{MAC}_{550, \text { uncoated }}(\mathrm{d}-\mathrm{f})$ and $\mathrm{MAC}_{550, \text { coated }}$ ($\mathrm{g}-\mathrm{i}$) for the three PBL types in both seasons. The solid circles, lines and whiskers denote the mean, median, $25^{\text {th }}, 75^{\text {th }}$ percentile respectively.

Fig. S5. Examples of critical supersaturation calculation for the three typical BC containing particles, using the coated BC CMD and corresponding κ_{BCc} as inputs. The dashed line denotes the critical supersaturation to activate the BC with given CMD and κ_{BC}.

