Improvement of inorganic aerosol component in PM$_{2.5}$ by constraining aqueous-phase formation of sulfate in cloud with satellite retrievals: WRF-Chem simulations

Tong Sha1, Xiaoyan Ma1*, Jun Wang2, Rong Tian1, Jianqi Zhao1, Fang Cao3, Yan-Lin Zhang3

1 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)/Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China

2 Department of Chemical and Biochemical Engineering/Center for Global and Regional Environmental Research, The University of Iowa, Iowa City, IA, USA

3 Yale–NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change (ILCEC)/Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
Abstract

High concentrations of PM$_{2.5}$ in China have caused severe visibility degradation and health problem. However, it is still a big challenge to accurately predict PM$_{2.5}$ and its chemical components in the numerical model. In this study, we compared the inorganic aerosol components of PM$_{2.5}$ (sulfate, nitrate, and ammonium (SNA)) simulated by WRF-Chem with in-situ data during a heavy haze-fog event (November 2018) in Nanjing. The comparisons show that the model underestimates the sulfate concentrations by 81% and fails to reproduce the significant increase of sulfate concentrations from early morning to noon, which corresponds to the timing of fog dissipation, suggesting that the model underestimates the aqueous-phase formation of sulfate in clouds. In addition, the model overestimates both nitrate and ammonium concentrations by 184% and 57%, respectively. These ultimately result in the simulated SNA 77.2% higher than the observations. However, as the important aqueous-phase reactors, cloud water are simultaneously underestimated by the model. Therefore, the modeled cloud water was constrained based on the MODIS Liquid Water Path (LWP) observations. Results show that the simulation with MODIS-corrected cloud water amount increases the sulfate by a factor of 3, decreases NMB by 53.5%, and can reproduce its diurnal cycles, i.e. the peak concentration at noon. Also, the model absolute bias of nitrate decreases from 184% to 50%, especially for the nocturnal concentrations, which suggests the MODIS-constrained simulation improved the diurnal pattern. Although the simulated ammonium is still higher than the observation, corrected cloud water lead to the decrease of the modeled bias of SNA from 77.2% to
14.1 %. The strong sensitivity of simulated SNA concentration to the cloud water provides an explanation for the bias of SNA simulation. Hence, the uncertainties of cloud water can lead to model bias in simulating SNA, and can be reduced by constraining the model with satellite observations.
1 Introduction

Severe and persistent haze pollution with daily concentrations of PM$_{2.5}$ exceeding the Chinese standard of 75 μg m$^{-3}$, occurs frequently in China during recent decades, which has aroused wide public attention due to its adverse impact on air quality, regional and global climate, and human health (Huang et al., 2014). According to previous studies, stagnant meteorological conditions with high atmospheric relative humidity and low boundary layer height, high emissions of primary air pollutants, as well as the rapid formation of secondary inorganic aerosols, including sulfate, nitrate, and ammonium (SNA), are considered to be the main factors leading to the haze episodes (Liu et al., 2020a). Earlier studies showed that the contribution of SNA to total PM$_{2.5}$ mass concentration was over 50% during the severe haze events (Cheng et al., 2016; Xu et al., 2017; Wang et al., 2019).

The chemical transport models (CTMs) are often used to predict the PM$_{2.5}$ pollution and evaluate the emission control strategies. Most models show reasonable performance on simulating surface PM$_{2.5}$ concentrations in China but perform poorly on simulating the proportion of chemical components in PM$_{2.5}$, especially during the severe haze periods (Gao et al., 2018; Chen et al., 2019). Many recent studies have reached an agreement that CTMs generally underestimate sulfate concentrations but overestimate nitrate concentrations (Wang et al., 2013; Wang et al., 2014; Zheng et al., 2015a; Chen et al., 2016; Cheng et al., 2016; Fu et al., 2016; Gao et al., 2016; Li et al., 2018a; Chen et al., 2019; Sha et al., 2019). The uncertainties such as meteorological fields (Bei et al., 2017; Li et al., 2017c; Su et al., 2018), emission inventories (Ma et al.,...
2018; Zhang et al., 2018; Qu et al., 2019), and parameterizations of physical and chemical processes in the model (Gao et al., 2018; Luo et al., 2019; Alexander et al., 2020), can contribute to the discrepancies of SNA and PM$_{2.5}$ between the models and observations.

The underestimation of sulfate in the models has been mainly attributed to the incomplete and/or inaccurate chemical mechanism. Generally, sulfate is formed through the gas-phase oxidation of SO$_2$ by OH radicals, and aqueous-phase oxidation of S(IV) (= SO$_2$⋅H$_2$O+HSO$_3$+SO$_3^{2−}$) by various oxidants (e.g., H$_2$O$_2$, O$_3$, NO$_2$, and O$_2$ (transition-metal-ion (TMI) catalysis)) in cloud droplets and aerosol water (the latter often called the heterogenous reaction) (Cheng et al., 2016; Liu et al., 2020a). It is worth noting that high atmospheric RH facilitates sulfate formation and aggravates the haze pollution (Xue et al., 2016; Tie et al., 2017; Wu et al., 2019). Therefore, the formation of sulfate is mainly through gas-phase reactions under relatively low atmospheric RH (RH < 30 %), but through heterogeneous and aqueous-phase reactions under relatively high atmospheric RH (RH > 60 %) (Li et al., 2017a). However, the mechanisms of sulfate formation at high RH is still controversial and unclear (Cheng et al., 2016; Wang et al., 2016; Ge et al., 2017; Guo et al., 2017; Liu et al., 2017; Yang et al., 2017; Li et al., 2018b). Previous studies proposed that the oxidation of SO$_2$ by NO$_2$ in aerosol water with almost neutral aerosol pH values (5.4-7.0) plays a dominant role in sulfate formation during the severe haze episodes (Cheng et al., 2016; Wang et al., 2016). However, the aerosol pH calculated by the ISORROPIA II model was moderately acidic with the value of 3.0-4.9, suggesting that the pathway of SO$_2$ oxidation by dissolved
NO$_2$ was not important during the haze events in China (Guo et al., 2017; Ding et al., 2019). Latest studies suggested that SO$_2$ heterogeneous reaction via TMI-catalyzed oxidation perhaps dominates the sulfate formation during the haze periods, which is also verified by the observations of sulfate oxygen isotopes (Shao et al., 2019). Since the observations of the concentration, complexation, and solubility of TMI are not available, the mechanism still remains unclear (Jacob, 2000; Wang et al., 2020). In order to tackle the underestimation of sulfate in the model during the haze events, most studies add the SO$_2$ heterogeneous reaction in the model, which is usually parameterized as a reactive uptake process and assumed to be irreversible (Wang et al., 2014; Zheng et al., 2015b; Chen et al., 2016; Li et al., 2017a; Feng et al., 2018; Li et al., 2018a; Sha et al., 2019; Shao et al., 2019). Although the implementation of SO$_2$ heterogeneous reactions in the model can achieve an agreement of simulated and observed sulfate concentrations during the haze episodes, the model still underestimates the sulfate due to uncertainties of the parameters in this reaction, such as the pH, water content and surface area of aerosol, as well as the gas uptake coefficients on aerosol water.

Cloud/fog droplets can act as efficient reactors in which dissolved SO$_2$ reacts with oxidations to form sulfate. Many studies showed that sulfate concentrations would be enhanced by the occurrence of cloud and fog compared to the cloud-free conditions (Crahan et al., 2004; Sorooshian et al., 2006; 2007; Wonaschuetz et al., 2012; Ervens et al., 2018a). Previous modeling studies concluded that a major fraction of sulfate (60-90%) is formed via aqueous (in-cloud) chemistry globally (Barth et al., 2000; Ma and
Salzen, 2006; Harris et al., 2013; Kim et al., 2015; Ervens et al., 2018b; Dovrou et al., 2019). The aqueous formation rate depends on liquid water content (LWC), the size distribution, pH and lifetime of cloud droplets, as well as the availability of oxidants. The kinetic and mechanistic parameters that characterize the uptake processes of sulfate precursors and oxidants, as well as the chemical reactions leading to sulfate formation in the aqueous phase, are relatively well constrained in the model, therefore the largest uncertainties in predicting in-cloud sulfate formation do not originate from the understanding of the chemical processes, but from the prediction of cloud microphysical and dynamical parameters, such as LWC and cloud lifetime (Rasch et al., 2000; Ervens et al., 2015). Mueller et al. (2006) found that the simulated sulfate concentration significantly increased after correcting the underestimation of model cloud fraction. Xie et al. (2019) showed that the improvement in cloud fields in MERRA-2 can eliminate approximately half of the bias in the surface sulfate concentration during summertime relative to the MERRA data. However, only a few studies focus on the sulfate underestimation caused by the bias of cloud fields during the haze episodes. Therefore, a better understanding of the sensitivity of sulfate simulations to cloud water is needed to improve the model performance on predicting PM$_{2.5}$.

A persistent high PM$_{2.5}$ level accompanying the fog event (short as haze-fog event) occurred in the Yangtze River Delta from 26 October to 2 December 2018. We choose this period to investigate the impact of cloud/fog water on simulating SNA using the WRF-Chem Model. The paper is organized as below. Section 2 shows the descriptions
of the model and data, as well as the meteorology evaluation. The evaluation of simulated chemical fields and cloud water with observations, and sensitivity experiments to study the impact of corrected cloud water on simulated SNA are presented in section 3 and 4. Section 5 shows the summaries.

2 Model configurations, data description, and model evaluation

2.1 Model configurations

The WRF-Chem version 3.9.1 (Grell et al., 2005) is used in this study to conduct the simulations on a domain over the eastern China with the horizontal resolution of 27 km and nested to a domain with 9 km covering the YRD (Fig. 1(a)). There are 42 vertical levels, with 24 levels below the boundary layer (about 1500 m) and the lowest level about 21 m. The physical parameterization schemes include Lin microphysical scheme (Chen and Sun, 2002), Grell 3-D cumulus scheme (Grell and Dezső, 2002), RRTM (Mlawer et al., 1997) for longwave radiation and Goddard scheme for shortwave radiation (Chou and Suarez, 1994), Yonsei University planetary boundary layer parameterization (Hong et al., 2006), QNSE surface layer scheme (Sukoriansky et al., 2005) and Noah land surface model (Tewari et al., 2004).

The Carbon Bond Mechanism (CBMZ) for gas-phase chemistry (Zaveri and Peters, 1999) and Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) aerosol module with 4 sectional aerosol bins and aqueous reactions (Zaveri et al., 2008) are chosen in our study. MOSAIC predicts all the major aerosol species, including sulfate, nitrate, ammonium, BC, primary organic mass, chloride, sodium, other inorganic mass (OIN), and liquid water. Detailed descriptions of the SNA formation
mechanisms in the standard model can be found in Sha et al. (2019).

The 0.25°×0.25° National Center for Environmental Prediction's (NCEP) Final Analysis (FNL) dataset (http://rda.ucar.edu/datasets/ds083.2/) provides the meteorological initial and boundary condition. Anthropogenic emissions are taken from Multi-resolution Emission Inventory for China (MEIC: http://www.meicmodel.org/) for the year 2016 (Li et al., 2017). The simulation starts on 24 November and ends on 2 December 2018, with the first 48 hours as the spin-up period.

2.2 Observational data

Meteorological variables are measured every three hours from five weather stations in Nanjing, and obtained for this study from the Meteorological Information Comprehensive Analysis and Process System (MICAPS) (green triangles in Fig. 1(b)), which are used to evaluate the model performance on simulating meteorological fields. The data include air temperature and relative humidity at 2m (T2, RH), wind speed and direction at 10m (WS10, WD10), visibility (VIS), and accumulated precipitation (PRE) (only the sample frequency of precipitation is 6 hourly). For surface pollution, two data sets are used: (1) the hourly SO2, NH3, HNO3, HONO, and inorganic chemical components in PM2.5 (sulfate, nitrate, and ammonium) concentrations measured by the In-situ Gas and Aerosol Compositions monitor (IGAC) (Young et al., 2016) at Nanjing University of Information Science & Technology (NUSIT) (32.2° N, 118.7° E; 22m above sea level) (the blue circle in Fig. 1(b)); (2) the routine measurements of hourly NO2 and PM2.5 concentrations at Maigaoqiao monitoring site (32.1° N, 118.8° E) in Nanjing from the China National Environmental Monitoring Center (CNEMC) (since
the NUIST site did not observe NO$_2$ and PM$_{2.5}$ simultaneously, the observation data from Maigaoqiao site nearest to the NUIST were used, shown as the red circle in Fig. 1(b). Himawari 8 satellite data are used to represent the spatial area of this fog event (https://www.eorc.jaxa.jp/ptree/index.html). Fog area is mainly indicated by the albedo at three visible bands: red (band 3, 0.64 μm), green (band 2, 0.51 μm) and blue (band 1, 0.47 μm). Finally, the daily liquid water path (LWP) observations from the MODIS Aqua Collection 6 Level-3 production are used to evaluate the model performance on simulating cloud water.

2.3 Model evaluation

Comparisons between the simulated and observed meteorological parameters from 26 October to 2 December 2018 in Nanjing are shown in Fig. 2. The model can reproduce the temporal variation of observed meteorological variables, such as T2, RH, WS10, and WD10, with the relatively high correlations of 0.89, 0.68, 0.47 and 0.55, and small root-mean-square errors (RMSEs) of 1.7 °C, 9.7 %, 0.6 m s$^{-1}$ and 61.7°, respectively. The simulated T2, RH, and WS10 are slightly lower than observations, with the mean biases of -0.4 °C, -1.4 %, and -0.1 m s$^{-1}$, respectively (Table 2). There was almost no precipitation during this period. Similarly, the simulated precipitation is also quite limited except for the date on 2 December. Overall, the simulated meteorological fields are reasonable in Nanjing.

3 Results and discussions

3.1 Chemical simulations

From 26 November to 2 December 2018, Nanjing and its surrounding cities
suffered from a severe haze-fog event for seven days (fog areas are shown in Fig. S1).

The average PM$_{2.5}$ concentrations and RH in Nanjing exceeded 115 μg m$^{-3}$ and 85%, respectively, and the visibility is less than 50 meters in some areas.

The hourly and diurnal variations of simulated and observed SO$_2$, NO$_2$, NH$_3$, HNO$_3$, and HONO as well as SNA and PM$_{2.5}$ concentrations are shown in Fig. 3 and 4. The magnitudes and temporal variations of air pollutants from the simulations and observations are generally consistent. However, the model overestimates SO$_2$ by 114 % and underestimates sulfate by over 80 %, and thus underestimates the sulfur oxidation ratio (SOR) by 81 %. A low oxidation rate of SO$_2$ to sulfate in the model has been found in previous studies (Gao et al., 2018). Possible explanations are probably associated with unclear or imperfect chemical mechanisms of sulfate formation in the models. (Moch et al., 2018; Sha et al., 2019; Shao et al., 2019). Additionally, it is noted that the observed sulfate concentration has an obvious diurnal cycle with the peak occurring at noon, corresponding to the timing of fog dissipation. Sulfate mass concentration can remain at a relatively high level in fog water during the night and early morning due to the contribution from aqueous chemistry, inducing a significant increase of sulfate when fog droplets evaporate at noon (Xue et al., 2016). However, the simulated sulfate shows a flatter diurnal cycle, with a much smaller concentration enhancement rate (0.45 μg m$^{-3}$ hr$^{-1}$) from early morning to noon compared to the observations (2.3 μg m$^{-3}$ hr$^{-1}$), suggesting that model possibly underestimates the formation of sulfate via aqueous-phase chemistry in clouds.

Globally, the aqueous sulfate formation is mainly from the oxidation of S(IV) by
H$_2$O$_2$ and O$_3$, and almost 50% from the oxidation by H$_2$O$_2$. Previous studies indicated that the heavy pollution in China is usually associated with a weak photochemical activity, while the formation of atmospheric oxidant species (e.g. OH, H$_2$O$_2$, and O$_3$) is driven by photolysis, which could suppress the formation of sulfate via the oxidation of S(IV) by H$_2$O$_2$ and O$_3$ during the haze-fog events (Xue et al., 2016; Li et al., 2017a; Wang et al., 2020; Liu et al., 2020). Therefore, the aqueous-phase oxidations of S(IV) by NO$_2$ and O$_2$ (TMI-catalyzed) could play an important role in sulfate formation. It is noted that the observed HONO concentrations rise remarkably at noon, which is quite consistent with the diurnal cycle of sulfate (Fig. 4(b, g)), while most of the HONO is produced via SO$_2$ oxidation by NO$_2$ in aqueous phase according to previous studies (Liu et al., 2019). It is therefore suggested that the aqueous-phase oxidations of S(IV) by NO$_2$ is possibly the main pathway of sulfate formation during this haze-fog event. However, the simulated HONO is almost an order of magnitude lower than the observations and has no obvious diurnal variations as shown in the observations.

Although the diurnal pattern of NO$_2$ is consistent in the model and observations, and the averaged NMB is only 12%, the nitrate concentrations are 184% higher in the model than in the observations, especially at night, suggesting that the model overestimates the nitrate nocturnal formation pathway, that is, the N$_2$O$_5$ heterogeneous hydrolysis uptake on the surfaces of deliquescence aerosols (Lowe et al., 2015; Brown et al., 2016; Chang et al., 2016). The relatively high N$_2$O$_5$ uptake coefficient (γ_{N2O5}) and missing of heterogeneous production of nitryl chloride (ClNO$_2$) from the N$_2$O$_5$ uptake on chloride aerosols in the model, lead to the overestimation of the simulated nitrate...
mass concentration (Sarwar et al., 2012, 2014; McDuffie et al., 2018). Besides, overestimations of the HNO$_3$ and nitrate (TNO$_3$ = HNO$_3$ + NO$_3$) concentrations in the model are also caused by the insufficient removal of TNO$_3$. Therefore, too much TNO$_3$ may consume a large amount of NH$_3$ to a certain extent, further inhibit the sulfate formation.

The molar concentrations of total ammonium (TNH$_4$ = NH$_3$ + NH$_4^+$) are generally consistent in the simulations and observations, i.e. 2.1 mol m$^{-3}$ in the simulation and 2.5 mol m$^{-3}$ in the observation, but the simulated NH$_3$ is 91% lower and ammonium is 57% higher than the observations (Fig. 3(e, f)). This is partly due to the overestimation of TNO$_3$ in the model (Wang et al., 2013). On the other hand, aerosol acidity is a key factor driving the semi-volatile partitioning of aerosol species, and lower aerosol pH is conducive to the existence of ammonium in the particle phase. As shown in Fig. S2, the model underestimates aerosol pH by 0.8, which leads to the discrepancies of TNH$_4$ gas-particle partitioning.

The simulated PM$_{2.5}$ concentrations are significantly higher than the observations (twice during daytime and three times during night). As CBMZ-MOSAIC only predicts primary organic species but does not consider the formation of secondary organic aerosol, the organic mass concentration must assumedly be underestimated in the model. Therefore, the overestimation of PM$_{2.5}$ is mainly due to the overestimation of SNA, namely nitrate and ammonium. Additionally, the overestimation of primary inorganic aerosols mass concentrations in the model can also lead to a positive bias of PM$_{2.5}$.

3.2 Cloud water
Based on the above analysis, we speculated that underestimation of sulfate in the model is due to the insufficient in-cloud aqueous-phase formation and/or missing mechanisms in the model. The cloud water is the most uncertain factor to modulate in-cloud aqueous-phase chemistry (Ervens et al., 2015; Xie et al., 2018). Therefore, it is necessary to evaluate the simulated cloud water in the model.

Figure 5 shows the spatial distribution of simulated fog from 26 November to 2 December over YRD. The fog area was identified once LWP is above a threshold of 2 g m^{-2} (Jia et al., 2019). The model can generally reproduce the distribution characteristics of the fog area observed at 08:00 every day during this period, except for the date on 27 November (the observed fog areas are shown in Fig. S1).

The LWC at the lowest level of the model has an important impact on the SNA formation at surface. LWC was not observed simultaneously during this period, so visibility (VIS) is usually used to assess the simulated LWC as it is a function of LWC and cloud droplet number \(N_c\) (Eq. (1); Gultepe et al., 2006).

\[
\text{VIS}[\text{m}] = 1002/(\text{LWC}[\text{g cm}^{-3}] \times N_c[\text{cm}^{-3}]^{0.6473})
\]

Figure 6 compares the spatial distribution of VIS from simulations and observations (threshold of VIS < 1000 m). The simulated VIS has similar spatial pattern and magnitude with the observed VIS. However, the model tends to overestimate VIS, especially on 27 November, likely because the LWC is underestimated. The underestimation of LWC during this period may be related to the bulk microphysical scheme used in the model (Khain et al., 2009; Jia et al., 2019).

To quantitatively evaluate the modeled cloud water, we compared the simulated
LWP with the MODIS daily observation (Fig. 7). The model can reproduce the spatial distribution of observed LWP but somewhat underestimates LWP in some areas, e.g. Jiangsu Province. Comparisons of the cumulative probability distribution of the simulated and observed LWP are shown in Fig. 8. The probability distribution of the simulated LWP is mainly concentrated in the lower LWP, e.g. the probability of the simulated LWP less than 20 g m$^{-2}$ is $\sim 80\%$, while the observed one is only 30% (Table 2). The modeled probabilities are 49% lower than the observed ones for larger LWP (>20 g m$^{-2}$). The results are consistent with previous studies (Mueller et al., 2006; Kay et al., 2012; Wang et al., 2013; Sha et al., 2019).

As stated above, the model underestimates the sulfate mass concentration and cloud water simultaneously during the haze-fog event. The underestimation of cloud water possibly leads to the insufficient contribution of in-cloud aqueous-phase chemistry to sulfate formation, which could explain the underestimation of sulfate during the haze episode, but has been overlooked by most previous studies. Therefore, the next section uses the observed LWP from MODIS to constrain the simulations and explore the impact of cloud water on SNA simulation.

3.3 Sensitivity experiments

3.3.1 Constrain of cloud water in the model

The logarithmic function is used to fit the cumulative probability distributions (CPD) for both the observed and simulated LWP (Fig. 8) values. The corresponding equations of the fitting are:

$$F_o = -6.4 + 16.5 \ln(x_o + 1.0) \quad (0 \leq x_o \leq 500 \text{ g m}^{-2}) \quad (2)$$
Where subscripts o and m represent the observation and model, while F and x represent CPD and LWP. To update the modeled LWP with satellite observations, we use the histogram matching method (Richard, 2013), so that the CPD function of the simulated LWP after constraining is the same as the observations, i.e., $F_m^c = F_o$. Consequently, the equation for transforming the modeled LWP is:

$$x_m^c = 53.0 \times (x_m + 5.8)^{0.4} - 1$$

(4)

Where the subscript c presents the correction with MODIS observations.

We apply the Eq. (4) to modify the cloud water in the aqueous chemistry module only while cloud water amount in other modules (i.e. microphysics, cumulus parameterization, wet scavenging, and radiative transfer modules) remain unchanged to ensure that other physical and chemical processes are self-consistent between the control and sensitivity model simulations. This sensitivity experiment is called Sen_c. Consequently, the changes don’t affect the cloud properties used in the radiative transfer calculations. As such, gas phase production rates are intact. However, cloud-induced changes in aqueous phase production do alter the mixing ratios of SO$_2$ and other oxidants (e.g., OH and H$_2$O$_2$), which could in turn impact the rate of gas phase oxidation. In addition, the changes in cloud water can affect the production rates of sulfate by changing the hydrogen ions concentrations ([H$^+$]). The pH of cloud water is considered as one of the important parameters affecting the aqueous-phase reaction rates. As shown in Fig. S3, constraining the simulated cloud water alone results in a decrease of cloud water pH (2.4) during this period. To eliminate the influence of changes in cloud water
pH (from MODIS-based change of cloud water) on the sulfate production, we also
increase the cloud water pH by 2 in another sensitivity experiment (Sen_c_pH) to make
cloud water pH as close as possible to the control simulation. The experiment
descriptions are shown in Table 3.

3.3.2 Impact of cloud constraint on SNA

Figure 9 shows the spatial distribution of the simulated SNA in the control and
sensitivity simulations, as well as the difference between the two simulations. The
simulated sulfate concentration in Sen_c_pH is 6 μg m$^{-3}$ larger than the Control over
the entire YRD, with the biggest difference in the south of Jiangsu and the east of Anhui
province, corresponding to the area mostly affected by this haze-fog event (Fig. S1). It
is indicated that corrected cloud water increases the contribution of the aqueous-phase
chemistry to sulfate formation, thereby reducing the negative bias of simulated sulfate.
The formation of sulfate greatly limits the nitrate production, so the simulated nitrate
in Sen_c_pH is decreased by 35 μg m$^{-3}$ compared to the Control over the entire YRD.
However, the ammonium simulated by Sen_c_pH is larger than the results of Control
run in most areas of YRD, with the average difference of 9 μg m$^{-3}$. As the inorganic
aerosol system is essentially an acid-base titration, an increase in S(VI) concentration
can neutralize more NH$_3$ to form ammonium sulfate ((NH$_4$)$_2$SO$_4$) or ammonium
bisulfate (NH$_4$HSO$_4$), leading to an increase of simulated ammonium concentrations.

As shown in Fig. 10 and Fig. 11, Sen_c_pH significantly improves the simulation
of sulfate, i.e. increases sulfate by 11.8 μg m$^{-3}$ (295 %), and decreases NMB by 53.5 %.
Also, the simulation using corrected cloud water can reproduce the diurnal cycle and
capture the peak concentration of sulfate at noon, with the concentration increased rate of 1.8 μg m⁻³ hr⁻¹ from early morning to noon, which is not seen in the Control run. Meanwhile, Sen_c_pH decreases the absolute bias of the simulated nitrate from 184.0% (Control) to 50.1 %, and greatly reduces the nitrate concentration at night, and thus predicts a better diurnal cycle. However, the simulation with corrected cloud water leads to a minor increase of ammonium.

Overall, the simulation with MODIS-corrected cloud water can obviously decrease the model bias of SNA to 14.1 % from 77.2 % in Control run (Fig. 11(a)). The proportion of sulfate in SNA also significantly increases from 2.5 % (Control) to 20.2 % (Sen_c_pH), which is much close to the observation (23.9 %), but still 6 μg m⁻³ lower than the observations. A few possibilities can explain the discrepancies. The model possibly underestimates the cloud water pH, with the value of 3.3 in Sen_c_pH (Fig. S4), which is relatively lower than the global typical cloud/fog water pH of 3-6 and the mean value of 4-6 suggested by Pye et al. (2020). The observed fog water pH in Nanjing from previous studies (Li et al., 2008; Lu et al., 2010; Qin et al., 2011; Yan et al., 2013; Hong et al., 2019) are summarized in Table 4, suggesting that the fog water pH in Nanjing is generally between 4.3 and 6.5. Therefore, the relatively lower fog water pH simulated by the model could limit the aqueous-phase formation of sulfate to some extent. Note that the aqueous-phase oxidation of S(IV) by NO₂ requires the cloud water pH of about 6, thus the more acidic cloud water in the model is not conducive to this reaction. Moreover, the model lacks SO₂ heterogeneous reactions on aerosol water (Li et al., 2017a; Shao et al., 2019) and other aqueous-phase reactions in clouds, such as
the aqueous oxidation of S(IV) by HCHO and hydroxyl hydroperoxide (ISOPOOH) to form hydroxy-methane sulfonate (HMS) and sulfate (Moch et al., 2018; Dovrou et al., 2019), can also explain the sulfate underestimation even though the cloud water has already been corrected. In addition, cloud constraints are based on the MODIS LWP, which has been reported with an uncertainty range of $\pm 30\%$ (Dong et al., 2008; Min et al., 2012; Khanal et al., 2018).

It should also be noted that compared to the observations, Sen_c_pH underestimates nitrate and overestimates ammonium in SNA (Fig. 11(b)), which can be ascribed to the underestimation of atmospheric acidity in the model, including the pH of aerosol and cloud/fog water. The hydrogen ion activity in aqueous aerosols can affect the partitioning of TNO$_3$ and TNH$_4$ between the gas and aerosol phases. Lower aerosol pH favors partitioning of TNO$_3$ toward gaseous HNO$_3$ rather than aerosol nitrate. In contrast, TNH$_4$ partitions toward gaseous NH$_3$ at higher aerosol pH (Weber et al., 2016). The simulated aerosol pH in Sen_c_pH is lower than the observations (Fig. S2), which is not conducive to the existence of aerosol nitrate. Additionally, because the scavenging efficiency of TNO$_3$ and TNH$_4$ is dependent upon cloud water pH, the acidic cloud water in the model can also cause these discrepancies.

4 Conclusions

Accurately predicting the concentrations and chemical components of particulate matter are still very challenging for climate and air quality models. In this study, we evaluated the WRF-Chem performance on simulating inorganic aerosol components of PM$_{2.5}$ during a haze-fog event in Nanjing, and investigate the possible reasons
contributing to model bias in simulating SNA compared with the observations.

Our results presented that WRF-Chem overestimates SO$_2$ by 114 $\%$, underestimates sulfate by 81$, and fails to reproduce the diurnal cycle of sulfate, i.e. the peak concentration at noon, which corresponds to the timing of fog dissipation. In contrast, the model bias of NO$_2$ is much smaller (NMB = 12 $\%$), but the nitrate is overestimated by 184 $\%$, especially its nocturnal concentration. Although the molar concentrations of total ammonium are generally consistent in the simulations and observations, the model underestimates NH$_3$ by 91 $\%$ and overestimates ammonium by 57$\%$.

The underestimation of sulfate concentration is consistent with previous findings. However, our work stands in contrast to previous studies that adding SO$_2$ heterogeneous mechanism in the model to improve the simulation of sulfate. Cloud/fog droplets are the important reactors in which dissolved SO$_2$ reacts with oxidations to form sulfate, but the model underestimates cloud water (both surface LWC and LWP) simultaneously. Therefore, the cloud water in the model was constrained based on the MODIS LWP observations, and sensitivity experiments were conducted to explore the impact of corrected cloud water on SNA simulation. Compare with control run, the simulation with MODIS-corrected cloud water significantly improves the simulation of sulfate, i.e. increases the concentration by nearly 3 times and decreases NMB by 53.5 $\%$, as well as reproduces the diurnal cycles. Additionally, corrected cloud water decreases the bias of simulated nitrate by 134 $\%$, especially the nocturnal concentrations, thus predicting a better diurnal cycle. Although the simulated ammonium is higher than the control
Simulation and observation, corrected cloud water decreases the model bias of SNA to 14.1% from 77.2% (Control).

However, even after the MODIS-based adjustment of cloud water, the simulated sulfate is still 6 μg m⁻³ (27.5%) lower than the observations, suggesting that the model possibly underestimates the cloud water pH (the value of 3.3), which is not conducive to the in-cloud aqueous-phase oxidation of S(IV) by NO₂. Missing of SO₂ heterogeneous reactions on aerosol water (e.g., TMI-catalyzed oxidation) and other in-cloud aqueous-phase reactions (e.g., S(IV) oxidation by HCHO and ISOPOOH) in the model can also lead to underestimating the sulfate concentrations. In addition, the constraints of cloud water are based on the MODIS observations, which are themselves subject to retrieval uncertainties.

The above results emphasize the critical role of cloud water in simulating SNA, and provide a new perspective on the causes of sulfate underestimation discussed by the previous studies. More studies are still needed to comprehensively evaluate the modeled cloud fields to improve the haze prediction in the future.

Code and data availability: Some of the data repositories have been listed in Sect. 2. The other data, model outputs and codes can be accessed by contacting Tong Sha via shat@nuist.edu.cn.

Author contributions: TS performed the model simulation, data analysis and paper writing. XM proposed the idea, supervised this work and revised the paper. JW gave
scientific suggestions and also contributed to the paper revision. RT processed the observation data. JZ offered help with the model simulation. FC and YZ provided the observation data at the NUIST site.

Competing interests: The authors declare that they have no conflict of interest.

Acknowledgment: This study is supported by the National Natural Science Foundation of China grants (41675004 & 41975002), the National Key R&D Program of China grants (2019YFA0606802 & 2016YFA0600404), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (grant no. KYCX20_0919). Jun Wang’s participation of this project is made possible through in-kind support from the University of Iowa.
Reference:

Qin, Y. S., Liu, D. Y., Yin, Y. Y., Li, L.: Analysis of chemical characteristics in fog water and pollutant source in Nanjing, Environ. Chem. 30 (4), 816–824, 2011. (in

Shao, J. Y., Chen, Q. J., Wang, Y. X., Lu, X., He, P. Z., Sun, Y. L., Shah, V., Martin, R.

Tewari, M., Chen F., Wang W., Dudhia J., LeMone M. A., Mitchell K., M. Gayno Ek, Wegiel G., J., and Cuenca R. H.: Implementation and verification of the unified...

Table 1. Comparison of the simulated and observed meteorological parameters. (T2: 2 meters temperature (°C), RH2: 2 meters relative humidity (%), WS10: 10 meters wind speed (m∙s⁻¹), WS10: 10 meters wind speed (m∙s⁻¹)).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Obs</th>
<th>Mod</th>
<th>R</th>
<th>MB</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2</td>
<td>11.5</td>
<td>11.1</td>
<td>0.89</td>
<td>-0.4</td>
<td>1.7</td>
</tr>
<tr>
<td>RH2</td>
<td>89.9</td>
<td>88.5</td>
<td>0.68</td>
<td>-1.4</td>
<td>9.7</td>
</tr>
<tr>
<td>WS10</td>
<td>1.6</td>
<td>1.5</td>
<td>0.47</td>
<td>-0.1</td>
<td>0.6</td>
</tr>
<tr>
<td>WD10</td>
<td>134.2</td>
<td>138.4</td>
<td>0.55</td>
<td>4.2</td>
<td>61.7</td>
</tr>
</tbody>
</table>
Table 2 Statistics of the cumulative probability distribution of observed and simulated LWP.

<table>
<thead>
<tr>
<th>Probability (%)</th>
<th>Observation</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20 g m$^{-2}$</td>
<td>30</td>
<td>79</td>
</tr>
<tr>
<td>20-40 g m$^{-2}$</td>
<td>19</td>
<td>4</td>
</tr>
<tr>
<td>40-60 g m$^{-2}$</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>60-80 g m$^{-2}$</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>80-100 g m$^{-2}$</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>> 100 g m$^{-2}$</td>
<td>28</td>
<td>10</td>
</tr>
</tbody>
</table>
Table 3. Descriptions of the model simulations.

<table>
<thead>
<tr>
<th>Experiment name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Control simulation.</td>
</tr>
<tr>
<td>Sen_c</td>
<td>Only constrain the simulated LWP according to Eq. (4).</td>
</tr>
<tr>
<td>Sen_c_pH</td>
<td>Constrain the simulated LWP according to Eq. (4) and increase the cloud water pH by 2.</td>
</tr>
</tbody>
</table>
Table 4 Summaries of the observed fog water pH during the fog events in Nanjing, China.

<table>
<thead>
<tr>
<th>Study time</th>
<th>pH in fog</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 2006</td>
<td>5.6</td>
<td>Li et al., 2008</td>
</tr>
<tr>
<td>December 2006 and December 2007</td>
<td>5.9</td>
<td>Lu et al., 2010</td>
</tr>
<tr>
<td>December 2007</td>
<td>5.5</td>
<td>Qin et al., 2011</td>
</tr>
<tr>
<td>December 2009</td>
<td>6.0 (radiation fog)</td>
<td>Yan et al., 2013</td>
</tr>
<tr>
<td>November 2016 to January 2017</td>
<td>avg: 5.7, min: 5.0, max: 6.5</td>
<td>Hong et al., 2019</td>
</tr>
</tbody>
</table>
Figure 1. (a) The model domain (Solid red dot is Nanjing). (b) The location of sites with in-situ measurements on meteorological variables and air pollutants (Green triangles, red and blue circle denote the routine meteorological stations, Maigaoqiao air quality monitoring site, and Nanjing University of Information Science & Technology (NUIST), respectively).
Figure 2. The performance of the simulated hourly meteorological parameters (2m temperature (T2), 2m relative humidity (RH), 10m wind speed (WS10), 10m wind direction (WD10), and 6 h accumulation precipitation (PRE)) during the haze-fog event in Nanjing. Scatters and solid lines (or columns) represent observations and simulations, respectively.
Figure 3. Time series of the simulated and observed hourly gas precursors ((a) SO$_2$, (c) NO$_2$, (e) NH$_3$, (g) HONO, (h) HNO$_3$), as well as (b) sulfate, (d) nitrate and (f) ammonium concentrations. The stacked diagram of hourly SNA and PM$_{2.5}$ concentrations from (i) observations and (j) simulations during the haze-fog event in Nanjing.
Figure 4. Diurnal cycles of the simulated and observed mass concentrations of gas precursors ((a) SO$_2$, (c) NO$_2$, (e) NH$_3$, (g) HONO, (i) HNO$_3$), as well as (b) sulfate, (d) nitrate, (f) ammonium and (h) PM$_{2.5}$ averaged during the haze-fog event in Nanjing.
Figure 5. Distribution of the simulated liquid water path (LWP, unit: g m$^{-2}$) at 08:00 from 26 November to 2 December over YRD.
Figure 6. Distribution of the simulated and observed visibility (unit: m) at 08:00 from 26 November to 2 December over YRD. The circles represent the MICAPS observations.
Figure 7. Distribution of LWP (unit: g m$^{-2}$) from the MODIS observations (columns 1 and 3) and simulations (columns 2 and 4) at 13:30 from 26 November to 2 December over YRD.
Figure 8. The cumulative probability distribution of LWP between the MODIS observations and simulations. Results are based on statistics of the observed and simulated daily LWP during the haze-fog event over YRD. The lines are the fitting functions.
Figure 9. Distribution of the simulated sulfate, nitrate, and ammonium (SNA) in the Control run (a, d, g) and Sen_c_pH (b, e, h) simulation, and the differences of simulated SNA between the two simulations (c, f, i) during the haze-fog event over YRD. The black arrows indicate the simulated surface wind fields.
Figure 10. The hourly and diurnal variations of simulated (Control and Sen_c_pH) and observed (a, b) sulfate, (c, d) nitrate, and (e, f) ammonium concentrations. The stacked diagram of hourly SNA concentrations from (g) observations, (h) Control run, and (i) Sen_c_pH simulations during the haze-fog event in Nanjing.
Figure 11. (a) The average mass concentrations and (b) proportion of the observed and simulated (Control and Sen_c_pH) SNA during the haze-fog event in Nanjing.