

1	Improvement of inorganic aerosol component in
2	PM _{2.5} by constraining aqueous-phase formation of
3	sulfate in cloud with satellite retrievals: WRF-Chem
4	simulations
5	Tong Sha ¹ , Xiaoyan Ma ^{1*} , Jun Wang ² , Rong Tian ¹ , Jianqi Zhao ¹ , Fang
6	Cao ³ , Yan-Lin Zhang ³
7	
8	¹ Collaborative Innovation Center on Forecast and Evaluation of Meteorological
9	Disasters (CIC-FEMD)/Key Laboratory for Aerosol-Cloud-Precipitation of China
10	Meteorological Administration, Nanjing University of Information Science &
11	Technology, Nanjing 210044, China
12	² Department of Chemical and Biochemical Engineering/Center for Global and
13	Regional Environmental Research, The University of Iowa, Iowa City, IA, USA
14	³ Yale–NUIST Center on Atmospheric Environment, International Joint Laboratory on
15	Climate and Environment Change (ILCEC)/Jiangsu Provincial Key Laboratory of
16	Agricultural Meteorology, College of Applied Meteorology, Nanjing University of
17	Information Science & Technology, Nanjing 210044, China
18	

19 Abstract

20 High concentrations of PM_{2.5} in China have caused severe visibility degradation and health problem. However, it is still a big challenge to accurately predict PM_{2.5} and 21 its chemical components in the numerical model. In this study, we compared the 22 23 inorganic aerosol components of PM2.5 (sulfate, nitrate, and ammonium (SNA)) simulated by WRF-Chem with in-situ data during a heavy haze-fog event (November 24 25 2018) in Nanjing. The comparisons show that the model underestimates the sulfate 26 concentrations by 81 % and fails to reproduce the significant increase of sulfate 27 concentrations from early morning to noon, which corresponds to the timing of fog dissipation, suggesting that the model underestimates the aqueous-phase formation of 28 sulfate in clouds. In addition, the model overestimates both nitrate and ammonium 29 30 concentrations by 184 % and 57 %, respectively. These ultimately result in the 31 simulated SNA 77.2 % higher than the observations. However, as the important aqueous-phase reactors, cloud water are simultaneously underestimated by the model. 32 Therefore, the modeled cloud water was constrained based on the MODIS Liquid Water 33 34 Path (LWP) observations. Results show that the simulation with MODIS-corrected cloud water amount increases the sulfate by a factor of 3, decreases NMB by 53.5 %, 35 and can reproduce its diurnal cycles, i.e. the peak concentration at noon. Also, the model 36 absolute bias of nitrate decreases from 184 % to 50 %, especially for the nocturnal 37 38 concentrations, which suggests the MODIS-constrained simulation improved the diurnal pattern. Although the simulated ammonium is still higher than the observation, 39 corrected cloud water lead to the decrease of the modeled bias of SNA from 77.2 % to 40

- 41 14.1 %. The strong sensitivity of simulated SNA concentration to the cloud water
- 42 provides an explanation for the bias of SNA simulation. Hence, the uncertainties of
- 43 cloud water can lead to model bias in simulating SNA, and can be reduced by
- 44 constraining the model with satellite observations.
- 45

46 1 Introduction

Severe and persistent haze pollution with daily concentrations of PM2.5 exceeding 47 the Chinese standard of 75 µg m⁻³, occurs frequently in China during recent decades, 48 which has aroused wide public attention due to its adverse impact on air quality, 49 50 regional and global climate, and human health (Huang et al., 2014). According to previous studies, stagnant meteorological conditions with high atmospheric relative 51 52 humidity and low boundary layer height, high emissions of primary air pollutants, as 53 well as the rapid formation of secondary inorganic aerosols, including sulfate, nitrate, 54 and ammonium (SNA), are considered to be the main factors leading to the haze episodes (Liu et al., 2020a). Earlier studies showed that the contribution of SNA to total 55 $PM_{2.5}$ mass concentration was over 50% during the severe haze events (Cheng et al., 56 57 2016; Xu et al., 2017; Wang et al., 2019).

58 The chemical transport models (CTMs) are often used to predict the PM_{2.5} pollution and evaluate the emission control strategies. Most models show reasonable 59 performance on simulating surface PM2.5 concentrations in China but perform poorly 60 61 on simulating the proportion of chemical components in PM2.5, especially during the severe haze periods (Gao et al., 2018; Chen et al., 2019). Many recent studies have 62 reached an agreement that CTMs generally underestimate sulfate concentrations but 63 overestimate nitrate concentrations (Wang et al., 2013; Wang et al., 2014; Zheng et al., 64 65 2015a; Chen et al., 2016; Cheng et al., 2016; Fu et al., 2016; Gao et al., 2016; Li et al., 2018a; Chen et al., 2019; Sha et al., 2019). The uncertainties such as meteorological 66 fields (Bei et al., 2017; Li et al., 2017c; Su et al., 2018), emission inventories (Ma et al., 67

2018; Zhang et al., 2018; Qu et al., 2019), and parameterizations of physical and
chemical processes in the model (Gao et al., 2018; Luo et al., 2019; Alexander et al.,
2020), can contribute to the discrepancies of SNA and PM_{2.5} between the models and
observations.

72 The underestimation of sulfate in the models has been mainly attributed to the incomplete and/or inaccurate chemical mechanism. Generally, sulfate is formed 73 74 through the gas-phase oxidation of SO_2 by OH radicals, and aqueous-phase oxidation of S(IV) (= $SO_2 \cdot H_2O + HSO_3 + SO_3^2$) by various oxidants (e.g., H_2O_2 , O_3 , NO_2 , and O_2 75 76 (transition-metal-ion (TMI) catalysis)) in cloud droplets and aerosol water (the latter often called the heterogenous reaction) (Cheng et al., 2016; Liu et al., 2020a). It is worth 77 noting that high atmospheric RH facilitates sulfate formation and aggravates the haze 78 79 pollution (Xue et al., 2016; Tie et al., 2017; Wu et al., 2019). Therefore, the formation 80 of sulfate is mainly through gas-phase reactions under relatively low atmospheric RH (RH < 30 %), but through heterogeneous and aqueous-phase reactions under relatively 81 high atmospheric RH (RH > 60 %) (Li et al., 2017a). However, the mechanisms of 82 83 sulfate formation at high RH is still controversial and unclear (Cheng et al., 2016; Wang et al., 2016; Ge et al., 2017; Guo et al., 2017; Liu et al., 2017; Yang et al., 2017; Li et 84 al., 2018b). Previous studies proposed that the oxidation of SO₂ by NO₂ in aerosol water 85 with almost neutral aerosol pH values (5.4-7.0) plays a dominant role in sulfate 86 formation during the severe haze episodes (Cheng et al., 2016; Wang et al., 2016). 87 However, the aerosol pH calculated by the ISORROPIA II model was moderately acidic 88 with the value of 3.0-4.9, suggesting that the pathway of SO₂ oxidation by dissolved 89

90	NO ₂ was not important during the haze events in China (Guo et al., 2017; Ding et al.,
91	2019). Latest studies suggested that SO ₂ heterogeneous reaction via TMI-catalyzed
92	oxidation perhaps dominates the sulfate formation during the haze periods, which is
93	also verified by the observations of sulfate oxygen isotopes (Shao et al., 2019). Since
94	the observations of the concentration, complexation, and solubility of TMI are not
95	available, the mechanism still remains unclear (Jacob, 2000; Wang et al., 2020). In order
96	to tackle the underestimation of sulfate in the model during the haze events, most
97	studies add the SO_2 heterogeneous reaction in the model, which is usually
98	parameterized as a reactive uptake process and assumed to be irreversible (Wang et al.,
99	2014; Zheng et al., 2015b; Chen et al., 2016; Li et al., 2017a; Feng et al., 2018; Li et
100	al., 2018a; Sha et al., 2019; Shao et al., 2019). Although the implementation of SO ₂
101	heterogeneous reactions in the model can achieve an agreement of simulated and
102	observed sulfate concentrations during the haze episodes, the model still underestimates
103	the sulfate due to uncertainties of the parameters in this reaction, such as the pH, water
104	content and surface area of aerosol, as well as the gas uptake coefficients on aerosol
105	water.

106 Cloud/fog droplets can act as efficient reactors in which dissolved SO₂ reacts with 107 oxidations to form sulfate. Many studies showed that sulfate concentrations would be 108 enhanced by the occurrence of cloud and fog compared to the cloud-free conditions 109 (Crahan et al., 2004; Sorooshian et al., 2006; 2007; Wonaschuetz et al., 2012; Ervens 110 et al., 2018a). Previous modeling studies concluded that a major fraction of sulfate (60-111 90%) is formed via aqueous (in-cloud) chemistry globally (Barth et al., 2000; Ma and

Salzen, 2006; Harris et al., 2013; Kim et al., 2015; Ervens et al., 2018b; Dovrou et al., 112 113 2019). The aqueous formation rate depends on liquid water content (LWC), the size distribution, pH and lifetime of cloud droplets, as well as the availability of oxidants. 114 The kinetic and mechanistic parameters that characterize the uptake processes of sulfate 115 precursors and oxidants, as well as the chemical reactions leading to sulfate formation 116 in the aqueous phase, are relatively well constrained in the model, therefore the largest 117 118 uncertainties in predicting in-cloud sulfate formation do not originate from the 119 understanding of the chemical processes, but from the prediction of cloud 120 microphysical and dynamical parameters, such as LWC and cloud lifetime (Rasch et al., 2000; Ervens et al., 2015). Mueller et al. (2006) found that the simulated sulfate 121 concentration significantly increased after correcting the underestimation of model 122 123 cloud fraction. Xie et al. (2019) showed that the improvement in cloud fields in MERRA-2 can eliminate approximately half of the bias in the surface sulfate 124 concentration during summertime relative to the MERRA data. However, only a few 125 studies focus on the sulfate underestimation caused by the bias of cloud fields during 126 127 the haze episodes. Therefore, a better understanding of the sensitivity of sulfate simulations to cloud water is needed to improve the model performance on predicting 128 129 PM_{2.5}.

A persistent high PM_{2.5} level accompanying the fog event (short as haze-fog event) occurred in the Yangtze River Delta from 26 October to 2 December 2018. We choose this period to investigate the impact of cloud/fog water on simulating SNA using the WRF-Chem Model. The paper is organized as below. Section 2 shows the descriptions

134	of the model and data, as well as the meteorology evaluation. The evaluation of
135	simulated chemical fields and cloud water with observations, and sensitivity
136	experiments to study the impact of corrected cloud water on simulated SNA are
137	presented in section 3 and 4. Section 5 shows the summaries.

138 2 Model configurations, data description, and model evaluation

139 2.1 Model configurations

140 The WRF-Chem version 3.9.1 (Grell et al., 2005) is used in this study to conduct 141 the simulations on a domain over the eastern China with the horizontal resolution of 27 142 km and nested to a domain with 9 km covering the YRD (Fig. 1(a)). There are 42 vertical levels, with 24 levels below the boundary layer (about 1500 m) and the lowest 143 level about 21 m. The physical parameterization schemes include Lin microphysical 144 145 scheme (Chen and Sun, 2002), Grell 3-D cumulus scheme (Grell and Dezső, 2002), 146 RRTM (Mlawer et al., 1997) for longwave radiation and Goddard scheme for shortwave radiation (Chou and Suarez, 1994), Yonsei University planetary boundary layer 147 parameterization (Hong et al., 2006), QNSE surface layer scheme (Sukoriansky et al., 148 149 2005) and Noah land surface model (Tewari et al., 2004).

The Carbon Bond Mechanism (CBMZ) for gas-phase chemistry (Zaveri and Peters, 151 1999) and Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) 152 aerosol module with 4 sectional aerosol bins and aqueous reactions (Zaveri et al., 2008) 153 are chosen in our study. MOSAIC predicts all the major aerosol species, including 154 sulfate, nitrate, ammonium, BC, primary organic mass, chloride, sodium, other 155 inorganic mass (OIN), and liquid water. Detailed descriptions of the SNA formation 156

157	The 0.25°×0.25° National Center for Environmental Prediction's (NCEP) Final
158	Analysis (FNL) dataset (<u>http://rda.ucar.edu/datasets/ds083.2/</u>) provides the
159	meteorological initial and boundary condition. Anthropogenic emissions are taken from
160	Multi-resolution Emission Inventory for China (MEIC: http://www.meicmodel.org/)
161	for the year 2016 (Li et al., 2017b). The simulation starts on 24 November and ends on
162	2 December 2018, with the first 48 hours as the spin-up period.
163	2.2 Observational data
164	Meteorological variables are measured every three hours from five weather stations
165	in Nanjing, and obtained for this study from the Meteorological Information
166	Comprehensive Analysis and Process System (MICAPS) (green triangles in Fig. 1(b)),
167	which are used to evaluate the model performance on simulating meteorological fields.
168	The data include air temperature and relative humidity at 2m (T2, RH), wind speed and
169	direction at 10m (WS10, WD10), visibility (VIS), and accumulated precipitation (PRE)
170	(only the sample frequency of precipitation is 6 hourly). For surface pollution, two data
171	sets are used: (1) the hourly SO2, NH3, HNO3, HONO, and inorganic chemical
172	components in PM _{2.5} (sulfate, nitrate, and ammonium) concentrations measured by the
173	In-situ Gas and Aerosol Compositions monitor (IGAC) (Young et al., 2016) at Nanjing
174	University of Information Science & Technology (NUSIT) (32.2° N, 118.7° E; 22m
175	above sea level) (the blue circle in Fig. 1(b)); (2) the routine measurements of hourly
176	NO_2 and $PM_{2.5}$ concentrations at Maigaoqiao monitoring site (32.1° N, 118.8° E) in
177	Nanjing from the China National Environmental Monitoring Center (CNEMC) (since

mechanisms in the standard model can be found in Sha et al. (2019).

178	the NUIST site did not observe NO_2 and $PM_{2.5}$ simultaneously, the observation data
179	from Maigaoqiao site nearest to the NUIST were used, shown as the red circle in Fig.
180	1(b)). Himawari 8 satellite data are used to represent the spatial area of this fog event
181	(https://www.eorc.jaxa.jp/ptree/index.html). Fog area is mainly indicated by the albedo
182	at three visible bands: red (band 3, 0.64 μm), green (band 2, 0.51 μm) and blue (band
183	1, 0.47 μ m). Finally, the daily liquid water path (LWP) observations from the MODIS
184	Aqua Collection 6 Level-3 production are used to evaluate the model performance on
185	simulating cloud water.

186 **2.3 Model evaluation**

Comparisons between the simulated and observed meteorological parameters from 187 26 October to 2 December 2018 in Nanjing are shown in Fig. 2. The model can 188 189 reproduce the temporal variation of observed meteorological variables, such as T2, RH, WS10, and WD10, with the relatively high correlations of 0.89, 0.68, 0.47 and 0.55, 190 and small root-mean-square errors (RMSEs) of 1.7 °C, 9.7 %, 0.6 m s⁻¹ and 61.7°, 191 respectively. The simulated T2, RH, and WS10 are slightly lower than observations, 192 with the mean biases of -0.4 °C, -1.4 %, and -0.1 m s⁻¹, respectively (Table 2). There 193 was almost no precipitation during this period. Similarly, the simulated precipitation is 194 also quite limited except for the date on 2 December. Overall, the simulated 195 meteorological fields are reasonable in Nanjing. 196

197 **3** Results and discussions

3.1 Chemical simulations

199 From 26 November to 2 December 2018, Nanjing and its surrounding cities

suffered from a severe haze-fog event for seven days (fog areas are shown in Fig. S1).

201 The average $PM_{2.5}$ concentrations and RH in Nanjing exceeded 115 µg m⁻³ and 85%,

respectively, and the visibility is less than 50 meters in some areas.

The hourly and diurnal variations of simulated and observed SO₂, NO₂, NH₃, 203 204 HNO₃, and HONO as well as SNA and PM_{2.5} concentrations are shown in Fig. 3 and 4. The magnitudes and temporal variations of air pollutants from the simulations and 205 206 observations are generally consistent. However, the model overestimates SO₂ by 114 % 207 and underestimates sulfate by over 80 %, and thus underestimates the sulfur oxidation 208 ratio (SOR) by 81 %. A low oxidation rate of SO₂ to sulfate in the model has been found in previous studies (Gao et al., 2018). Possible explanations are probably associated 209 with unclear or imperfect chemical mechanisms of sulfate formation in the models. 210 211 (Moch et al., 2018; Sha et al., 2019; Shao et al., 2019). Additionally, it is noted that the 212 observed sulfate concentration has an obvious diurnal cycle with the peak occurring at noon, corresponding to the timing of fog dissipation. Sulfate mass concentration can 213 remain at a relatively high level in fog water during the night and early morning due to 214 215 the contribution from aqueous chemistry, inducing a significant increase of sulfate when fog droplets evaporate at noon (Xue et al., 2016). However, the simulated sulfate 216 shows a flatter diurnal cycle, with a much smaller concentration enhancement rate (0.45 217 μ g m⁻³ hr⁻¹) from early morning to noon compared to the observations (2.3 μ g m⁻³ hr⁻¹), 218 219 suggesting that model possibly underestimates the formation of sulfate via aqueousphase chemistry in clouds. 220

221

Globally, the aqueous sulfate formation is mainly from the oxidation of S(IV) by

241

222	H_2O_2 and O_3 , and almost 50% from the oxidation by H_2O_2 . Previous studies indicated
223	that the heavy pollution in China is usually associated with a weak photochemical
224	activity, while the formation of atmospheric oxidant species (e.g. OH, H ₂ O ₂ , and O ₃) is
225	driven by photolysis, which could suppress the formation of sulfate via the oxidation
226	of S(IV) by H ₂ O ₂ and O ₃ during the haze-fog events (Xue et al., 2016; Li et al., 2017a;
227	Wang et al., 2020; Liu et al., 2020b). Therefore, the aqueous-phase oxidations of S(IV)
228	by NO ₂ and O ₂ (TMI-catalyzed) could play an important role in sulfate formation. It is
229	noted that the observed HONO concentrations rise remarkably at noon, which is quite
230	consistent with the diurnal cycle of sulfate (Fig. 4(b, g)), while most of the HONO is
231	produced via SO ₂ oxidation by NO ₂ in aqueous phase according to previous studies
232	(Liu et al., 2019). It is therefore suggested that the aqueous-phase oxidations of S(IV)
233	by NO ₂ is possibly the main pathway of sulfate formation during this haze-fog event.
234	However, the simulated HONO is almost an order of magnitude lower than the
235	observations and has no obvious diurnal variations as shown in the observations.
236	Although the diurnal pattern of NO ₂ is consistent in the model and observations,
237	and the averaged NMB is only 12 %, the nitrate concentrations are 184 % higher in the
238	model than in the observations, especially at night, suggesting that the model
239	overestimates the nitrate nocturnal formation pathway, that is, the N2O5 heterogeneous
240	hydrolysis uptake on the surfaces of deliquescence aerosols (Lowe et al., 2015; Brown

- 242 missing of heterogeneous production of nitryl chloride (ClNO₂) from the N₂O₅ uptake
- 243 on chloride aerosols in the model, lead to the overestimation of the simulated nitrate

et al., 2016; Chang et al., 2016). The relatively high N_2O_5 uptake coefficient (γ_{N2O5}) and

244	mass concentration (Sarwar et al., 2012, 2014; McDuffie et al., 2018). Besides,
245	overestimations of the HNO ₃ and nitrate $(TNO_3 = HNO_3 + NO_3)$ concentrations in the
246	model are also caused by the insufficient removal of TNO3. Therefore, too much
247	TNO ₃ may consume a large amount of NH ₃ to a certain extent, further inhibit the
248	sulfate formation.

The molar concentrations of total ammonium $(TNH_4 = NH_3 + NH_4^+)$ are 249 generally consistent in the simulations and observations, i.e. 2.1 mol m⁻³ in the 250 simulation and 2.5 mol m⁻³ in the observation, but the simulated NH₃ is 91 % lower and 251 252 ammonium is 57 % higher than the observations (Fig. 3(e, f)). This is partly due to the 253 overestimation of TNO₃ in the model (Wang et al., 2013). On the other hand, aerosol acidity is a key factor driving the semi-volatile partitioning of aerosol species, and 254 255 lower aerosol pH is conducive to the existence of ammonium in the particle phase. As 256 shown in Fig. S2, the model underestimates aerosol pH by 0.8, which leads to the discrepancies of TNH₄ gas-particle partitioning. 257

The simulated $PM_{2.5}$ concentrations are significantly higher than the observations (twice during daytime and three times during night). As CBMZ-MOSAIC only predicts primary organic species but does not consider the formation of secondary organic aerosol, the organic mass concentration must assumedly be underestimated in the model. Therefore, the overestimation of $PM_{2.5}$ is mainly due to the overestimation of SNA, namely nitrate and ammonium. Additionally, the overestimation of primary inorganic aerosols mass concentrations in the model can also lead to a positive bias of $PM_{2.5}$.

265 **3.2 Cloud water**

266	Based on the above analysis, we speculated that underestimation of sulfate in the
267	model is due to the insufficient in-cloud aqueous-phase formation and/or missing
268	mechanisms in the model. The cloud water is the most uncertain factor to modulate in-
269	cloud aqueous-phase chemistry (Ervens et al., 2015; Xie et al., 2018). Therefore, it is
270	necessary to evaluate the simulated cloud water in the model.
271	Figure 5 shows the spatial distribution of simulated fog from 26 November to 2
272	December over YRD. The fog area was identified once LWP is above a threshold of 2
273	g m ⁻² (Jia et al., 2019). The model can generally reproduce the distribution
274	characteristics of the fog area observed at 08:00 every day during this period, except
275	for the date on 27 November (the observed fog areas are shown in Fig. S1).
276	The LWC at the lowest level of the model has an important impact on the SNA
277	formation at surface. LWC was not observed simultaneously during this period, so
278	visibility (VIS) is usually used to assess the simulated LWC as it is a function of LWC
279	and cloud droplet number (N _c) (Eq. (1); Gultepe et al., 2006).
280	$VIS[m] = 1002/(LWC[g cm^{-3}] \times N_c[cm^{-3}]^{0.6473}) $ (1)
281	Figure 6 compares the spatial distribution of VIS from simulations and observations
282	(threshold of VIS < 1000 m). The simulated VIS has similar spatial pattern and
283	magnitude with the observed VIS. However, the model tends to overestimate VIS,
284	especially on 27 November, likely because the LWC is underestimated. The
285	underestimation of LWC during this period may be related to the bulk microphysical
286	scheme used in the model (Khain et al., 2009; Jia et al., 2019).

287 To quantitatively evaluate the modeled cloud water, we compared the simulated

288	LWP with the MODIS daily observation (Fig. 7). The model can reproduce the spatial
289	distribution of observed LWP but somewhat underestimates LWP in some areas, e.g.
290	Jiangsu Province. Comparisons of the cumulative probability distribution of the
291	simulated and observed LWP are shown in Fig. 8. The probability distribution of the
292	simulated LWP is mainly concentrated in the lower LWP, e.g. the probability of the
293	simulated LWP less than 20 g m $^{-2}$ is \sim 80 %, while the observed one is only 30 % (Table
294	2). The modeled probabilities are 49 % lower than the observed ones for larger LWP (>
295	20 g m ⁻²). The results are consistent with previous studies (Mueller et al., 2006; Kay et
296	al., 2012; Wang et al., 2013; Sha et al., 2019).

As stated above, the model underestimates the sulfate mass concentration and cloud water simultaneously during the haze-fog event. The underestimation of cloud water possibly leads to the insufficient contribution of in-cloud aqueous-phase chemistry to sulfate formation, which could explain the underestimation of sulfate during the haze episode, but has been overlooked by most previous studies. Therefore, the next section uses the observed LWP from MODIS to constrain the simulations and explore the impact of cloud water on SNA simulation.

304 **3.3 Sensitivity experiments**

305 **3.3.1 Constrain of cloud water in the model**

The logarithmic function is used to fit the cumulative probability distributions (CPD) for both the observed and simulated LWP (Fig. 8) values. The corresponding equations of the fitting are:

309 $F_0 = -6.4 + 16.5 \ln(x_0 + 1.0)$ $(0 \le x_0 \le 500 \text{ g m}^{-2}) (2)$

329

310	$F_{\rm m} = 59.1 + 6.7 \ln(x_{\rm m} + 5.8)$ (0 $\leq x_{\rm m} \leq 500 {\rm g}{\rm m}^{-2}$) (3)
311	Where subscripts o and m represent the observation and model, while F and x represent
312	CPD and LWP. To update the modeled LWP with satellite observations, we use the
313	histogram matching method (Richard, 2013), so that the CPD function of the simulated
314	LWP after constraining is the same as the observations, i.e., $F_{\rm m}^{\rm c} = F_{\rm o}$. Consequently,
315	the equation for transforming the modeled LWP is:
316	$x_{\rm m}^{\rm c} = 53.0 \times (x_{\rm m} + 5.8)^{0.4} - 1 \tag{4}$
317	Where the subscript c presents the correction with MODIS observations.
318	We apply the Eq. (4) to modify the cloud water in the aqueous chemistry module
319	only while cloud water amount in other modules (i.e. microphysics, cumulus
320	parameterization, wet scavenging, and radiative transfer modules) remain unchanged
321	to ensure that other physical and chemical processes are self-consistent between the
322	control and sensitivity model simulations. This sensitivity experiment is called Sen_c.
323	Consequently, the changes don't affect the cloud properties used in the radiative transfer
324	calculations. As such, gas phase production rates are intact. However, cloud-induced
325	changes in aqueous phase production do alter the mixing ratios of SO_2 and other
326	oxidants (e.g., OH and H ₂ O ₂), which could in turn impact the rate of gas phase oxidation.
327	In addition, the changes in cloud water can affect the production rates of sulfate by

changing the hydrogen ions concentrations ($[H^+]$). The pH of cloud water is considered

- in Fig. S3, constraining the simulated cloud water alone results in a decrease of cloud
- 331 water pH (2.4) during this period. To eliminate the influence of changes in cloud water

as one of the important parameters affecting the aqueous-phase reaction rates. As shown

- pH (from MODIS-based change of cloud water) on the sulfate production, we also
 increase the cloud water pH by 2 in another sensitivity experiment (Sen_c_pH) to make
 cloud water pH as close as possible to the control simulation. The experiment
 descriptions are shown in Table 3.
- 336 3.3.2 Impact of cloud constraint on SNA

Figure 9 shows the spatial distribution of the simulated SNA in the control and 337 338 sensitivity simulations, as well as the difference between the two simulations. The simulated sulfate concentration in Sen c pH is 6 µg m⁻³ larger than the Control over 339 340 the entire YRD, with the biggest difference in the south of Jiangsu and the east of Anhui province, corresponding to the area mostly affected by this haze-fog event (Fig. S1). It 341 is indicated that corrected cloud water increases the contribution of the aqueous-phase 342 chemistry to sulfate formation, thereby reducing the negative bias of simulated sulfate. 343 344 The formation of sulfate greatly limits the nitrate production, so the simulated nitrate in Sen c pH is decreased by $35 \ \mu g \ m^{-3}$ compared to the Control over the entire YRD. 345 However, the ammonium simulated by Sen c pH is larger than the results of Control 346 run in most areas of YRD, with the average difference of 9 µg m⁻³. As the inorganic 347 aerosol system is essentially an acid-base titration, an increase in S(VI) concentration 348 can neutralize more NH3 to form ammonium sulfate ((NH4)2SO4) or ammonium 349 bisulfate (NH4HSO4), leading to an increase of simulated ammonium concentrations. 350 351 As shown in Fig. 10 and Fig. 11, Sen_c_pH significantly improves the simulation of sulfate, i.e. increases sulfate by 11.8 μ g m⁻³ (295 %), and decreases NMB by 53.5 %. 352

353 Also, the simulation using corrected cloud water can reproduce the diurnal cycle and

354	capture the peak concentration of sulfate at noon, with the concentration increased rate
355	of 1.8 $\mu g~m^{\text{-3}}~hr^{\text{-1}}$ from early morning to noon, which is not seen in the Control run.
356	Meanwhile, Sen_c_pH decreases the absolute bias of the simulated nitrate from 184.0%
357	(Control) to 50.1 %, and greatly reduces the nitrate concentration at night, and thus
358	predicts a better diurnal cycle. However, the simulation with corrected cloud water
359	leads to a minor increase of ammonium.

360 Overall, the simulation with MODIS-corrected cloud water can obviously 361 decrease the model bias of SNA to 14.1 % from 77.2 % in Control run (Fig. 11(a)). The 362 proportion of sulfate in SNA also significantly increases from 2.5 % (Control) to 20.2 % (Sen c pH), which is much close to the observation (23.9 %), but still 6 μ g m⁻³ lower 363 than the observations. A few possibilities can explain the discrepancies. The model 364 365 possibly underestimates the cloud water pH, with the value of 3.3 in Sen c pH (Fig. S4), which is relatively lower than the global typical cloud/fog water pH of 3-6 and the 366 mean value of 4-6 suggested by Pye et al. (2020). The observed fog water pH in Nanjing 367 from previous studies (Li et al., 2008; Lu et al., 2010; Qin et al., 2011; Yan et al., 2013; 368 369 Hong et al., 2019) are summarized in Table 4, suggesting that the fog water pH in Nanjing is generally between 4.3 and 6.5. Therefore, the relatively lower fog water pH 370 simulated by the model could limit the aqueous-phase formation of sulfate to some 371 extent. Note that the aqueous-phase oxidation of S(IV) by NO2 requires the cloud water 372 pH of about 6, thus the more acidic cloud water in the model is not conducive to this 373 reaction. Moreover, the model lacks SO₂ heterogeneous reactions on aerosol water (Li 374 et al., 2017a; Shao et al., 2019) and other aqueous-phase reactions in clouds, such as 375

376	the aqueous oxidation of S(IV) by HCHO and hydroxyl hydroperoxide (ISOPOOH) to
377	form hydroxy-methane sulfonate (HMS) and sulfate (Moch et al., 2018; Dovrou et al.,
378	2019), can also explain the sulfate underestimation even though the cloud water has
379	already been corrected. In addition, cloud constraints are based on the MODIS LWP,
380	which has been reported with an uncertainty range of ± 30 % (Dong et al., 2008; Min et
381	al., 2012; Khanal et al., 2018).

382 It should also be noted that compared to the observations, Sen c pH 383 underestimates nitrate and overestimates ammonium in SNA (Fig. 11(b)), which can be 384 ascribed to the underestimation of atmospheric acidity in the model, including the pH of aerosol and cloud/fog water. The hydrogen ion activity in aqueous aerosols can affect 385 the partitioning of TNO3 and TNH4 between the gas and aerosol phases. Lower 386 aerosol pH favors partitioning of TNO3 toward gaseous HNO3 rather than aerosol 387 nitrate. In contrast, TNH4 partitions toward gaseous NH3 at higher aerosol pH (Weber 388 et al., 2016). The simulated aerosol pH in Sen c pH is lower than the observations (Fig. 389 S2), which is not conducive to the existence of aerosol nitrate. Additionally, because 390 391 the scavenging efficiency of TNO₃ and TNH₄ is dependent upon cloud water pH, the acidic cloud water in the model can also cause these discrepancies. 392

393 4 Conclusions

Accurately predicting the concentrations and chemical components of particulate matter are still very challenging for climate and air quality models. In this study, we evaluated the WRF-Chem performance on simulating inorganic aerosol components of PM_{2.5} during a haze-fog event in Nanjing, and investigate the possible reasons

398	contributing to model bias in simulating SNA compared with the observations.
399	Our results presented that WRF-Chem overestimates SO ₂ by 114 %,
400	underestimates sulfate by 81%, and fails to reproduce the diurnal cycle of sulfate, i.e.
401	the peak concentration at noon, which corresponds to the timing of fog dissipation. In
402	contrast, the model bias of NO ₂ is much smaller (NMB = 12 %), but the nitrate is
403	overestimated by 184 %, especially its nocturnal concentration. Although the molar
404	concentrations of total ammonium are generally consistent in the simulations and
405	observations, the model underestimates NH_3 by 91 % and overestimates ammonium by
406	57%.
407	The underestimation of sulfate concentration is consistent with previous findings.
408	However, our work stands in contrast to previous studies that adding SO ₂ beterogeneous

wever, our work stands in contrast to previous studies that adding SO_2 heterogeneous 408 409 mechanism in the model to improve the simulation of sulfate. Cloud/fog droplets are the important reactors in which dissolved SO₂ reacts with oxidations to form sulfate, 410 but the model underestimates cloud water (both surface LWC and LWP) simultaneously. 411 Therefore, the cloud water in the model was constrained based on the MODIS LWP 412 413 observations, and sensitivity experiments were conducted to explore the impact of corrected cloud water on SNA simulation. Compare with control run, the simulation 414 with MODIS-corrected cloud water significantly improves the simulation of sulfate, i.e. 415 increases the concentration by nearly 3 times and decreases NMB by 53.5 %, as well 416 as reproduces the diurnal cycles. Additionally, corrected cloud water decreases the bias 417 of simulated nitrate by 134 %, especially the nocturnal concentrations, thus predicting 418 a better diurnal cycle. Although the simulated ammonium is higher than the control 419

simulation and observation, corrected cloud water decreases the model bias of SNA to

421 14.1 % from 77.2 % (Control).

422	However, even after the MODIS-based adjustment of cloud water, the simulated
423	sulfate is still 6 μg m $^{-3}$ (27.5%) lower than the observations, suggesting that the model
424	possibly underestimates the cloud water pH (the value of 3.3), which is not conducive
425	to the in-cloud aqueous-phase oxidation of $S(IV)$ by NO ₂ . Missing of SO ₂
426	heterogeneous reactions on aerosol water (e.g., TMI-catalyzed oxidation) and other in-
427	cloud aqueous-phase reactions (e.g., S(IV) oxidation by HCHO and ISOPOOH) in the
428	model can also lead to underestimating the sulfate concentrations. In addition, the
429	constraints of cloud water are based on the MODIS observations, which are themselves
430	subject to retrieval uncertainties.
431	The above results emphasize the critical role of cloud water in simulating SNA,

and provide a new perspective on the causes of sulfate underestimation discussed by
the previous studies. More studies are still needed to comprehensively evaluate the
modeled cloud fields to improve the haze prediction in the future.

435

436 Code and data availability: Some of the data repositories have been listed in Sect. 2.
437 The other data, model outputs and codes can be accessed by contacting Tong Sha via
438 <u>shat@nuist.edu.cn</u>.

439

440 Author contributions: TS performed the model simulation, data analysis and paper441 writing. XM proposed the idea, supervised this work and revised the paper. JW gave

442	scientific suggestions and also contributed to the paper revision. RT processed the
443	observation data. JZ offered help with the model simulation. FC and YZ provided the
444	observation data at the NUIST site.
445	
446	Competing interests: The authors declare that they have no conflict of interest.
447	
448	Acknowledgment: This study is supported by the National Natural Science Foundation
449	of China grants (41675004 & 41975002), the National Key R&D Program of China
450	grants (2019YFA0606802 & 2016YFA0600404), and the Postgraduate Research &
451	Practice Innovation Program of Jiangsu Province (grant no. KYCX20_0919). Jun
452	Wang's participation of this project is made possible through in-kind support from the
453	University of Iowa.

454 Reference:

- 455 Alexander, B., Sherwen, T., Holmes, C. D., Fisher, J. A., Chen, Q., Evans, M. J., and
- 456 Kasibhatla, P.: Global inorganic nitrate production mechanisms: comparison of a
- 457 global model with nitrate isotope observations, Atmos. Chem. Phys., 20, 3859-
- 458 3877, https://doi.org/10.5194/acp-20-3859-2020, 2020.
- 459 Barth, M. C., Rasch, P. J., Kiehl, J. T., Benkovitz, C. M., Schwartz, S. E.: Sulfur
- 460 chemistry in the national center for atmospheric Research community climate
- 461 model: description, evaluation, features and sensitivity to aqueous chemistry, J.
- 462 Geophys. Res. Atmos., 105, 1387–1415, 2000.
- 463 Bei, N. F., Wu, J. R., Elser, M., Feng, T., Cao, J. J., El-Haddad, I., Li, X., Huang, R. J.,
- 464 Li, Z. Q., Long, X., Xing, L., Zhao, S. Y., Tie, X. X., Prevot, A. S. H., and Li, G.
- 465 H.: Impacts of meteorological uncertainties on the haze formation in Beijing-
- 466 Tianjin-Hebei (BTH) during wintertime: a case study, Atmos. Chem. Phys., 17,
- 467 14579-14591, https://doi.org/10.5194/acp-17-14579-2017, 2017.
- 468 Brown, S. S., Dubé, W. P., Tham, Y. J., Zha, Q., Xue, L., Poon, S., Wang, Z., Blake, D.
- R., Tsui, W., Parrish, D. D., Wang, T.: Nighttime chemistry at a high altitude site
 above Hong Kong, J. Geophys. Res. 121, 2457–2475.
 https://doi.org/10.1002/2015JD024566, 2016.
- 472 Chang, W. L., Brown, S. S., Stutz, J., Middlebrook, A. M., Bahreini, R., Wagner, N. L.,
- 473 Dubé, W. P., Pollack, I. B., Ryerson, T. B., Riemer, N.: Evaluating N2O5
- 474 heterogeneous hydrolysis parameterizations for CalNex 2010, J. Geophys. Res.
- 475 121, 5051–5070. https://doi.org/10.1002/2015JD024737, 2016.

- 476 Chen, D., Liu, Z. Q., Fast, J., Ban, J. M.: Simulations of sulfate-nitrate-ammonium
- 477 (SNA) aerosols during the extreme haze events over northern China in October
- 478 2014, Atmos. Chem. Phys., 16 (16), 10707-10724, 2016.
- 479 Chen, L., Gao, Y., Zhang, M., Fu, J. S., Zhu, J., Liao, H., Li, J., Huang, K., Ge, B.,
- 480 Wang, X., Lam, Y. F., Lin, C. Y., Itahashi, S., Nagashima, T., Kajino, M., Yamaji,
- 481 K., Wang, Z., and Kurokawa, J.: MICS-Asia III: multi-model comparison and
- 482 evaluation of aerosol over East Asia, Atmos. Chem. Phys., 19, 11911-11937,
- 483 https://doi.org/10.5194/acp-19-11911-2019, 2019.
- 484 Chen, S. H. and Sun W. Y.: A one-dimensional time dependent cloud model, J. Meteor.

485 Soc. Japan., 80(1), 99–118. doi:10.2151/jmsj.80.99, 2002.

- 486 Cheng, Y. F., Zheng, G. J., Wei, C., Mu, Q., Zheng, B., Wang, Z. B., Gao, M., Zhang,
- 487 Q., He, K. B., Gregory, R. C., Ulrich, P., Su, H.: Reactive nitrogen chemistry in
- 488 aerosol water as a source of sulfate during haze events in China, Sci. Adv. 2 (12)

489 1601530-1601530, 2016.

- 490 Chou, M. D., and Suarez, M. J.: An efficient thermal infrared radiation parameterization
- 491 for use in general circulation models, NASA Tech. Memo., 104606, 3, 85pp, 1994.
- 492 Crahan, K. K., Hegg, D., Covert, D. S., and Jonsson, H.: An exploration of aqueous
- 493 oxalic acid production in the coastal marine atmosphere, Atmos. Environ., 38,
 494 3757–3764, https://doi.org/10.1016/j.atmosenv.2004.04.009, 2004.
- Ding, J., Zhao, P., Su, J., Dong, Q., Du, X., and Zhang, Y.: Aerosol pH and its driving
 factors in Beijing, Atmos. Chem. Phys., 19, 7939–7954,
- 497 https://doi.org/10.5194/acp-19-7939-2019, 2019.

- 498 Dong, X. Q., Minnis, P., Xi, B., Sun-Mack, S., Chen, Y.: Comparison of CERES-
- 499 MODIS stratus cloud properties with ground-based measurements at the DOE
- 500 ARM Southern Great Plains site, J. Geophys. Res. Atmos., 113, D03204.
- 501 <u>https://doi.org/10.1029/</u> 2007JD008438, 2008.
- 502 Dovrou, E., Rivera-Rios, J. C., H. Bates, K., and N. Keutsch, F.: Sulfate Formation
- 503 via Cloud Processing from Isoprene Hydroxyl Hydroperoxides (ISOPOOH),
- 504 Environ. Sci. Technol., 53, 12476–12484, 2019.
- 505 Ervens, B., Sorooshian A., M. Aldhaif, A., Shingler, T., Crosbie, E., Ziemba, L.,
- 506 Campuzano-Jost, P., Jimenez, J. L., and Wisthaler, A.: Is there an aerosol signature
- 507 of chemical cloud processing? Atmos. Chem. Phys., 18, 16099–16119,
- 508 https://doi.org/10.5194/acp-18-16099-2018, 2018a.
- 509 Ervens, B.: Modeling the processing of aerosol and trace gases in clouds and fogs,
- 510 Chem. Rev., 115(10), 4157-4198, 2015.
- 511 Ervens, B.: Progress and Problems in Modeling Chemical Processing in Cloud Droplets
- and Wet Aerosol Particles, ACS Symp. Ser., 1299, 327–345, 2018b.
- 513 Feng, T., Bei, N. F., Zhao, S. Y., Wu, J. R., Li, X., Zhang, T., Cao, J. J., Zhou, W. J., Li,
- 514 G. H.: Wintertime nitrate formation during haze days in the Guanzhong basin,
- 515 China: a case study, Environ. Pollut. 243, 1057–1067, 2018.
- 516 Fountoukis, C., Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic
- 517 equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42--NO3--Cl--H2O
- aerosols, Atmos. Chem. Phys. 7, 4639–4659, 2007.
- 519 Fu, X., Wang, S. X., Chang, X., Cai, S. Y., Xing, J., Hao, J. J.: Modeling analysis of

520	secondary inorganic aerosols over China: pollution characteristics, and
521	meteorological and dust impacts, Sci. Rep-UK. 6 (1), 35992, 2016.
522	Gao, M., Carmichael, G. R., Wang, Y. S., Ji, D. S., Liu, Z. R., Wang, Z. F.: Improving
523	simulations of sulfate aerosols during winter haze over northern China: the
524	impacts of heterogeneous oxidation by NO2, Front. Environ. Sci. Eng. 10 (5).,
525	2016.
526	Gao, M., Han, Z. W., Liu, Z. R., Li, M., Xin, J. Y., Tao, Z. N., Li, J. W., Kang, J. E.,
527	Huang, K., Dong, X. Y., Zhuang, B. L., Li, S., Ge, B. Z, Wu, Q. Z., Cheng, Y. F.,
528	Wang, Y. S., Lee, H. J., Kim, C. H., Fu, J. S., Wang, T. J., Chin, M., Woo, J. H.:
529	Air quality and climate change, Topic 3 of the Model Inter-Comparison Study for
530	Asia Phase III (MICS-Asia III) - Part 1: Overview and model evaluation, Atmos.
531	Chem. Phys., 18, 4859–4884, https://doi.org/10.5194/acp-18-4859-2018, 2018.
532	Ge, X. L., He, Y. N., Sun, Y. L., Xu, J. Z., Wang, J. F., Shen, Y. F., and Chen, M. D.:
533	Characteristics and Formation Mechanisms of Fine Particulate Nitrate in Typical
534	Urban Areas in China, Atmosphere, 8, 62, https://doi.org/10.3390/atmos8030062,
535	2017.
536	Grell, G. A., Dezső, D.: A generalized approach to parameterizing convection
537	combining ensemble and data assimilation techniques, Geophys. Res. Lett., 29,
538	1693, 2002.
539	Grell, G.A., Peckham, S.E., Schmitz, R., Mckeen, S.A., Frost, G., Skamarock, W.C.,

- Eder, B.: Fully coupled "online" chemistry within the WRF model, Atmos.
- 541 Environ., 39 (37), 6957–6975, 2005.

542	Gultepe, I., Müller, M. D., and Boybeyi, Z.: A New Visibility Parameterization for
543	Warm-Fog Applications in Numerical Weather Prediction Models, J. Appl.
544	Meteorol. Climatol., 45, 1469–1480, https://doi.org/10.1175/jam2423.1, 2006.
545	Guo, H., Weber, R. J., and Nenes, A.: High levels of ammonia do not raise fine particle
546	pH sufficiently to yield nitrogen oxide-dominated sulfate production, Sci. Rep
547	UK, 7, 12109, https://doi.org/10.1038/s41598-017-11704-0, 2017.
548	Harris, E., Sinha, B., van Pinxteren, D., Tilgner, A., Fomba, K. W., Schneider, J., Roth,
549	A., Gnauk, T., Fahlbusch, B., Mertes, S., Lee, T., Collett, J., Foley, S.: Borrmann,
550	S.; Hoppe, P.; Herrmann, H. Enhanced Role of Transition Metal Ion Catalysis
551	During In-Cloud Oxidation of SO2, Science, 340, 727-730, 2013.
552	Hong L., Zhu B., Yu X. N., Shi S. S., Che K., Xia L.: Chemical composition of dew
553	water at a suburban site in Nanjing, China, during the 2016–2017 winter, Atmos.
554	Environ., 211, 226 - 233, 2019.
555	Hong, S. Y., Noh, Y., Dudhia, J.: A new vertical diffusion package with an explicit
556	treatment of entrainment processes, Mon. Weather Rev., 134 (9), 2318, 2006.
557	Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y., Daellenbach, K. R.,
558	Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns,
559	E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G.,
560	SchnelleKreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad,
561	I. E., and Prevot, A. S. H.: High secondary aerosol contribution to particulate
562	pollution during haze events in China, Nature, 514, 218-222,
563	10.1038/nature13774, 2014.
	27

- Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone. Atmos. Environ., 34,
- 565 2131–2159, 2000.
- 566 Jia, X. C., Quan, J. N., Zheng, Z. Y., Liu, X. G., Liu, Q., He, H., Liu, Y. G.: Impacts of
- anthropogenic aerosols on fog in North China Plain, J. Geophys. Res. Atmos., 124,
- 568 252–265. https://doi.org/10.1029/2018JD029437, 2019.
- 569 Kay, J. E., Hillman, B. R., Klein, S. A., Zhang, Y., Medeiros, B., Pincus, R., et al.:
- 570 Exposing global cloud biases in the Community Atmosphere Model (CAM) using
- 571 satellite observations and their corresponding instrument simulators, J. Clim.,
- 572 25(15), 5190–5207. <u>https://doi.org/10.1175/jcli-d-11-00469.1</u>, 2012.
- 573 Khain, A., Leung, L. R., Lynn, B., Ghan, S.: Effects of aerosols on the dynamics and
- 574 microphysics of squall lines simulated by spectral bin and bulk parameterization
- 575 schemes, J. Geophys. Res. Atmos., 114, D22203.
 576 https://doi.org/10.1029/2009JD011902, 2009.
- Khanal, S., and Wang, Z.: Uncertainties in MODIS-based cloud liquid water path
 retrievals at high latitudes due to mixed-phase clouds and cloud top height
 inhomogeneity, J. Geophys. Res. Atmos., 123, 11,154–11,172,
- 580 <u>https://doi.org/10.1029/2018JD028558</u>, 2018.
- 581 Kim, P. S., Jacob, D. J., Fisher, J. A., Travis, K., Yu, K.; Zhu, L., Yantosca, R. M.,
- 582 Sulprizio, M. P., Jimenez, J. L., Campuzano-Jost, P., Froyd, K. D., Liao, J., Hair,
- J. W., Fenn, M. A., Butler, C. F., Wagner, N. L., Gordon, T. D., Welti, A., Wennberg,
- 584 P. O., Crounse, J. D., St. Clair, J. M., Teng, A. P., Millet, D. B., Schwarz, J. P.,
- 585 Markovic, M. Z., Perring, A. E.: Sources, Seasonality, and Trends of Southeast US

- 586 Aerosol: An Integrated Analysis of Surface, Aircraft, and Satellite Observations
- 587 with the GEOS-Chem Chemical Transport Model, Atmos. Chem. Phys., 15,
- 588 10411–10433. O'Sullivan, D. W.; Lee, M.; Noone, B. C., 2015.
- 589 Li, G. H., Bei, N. F., Cao, J. J., Hu, R. J., Wang, J. R., Feng, T., Wang, Y. C., Liu, S. X.,
- 590 Zhang, Q., Tie, X. X., Molina, L. T.: A possible pathway for rapid growth of sulfate
- during haze days in China, Atmos. Chem. Phys., 17, 3301–3316, 2017a.
- 592 Li, J., Chen, X. S., Wang, Z. F., Du, H. Y., Yang, W. Y., Sun, Y. L., Hu, B., Li, J. J.,
- 593 Wang, W., Wang, T., Fu, P. Q., Huang, H. L.: Radiative and heterogeneous
- 594 chemical effects of aerosols on ozone and inorganic aerosols over East Asia, Sci.
- 595 Total Environ., 622–623, 1327–1342, 2018a.
- 596 Li, L., Hoffmann, M. R., and Colussi, A. J.: Role of nitrogen dioxide in the production
- 597 of sulfate during Chinese haze-aerosol episodes, Environ. Sci. Technol., 52, 2686–
- 598 2693, https://doi.org/10.1021/acs.est.7b05222, 2018b.
- 599 Li, M., Zhang, Q., Kurokawa, J.-i., Woo, J.-H., He, K. B., Lu, Z. F., Ohara, T., Song, Y.,
- 600 Streets, D. G., Carmichael, G. R., Cheng, Y.F., Hong, C. P., Huo, H., Jiang, X. J.,
- 601 Kang, S., Liu, F., Su, H., Zheng, B.: MIX: a mosaic Asian anthropogenic emission
- 602 inventory under the international collaboration framework of the MICS-Asia and
- 603 HTAP, Atmos. Chem. Phys. 17, 935–963, 2017b.
- 604 Li, Z. Q., Guo, J. P., Ding, A. J., Liao, H., Liu, J. J., Sun, Y. L., Wang, T. J., Xue, H. W.,
- 605 Zhang, H. S., and Zhu, B.: Aerosol and boundary-layer interactions and impact on
- 606 air quality, Natl. Sci. Rev., 4, 810-833, https://doi.org/10.1093/nsr/nwx117, 2017c.
- 607 Liu, M. X., Song, Y., Zhou, T., Xu, Z. Y., Yan, C. Q., Zheng, M., Wu, Z. J., Hu, M., Wu,

608	Y. S., and Zhu, T.: Fine particle pH during severe haze episodes in northern China,
609	Geophys. Res. Lett., 44, 1–9, https://doi.org/10.1002/2017GL073210, 2017.
610	Liu, P. F., Ye, C., Xue, C. Y., Zhang, C. L., Mu, Y. J., and Sun, X.: Formation
611	mechanisms of atmospheric nitrate and sulfate during the winter haze pollution
612	periods in Beijing: gas-phase, heterogeneous and aqueous-phase chemistry, Atmos.
613	Chem. Phys., 20, 4153–4165, <u>https://doi.org/10.5194/acp-20-4153-2020</u> , 2020a.
614	Liu, T., Clegg, S. L., Abbatt, J. P. D.: Fast oxidation of sulfur dioxide by hydrogen
615	peroxide in deliquesced aerosol particles, Proc. Natl Acad. Sci. USA. 117, 1354-
616	1359, 2020b.
617	Liu, Y. H., Lu, K. D., Li, X., Dong, H. B., Tan, Z. F., Wang, H. C., Zou, Q., Wu, Y. S.,
618	Zeng, L.M., Hu, M., Min, KE., Kecorius, S., Wiedensohler, A., and Zhang, Y. H.:
619	A comprehensive model test of the hono sources constrained to field
620	measurements at rural north china plain, Environ, Sci. Technol., 53, 3517-3525,
621	2019.
622	Lowe, D., Archer-Nicholls, S., Morgan, W., Allan, J., Utembe, S., Ouyang, B., Aruffo,
623	E., Le Breton, M., Zaveri, R. A., Di Carlo, P., Percival, C., Coe, H., Jones, R.,
624	McFiggans, G.: WRF-Chem model predictions of the regional impacts of N2O5
625	heterogeneous processes on night-time chemistry over north-western Europe,
626	Atmos. Chem. Phys. 15, 1385-1409. https://doi.org/10.5194/acp-15-1385-404
627	2015, 2015.
628	Lu, C. S.; Niu, S. J.; Tang, L. L.; Lv, J. J.; Zhao, L. J.; Zhu, B. Chemical composition

of fog water in Nanjing area of China and its related fog microphysics, Atmos.

630	Res.,	97, 4	47-69,	2010.
-----	-------	-------	--------	-------

- 631 Luo, G., Yu, F., and Schwab, J.: Revised treatment of wet scavenging processes
- dramatically improves GEOS-Chem 12.0.0 simulations of surface nitric acid,
- nitrate, and ammonium over the United States, Geosci. Model Dev., 12, 3439-3447,
- 634 https://doi.org/640 10.5194/gmd-12-3439-2019, 2019.
- 635 Ma, X. Y. Sha, T., Wang, J. Y., Jia, H. L., Tian, R.: Investigating impact of emission
- 636 inventories on PM2.5 simulations over North China Plain by WRF-Chem, Atmos.
- 637 Environ. 195, 125–140, 2018.
- 638 Ma, X., Salzen, K.V.: Dynamics of the sulphate aerosol size distribution on a global
- 639 scale, J. Geophys. Res. Atmos. 111 (D8), 2006.
- 640 McDuffie, E. E., Fibiger, D. L., Dube, W. P., Lopez-Hilfiker, F., Lee, B. H., Thornton,
- 641 J. A., Shah, V., Jaegle, L., Guo, H., Weber, R. J., Reeves, J. M., Weinheimer, A. J.,
- 642 Schroder, J. C., Campuzano-Jost, P., Jimenez, J. L., Dibb, J. E., Veres, P., Ebben,
- 643 C., Sparks, T. L., Wooldridge, P. J., Cohen, R. C., Hornbrook, R. S., Apel, E. C.,
- 644 Campos, T., Hall, S. R., Ullmann, K., and Brown, S. S.: Heterogeneous N2O5
- 645 Uptake During Winter: Aircraft Measurements During the 2015 WINTER
- 646 Campaign and Critical Evaluation of Current Parameterizations, J. Geophys. Res.-
- 647 Atmos., 123, 4345-4372, https://doi.org/10.1002/2018JD028336, 2018.
- 648 Min Q., Joseph E., Lin Y., Min L., B. Yin, Daum P. H., Kleinman L. I., Wang J., and
- 649 Lee Y.-N.: Comparison of MODIS cloud microphysical properties with in-situ
- 650 measurements over the Southeast Pacific, Atmos. Chem. Phys., 12, 11261–11273,
- 651 doi:10.5194/acp-12-11261-2012, 2012.

652	Mlawer, Eli. J., Steven. J. Taubman, Patrick. D. Brown, M. J. Iacono, and S. A. Clough.:
653	Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
654	correlated-k model for the longwave, J. Geophys. Res., 102, 16663-16682.
655	doi:10.1029/97JD00237, 1997.
656	Moch, J. M., Dovrou, E., Mickley, L. J., Keutsch, F. N., Cheng, Y., Jacob, D. J., Jiang,
657	J.K., Li, M., Munger, J. W., Qiao, X.H., and Zhang, Q.: Contribution of
658	hydroxymethane sulfonate to ambient particulate matter: A potential explanation
659	for high particulate sulfur during severe winter haze in Beijing, Geophysical
660	Research Letters, 45, 11,969-11,979. <u>https://doi.org/10.1029/2018GL079309</u> ,
661	2018.
662	Mueller, S. F., Bailey, E. M., Cook, T. M., & Mao, Q.: Treatment of clouds and the
663	associated response of atmospheric sulfur in the Community Multiscale Air
664	Quality (CMAQ) modeling system, Atmos. Environ., 40(35), 6804-6820.
665	https://doi.org/10.1016/j.atmosenv.2006.05.069, 2006.
666	Pye Havala O. T., Nenes A., Alexander B., Ault A. P., Barth M. C., Clegg S. L., Collett
667	Jr. J. L., Fahey K. M., Hennigan C. J., Herrmann H., Kanakidou M., Kelly J. T.,
668	Ku I-T., McNeill V. F., Riemer N., Schaefer T., Shi G. L., Tilgner A., Walker J. T.,
669	Wang T., Weber R., Xing J., Zaveri R.I A., and Zuend A.: The acidity of
670	atmospheric particles and clouds, Atmos. Chem. Phys., 20, 4809-4888,
671	https://doi.org/10.5194/acp-20-4809-2020, 2020.
672	Qin, Y. S., Liu, D. Y., Yin, Y. Y., Li, L.: Analysis of chemical characteristics in fog water

and pollutant source in Nanjing, Environ. Chem. 30 (4), 816–824, 2011. (in

Chinese)

674

675	Qu, Z., Henze, D. K., Theys, N., Wang, J., and Wang, W.: Hybrid Mass Balance/4D-
676	Var Joint Inversion of NOx and SO2 Emissions in East Asia, J. Geophys. Res
677	Atmos., 124, 8203-8224, https://doi.org/10.1029/2018JD030240, 2019.
678	Rasch, P. J., Barth, M. C., Kiehl, J. T., Schwartz, S. E., Benkovitz, C. M.: A description
679	of the global sulfur cycle and its controlling processes in the national center for
680	atmospheric research community climate model, version 3, J. Geophys. Res
681	Atmos., 105(D1), 1367, 2000.
682	Richards J. A.: Remote Sensing Digital Image Analysis, Springer, New York, NY, USA,
683	doi:10.1007/978-3-642-30062-2, 2013.
684	Sarwar G., Simon H., Bhave P., Yarwood G.: Examining the impact of heterogeneous
685	nitryl chloride production on air quality across the United States, Atmos. Chem.
686	Phys., 12, 6455–6473, <u>www.atmos-chem-phys.net/12/6455/2012/</u>
687	doi:10.5194/acp-12-6455-2012, 2012.
688	Sarwar, G., Simon H., Xing J., Mathur R.: Importance of tropospheric CINO2 chemistry
689	across the Northern Hemisphere, Geophys. Res. Lett., 41, 4050-4058,
690	doi:10.1002/2014GL059962, 2014.
691	Sha T., Ma X. Y., Jia H. L., Tian R., Chang Y. H., Cao F., Zhang Y. L.: Aerosol chemical
692	component: Simulations with WRF-Chem and comparison with observations in
693	Nanjing, Atmos. Environ., 218, 116982,

694 <u>https://doi.org/10.1016/j.atmosenv.2019.116982</u>, 2019.

695 Shao, J. Y., Chen, Q. J., Wang, Y. X., Lu, X., He, P. Z., Sun, Y. L., Shah, V., Martin, R.

Zhao, Y., Xie, Z. Q., Zh	g, L., Alexander, B.:
l formation mechanisms du	ng wintertime Chinese
el assessment using observ	ons of sulfate oxygen
hem. Phys., 19, 6107–6123	019.
ens, B., Feingold, G., Varut	ngkul, V., Bahreini, R.,
Atlas, E. L., Anlauf, K., B	orius, G., Jonsson, H.,
. H.: Oxalic acid in clear	d cloudy atmospheres:
national Consortium for A	ospheric Research on
n 2004, J. Geophys. Res	Atmos., 111, D23S45,
<u>D006880</u> , 2006.	
l, F. J., Jonsson, H., Feingo	, G., Flagan, R. C., and
of organic acid aerosol laye	above clouds, Environ.
, 2007.	
onships between the planeta	boundary layer height
from lidar observations over	China: regional pattern
Atmos. Chem. Phys	18, 15921-15935,
3-15921-2018, 2018.	
V. Perov.: Application of	new spectral model of
nospheric boundary layer or	r sea ice, Bound. Layer
0.1007/s10546-004-6848-4	005.
dhia J., LeMone M. A., M	hell K., M. Gayno Ek,
V. Perov.: Application of nospheric boundary layer or 0.1007/s10546-004-6848-4	new spectral mo r sea ice, Bound. 005.

717 Wegiel G., J., and Cuenca R. H.: Implementation and verification of the unified

- 718 NOAH land surface model in the WRF model. 20th conference on weather
- analysis and forecasting/16th conference on numerical weather prediction, pp. 11–
- 720 15, 2004.
- 721 Tie X. X., Huang R. J., Cao J. J., Zhang Q., Cheng Y. F., Su H., Chang D., Pöschl U.,
- 722 Hoffmann T., Dusek U., Li G.H., Worsnop D. R., D. O'Dowd C.: Severe Pollution
- in China Amplified by Atmospheric Moisture, Sci Rep., 7: 15760,
 doi:10.1038/s41598-017-15909-1, 2017.
- 725 Wang J. F., Li J. Y., Ye J. H., Zhao, J., Wu Y. Z., Hu J. L., Liu D. T., Nie D. Y., Shen F.
- 726 Z., Huang X. P., Huang D. D., Ji D. S., Sun X., Xu W. Q., Guo J. P., Song S. J.,
- 727 Qin Y. M., Liu P. F., Turner J. R., Lee H. C., Hwang S., Liao H., Martin S. T.,
- 728 Zhang Q., Chen M. D., Sun Y. L., Ge X. L., Jacob D. J.: Fast sulfate formation
- from oxidation of SO2 by NO2 and HONO observed in Beijing haze, Nat.
- 730 Commun., 11:2844, <u>https://doi.org/10.1038/s41467-020-16683-x</u>, 2020.
- 731 Wang Y. C., Chen J., Wang Q. Y., Qin Q. D., Ye J. H., Han Y. M., Li L., Zhen W., Zhi
- Q., Zhang Y. X., Cao J. J.:: Increased secondary aerosol contribution and possible
 processing on polluted winter days in China, Environ. Int., 127, 78–84,
- 734 <u>https://doi.org/10.1016/j.envint.2019.03.021</u>, 2019.
- 735 Wang, G. H., Zhang, R. Y., Gomez, M. E., Yang, L. X., Zamora, M. L., Hu, M., Lin, Y.,
- 736 Peng, J. F., Guo, S., Meng, J. J., Li, J. J., Cheng, C. L., Hu, T. F., Ren, Y. Q., Wang,
- 737 X. S., Gao, J., An, Z. S., Zhou, W. J., Li, G. H., Wang, J. Y., Tian, Y. Q., Marrero-
- 738 Ortiz, W., Secrest, J., Du, Z. F., Zheng, J., Dongjie, S., Zeng, L., Shao, M., Wang,
- 739 W. G., Huang, Y., Wang, Y., Zhu, Y. J., Li, Y. X., Hu, J. X., Pan, B., Cai, L., Cheng,

- 740 Y. T., Ji, Y. M., Zhang, F., Rosenfeld, D., Liss, P. S., Duce, R. A., Kolb, C. E.,
- 741 Molinax, M.J.: Persistent sulfate formation from London Fog to Chinese haze,
- 742 Proc. Natl. Acad. Sci. U.S.A., 48 (113), 13630–13635, 2016.
- 743 Wang, J., S. Park, J. Zeng, K. Yang, S. Carn, N. Krotkov, and A. Omar, Modeling of
- 744 2008 Kasatochi volcanic sulfate direct radiative forcing: assimilation of OMI SO2
- 745 plume height data and comparison with MODIS and CALIOP observations,

Atmospheric Chemistry and Physics, 13, 1895-1912, 2013.

- 747 Wang, Y. S., Yao, L., Wang, L. L., Liu, Z. R., Ji, D. S., Tang, G. Q., Zhang, J. K., Sun,
- 748 Y. L., Hu, B., and Xin, J. Y.: Mechanism for the formation of the January 2013
- heavy haze pollution episode over central and eastern China, Sci. China Earth Sci.,

750 57, 14–25, https://doi.org/10.1007/s11430-013-4773-4, 2013.

- 751 Wang, Y. X., Zhang, Q. Q., Jiang, J. K., Zhou, W., Wang, B. Y., He, K. B., Duan, F. K.,
- 752 Zhang, O., Philip, S., and Xie, Y. Y.: Enhanced sulfate formation during China's
- severe winter haze episode in January 2013 missing from current models, J.
- 754 Geophys. Res.-Atmos., 770 119, 10425-10440,
- 755 https://doi.org/10.1002/2013JD021426, 2014.
- Weber, R. J., Guo, H., Russell, A. G., and Nenes, A.: High aerosol acidity despite
 declining atmospheric sulfate concentrations over the past 15 years, Nat. Geosci.,
- 758 9, 282–285, https://doi.org/10.1038/ngeo2665, 2016.
- 759 Wonaschuetz, A., Sorooshian, A., Ervens, B., Chuang, P. Y., Feingold, G., Murphy, S.
- 760 M., de Gouw, J., Warneke, C., and Jonsson, H. H.: Aerosol and gas re-distribution
- 761 by shallow cumulus clouds: An investigation using airborne measurements, J.

- 762 Geophys. Res.-Atmos., 117, D17202, https://doi.org/10.1029/2012jd018089,
- 2012. 763
- Wu J. R., Bei N. F., Hu B., Liu S. X., Zhou M., Wang Q. Y., Li X., Liu L., Feng T., Liu 764
- Z. R., Wang Y. C., Cao J. J., Tie X. X., Wang J., Molina L. T., and Li G. H.: Is 765
- 766 water vapor a key player of the wintertime haze in North China Plain? Atmos.
- Chem. Phys., 19, 8721-8739, https://doi.org/10.5194/acp-19-8721-2019, 2019. 767
- 768 Xie, Y. Y., Wang, Y. X., Dong, W. H., Wright, J. S., Shen, L., Zhao, Z. J.: Evaluating
- 769 the response of summertime surface sulfate to hydroclimate variations in the 770 continental United States: Role of meteorological inputs in the GEOS-Chem model, J. Geophys. Res. Atmos., 124. https://doi.org/10.1029/2018JD029693, 771 2019.

- 773 Xu, L. L., Duan, F. K., He, K. B., Ma, Y. L., Zhu, L. D., Zheng, Y. X., Huang, T., Kimoto,
- T., Ma, T., Li, H., Ye, S., Yang, S., Sun, Z. L., and Xu, B. Y.: Characteristics of the 774 secondary water-soluble ions in a typical autumn haze in Beijing, Environ. Pollut., 775 227, 296-305, https://doi.org/10.1016/j.envpol.2017.04.076, 2017. 776
- Xue J., Yuan Z. B., Griffith S. M., Yu X., Lau Alexis K. H., and Yu J. Z.: Sulfate 777 Formation Enhanced by a Cocktail of High NOx, SO2, Particulate Matter, and 778 Droplet pH during Haze-Fog Events in Megacities in China: An Observation-779 Based Modeling Investigation, Environ, Sci. Technol., 50, 7325-7334, doi: 780 10.1021/acs.est.6b00768, 2016. 781
- Yan, W. L., Zhang, G. Z., PU, M. J., Liu, D. Y., Li, Z. H.: Chemical features and cause 782 analysis of a strong acid fog event in Nanjing, J. Nat. Disasters 22 (3), 122-129, 783

784	2013. (in Chinese)
785	Yang, T., Sun, Y. L., Zhang, W., Wang, Z. F., Liu, X. G., Fu, P. Q., and Wang, X. Q.:
786	Evolutionary processes and sources of high-nitrate haze episodes over Beijing,
787	Spring, J. Environ. Sci., 54, 142-151, https://doi.org/10.1016/j.jes.2016.04.024,
788	2017.
789	Young, L. H., Li, C. H., Lin, M. Y., Hwang, B. F., Hsu, H. T., Chen, Y. C., Jung, C. R.,
790	Chen, K. C., Cheng, D. H., Wang, V. S., Chiang, H. C., Tsai, P. J.: Field
791	performance of a semi-continuous monitor for ambient PM2.5 water-soluble
792	inorganic ions and gases at a suburban site, Atmos. Environ., 144, 376-388,
793	http://dx.doi.org/10.1016/j.atmosenv.2016.08.062, 2016.
794	Zaveri, R. A., Peters, L. K.: A new lumped structure photochemical mechanism for
795	large-scale applications, J. Geophys. Res. Atmos. 104, 30387–30415, 1999.
796	Zaveri, R.A., Easter, R. C., Fast, J. D., Peters, L. K.: Model for simulating aerosol
797	interactions and chemistry (MOSAIC), J. Geophys. Res. Atmos., 113, D13204,
798	2008.
799	Zhang, L., Chen, Y. F., Zhao, Y. H., Henze, D. K., Zhu, L. Y., Song, Y., Paulot, F., Liu,
800	X. J., Pan, Y. P., Lin, Y., and Huang, B. X.: Agricultural ammonia emissions in
801	China: reconciling bottom-up and top-down estimates, Atmos. Chem. Phys., 18,
802	339-355, https://doi.org/10.5194/acp-18-339-2018, 2018.
803	Zheng, B., Zhang, Q., Zhang, Y., He, K. B., Wang, K., Zheng, G. J., Duan, F. K., Ma,
804	Y. L., Kimoto, T.: Heterogeneous chemistry: a mechanism missing in current

805 models to explain secondary inorganic aerosol formation during the January 2013

806	haze episode in North China, Atmos. Chem. Phys. 15, 2031–2049, 2015a.
807	Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., Zhang, Q., Huang,
808	T., Kimoto, T., Chang, D., Poschl, U., Cheng, Y. F., and He, K. B.: Exploring the
809	severe winter haze in Beijing: the impact of synoptic weather, regional transport
810	and heterogeneous reactions, Atmos. Chem. Phys., 15, 2969-2983,
811	https://doi.org/10.5194/acp-15-2969-2015, 2015b.
812	

- Table 1. Comparison of the simulated and observed meteorological parameters. (T2: 2
- 814 meters temperature (°C), RH2: 2 meters relative humidity (%), WS10: 10 meters wind

Variables	Obs	Mod	R	MB	RMSE
T2	11.5	11.1	0.89	-0.4	1.7
RH2	89.9	88.5	0.68	-1.4	9.7
WS10	1.6	1.5	0.47	-0.1	0.6
WD10	134.2	138.4	0.55	4.2	61.7

speed (m·s⁻¹), WS10: 10 meters wind speed (m·s⁻¹)).

818	Table 2 Statistics of th	e cumulative p	robability o	distribution	of observed a	and simulated
-----	--------------------------	----------------	--------------	--------------	---------------	---------------

819 LWP.

Probability (%)	Observation	Simulation
0-20 g m ⁻²	30	79
20-40 g m ⁻²	19	4
40-60 g m ⁻²	15	3
60-80 g m ⁻²	4	2
80-100 g m ⁻²	4	2
> 100 g m ⁻²	28	10

820

Table 3. Descriptions of the model simulations.

Experiment name	Description
Control	Control simulation.
Sen_c	Only constrain the simulated LWP according to Eq. (4).
Sen_c_pH	Constrain the simulated LWP according to Eq. (4) and
	increase the cloud water pH by 2.

823

China.		
Study time	pH in fog	Reference
December 2006	5.6	Li et al., 2008
December 2006 and December 2007	5.9	Lu et al., 2010
December 2007	5.5	Qin et al., 2011
December 2009	6.0 (radiation fog)5.6 (advection radiation fog)4.3 (advection fog)	Yan et al., 2013
November 2016 to January 2017	avg: 5.7, min: 5.0, max: 6.5	Hong et al., 2019

Figure 1. (a) The model domain (Solid red dot is Nanjing). (b) The location of sites with
in-situ measurements on meteorological variables and air pollutants (Green triangles,
red and blue circle denote the routine meteorological stations, Maigaoqiao air quality
monitoring site, and Nanjing University of Information Science & Technology
(NUIST), respectively).

Figure 2. The performance of the simulated hourly meteorological parameters (2m
temperature (T2), 2m relative humidity (RH), 10m wind speed (WS10), 10m wind
direction (WD10), and 6 h accumulation precipitation (PRE)) during the haze-fog event
in Nanjing. Scatters and solid lines (or columns) represent observations and simulations,
respectively.

Figure 3. Time series of the simulated and observed hourly gas precursors ((a) SO₂, (c)
NO₂, (e) NH₃, (g) HONO, (h) HNO₃), as well as (b) sulfate, (d) nitrate and (f)
ammonium concentrations. The stacked diagram of hourly SNA and PM_{2.5}
concentrations from (i) observations and (j) simulations during the haze-fog event in
Nanjing.

849

850

851 Figure 4. Diurnal cycles of the simulated and observed mass concentrations of gas

853 nitrate, (f) ammonium and (h) PM_{2.5} averaged during the haze-fog event in Nanjing.

855 Figure 5. Distribution of the simulated liquid water path (LWP, unit: g m⁻²) at 08:00

856 from 26 November to 2 December over YRD.

Figure 6. Distribution of the simulated and observed visibility (unit: m) at 08:00 from
26 November to 2 December over YRD. The circles represent the MICAPS
observations.

862

863 Figure 7. Distribution of LWP (unit: g m⁻²) from the MODIS observations (columns 1

and 3) and simulations (columns 2 and 4) at 13:30 from 26 November to 2 December

865 over YRD.

867

Figure 8. The cumulative probability distribution of LWP between the MODIS observations and simulations. Results are based on statistics of the observed and simulated daily LWP during the haze-fog event over YRD. The lines are the fitting functions.

878

Figure 10. The hourly and diurnal variations of simulated (Control and Sen_c_pH) and
observed (a, b) sulfate, (c, d) nitrate, and (e, f) ammonium concentrations. The stacked
diagram of hourly SNA concentrations from (g) observations, (h) Control run, and (i)
Sen_c_pH simulations during the haze-fog event in Nanjing.

885

886 Figure 11. (a) The average mass concentrations and (b) proportion of the observed and

simulated (Control and Sen_c_pH) SNA during the haze-fog event in Nanjing.