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Abstract 19 

High concentrations of PM2.5 in China have caused severe visibility degradation 20 

and health problem. However, it is still a big challenge to accurately predict PM2.5 and 21 

its chemical components in the numerical model. In this study, we compared the 22 

inorganic aerosol components of PM2.5 (sulfate, nitrate, and ammonium (SNA)) 23 

simulated by WRF-Chem with in-situ data during a heavy haze-fog event (November 24 

2018) in Nanjing. The comparisons show that the model underestimates the sulfate 25 

concentrations by 81 % and fails to reproduce the significant increase of sulfate 26 

concentrations from early morning to noon, which corresponds to the timing of fog 27 

dissipation, suggesting that the model underestimates the aqueous-phase formation of 28 

sulfate in clouds. In addition, the model overestimates both nitrate and ammonium 29 

concentrations by 184 % and 57 %, respectively. These ultimately result in the 30 

simulated SNA 77.2 % higher than the observations. However, as the important 31 

aqueous-phase reactors, cloud water are simultaneously underestimated by the model. 32 

Therefore, the modeled cloud water was constrained based on the MODIS Liquid Water 33 

Path (LWP) observations. Results show that the simulation with MODIS-corrected 34 

cloud water amount increases the sulfate by a factor of 3, decreases NMB by 53.5 %, 35 

and can reproduce its diurnal cycles, i.e. the peak concentration at noon. Also, the model 36 

absolute bias of nitrate decreases from 184 % to 50 %, especially for the nocturnal 37 

concentrations, which suggests the MODIS-constrained simulation improved the 38 

diurnal pattern. Although the simulated ammonium is still higher than the observation, 39 

corrected cloud water lead to the decrease of the modeled bias of SNA from 77.2 % to 40 
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14.1 %. The strong sensitivity of simulated SNA concentration to the cloud water 41 

provides an explanation for the bias of SNA simulation. Hence, the uncertainties of 42 

cloud water can lead to model bias in simulating SNA, and can be reduced by 43 

constraining the model with satellite observations. 44 

  45 
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1 Introduction 46 

Severe and persistent haze pollution with daily concentrations of PM2.5 exceeding 47 

the Chinese standard of 75 μg m-3, occurs frequently in China during recent decades, 48 

which has aroused wide public attention due to its adverse impact on air quality, 49 

regional and global climate, and human health (Huang et al., 2014). According to 50 

previous studies, stagnant meteorological conditions with high atmospheric relative 51 

humidity and low boundary layer height, high emissions of primary air pollutants, as 52 

well as the rapid formation of secondary inorganic aerosols, including sulfate, nitrate, 53 

and ammonium (SNA), are considered to be the main factors leading to the haze 54 

episodes (Liu et al., 2020a). Earlier studies showed that the contribution of SNA to total 55 

PM2.5 mass concentration was over 50% during the severe haze events (Cheng et al., 56 

2016; Xu et al., 2017; Wang et al., 2019).  57 

The chemical transport models (CTMs) are often used to predict the PM2.5 pollution 58 

and evaluate the emission control strategies. Most models show reasonable 59 

performance on simulating surface PM2.5 concentrations in China but perform poorly 60 

on simulating the proportion of chemical components in PM2.5, especially during the 61 

severe haze periods (Gao et al., 2018; Chen et al., 2019). Many recent studies have 62 

reached an agreement that CTMs generally underestimate sulfate concentrations but 63 

overestimate nitrate concentrations (Wang et al., 2013; Wang et al., 2014; Zheng et al., 64 

2015a; Chen et al., 2016; Cheng et al., 2016; Fu et al., 2016; Gao et al., 2016; Li et al., 65 

2018a; Chen et al., 2019; Sha et al., 2019). The uncertainties such as meteorological 66 

fields (Bei et al., 2017; Li et al., 2017c; Su et al., 2018), emission inventories (Ma et al., 67 

https://doi.org/10.5194/acp-2020-760
Preprint. Discussion started: 31 August 2020
c© Author(s) 2020. CC BY 4.0 License.



5 
 

2018; Zhang et al., 2018; Qu et al., 2019), and parameterizations of physical and 68 

chemical processes in the model (Gao et al., 2018; Luo et al., 2019; Alexander et al., 69 

2020), can contribute to the discrepancies of SNA and PM2.5 between the models and 70 

observations.   71 

 The underestimation of sulfate in the models has been mainly attributed to the 72 

incomplete and/or inaccurate chemical mechanism. Generally, sulfate is formed 73 

through the gas-phase oxidation of SO2 by OH radicals, and aqueous-phase oxidation 74 

of S(IV) (= SO2∙H2O+HSO3
- +SO3

2-) by various oxidants (e.g., H2O2, O3, NO2, and O2 75 

(transition-metal-ion (TMI) catalysis)) in cloud droplets and aerosol water (the latter 76 

often called the heterogenous reaction) (Cheng et al., 2016; Liu et al., 2020a). It is worth 77 

noting that high atmospheric RH facilitates sulfate formation and aggravates the haze 78 

pollution (Xue et al., 2016; Tie et al., 2017; Wu et al., 2019). Therefore, the formation 79 

of sulfate is mainly through gas-phase reactions under relatively low atmospheric RH 80 

(RH < 30 %), but through heterogeneous and aqueous-phase reactions under relatively 81 

high atmospheric RH (RH > 60 %) (Li et al., 2017a). However, the mechanisms of 82 

sulfate formation at high RH is still controversial and unclear (Cheng et al., 2016; Wang 83 

et al., 2016; Ge et al., 2017; Guo et al., 2017; Liu et al., 2017; Yang et al., 2017; Li et 84 

al., 2018b). Previous studies proposed that the oxidation of SO2 by NO2 in aerosol water 85 

with almost neutral aerosol pH values (5.4-7.0) plays a dominant role in sulfate 86 

formation during the severe haze episodes (Cheng et al., 2016; Wang et al., 2016). 87 

However, the aerosol pH calculated by the ISORROPIA II model was moderately acidic 88 

with the value of 3.0-4.9, suggesting that the pathway of SO2 oxidation by dissolved 89 
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NO2 was not important during the haze events in China (Guo et al., 2017; Ding et al., 90 

2019). Latest studies suggested that SO2 heterogeneous reaction via TMI-catalyzed 91 

oxidation perhaps dominates the sulfate formation during the haze periods, which is 92 

also verified by the observations of sulfate oxygen isotopes (Shao et al., 2019). Since 93 

the observations of the concentration, complexation, and solubility of TMI are not 94 

available, the mechanism still remains unclear (Jacob, 2000; Wang et al., 2020). In order 95 

to tackle the underestimation of sulfate in the model during the haze events, most 96 

studies add the SO2 heterogeneous reaction in the model, which is usually 97 

parameterized as a reactive uptake process and assumed to be irreversible (Wang et al., 98 

2014; Zheng et al., 2015b; Chen et al., 2016; Li et al., 2017a; Feng et al., 2018; Li et 99 

al., 2018a; Sha et al., 2019; Shao et al., 2019). Although the implementation of SO2 100 

heterogeneous reactions in the model can achieve an agreement of simulated and 101 

observed sulfate concentrations during the haze episodes, the model still underestimates 102 

the sulfate due to uncertainties of the parameters in this reaction, such as the pH, water 103 

content and surface area of aerosol, as well as the gas uptake coefficients on aerosol 104 

water. 105 

Cloud/fog droplets can act as efficient reactors in which dissolved SO2 reacts with 106 

oxidations to form sulfate. Many studies showed that sulfate concentrations would be 107 

enhanced by the occurrence of cloud and fog compared to the cloud-free conditions 108 

(Crahan et al., 2004; Sorooshian et al., 2006; 2007; Wonaschuetz et al., 2012; Ervens 109 

et al., 2018a). Previous modeling studies concluded that a major fraction of sulfate (60-110 

90%) is formed via aqueous (in-cloud) chemistry globally (Barth et al., 2000; Ma and 111 
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Salzen, 2006; Harris et al., 2013; Kim et al., 2015; Ervens et al., 2018b; Dovrou et al., 112 

2019). The aqueous formation rate depends on liquid water content (LWC), the size 113 

distribution, pH and lifetime of cloud droplets, as well as the availability of oxidants. 114 

The kinetic and mechanistic parameters that characterize the uptake processes of sulfate 115 

precursors and oxidants, as well as the chemical reactions leading to sulfate formation 116 

in the aqueous phase, are relatively well constrained in the model, therefore the largest 117 

uncertainties in predicting in-cloud sulfate formation do not originate from the 118 

understanding of the chemical processes, but from the prediction of cloud 119 

microphysical and dynamical parameters, such as LWC and cloud lifetime (Rasch et al., 120 

2000; Ervens et al., 2015). Mueller et al. (2006) found that the simulated sulfate 121 

concentration significantly increased after correcting the underestimation of model 122 

cloud fraction. Xie et al. (2019) showed that the improvement in cloud fields in 123 

MERRA-2 can eliminate approximately half of the bias in the surface sulfate 124 

concentration during summertime relative to the MERRA data. However, only a few 125 

studies focus on the sulfate underestimation caused by the bias of cloud fields during 126 

the haze episodes. Therefore, a better understanding of the sensitivity of sulfate 127 

simulations to cloud water is needed to improve the model performance on predicting 128 

PM2.5. 129 

A persistent high PM2.5 level accompanying the fog event (short as haze-fog event) 130 

occurred in the Yangtze River Delta from 26 October to 2 December 2018. We choose 131 

this period to investigate the impact of cloud/fog water on simulating SNA using the 132 

WRF-Chem Model. The paper is organized as below. Section 2 shows the descriptions 133 
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of the model and data, as well as the meteorology evaluation. The evaluation of 134 

simulated chemical fields and cloud water with observations, and sensitivity 135 

experiments to study the impact of corrected cloud water on simulated SNA are 136 

presented in section 3 and 4. Section 5 shows the summaries. 137 

2 Model configurations, data description, and model evaluation 138 

2.1 Model configurations 139 

The WRF-Chem version 3.9.1 (Grell et al., 2005) is used in this study to conduct 140 

the simulations on a domain over the eastern China with the horizontal resolution of 27 141 

km and nested to a domain with 9 km covering the YRD (Fig. 1(a)). There are 42 142 

vertical levels, with 24 levels below the boundary layer (about 1500 m) and the lowest 143 

level about 21 m. The physical parameterization schemes include Lin microphysical 144 

scheme (Chen and Sun, 2002), Grell 3-D cumulus scheme (Grell and Dezső, 2002), 145 

RRTM (Mlawer et al., 1997) for longwave radiation and Goddard scheme for shortwave 146 

radiation (Chou and Suarez, 1994), Yonsei University planetary boundary layer 147 

parameterization (Hong et al., 2006), QNSE surface layer scheme (Sukoriansky et al., 148 

2005) and Noah land surface model (Tewari et al., 2004). 149 

The Carbon Bond Mechanism (CBMZ) for gas-phase chemistry (Zaveri and Peters, 150 

1999) and Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) 151 

aerosol module with 4 sectional aerosol bins and aqueous reactions (Zaveri et al., 2008) 152 

are chosen in our study. MOSAIC predicts all the major aerosol species, including 153 

sulfate, nitrate, ammonium, BC, primary organic mass, chloride, sodium, other 154 

inorganic mass (OIN), and liquid water. Detailed descriptions of the SNA formation 155 
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mechanisms in the standard model can be found in Sha et al. (2019).  156 

The 0.25°×0.25° National Center for Environmental Prediction's (NCEP) Final 157 

Analysis (FNL) dataset (http://rda.ucar.edu/datasets/ds083.2/) provides the 158 

meteorological initial and boundary condition. Anthropogenic emissions are taken from 159 

Multi-resolution Emission Inventory for China (MEIC: http://www.meicmodel.org/) 160 

for the year 2016 (Li et al., 2017b). The simulation starts on 24 November and ends on 161 

2 December 2018, with the first 48 hours as the spin-up period. 162 

2.2 Observational data 163 

Meteorological variables are measured every three hours from five weather stations 164 

in Nanjing, and obtained for this study from the Meteorological Information 165 

Comprehensive Analysis and Process System (MICAPS) (green triangles in Fig. 1(b)), 166 

which are used to evaluate the model performance on simulating meteorological fields. 167 

The data include air temperature and relative humidity at 2m (T2, RH), wind speed and 168 

direction at 10m (WS10, WD10), visibility (VIS), and accumulated precipitation (PRE) 169 

(only the sample frequency of precipitation is 6 hourly). For surface pollution, two data 170 

sets are used: (1) the hourly SO2, NH3, HNO3, HONO, and inorganic chemical 171 

components in PM2.5 (sulfate, nitrate, and ammonium) concentrations measured by the 172 

In-situ Gas and Aerosol Compositions monitor (IGAC) (Young et al., 2016) at Nanjing 173 

University of Information Science & Technology (NUSIT) (32.2º N, 118.7º E; 22m 174 

above sea level) (the blue circle in Fig. 1(b)); (2) the routine measurements of hourly 175 

NO2 and PM2.5 concentrations at Maigaoqiao monitoring site (32.1º N, 118.8º E) in 176 

Nanjing from the China National Environmental Monitoring Center (CNEMC) (since 177 
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the NUIST site did not observe NO2 and PM2.5 simultaneously, the observation data 178 

from Maigaoqiao site nearest to the NUIST were used, shown as the red circle in Fig. 179 

1(b)). Himawari 8 satellite data are used to represent the spatial area of this fog event 180 

(https://www.eorc.jaxa.jp/ptree/index.html). Fog area is mainly indicated by the albedo 181 

at three visible bands: red (band 3, 0.64 μm), green (band 2, 0.51 μm) and blue (band 182 

1, 0.47 μm). Finally, the daily liquid water path (LWP) observations from the MODIS 183 

Aqua Collection 6 Level-3 production are used to evaluate the model performance on 184 

simulating cloud water.  185 

2.3 Model evaluation 186 

Comparisons between the simulated and observed meteorological parameters from 187 

26 October to 2 December 2018 in Nanjing are shown in Fig. 2. The model can 188 

reproduce the temporal variation of observed meteorological variables, such as T2, RH, 189 

WS10, and WD10, with the relatively high correlations of 0.89, 0.68, 0.47 and 0.55, 190 

and small root-mean-square errors (RMSEs) of 1.7 °C, 9.7 %, 0.6 m s-1 and 61.7º, 191 

respectively. The simulated T2, RH, and WS10 are slightly lower than observations, 192 

with the mean biases of -0.4 °C, -1.4 %, and -0.1 m s-1, respectively (Table 2). There 193 

was almost no precipitation during this period. Similarly, the simulated precipitation is 194 

also quite limited except for the date on 2 December. Overall, the simulated 195 

meteorological fields are reasonable in Nanjing. 196 

3  Results and discussions 197 

3.1 Chemical simulations 198 

From 26 November to 2 December 2018, Nanjing and its surrounding cities 199 

https://doi.org/10.5194/acp-2020-760
Preprint. Discussion started: 31 August 2020
c© Author(s) 2020. CC BY 4.0 License.



11 
 

suffered from a severe haze-fog event for seven days (fog areas are shown in Fig. S1). 200 

The average PM2.5 concentrations and RH in Nanjing exceeded 115 μg m-3 and 85%, 201 

respectively, and the visibility is less than 50 meters in some areas.  202 

The hourly and diurnal variations of simulated and observed SO2, NO2, NH3, 203 

HNO3, and HONO as well as SNA and PM2.5 concentrations are shown in Fig. 3 and 4. 204 

The magnitudes and temporal variations of air pollutants from the simulations and 205 

observations are generally consistent. However, the model overestimates SO2 by 114 % 206 

and underestimates sulfate by over 80 %, and thus underestimates the sulfur oxidation 207 

ratio (SOR) by 81 %. A low oxidation rate of SO2 to sulfate in the model has been found 208 

in previous studies (Gao et al., 2018). Possible explanations are probably associated 209 

with unclear or imperfect chemical mechanisms of sulfate formation in the models. 210 

(Moch et al., 2018; Sha et al., 2019; Shao et al., 2019). Additionally, it is noted that the 211 

observed sulfate concentration has an obvious diurnal cycle with the peak occurring at 212 

noon, corresponding to the timing of fog dissipation. Sulfate mass concentration can 213 

remain at a relatively high level in fog water during the night and early morning due to 214 

the contribution from aqueous chemistry, inducing a significant increase of sulfate 215 

when fog droplets evaporate at noon (Xue et al., 2016). However, the simulated sulfate 216 

shows a flatter diurnal cycle, with a much smaller concentration enhancement rate (0.45 217 

μg m-3 hr-1) from early morning to noon compared to the observations (2.3 μg m-3 hr-1), 218 

suggesting that model possibly underestimates the formation of sulfate via aqueous-219 

phase chemistry in clouds.  220 

Globally, the aqueous sulfate formation is mainly from the oxidation of S(IV) by 221 
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H2O2 and O3, and almost 50% from the oxidation by H2O2. Previous studies indicated 222 

that the heavy pollution in China is usually associated with a weak photochemical 223 

activity, while the formation of atmospheric oxidant species (e.g. OH, H2O2, and O3) is 224 

driven by photolysis, which could suppress the formation of sulfate via the oxidation 225 

of S(IV) by H2O2 and O3 during the haze-fog events (Xue et al., 2016; Li et al., 2017a; 226 

Wang et al., 2020; Liu et al., 2020b). Therefore, the aqueous-phase oxidations of S(IV) 227 

by NO2 and O2 (TMI-catalyzed) could play an important role in sulfate formation. It is 228 

noted that the observed HONO concentrations rise remarkably at noon, which is quite 229 

consistent with the diurnal cycle of sulfate (Fig. 4(b, g)), while most of the HONO is 230 

produced via SO2 oxidation by NO2 in aqueous phase according to previous studies 231 

(Liu et al., 2019). It is therefore suggested that the aqueous-phase oxidations of S(IV) 232 

by NO2 is possibly the main pathway of sulfate formation during this haze-fog event. 233 

However, the simulated HONO is almost an order of magnitude lower than the 234 

observations and has no obvious diurnal variations as shown in the observations.  235 

Although the diurnal pattern of NO2 is consistent in the model and observations, 236 

and the averaged NMB is only 12 %, the nitrate concentrations are 184 % higher in the 237 

model than in the observations, especially at night, suggesting that the model 238 

overestimates the nitrate nocturnal formation pathway, that is, the N2O5 heterogeneous 239 

hydrolysis uptake on the surfaces of deliquescence aerosols (Lowe et al., 2015; Brown 240 

et al., 2016; Chang et al., 2016). The relatively high N2O5 uptake coefficient (γN2O5) and 241 

missing of heterogeneous production of nitryl chloride (ClNO2) from the N2O5 uptake 242 

on chloride aerosols in the model, lead to the overestimation of the simulated nitrate 243 
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mass concentration (Sarwar et al., 2012, 2014; McDuffie et al., 2018). Besides, 244 

overestimations of the HNO3 and nitrate (TNO3 = HNO3 + NO3
- ) concentrations in the 245 

model are also caused by the insufficient removal of TNO3 . Therefore, too much   246 

TNO3  may consume a large amount of NH3 to a certain extent, further inhibit the 247 

sulfate formation.  248 

The molar concentrations of total ammonium ( TNH4  =  NH3  +  NH4
+ ) are 249 

generally consistent in the simulations and observations, i.e. 2.1 mol m-3 in the 250 

simulation and 2.5 mol m-3 in the observation, but the simulated NH3 is 91 % lower and 251 

ammonium is 57 % higher than the observations (Fig. 3(e, f)). This is partly due to the 252 

overestimation of TNO3 in the model (Wang et al., 2013). On the other hand, aerosol 253 

acidity is a key factor driving the semi-volatile partitioning of aerosol species, and 254 

lower aerosol pH is conducive to the existence of ammonium in the particle phase. As 255 

shown in Fig. S2, the model underestimates aerosol pH by 0.8, which leads to the 256 

discrepancies of TNH4 gas-particle partitioning. 257 

The simulated PM2.5 concentrations are significantly higher than the observations 258 

(twice during daytime and three times during night). As CBMZ-MOSAIC only predicts 259 

primary organic species but does not consider the formation of secondary organic 260 

aerosol, the organic mass concentration must assumedly be underestimated in the model. 261 

Therefore, the overestimation of PM2.5 is mainly due to the overestimation of SNA, 262 

namely nitrate and ammonium. Additionally, the overestimation of primary inorganic 263 

aerosols mass concentrations in the model can also lead to a positive bias of PM2.5. 264 

3.2 Cloud water  265 
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Based on the above analysis, we speculated that underestimation of sulfate in the 266 

model is due to the insufficient in-cloud aqueous-phase formation and/or missing 267 

mechanisms in the model. The cloud water is the most uncertain factor to modulate in-268 

cloud aqueous-phase chemistry (Ervens et al., 2015; Xie et al., 2018). Therefore, it is 269 

necessary to evaluate the simulated cloud water in the model. 270 

Figure 5 shows the spatial distribution of simulated fog from 26 November to 2 271 

December over YRD. The fog area was identified once LWP is above a threshold of 2 272 

g m-2 (Jia et al., 2019). The model can generally reproduce the distribution 273 

characteristics of the fog area observed at 08:00 every day during this period, except 274 

for the date on 27 November (the observed fog areas are shown in Fig. S1). 275 

The LWC at the lowest level of the model has an important impact on the SNA 276 

formation at surface. LWC was not observed simultaneously during this period, so 277 

visibility (VIS) is usually used to assess the simulated LWC as it is a function of LWC 278 

and cloud droplet number (Nc) (Eq. (1); Gultepe et al., 2006). 279 

VIS[m] = 1002/(LWC[g cm−3] × Nc[cm−3]0.6473)                                                (1) 280 

Figure 6 compares the spatial distribution of VIS from simulations and observations 281 

(threshold of VIS < 1000 m). The simulated VIS has similar spatial pattern and 282 

magnitude with the observed VIS. However, the model tends to overestimate VIS, 283 

especially on 27 November, likely because the LWC is underestimated. The 284 

underestimation of LWC during this period may be related to the bulk microphysical 285 

scheme used in the model (Khain et al., 2009; Jia et al., 2019). 286 

To quantitatively evaluate the modeled cloud water, we compared the simulated 287 
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LWP with the MODIS daily observation (Fig. 7). The model can reproduce the spatial 288 

distribution of observed LWP but somewhat underestimates LWP in some areas, e.g. 289 

Jiangsu Province. Comparisons of the cumulative probability distribution of the 290 

simulated and observed LWP are shown in Fig. 8. The probability distribution of the 291 

simulated LWP is mainly concentrated in the lower LWP, e.g. the probability of the 292 

simulated LWP less than 20 g m-2 is ~ 80 %, while the observed one is only 30 % (Table 293 

2). The modeled probabilities are 49 % lower than the observed ones for larger LWP (> 294 

20 g m-2). The results are consistent with previous studies (Mueller et al., 2006; Kay et 295 

al., 2012; Wang et al., 2013; Sha et al., 2019). 296 

As stated above, the model underestimates the sulfate mass concentration and 297 

cloud water simultaneously during the haze-fog event. The underestimation of cloud 298 

water possibly leads to the insufficient contribution of in-cloud aqueous-phase 299 

chemistry to sulfate formation, which could explain the underestimation of sulfate 300 

during the haze episode, but has been overlooked by most previous studies. Therefore, 301 

the next section uses the observed LWP from MODIS to constrain the simulations and 302 

explore the impact of cloud water on SNA simulation. 303 

3.3 Sensitivity experiments 304 

3.3.1 Constrain of cloud water in the model 305 

The logarithmic function is used to fit the cumulative probability distributions 306 

(CPD) for both the observed and simulated LWP (Fig. 8) values. The corresponding 307 

equations of the fitting are:  308 

𝐹o = −6.4 + 16.5ln(𝑥o + 1.0)                                                 (0 ≤ 𝑥o ≤ 500 g m−2) (2)  309 
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𝐹m = 59.1 + 6.7ln(𝑥m + 5.8)                                                  (0 ≤ 𝑥m ≤ 500 g m−2) (3)  310 

Where subscripts o and m represent the observation and model, while F and x represent 311 

CPD and LWP. To update the modeled LWP with satellite observations, we use the 312 

histogram matching method (Richard, 2013), so that the CPD function of the simulated 313 

LWP after constraining is the same as the observations, i.e., 𝐹m
c = 𝐹o. Consequently, 314 

the equation for transforming the modeled LWP is:  315 

𝑥m
c = 53.0 × (𝑥m + 5.8)0.4 − 1                                                                                     (4)  316 

Where the subscript c presents the correction with MODIS observations.      317 

We apply the Eq. (4) to modify the cloud water in the aqueous chemistry module 318 

only while cloud water amount in other modules (i.e. microphysics, cumulus 319 

parameterization, wet scavenging, and radiative transfer modules) remain unchanged 320 

to ensure that other physical and chemical processes are self-consistent between the 321 

control and sensitivity model simulations. This sensitivity experiment is called Sen_c. 322 

Consequently, the changes don’t affect the cloud properties used in the radiative transfer 323 

calculations. As such, gas phase production rates are intact. However, cloud-induced 324 

changes in aqueous phase production do alter the mixing ratios of SO2 and other 325 

oxidants (e.g., OH and H2O2), which could in turn impact the rate of gas phase oxidation. 326 

In addition, the changes in cloud water can affect the production rates of sulfate by 327 

changing the hydrogen ions concentrations ([H+]). The pH of cloud water is considered 328 

as one of the important parameters affecting the aqueous-phase reaction rates. As shown 329 

in Fig. S3, constraining the simulated cloud water alone results in a decrease of cloud 330 

water pH (2.4) during this period. To eliminate the influence of changes in cloud water 331 
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pH (from MODIS-based change of cloud water) on the sulfate production, we also 332 

increase the cloud water pH by 2 in another sensitivity experiment (Sen_c_pH) to make 333 

cloud water pH as close as possible to the control simulation. The experiment 334 

descriptions are shown in Table 3. 335 

3.3.2 Impact of cloud constraint on SNA 336 

Figure 9 shows the spatial distribution of the simulated SNA in the control and 337 

sensitivity simulations, as well as the difference between the two simulations. The 338 

simulated sulfate concentration in Sen_c_pH is 6 μg m-3 larger than the Control over 339 

the entire YRD, with the biggest difference in the south of Jiangsu and the east of Anhui 340 

province, corresponding to the area mostly affected by this haze-fog event (Fig. S1). It 341 

is indicated that corrected cloud water increases the contribution of the aqueous-phase 342 

chemistry to sulfate formation, thereby reducing the negative bias of simulated sulfate. 343 

The formation of sulfate greatly limits the nitrate production, so the simulated nitrate 344 

in Sen_c_pH is decreased by 35 μg m-3 compared to the Control over the entire YRD. 345 

However, the ammonium simulated by Sen_c_pH is larger than the results of Control 346 

run in most areas of YRD, with the average difference of 9 μg m-3. As the inorganic 347 

aerosol system is essentially an acid-base titration, an increase in S(VI) concentration 348 

can neutralize more NH3 to form ammonium sulfate ((NH4)2SO4) or ammonium 349 

bisulfate (NH4HSO4), leading to an increase of simulated ammonium concentrations. 350 

As shown in Fig. 10 and Fig. 11, Sen_c_pH significantly improves the simulation 351 

of sulfate, i.e. increases sulfate by 11.8 μg m−3 (295 %), and decreases NMB by 53.5 %. 352 

Also, the simulation using corrected cloud water can reproduce the diurnal cycle and 353 
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capture the peak concentration of sulfate at noon, with the concentration increased rate 354 

of 1.8 μg m-3 hr-1 from early morning to noon, which is not seen in the Control run. 355 

Meanwhile, Sen_c_pH decreases the absolute bias of the simulated nitrate from 184.0% 356 

(Control) to 50.1 %, and greatly reduces the nitrate concentration at night, and thus 357 

predicts a better diurnal cycle. However, the simulation with corrected cloud water 358 

leads to a minor increase of ammonium. 359 

Overall, the simulation with MODIS-corrected cloud water can obviously 360 

decrease the model bias of SNA to 14.1 % from 77.2 % in Control run (Fig. 11(a)). The 361 

proportion of sulfate in SNA also significantly increases from 2.5 % (Control) to 20.2 % 362 

(Sen_c_pH), which is much close to the observation (23.9 %), but still 6 μg m−3 lower 363 

than the observations. A few possibilities can explain the discrepancies. The model 364 

possibly underestimates the cloud water pH, with the value of 3.3 in Sen_c_pH (Fig. 365 

S4), which is relatively lower than the global typical cloud/fog water pH of 3-6 and the 366 

mean value of 4-6 suggested by Pye et al. (2020). The observed fog water pH in Nanjing 367 

from previous studies (Li et al., 2008; Lu et al., 2010; Qin et al., 2011; Yan et al., 2013; 368 

Hong et al., 2019) are summarized in Table 4, suggesting that the fog water pH in 369 

Nanjing is generally between 4.3 and 6.5. Therefore, the relatively lower fog water pH 370 

simulated by the model could limit the aqueous-phase formation of sulfate to some 371 

extent. Note that the aqueous-phase oxidation of S(IV) by NO2 requires the cloud water 372 

pH of about 6, thus the more acidic cloud water in the model is not conducive to this 373 

reaction. Moreover, the model lacks SO2 heterogeneous reactions on aerosol water (Li 374 

et al., 2017a; Shao et al., 2019) and other aqueous-phase reactions in clouds, such as 375 
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the aqueous oxidation of S(IV) by HCHO and hydroxyl hydroperoxide (ISOPOOH) to 376 

form hydroxy-methane sulfonate (HMS) and sulfate (Moch et al., 2018; Dovrou et al., 377 

2019), can also explain the sulfate underestimation even though the cloud water has 378 

already been corrected. In addition, cloud constraints are based on the MODIS LWP, 379 

which has been reported with an uncertainty range of ±30 % (Dong et al., 2008; Min et 380 

al., 2012; Khanal et al., 2018).  381 

It should also be noted that compared to the observations, Sen_c_pH 382 

underestimates nitrate and overestimates ammonium in SNA (Fig. 11(b)), which can be 383 

ascribed to the underestimation of atmospheric acidity in the model, including the pH 384 

of aerosol and cloud/fog water. The hydrogen ion activity in aqueous aerosols can affect 385 

the partitioning of TNO3  and TNH4  between the gas and aerosol phases. Lower 386 

aerosol pH favors partitioning of TNO3  toward gaseous HNO3 rather than aerosol 387 

nitrate. In contrast, TNH4 partitions toward gaseous NH3 at higher aerosol pH (Weber 388 

et al., 2016). The simulated aerosol pH in Sen_c_pH is lower than the observations (Fig. 389 

S2), which is not conducive to the existence of aerosol nitrate. Additionally, because 390 

the scavenging efficiency of TNO3 and TNH4 is dependent upon cloud water pH, the 391 

acidic cloud water in the model can also cause these discrepancies.  392 

4  Conclusions 393 

Accurately predicting the concentrations and chemical components of particulate 394 

matter are still very challenging for climate and air quality models. In this study, we 395 

evaluated the WRF-Chem performance on simulating inorganic aerosol components of 396 

PM2.5 during a haze-fog event in Nanjing, and investigate the possible reasons 397 
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contributing to model bias in simulating SNA compared with the observations. 398 

Our results presented that WRF-Chem overestimates SO2 by 114 %, 399 

underestimates sulfate by 81%, and fails to reproduce the diurnal cycle of sulfate, i.e. 400 

the peak concentration at noon, which corresponds to the timing of fog dissipation. In 401 

contrast, the model bias of NO2 is much smaller (NMB = 12 %), but the nitrate is 402 

overestimated by 184 %, especially its nocturnal concentration. Although the molar 403 

concentrations of total ammonium are generally consistent in the simulations and 404 

observations, the model underestimates NH3 by 91 % and overestimates ammonium by 405 

57%.  406 

The underestimation of sulfate concentration is consistent with previous findings. 407 

However, our work stands in contrast to previous studies that adding SO2 heterogeneous 408 

mechanism in the model to improve the simulation of sulfate. Cloud/fog droplets are 409 

the important reactors in which dissolved SO2 reacts with oxidations to form sulfate, 410 

but the model underestimates cloud water (both surface LWC and LWP) simultaneously. 411 

Therefore, the cloud water in the model was constrained based on the MODIS LWP 412 

observations, and sensitivity experiments were conducted to explore the impact of 413 

corrected cloud water on SNA simulation. Compare with control run, the simulation 414 

with MODIS-corrected cloud water significantly improves the simulation of sulfate, i.e. 415 

increases the concentration by nearly 3 times and decreases NMB by 53.5 %, as well 416 

as reproduces the diurnal cycles. Additionally, corrected cloud water decreases the bias 417 

of simulated nitrate by 134 %, especially the nocturnal concentrations, thus predicting 418 

a better diurnal cycle. Although the simulated ammonium is higher than the control 419 
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simulation and observation, corrected cloud water decreases the model bias of SNA to 420 

14.1 % from 77.2 % (Control). 421 

However, even after the MODIS-based adjustment of cloud water, the simulated 422 

sulfate is still 6 μg m−3 (27.5%) lower than the observations, suggesting that the model 423 

possibly underestimates the cloud water pH (the value of 3.3), which is not conducive 424 

to the in-cloud aqueous-phase oxidation of S(IV) by NO2. Missing of SO2 425 

heterogeneous reactions on aerosol water (e.g., TMI-catalyzed oxidation) and other in-426 

cloud aqueous-phase reactions (e.g., S(IV) oxidation by HCHO and ISOPOOH) in the 427 

model can also lead to underestimating the sulfate concentrations. In addition, the 428 

constraints of cloud water are based on the MODIS observations, which are themselves 429 

subject to retrieval uncertainties.  430 

The above results emphasize the critical role of cloud water in simulating SNA, 431 

and provide a new perspective on the causes of sulfate underestimation discussed by 432 

the previous studies. More studies are still needed to comprehensively evaluate the 433 

modeled cloud fields to improve the haze prediction in the future.  434 
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Table 1. Comparison of the simulated and observed meteorological parameters. (T2: 2 813 

meters temperature (°C), RH2: 2 meters relative humidity (%), WS10: 10 meters wind 814 

speed (m∙s-1), WS10: 10 meters wind speed (m∙s-1)). 815 

Variables Obs Mod R MB RMSE 

T2 11.5 11.1 0.89 -0.4 1.7 

RH2 89.9 88.5 0.68 -1.4 9.7 

WS10 1.6 1.5 0.47 -0.1 0.6 

WD10 134.2 138.4 0.55 4.2 61.7 

 816 
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Table 2 Statistics of the cumulative probability distribution of observed and simulated 818 

LWP. 819 

Probability (%) Observation Simulation 

0-20 g m-2 30 79 

20-40 g m-2 19 4 

40-60 g m-2 15 3 

60-80 g m-2 4 2 

80-100 g m-2 4 2 

> 100 g m-2 28 10 

 820 
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Table 3. Descriptions of the model simulations. 822 

Experiment name Description 

Control Control simulation. 

Sen_c Only constrain the simulated LWP according to Eq. (4). 

Sen_c_pH Constrain the simulated LWP according to Eq. (4) and 

increase the cloud water pH by 2. 
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Table 4 Summaries of the observed fog water pH during the fog events in Nanjing, 825 

China. 826 

Study time pH in fog Reference 

December 2006 5.6 Li et al., 2008 

December 2006 and 

December 2007 
5.9 Lu et al., 2010 

December 2007 5.5 Qin et al., 2011 

December 2009 

6.0 (radiation fog) 

5.6 (advection radiation fog) 

4.3 (advection fog) 

Yan et al., 2013 

November 2016 to 

January 2017 
avg: 5.7, min: 5.0, max: 6.5 Hong et al., 2019 

 827 
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 829 

Figure 1. (a) The model domain (Solid red dot is Nanjing). (b) The location of sites with 830 

in-situ measurements on meteorological variables and air pollutants (Green triangles, 831 

red and blue circle denote the routine meteorological stations, Maigaoqiao air quality 832 

monitoring site, and Nanjing University of Information Science & Technology 833 

(NUIST), respectively).  834 
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 836 

Figure 2. The performance of the simulated hourly meteorological parameters (2m 837 

temperature (T2), 2m relative humidity (RH), 10m wind speed (WS10), 10m wind 838 

direction (WD10), and 6 h accumulation precipitation (PRE)) during the haze-fog event 839 

in Nanjing. Scatters and solid lines (or columns) represent observations and simulations, 840 

respectively. 841 
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 843 

Figure 3. Time series of the simulated and observed hourly gas precursors ((a) SO2, (c) 844 

NO2, (e) NH3, (g) HONO, (h) HNO3), as well as (b) sulfate, (d) nitrate and (f) 845 

ammonium concentrations. The stacked diagram of hourly SNA and PM2.5 846 

concentrations from (i) observations and (j) simulations during the haze-fog event in 847 

Nanjing.  848 
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 850 

Figure 4. Diurnal cycles of the simulated and observed mass concentrations of gas 851 

precursors ((a) SO2, (c) NO2, (e) NH3, (g) HONO, (i) HNO3), as well as (b) sulfate, (d) 852 

nitrate, (f) ammonium and (h) PM2.5 averaged during the haze-fog event in Nanjing.  853 
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 854 

Figure 5. Distribution of the simulated liquid water path (LWP, unit: g m-2) at 08:00 855 

from 26 November to 2 December over YRD. 856 
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 857 

Figure 6. Distribution of the simulated and observed visibility (unit: m) at 08:00 from 858 

26 November to 2 December over YRD. The circles represent the MICAPS 859 

observations. 860 
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 862 

Figure 7. Distribution of LWP (unit: g m-2) from the MODIS observations (columns 1 863 

and 3) and simulations (columns 2 and 4) at 13:30 from 26 November to 2 December 864 

over YRD. 865 
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 867 

Figure 8. The cumulative probability distribution of LWP between the MODIS 868 

observations and simulations. Results are based on statistics of the observed and 869 

simulated daily LWP during the haze-fog event over YRD. The lines are the fitting 870 

functions. 871 
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 873 

Figure 9. Distribution of the simulated sulfate, nitrate, and ammonium (SNA) in the 874 

Control run (a, d, g) and Sen_c_pH (b, e, h) simulation, and the differences of simulated 875 

SNA between the two simulations (c, f, i) during the haze-fog event over YRD. The 876 

black arrows indicate the simulated surface wind fields. 877 
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 879 

Figure 10. The hourly and diurnal variations of simulated (Control and Sen_c_pH) and 880 

observed (a, b) sulfate, (c, d) nitrate, and (e, f) ammonium concentrations. The stacked 881 

diagram of hourly SNA concentrations from (g) observations, (h) Control run, and (i) 882 

Sen_c_pH simulations during the haze-fog event in Nanjing.  883 
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 885 

Figure 11. (a) The average mass concentrations and (b) proportion of the observed and 886 

simulated (Control and Sen_c_pH) SNA during the haze-fog event in Nanjing. 887 
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