Table S1. Summary of the locations, sampling information, and campaign-average mass concentrations of sulfate, nitrate,

Site	Site Name	References	References Site Type Instrument Sampling		Lon (°)	Lat (°)	Mass Concentrations (µg m ⁻³)				
Site	/ Region	Kelefences	Site Type	mstrument	Period	LOII()	Lat()	Sulfate	Nitrate	Ammonium	OA
1	CMA / NCP	Zhang et al. (2012)	urban	Q-AMS	1/4/2008- 2/3/2008	116.32	39.95	8.1	12	6.2	42.34
2	PKU / NCP	Hu et al. (2016b)	urban	HR-ToF-AMS	11/22/2010- 12/22/2010	116.31	39.99	8.7	6.8	7.7	34.5
3	IAP / NCP	J. K. Zhang et al. (2014)	urban	HR-ToF-AMS	1/1/2013- 2/1/2013	116.37	39.97	19.65	12.5	8.93	44.65
4	PKU / NCP	Hu et al. (2017)	urban	HR-ToF-AMS	1/23/2013- 3/2/2013	116.31	39.99	17.4	16.2	11.7	29.7
5	IAP / NCP	Y. Sun et al. (2016a)	urban	HR-ToF-AMS	12/17/2013- 1/17/2014	116.37	39.97	9.4	7.2	5.4	38.1
6	IAP / NCP	J. K. Zhang et al. (2015a)	urban	HR-ToF-AMS	1/1/2014- 2/3/2014	116.37	39.97	8.58	8.08	4.55	27.27
7*	IRSDE / NCP	Elser et al. (2016)	urban	HR-ToF-AMS	1/9/2014- 1/26/2014	116.38	40.00	16.12	11.59	6.43	49.18
8	IAP / NCP	Zhang et al. (2016a)	urban	HR-ToF-AMS	12/10/2014- 12/31/2014	116.37	39.97	6.75	3.37	2.25	20.25
9	CMA / NCP	Zhang et al. (2012)	urban	Q-AMS	4/10/2008- 5/4/2008	116.32	39.95	**	**	**	37.8
10	PKU / NCP	Hu et al. (2017)	urban	HR-ToF-AMS	3/30/2012- 5/7/2012	116.31	39.99	9.3	10.2	7.3	14
11	CAMS / NCP	Sun et al. (2010)	urban	Q-AMS	7/9/2006- 7/21/2006	116.33	39.95	20.3	17.3	13.1	28.1
12	CMA / NCP	Zhang et al. (2012)	urban	Q-AMS	6/5/2008- 7/3/2008	116.32	39.95	24.8	20.1	13.7	33.84
13	PKU / NCP	Huang et al. (2010)	urban	HR-ToF-AMS	7/24/2008- 9/20/2008	116.31	39.99	16.85	9.97	10.03	23.91
14	PKU / NCP	Hu et al. (2017)	urban	HR-ToF-AMS	7/29/2012- 8/29/2012	116.31	39.99	9.7	6.4	5.4	12.5
15	IAP / NCP	J. K. Zhang et al. (2015b)	urban	HR-ToF-AMS	8/1/2012- 8/31/2012	116.37	39.97	**	**	**	13
16	PKU / NCP	Hu et al. (2016b)	urban	HR-ToF-AMS	8/3/2011- 9/15/2011	116.31	39.99	22	16.8	13.7	26.4
17	IAP / NCP	Xu et al. (2017)	urban	HR-ToF-AMS	6/3/2014- 7/11/2014	116.37	39.97	**	**	**	18.1
18	THU / NCP	H. Li et al. (2018)	urban	ACSM	6/30/2015- 7/27/2015	116.30	40.00	6.3	8.4	4.3	12.2
19	CMA / NCP	Zhang et al. (2012)	urban	Q-AMS	10/4/2008- 10/18/2008	116.32	39.95	**	**	**	23.97
20	IAP / NCP	J. K. Zhang et al. (2015b)	urban	HR-ToF-AMS	10/1/2012- 10/31/2012	116.37	39.97	**	*	**	27
21	PKU / NCP	Hu et al. (2017)	urban	HR-ToF-AMS	10/13/2012- 11/13/2012	116.31	39.99	5.5	7.9	4.5	18.2
22	IAP / NCP	Zhang et al. (2016a)	urban	HR-ToF-AMS	10/1/2014- 10/27/2014	116.37	39.97	11.52	16.46	9.05	34.57
23	IAP / NCP	Xu et al. (2015)	urban	HR-ToF-AMS	10/10/2014- 11/2/2014	116.37	39.97	9.1	17.8	7.8	29.4
24	IAP / NCP	Zhang et al. (2016b)	urban	HR-ToF-AMS	10/17/2014- 11/2/2014	116.37	39.97	13.13	21.21	10.1	44.44
25	IAP / NCP	Xu et al. (2017)	urban	HR-ToF-AMS	10/14/2014- 11/12/2014	116.37	39.97	**	**	**	29.58
26	IAP / NCP	Zhao et al. (2017)	urban	HR-ToF-AMS	9/4/2015- 9/30/2015	116.37	39.97	9.09	9.23	5.53	18.31
27	Handan / NCP	Li et al. (2017)	urban	ACSM	12/4/2015- 2/5/2016	114.50	36.57	28.12	26.25	22.5	82.5

ammonium, and OA of the 77 online measurements from literature.

28	Xinxiang / NCP	H. Li et al. (2018)	urban	ACSM	6/8/2017- 6/25/2017	113.90	35.30	14.4	16.5	12.2	18
29	Yufa / NCP	Gunthe et al. (2011)	suburban	Q-AMS	8/10/2006- 9/9/2006	116.31	39.51	8.2	2.88	4.07	10.83
30	Xianghe / NCP	Y. Sun et al. (2016b)	regional	ACSM	6/1/2013- 6/30/2013	116.96	39.80	12.8	14.3	8.8	28.3
31	Shanghai / YRD	Huang et al. (2012)	urban	HR-ToF-AMS	5/15/2010- 6/10/2010	121.53	31.23	9.72	4.76	3.91	8.38
32	Nanjing / YRD	Tang et al. (2014)	urban	ACSM	1/4/2013- 1/31/2013	118.73	32.21	14.56	21.15	10.73	26.26
33	Jiangsu / YRD	Y. Zhang et al. (2015)	urban	ACSM	12/1/2013- 12/31/2013	118.77	32.05	14.29	22.32	12.5	38.4
34	NUIST / YRD	Ge et al. (2017)	urban	SP-AMS	2/20/2015- 3/23/2015	118.71	32.21	5.81	3.44	3.3	6.25
35	Nanjing Olympic center / YRD	J. Wang et al. (2016)	urban	SP-AMS	4/13/2015- 4/29/2015	118.73	32.01	5.44	3.83	3.13	12.69
36	Jiangsu / YRD	Y. J. Zhang et al. (2015)	urban	ACSM	6/1/2013- 6/15/2013	118.76	32.08	5	9	7	15.4
37	Jiangsu / YRD	Y. J. Zhang et al. (2014)	urban	ACSM	8/1/2013- 8/31/2013	118.77	32.05	4.15	2.55	2.79	10.3
38	Jiangxin Island / YRD	Ge et al. (2017)	urban	SP-AMS	8/11/2014- 9/18/2014	118.73	32.01	10.83	11.21	7.86	12.09
39	Jiangsu / YRD	Y. J. Zhang et al. (2015)	urban	ACSM	10/15/2013- 10/30/2013	118.76	32.08	4.7	9.2	6.4	22.3
40***	Jiangsu / YRD	Y. Zhang et al. (2017)	urban	ACSM	10/20/2015- 11/19/2015	118.75	32.04	5.9	**	**	11.3
41	Hanzhou / YRD	K. Li et al. (2018)	urban	HR-ToF-AMS	8/5/2016- 8/21/2016	120.21	30.21	4.6	2.1	2.7	17
42	Hanzhou / YRD	K. Li et al. (2018)	urban	HR-ToF-AMS	9/7/2016- 9/23/2016	120.21	30.21	6.7	8.7	5.5	18.5
43	Jiaxing / YRD	Huang et al. (2013)	regional	HR-ToF-AMS	6/29/2010- 7/15/2010	120.80	30.80	8.29	5.92	4.14	10.56
44	Jiaxing / YRD	Huang et al. (2013)	regional	HR-ToF-AMS	12/11/2010- 12/23/2010	120.80	30.80	7.12	7.46	4.86	12.7
45	Lin'an / YRD	L. Zhang et al. (2015)	regional	Q-AMS	3/1/2013- 3/31/2013	119.73	30.30	8.1	9.8	6.9	17.7
46	Lin'an / YRD	Y. W. Zhang et al. (2015)	regional	Q-AMS	11/16/2013- 12/18/2013	119.73	30.30	10	15	7.7	29
47	Shenzhen / PRD	Yao et al. (2010)	urban	HR-ToF-AMS	1/17/2009- 2/16/2009	113.90	22.60	13	7.3	7.7	27
48	Shenzhen / PRD	Cao et al. (2018)	urban	HR-ToF-AMS	12/31/2015- 1/23/2015	113.90	22.60	9.05	4.87	4.44	18.45
49	Shenzhen / PRD	YY. Li et al. (2015)	urban	HR-ToF-AMS	8/7/2013- 9/7/2013	113.90	22.60	4.7	1.4	1.9	8.2
50	Shenzhen / PRD	He et al. (2011)	urban	HR-ToF-AMS	10/25/2009- 12/2/2009	113.90	22.60	10.9	4.45	4.54	17.67
51	HKUST / PRD	Y. J. Li et al. (2015)	seafront	HR-ToF-AMS	1/19/2012- 3/1/2012	114.26	22.34	6.2	1.6	2.4	5.1
52	Mong Kok / PRD	Lee et al. (2015)	urban	HR-ToF-AMS	3/7/2013- 5/15/2013	114.17	22.32	7	2.5	2.6	12.8
53	HKUST / PRD	Y. J. Li et al. (2015)	seafront	HR-ToF-AMS	4/25/2011- 6/1/2011	114.26	22.34	7.4	0.6	2.3	4
54	Mong Kok / PRD	Lee et al. (2015)	urban	HR-ToF-AMS	5/16/2013- 7/19/2013	114.17	22.32	3.4	0.4	1.1	7.9
55	HKUST / PRD	Y. J. Li et al. (2015)	seafront	HR-ToF-AMS	9/1/2011- 9/29/2011	114.26	22.34	8.7	0.4	2.4	4.1
56	HKUST / PRD	Y. J. Li et al. (2015)	seafront	HR-ToF-AMS	10/28/2011- 12/15/2011	114.26	22.34	7.1	0.7	2.1	6
57	HKEPD / PRD	C. Sun et al. (2016)	urban	ACSM	9/3/2013- 12/31/2013	114.17	22.32	6	1.7	3	15.1
-											

58	Dongguan / PRD	Zhu et al. (2018)	urban	HR-ToF-AMS	12/12/2013- 1/1/2014	113.75	23.03	**	**	**	23.3
59	GPACS / PRD	Qin et al. (2017)	suburban	HR-ToF-AMS	11/07/2014- 1/3/2015	113.35	23.00	12.8	6.2	5.04	25.65
60	Kaiping / PRD	Huang et al. (2011)	rural	HR-ToF-AMS	10/12/2008- 11/18/2008	112.53	22.32	11.15	3.54	4.63	11.19
61	Back Garden / PRD	Xiao et al. (2011)	rural	Q-AMS	7/12/2006- 7/30/2006	113.03	23.49	11.8	**	**	13.5
62	Heshan / PRD	Gong et al. (2012)	urban outflow	HR-ToF-AMS	11/13/2010- 12/1/2010	112.93	22.71	10.01	6.18	4.6	17.39
63	IEECAS / NW	Wang et al. (2014)	urban	ACSM	12/23/2012- 1/18/2013	109.01	34.22	18.3	13.6	16.7	73.8
64*	Xi'an / NW	Elser et al. (2016)	urban	HR-ToF-AMS	12/13/2013- 1/6/2014	108.88	34.23	52.12	27.83	18.75	128.5
65	Baoji / NW	Wang et al. (2017)	urban	ACSM	2/26/2013- 3/27/2014	107.14	34.35	8.64	8.1	5.94	29.7
66	CAREERI / NW	Xu et al. (2014)	urban	HR-ToF-AMS	7/11/2012- 8/7/2012	103.86	36.05	3.92	2.45	2.7	11.51
67	LZU / NW	Xu et al. (2016)	urban	HR-ToF-AMS	1/10/2014- 2/4/2014	103.85	36.05	7.16	9.45	5.9	29.33
68	Gansu / NW	X. Zhang et al. (2017)	urban	Q-AMS	10/27/2014- 12/3/2014	103.88	36.04	6.1	5.7	5	18.2
69	Xinzhou / OTR	Q. Wang et al. (2016)	suburban	ACSM	7/17/2014- 9/5/2014	112.12	38.07	11.47	5.1	4.18	11.72
70	Changdao / OTR	Hu et al. (2013)	receptor	HR-ToF-AMS	3/21/2011- 4/24/2011	120.70	37.99	8.3	12.2	6.5	13.4
71	Qingdao / OTR	Zhu et al. (2018)	urban	HR-ToF-AMS	11/1/2013- 11/30/2013	120.47	36.10	**	**	**	10.43
72	NBS / OTR	Du et al. (2015)	background	ACSM	9/5/2013- 10/15/2013	101.26	37.61	3.2	1.2	1.4	4.9
73	Mt. Yulong / OTR	Zheng et al. (2017)	regional	HR-ToF-AMS	3/22/2015- 4/14/2015	100.2	27.20	0.8	0.23	0.28	3.88
74	Ziyang / OTR	Hu et al. (2016a)	suburban	HR-ToF-AMS	12/3/2012- 1/5/2013	104.64	30.15	11.7	9.4	8.3	21.5
75	Lake Hongze / OTR	Zhu et al. (2016)	background	HR-ToF-AMS	3/19/2011- 4/24/2011	118.33	33.23	7.7	9.4	5.5	9.8
76	Mt. Wuzhi / OTR	Zhu et al. (2016)	background	HR-ToF-AMS	3/18/2015- 4/15/2015	109.49	18.84	3.4	0.5	1.5	4.9
77	Xiamen / OTR	Cao et al. (2017)	suburban	HR-ToF-AMS	5/1/2015- 5/18/2015	118.05	24.60	11.5	9.52	7.48	13.07

* Measurements for PM_{2.5}. Others are for PM₁.
** Values are not available in the original publications.
5 ***Only the PM₁ data are included here.

Table S2. The statistics of model-observation comparisons of the campaign-average concentrations of sulfate, nitrate, ammonium, and OA in the standard simulation for the NCP, YRD, PRD, and NW regions in China. "OBS" and "SIM" represent the mean values of the observations and the simulated results, respectively.

		NCP (urban: 28 non-urban: 2)	YRD (urban: 12 non-urban: 4)	PRD (urban: 8 non-urban: 8)	NW (urban: 6 non-urban: 0)
	OBS	16.28	9.78	10.77	17.88
	SIM	8.81	8.52	6.16	7.10
Sulfate $(\mu g m^{-3})$	NMB (%)	-45.90	-12.90	-42.77	-60.29
(µg III)	NME (%)	51.90	36.89	42.77	63.75
	RMSE	10.11	4.79	5.46	17.81
	OBS	15.48	11.37	3.74	12.83
	SIM	28.86	22.58	6.99	16.05
Nitrate $(\mu g m^{-3})$	NMB (%)	86.50	98.59	87.11	25.16
(198	NME (%)	89.47	104.12	93.64	42.78
	RMSE	18.71	14.15	4.94	7.96
	OBS	10.62	7.45	4.35	10.68
	SIM	11.35	9.55	4.33	7.04
Ammonium $(\mu g m^{-3})$	NMB (%)	6.88	28.18	-0.51	-34.09
(µ8)	NME (%)	38.09	48.27	28.12	47.36
	RMSE	5.68	4.28	1.85	5.91
	OBS	35.88	21.00	16.98	55.28
	SIM	25.28	18.82	15.15	24.83
OA (ug m ⁻³)	NMB (%)	-29.54	-10.41	-10.81	-55.08
(20)	NME (%)	39.48	28.80	45.14	55.08
	RMSE	16.77	7.89	9.46	39.10

Table S3. The statistics of model-observation comparisons of the campaign-average concentrations of sulfate, nitrate,

ammonium, and OA in the standard simulation at the urban and non-urban sites in China. "OBS" and "SIM" represent the mean values of the observations and the simulated results, respectively.

		Urban $(n_{\max} = 55)$	Non-urban $(n_{\max} = 22)$
	OBS	13.91	10.67
	SIM	7.86	7.80
Sulfate $(\mu g m^{-3})$	NMB (%)	-43.54	-26.92
(PB)	NME (%)	51.98	33.49
	RMSE	10.13	4.47
	OBS	12.56	7.27
	SIM	21.60	16.11
Nitrate (ug m ⁻³)	NMB (%)	71.93	121.59
(18)	NME (%)	78.41	131.54
	RMSE	13.53	14.80
	OBS	9.06	5.66
	SIM	8.95	7.53
Ammonium (ug m ⁻³)	NMB (%)	-1.21	32.97
(18)	NME (%)	38.66	49.93
	RMSE	4.61	4.50
	OBS	32.43	15.86
	SIM	22.46	15.98
OA (µg m ⁻³)	NMB (%)	-30.76	0.76
	NME (%)	40.67	44.69
	RMSE	18.45	9.99

Table S4. The statistics of model-observation comparisons of the campaign-average concentrations of sulfate, nitrate,

15 ammonium, and OA in the standard simulation for four seasons. "OBS" and "SIM" represent the mean values of the observations and the simulated results, respectively.

		$\begin{array}{c} \text{DJF} \\ (n_{\text{max}} = 21) \end{array}$	$MAM (n_{max} = 14)$	JJA $(n_{\max} = 22)$	$\frac{\text{SON}}{(n_{\text{max}} = 20)}$
	OBS	17.22	8.95	13.14	10.32
	SIM	7.94	7.16	9.16	6.60
Sulfate	NMB (%)	-53.87	-20.06	-30.26	-36.06
(µg m ⁻³)	NME (%)	55.72	33.79	45.42	41.16
	RMSE (%)	12.99	3.75	8.02	5.12
	R	0.49	0.47	0.44	0.34
	OBS	14.21	7.22	10.62	10.06
	SIM	19.99	15.55	24.24	17.96
Nitrate	NMB (%)	40.74	115.46	128.18	78.60
(µg m ⁻³)	NME (%)	53.02	131.65	129.44	78.60
	RMSE	11.49	12.39	18.43	11.35
	R	0.62	0.57	0.46	0.74
	OBS	10.50	5.45	8.23	6.56
	SIM	8.26	6.99	10.53	7.58
Ammonium	NMB (%)	-21.35	28.27	27.88	15.58
(µg m ⁻³)	NME (%)	34.82	56.18	48.16	32.76
	RMSE	4.90	3.87	5.56	3.05
	R	0.72	0.53	0.52	0.70
	OBS	45.41	16.82	20.56	24.57
	SIM	36.52	13.09	14.52	15.85
OA	NMB (%)	-19.58	-22.16	-29.40	-35.46
(µg m ⁻³)	NME (%)	38.91	40.98	43.15	44.51
	RMSE	24.46	10.84	11.14	14.12
	R	0.61	0.49	0.28	0.50

Table S5. The observed and simulated campaign-average concentrations of isoprene, benzene, toluene, and xylene as well as

 their simulation-to-observation ratios. Unit: ppbv.

	Season	Site location	Observation	Simulation	Simulation/Observation	Reference		
	C	Wangdu	0.50	0.26	0.52	Tan et al. (2017)		
Isoprene	Summer	PKUERS*	0.41	0.33	0.80	Q. Zhang et al. (2014)		
	C		1.29	0.75	0.58			
Benzene	Summer	PKUERS	0.98	0.74	0.76	Wang et al. (2015)		
	Winter		2.34	1.35	0.58			
	C		2.23	1.57	0.70			
Toluene	Summer	PKUERS	1.99	1.50	0.75	Wang et al. (2015)		
	Winter		2.67	2.44	0.91			
Valaria	C	DELIEDC	1.75	0.76	0.43	Warra et al. (2015)		
Xylene	Summer	Summer	Summer PKUERS	1.50	0.75	0.50	wang et al. (2015)	

20 *Daytime averages between 7 AM to 7 PM.

Table S6. Summary of the combinations of the tested factors in Cases 10 to 50. Categories a, b, and c represent the solid red circles, open red circles, and solid gray circles in Figs. 7a-b, respectively. Categories * and # represent solid blue circles and solid gray circles in Figs. 7c-d, respectively.

Case	Category	SO ₂ emissions	OH levels	γso2-rh	γso2-alwc	γN2O5	γνο2
10	c/*					0	0
11	a/#			0		0	
12	a/*			0			0
13	a/*			0		0	0
14	b/#				0	0	
15	b/*				0		0
16	b/*				0	0	0
17	c/#		0			0	
18	c/*		0				0
19	c/*		0			0	0
20	a/#		0	0			
21	a/#		0	0		0	
22	a/*		0	0			0
23	a/*		0	0		0	0
24	b/#		0		0		
25	b/#		0		0	0	
26	b*		0		0		0
27	b*		0		0	0	0
28	c/#	0				0	
29	c/*	0					0
30	c/*	0				0	0
31	a/#	0		0			
32	a/#	0		0		0	
33	a/*	0		0			0
34	a/*	0		0		0	0
35	b/#	0			0		
36	b/#	0			0	0	
37	b/*	0			0		0
38	b/*	0			0	0	0
39	c/#	0	0				
40	c/#	0	0			0	
41	c/*	0	0				0
42	c/*	0	0			0	0
43	a/#	0	0	0			
44	a/#	0	0	0		0	
45	a/*	0	0	0			0
46	a/*	0	0	0		0	0
47	b/#	0	0		0		
48	b/#	0	0		0	0	
49	b/*	0	0		0		0
50	b/*	0	0		0	0	0

References

40

45

55

65

Cao, L.-M., Huang, X.-F., Li, Y.-Y., Hu, M., and He, L.-Y.: Volatility measurement of atmospheric submicron aerosols in an urban atmosphere in southern China, Atmos. Chem. Phys., 18, 1729-1743, https://doi.org/10.5194/acp-18-1729-2018, 2018.

Cao, L., Zhu, Q., Huang, X., Deng, J., Chen, J., Hong, Y., Xu, L., and He, L.: Chemical characterization and source apportionment of atmospheric submicron particles on the western coast of Taiwan Strait, China, J. Environ. Sci., 52, 293-304, https://doi.org/10.1016/j.jes.2016.09.018, 2017.

Du, W., Sun, Y. L., Xu, Y. S., Jiang, Q., Wang, Q. Q., Yang, W., Wang, F., Bai, Z. P., Zhao, X. D., and Yang, Y. C.:
Chemical characterization of submicron aerosol and particle growth events at a national background site (3295 m a.s.l.) on the Tibetan Plateau, Atmos. Chem. Phys., 15, 10811-10824, https://doi.org/10.5194/acp-15-10811-2015, 2015.

Elser, M., Huang, R.-J., Wolf, R., Slowik, J. G., Wang, Q., Canonaco, F., Li, G., Bozzetti, C., Daellenbach, K. R., Huang, Y., Zhang, R., Li, Z., Cao, J., Baltensperger, U., El-Haddad, I., and Prevot, A. S. H.: New insights into PM_{2.5} chemical composition and sources in two major cities in China during extreme haze events using aerosol mass spectrometry, Atmos. Chem. Phys., 16, 3207-3225, https://doi.org/10.5194/acp-16-3207-2016, 2016.

Ge, X., He, Y., Sun, Y., Xu, J., Wang, J., Shen, Y., and Chen, M.: Characteristics and Formation Mechanisms of Fine Particulate Nitrate in Typical Urban Areas in China, Atmosphere, 8, 62, https://doi.org/10.3390/atmos8030062, 2017.

Gong, Z., Lan, Z., Xue, L., Zeng, L., He, L., and Huang, X.: Characterization of submicron aerosols in the urban outflow of the central Pearl River Delta region of China, Front. Env. Sci. Eng., 6, 725-733, https://doi.org/10.1007/s11783-012-0441-8, 2012.

Gunthe, S. S., Rose, D., Su, H., Garland, R. M., Achtert, P., Nowak, A., Wiedensohler, A., Kuwata, M., Takegawa, N., Kondo, Y., Hu, M., Shao, M., Zhu, T., Andreae, M. O., and Poschl, U.: Cloud condensation nuclei (CCN) from fresh and aged air pollution in the megacity region of Beijing, Atmos. Chem. Phys., 11, 11023-11039, https://doi.org/10.5194/acp-11-11023-2011, 2011.

50 He, L.-Y., Huang, X.-F., Xue, L., Hu, M., Lin, Y., Zheng, J., Zhang, R., and Zhang, Y.-H.: Submicron aerosol analysis and organic source apportionment in an urban atmosphere in Pearl River Delta of China using high-resolution aerosol mass spectrometry, J. Geophys. Res.-Atmos., 116, https://doi.org/10.1029/2010JD014566, 2011.

Hu, W., Hu, M., Hu, W.-W., Niu, H., Zheng, J., Wu, Y., Chen, W., Chen, C., Li, L., Shao, M., Xie, S., and Zhang, Y.: Characterization of submicron aerosols influenced by biomass burning at a site in the Sichuan Basin, southwestern China, Atmos. Chem. Phys., 16, 13213-13230, https://doi.org/10.5194/acp-16-13213-2016, 2016a.

Hu, W., Hu, M., Hu, W., Jimenez, J. L., Yuan, B., Chen, W., Wang, M., Wu, Y. S., Chen, C., Wang, Z., Peng, J., Zeng, L., and Shao, M.: Chemical composition, sources, and aging process of submicron aerosols in Beijing: Contrast between summer and winter, J. Geophys. Res.-Atmos., 121, 1955-1977, https://doi.org/10.1002/2015JD024020, 2016b.

Hu, W., Hu, M., Hu, W.-W., Zheng, J., Chen, C., Wu, Y., and Guo, S.: Seasonal variations in high time-resolved chemical
compositions, sources, and evolution of atmospheric submicron aerosols in the megacity Beijing, Atmos. Chem. Phys., 17, 9979-10000, https://doi.org/10.5194/acp-17-9979-2017, 2017.

Hu, W. W., Hu, M., Yuan, B., Jimenez, J. L., Tang, Q., Peng, J. F., Hu, W., Shao, M., Wang, M., Zeng, L. M., Wu, Y. S., Gong, Z. H., Huang, X. F., and He, L. Y.: Insights on organic aerosol aging and the influence of coal combustion at a regional receptor site of central eastern China, Atmos. Chem. Phys., 13, 10095-10112, https://doi.org/10.5194/acp-13-10095-2013, 2013.

9

Huang, X.-F., He, L.-Y., Hu, M., Canagaratna, M. R., Sun, Y., Zhang, Q., Zhu, T., Xue, L., Zeng, L.-W., Liu, X.-G., Zhang, Y.-H., Jayne, J. T., Ng, N. L., and Worsnop, D. R.: Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer, Atmos. Chem. Phys., 10, 8933-8945, https://doi.org/10.5194/acp-10-8933-2010, 2010.

70 Huang, X.-F., He, L.-Y., Hu, M., Canagaratna, M. R., Kroll, J. H., Ng, N. L., Zhang, Y.-H., Lin, Y., Xue, L., Sun, T.-L., Liu, X.-G., Shao, M., Jayne, J. T., and Worsnop, D. R.: Characterization of submicron aerosols at a rural site in Pearl River Delta of China using an Aerodyne High-Resolution Aerosol Mass Spectrometer, Atmos. Chem. Phys., 11, 1865-1877, https://doi.org/10.5194/acp-11-1865-2011, 2011.

Huang, X.-F., He, L.-Y., Xue, L., Sun, T.-L., Zeng, L.-W., Gong, Z.-H., Hu, M., and Zhu, T.: Highly time-resolved chemical
characterization of atmospheric fine particles during 2010 Shanghai World Expo, Atmos. Chem. Phys., 12, 4897-4907,
https://doi.org/10.5194/acp-12-4897-2012, 2012.

Huang, X.-F., Xue, L., Tian, X.-D., Shao, W.-W., Sun, T.-L., Gong, Z.-H., Ju, W.-W., Jiang, B., Hu, M., and He, L.-Y.: Highly time-resolved carbonaceous aerosol characterization in Yangtze River Delta of China: Composition, mixing state and secondary formation, Atmos. Environ., 64, 200-207, https://doi.org/10.1016/j.atmosenv.2012.09.059, 2013.

80 Koukouli, M. E., Theys, N., Ding, J., Zyrichidou, I., Mijling, B., Balis, D., and Johannes, V. R.: Updated SO₂ emission estimates over China using OMI/Aura observations, Atmos. Meas. Tech., 11, 1817-1832, https://doi.org/10.5194/amt-11-1817-2018, 2018.

85

100

Lee, B. P., Li, Y. J., Yu, J. Z., Louie, P. K. K., and Chan, C. K.: Characteristics of submicron particulate matter at the urban roadside in downtown Hong Kong-Overview of 4 months of continuous high-resolution aerosol mass spectrometer measurements, J. Geophys. Res.-Atmos., 120, 7040-7058, https://doi.org/10.1002/2015JD023311, 2015.

Li, H., Zhang, Q., Zhang, Q., Chen, C., Wang, L., Wei, Z., Zhou, S., Parworth, C., Zheng, B., Canonaco, F., Prevot, A. S. H., Chen, P., Zhang, H., Wallington, T. J., and He, K.: Wintertime aerosol chemistry and haze evolution in an extremely polluted city of the North China Plain: significant contribution from coal and biomass combustion, Atmos. Chem. Phys., 17, 4751-4768, https://doi.org/10.5194/acp-17-4751-2017, 2017.

90 Li, H., Zhang, Q., Zheng, B., Chen, C., Wu, N., Guo, H., Zhang, Y., Zheng, Y., Li, X., and He, K.: Nitrate-driven urban haze pollution during summertime over the North China Plain, Atmos. Chem. Phys., 18, 5293-5306, https://doi.org/10.5194/acp-18-5293-2018, 2018.

 Li, K., Chen, L., White, S. J., Zheng, X., Lv, B., Lin, C., Bao, Z., Wu, X., Gao, X., Ying, F., Shen, J., Azzi, M., and Cen, K.: Chemical characteristics and sources of PM₁ during the 2016 summer in Hangzhou, Environ. Pollut., 232, 42-54, https://doi.org/10.1016/j.envpol.2017.09.016, 2018.

Li, Y.-Y., Huang, X.-F., Zeng, L.-W., Huang, C.-N., and He, L.-Y.: Characterization of atmospheric aerosol semivolatility in Shenzhen using the thermal denuder, China Environ. Sci., 35, 1281-1287, 2015.

Li, Y. J., Lee, B. P., Su, L., Fung, J. C. H., and Chan, C. K.: Seasonal characteristics of fine particulate matter (PM) based on high-resolution time-of-flight aerosol mass spectrometric (HR-ToF-AMS) measurements at the HKUST Supersite in Hong Kong, Atmos. Chem. Phys., 15, 37-53, https://doi.org/10.5194/acp-15-37-2015, 2015.

Qin, Y. M., Tan, H. B., Li, Y. J., Schurman, M. I., Li, F., Canonaco, F., Prevot, A. S. H., and Chan, C. K.: Impacts of traffic emissions on atmospheric particulate nitrate and organics at a downwind site on the periphery of Guangzhou, China, Atmos. Chem. Phys., 17, 10245-10258, https://doi.org/10.5194/acp-17-10245-2017, 2017.

Sun, C., Lee, B. P., Huang, D., Li, Y. J., Schurman, M. I., Louie, P. K. K., Luk, C., and Chan, C. K.: Continuous
 measurements at the urban roadside in an Asian megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong, Atmos. Chem. Phys., 16, 1713-1728, https://doi.org/10.5194/acp-16-1713-2016, 2016.

Sun, J., Zhang, Q., Canagaratna, M. R., Zhang, Y., Ng, N. L., Sun, Y., Jayne, J. T., Zhang, X., Zhang, X., and Worsnop, D. R.: Highly time- and size-resolved characterization of submicron aerosol particles in Beijing using an Aerodyne Aerosol Mass Spectrometer, Atmos. Environ., 44, 131-140, https://doi.org/10.1016/j.atmosenv.2009.03.020, 2010.

Sun, Y., Du, W., Fu, P., Wang, Q., Li, J., Ge, X., Zhang, Q., Zhu, C., Ren, L., Xu, W., Zhao, J., Han, T., Worsnop, D. R., and Wang, Z.: Primary and secondary aerosols in Beijing in winter: sources, variations and processes, Atmos. Chem. Phys., 16, 8309-8329, https://doi.org/10.5194/acp-16-8309-2016, 2016a.

Sun, Y., Jiang, Q., Xu, Y., Ma, Y., Zhang, Y., Liu, X., Li, W., Wang, F., Li, J., Wang, P., and Li, Z.: Aerosol

110

120

115 characterization over the North China Plain: Haze life cycle and biomass burning impacts in summer, J. Geophys. Res.-Atmos., 121, 2508-2521, https://doi.org/10.1002/2015JD024261, 2016b.

Tan, Z., Fuchs, H., Lu, K., Hofzumahaus, A., Bohn, B., Broch, S., Dong, H., Gomm, S., Haseler, R., He, L., Holland, F., Li, X., Liu, Y., Lu, S., Rohrer, F., Shao, M., Wang, B., Wang, M., Wu, Y., Zeng, L., Zhang, Y., Wahner, A., and Zhang, Y.: Radical chemistry at a rural site (Wangdu) in the North China Plain: observation and model calculations of OH, HO₂ and RO₂ radicals, Atmos, Chem. Phys., 17, 663-690, https://doi.org/10.5194/acp-17-663-2017, 2017.

Tang, L. L., Zhang, Y. J., Sun, Y. L., Yu, H. X., Zhou, H. C., Wang, Z., Qin, W., Chen, P., Zhang, H. L., Chen, Y., and Jiang, R. X.: Components and optical properties of submicron aerosol during the lasting haze period in Nanjing, Chin. Sci. Bull., 59, 1955, https://doi.org/10.1360/972013-1098, 2014.

Wang, J., Ge, X., Chen, Y., Shen, Y., Zhang, Q., Sun, Y., Xu, J., Ge, S., Yu, H., and Chen, M.: Highly time-resolved urban
 aerosol characteristics during springtime in Yangtze River Delta, China: insights from soot particle aerosol mass
 spectrometry, Atmos. Chem. Phys., 16, 9109-9127, https://doi.org/10.5194/acp-16-9109-2016, 2016.

Wang, M., Shao, M., Chen, W., Lu, S., Liu, Y., Yuan, B., Zhang, Q., Zhang, Q., Chang, C.-C., Wang, B., Zeng, L., Hu, M., Yang, Y., and Li, Y.: Trends of non-methane hydrocarbons (NMHC) emissions in Beijing during 2002–2013, Atmos. Chem. Phys., 15, 1489-1502, https://doi.org/10.5194/acp-15-1489-2015, 2015.

130 Wang, Q., Huang, R.-J., Cao, J., Han, Y., Wang, G., Li, G., Wang, Y., Dai, W., Zhang, R., and Zhou, Y.: Mixing State of Black Carbon Aerosol in a Heavily Polluted Urban Area of China: Implications for Light Absorption Enhancement, Aerosol Sci. Technol., 48, 689-697, https://doi.org/10.1080/02786826.2014.917758, 2014.

Wang, Q., Zhao, J., Du, W., Ana, G. S., Wang, Z., Sun, L., Wang, Y., Zhang, F., Li, Z., Ye, X., and Sun, Y.: Characterization of submicron aerosols at a suburban site in central China, Atmos. Environ., 131, 115-123, https://doi.org/10.1016/j.atmosenv.2016.01.054, 2016.

Wang, Y. C., Huang, R.-J., Ni, H. Y., Chen, Y., Wang, Q. Y., Li, G. H., Tie, X. X., Shen, Z. X., Huang, Y., Liu, S. X., Dong, W. M., Xue, P., Frohlich, R., Canonaco, F., Elser, M., Daellenbach, K. R., Bozzetti, C., El Haddad, I., Prevot, A. S. H., Canagaratna, M. R., Worsnop, D. R., and Cao, J. J.: Chemical composition, sources and secondary processes of aerosols in Baoji city of northwest China, Atmos. Environ., 158, 128-137, https://doi.org/10.1016/j.atmosenv.2017.03.026, 2017.

140 Xiao, R., Takegawa, N., Zheng, M., Kondo, Y., Miyazaki, Y., Miyakawa, T., Hu, M., Shao, M., Zeng, L., Gong, Y., Lu, K., Deng, Z., Zhao, Y., and Zhang, Y. H.: Characterization and source apportionment of submicron aerosol with aerosol mass

spectrometer during the PRIDE-PRD 2006 campaign, Atmos. Chem. Phys., 11, 6911-6929, https://doi.org/10.5194/acp-11-6911-2011, 2011.

Xu, J., Zhang, Q., Chen, M., Ge, X., Ren, J., and Qin, D.: Chemical composition, sources, and processes of urban aerosols
 during summertime in northwest China: insights from high-resolution aerosol mass spectrometry, Atmos. Chem. Phys., 14, 12593-12611, https://doi.org/10.5194/acp-14-12593-2014, 2014.

Xu, J., Shi, J., Zhang, Q., Ge, X., Canonaco, F., Prevot, A. S. H., Vonwiller, M., Szidat, S., Ge, J., Ma, J., An, Y., Kang, S., and Qin, D.: Wintertime organic and inorganic aerosols in Lanzhou, China: sources, processes, and comparison with the results during summer, Atmos. Chem. Phys., 16, 14937-14957, https://doi.org/10.5194/acp-16-14937-2016, 2016.

150 Xu, W., Han, T., Du, W., Wang, Q., Chen, C., Zhao, J., Zhang, Y., Li, J., Fu, P., Wang, Z., Worsnop, D. R., and Sun, Y.: Effects of Aqueous-Phase and Photochemical Processing on Secondary Organic Aerosol Formation and Evolution in Beijing, China, Environ. Sci. Technol., 51, 762-770, https://doi.org/10.1021/acs.est.6b04498, 2017.

Xu, W. Q., Sun, Y. L., Chen, C., Du, W., Han, T. T., Wang, Q. Q., Fu, P. Q., Wang, Z. F., Zhao, X. J., Zhou, L. B., Ji, D. S., Wang, P. C., and Worsnop, D. R.: Aerosol composition, oxidation properties, and sources in Beijing: results from the 2014
Asia-Pacific Economic Cooperation summit study, Atmos. Chem. Phys., 15, 13681-13698, https://doi.org/10.5194/acp-15-13681-2015, 2015.

Yao, T. T., Huang, X. F., He, L. Y., Hu, M., Sun, T. L., Xue, L. A., Lin, Y., Zeng, L. W., and Zhang, Y. H.: High time resolution observation and statistical analysis of atmospheric light extinction properties and the chemical speciation of fine particulates, Sci. China Chem., 53, 1801-1808, https://doi.org/10.1007/s11426-010-4006-z, 2010.

160 Zhang, J. K., Sun, Y., Liu, Z. R., Ji, D. S., Hu, B., Liu, Q., and Wang, Y. S.: Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013, Atmos. Chem. Phys., 14, 2887-2903, https://doi.org/10.5194/acp-14-2887-2014, 2014.

Zhang, J. K., Ji, D. S., Liu, Z. R., Hu, B., Wang, L. L., Huang, X. J., and Wang, Y. S.: New characteristics of submicron aerosols and factor analysis of combined organic and inorganic aerosol mass spectra during winter in Beijing, Atmos. Chem.
Phys. Discuss., 15, 18537-18576, https://doi.org/10.5194/acpd-15-18537-2015, 2015a.

Zhang, J. K., Wang, Y. S., Huang, X. J., Liu, Z. R., Ji, D. S., and Sun, Y.: Characterization of Organic Aerosols in Beijing Using an Aerodyne High-Resolution Aerosol Mass Spectrometer, Adv. Atmos. Sci., 32, 877-888, https://doi.org/10.1007/s00376-014-4153-9, 2015b.

Zhang, J. K., Cheng, M. T., Ji, D. S., Liu, Z. R., Hu, B., Sun, Y., and Wang, Y. S.: Characterization of submicron particles
during biomass burning and coal combustion periods in Beijing, China, Sci. Total Environ., 562, 812-821, https://doi.org/10.1016/j.scitotenv.2016.04.015, 2016a.

Zhang, J. K., Wang, L. L., Wang, Y. H., and Wang, Y. S.: Submicron aerosols during the Beijing Asia–Pacific Economic Cooperation conference in 2014, Atmos. Environ., 124, 224-231, https://doi.org/10.1016/j.atmosenv.2015.06.049, 2016b.

Zhang, L., Sun, J. Y., Shen, X. J., Zhang, Y. M., Che, H., Ma, Q. L., Zhang, Y. W., Zhang, X. Y., and Ogren, J. A.:
Observations of relative humidity effects on aerosol light scattering in the Yangtze River Delta of China, Atmos. Chem. Phys., 15, 8439-8454, https://doi.org/10.5194/acp-15-8439-2015, 2015.

Zhang, Q., Yuan, B., Shao, M., Wang, X., Lu, S., Lu, K., Wang, M., Chen, L., Chang, C.-C., and Liu, S. C.: Variations of ground-level O₃ and its precursors in Beijing in summertime between 2005 and 2011, Atmos. Chem. Phys., 14, 6089-6101, https://doi.org/10.5194/acp-14-6089-2014, 2014.

180 Zhang, X., Zhang, Y., Sun, J., Yu, Y., Canonaco, F., Prevot, A. S. H., and Li, G.: Chemical characterization of submicron aerosol particles during wintertime in a northwest city of China using an Aerodyne aerosol mass spectrometry, Environ. Pollut., 222, 567-582, https://doi.org/10.1016/j.envpol.2016.11.012, 2017.

Zhang, Y., Tang, L., Yu, H., Wang, Z., Sun, Y., Qin, W., Chen, W., Chen, C., Ding, A., Wu, J., Ge, S., Chen, C., and Zhou,
H.: Chemical composition, sources and evolution processes of aerosol at an urban site in Yangtze River Delta, China during
wintertime, Atmos. Environ., 123, 339-349, https://doi.org/10.1016/j.atmosenv.2015.08.017, 2015.

Zhang, Y., Tang, L., Croteau, P. L., Favez, O., Sun, Y., Canagaratna, M. R., Wang, Z., Couvidat, F., Albinet, A., Zhang, H., Sciare, J., Prevot, A. S. H., Jayne, J. T., and Worsnop, D. R.: Field characterization of the PM_{2.5} Aerosol Chemical Speciation Monitor: insights into the composition, sources, and processes of fine particles in eastern China, Atmos. Chem. Phys., 17, 14501-14517, https://doi.org/10.5194/acp-17-14501-2017, 2017.

190 Zhang, Y. J., Tang, L. L., Wang, Z., Yu, H. X., Zhang, X. Z., Zhou, H. C., Chen, Y., and Jiang, R. X.: Aging of atmospheric organic aerosol during summertime in Nanjing: insights from on-line measurement, Sci. Sin. Chim., 44, 1654, https://doi.org/10.1360/n032013-00049, 2014.

Zhang, Y. J., Tang, L. L., Wang, Z., Yu, H. X., Sun, Y. L., Liu, D., Qin, W., Canonaco, F., Prevot, A. S. H., Zhang, H. L., and Zhou, H. C.: Insights into characteristics, sources, and evolution of submicron aerosols during harvest seasons in the
Yangtze River delta region, China, Atmos. Chem. Phys., 15, 1331-1349, https://doi.org/10.5194/acp-15-1331-2015, 2015.

Zhang, Y. M., Sun, J. Y., Zhang, X. Y., Shen, X. J., Wang, T. T., and Qin, M. K.: Seasonal characterization of components and size distributions for submicron aerosols in Beijing, Sci. China Earth Sci., 56, 890-900, https://doi.org/10.1007/s11430-012-4515-z, 2012.

Zhang, Y. W., Zhang, X. Y., Zhang, Y. M., Shen, X. J., Sun, J. Y., Ma, Q. L., Yu, X. M., Zhu, J. L., Zhang, L., and Che, H. O. C.: Significant concentration changes of chemical components of PM₁ in the Yangtze River Delta area of China and the

200 C.: Significant concentration changes of chemical components of PM₁ in the Yangtze River Delta area of China and the implications for the formation mechanism of heavy haze-fog pollution, Sci. Total Environ., 538, 7-15, https://doi.org/10.1016/j.scitotenv.2015.06.104, 2015.

Zhao, J., Du, W., Zhang, Y., Wang, Q., Chen, C., Xu, W., Han, T., Wang, Y., Fu, P., Wang, Z., Li, Z., and Sun, Y.: Insights into aerosol chemistry during the 2015 China Victory Day parade: results from simultaneous measurements at ground level and 260 m in Beijing, Atmos. Chem. Phys., 17, 3215-3232, https://doi.org/10.5194/acp-17-3215-2017, 2017.

Zheng, J., Hu, M., Du, Z., Shang, D., Gong, Z., Qin, Y., Fang, J., Gu, F., Li, M., Peng, J., Li, J., Zhang, Y., Huang, X., He, L., Wu, Y., and Guo, S.: Influence of biomass burning from South Asia at a high-altitude mountain receptor site in China, Atmos. Chem. Phys., 17, 6853-6864, https://doi.org/10.5194/acp-17-6853-2017, 2017.

Zhu, Q., He, L.-Y., Huang, X.-F., Cao, L.-M., Gong, Z.-H., Wang, C., Zhuang, X., and Hu, M.: Atmospheric aerosol
 compositions and sources at two national background sites in northern and southern China, Atmos. Chem. Phys., 16, 10283-10297, https://doi.org/10.5194/acp-16-10283-2016, 2016.

Zhu, Q., Huang, X.-F., Cao, L.-M., Wei, L.-T., Zhang, B., He, L.-Y., Elser, M., Canonaco, F., Slowik, J. G., Bozzetti, C., El-Haddad, I., and Prevot, A. S. H.: Improved source apportionment of organic aerosols in complex urban air pollution using the multilinear engine (ME-2), Atmos. Meas. Tech., 11, 1049-1060, https://doi.org/10.5194/amt-11-1049-2018, 2018.

215

Figure S1. Mass concentrations of non-refractory PM₁ (NR-PM₁) and non-refractory PM_{2.5} (NR-PM_{2.5}) measured by the time-of-flight ACSM with a capture vaporizer at the PKUERS site in Beijing for the periods of 3 September to 4 October 2016 and 13 December to 22 January 2017. The open circles represent the data of NR-PM_{2.5} > 150 μ g m⁻³, which are not included in the fitting. The solid circles represent the rest of the data. Non-refractory particle components include OA, sulfate, nitrate, ammonium, and chloride.

Figure S2. Diurnal patterns that are applied in the MEIC inventory for the anthropogenic emissions from power, industry, residential, and agriculture sectors.

Figure S3. The statistical measures of the simulation-to-observation ratios of hourly mean mass concentrations of NR-PM_{2.5}, OA, secondary inorganic aerosol (SIA, the sum of sulfate, nitrate, and ammonium), sulfate, nitrate, and ammonium at the IAP site in Beijing from July 2011 to May 2013. The upper and lower edges of the boxes, the whiskers, the middle lines, and the solid dots denote the 25th and 75th percentiles, the 5th and 95th percentiles, the median values, and the mean values, respectively.

Figure S4. The statistical measures of the simulation-to-observation ratios of hourly mean mass concentrations of NR-PM_{2.5}, OA, SIA, sulfate, nitrate, and ammonium at the IAP site in Beijing from July 2011 to May 2013 after excluding the periods when the mass concentrations of NR-PM_{2.5} are over 150 μ g m⁻³. The upper and lower edges of the boxes, the whiskers, the middle lines, and the solid dots denote the 25th and 75th percentiles, the 5th and 95th percentiles, the median values, and the mean values, respectively.

Figure S5. Diurnal profiles of the simulated and observed summertime HNO₃ concentrations at the Wangdu site in Beijing.

Figure S6. Scatter plots of the observed and simulated campaign-average concentrations of OA by (a) the Simple SOA scheme and (b) the Semivolatile POA scheme. The observation campaigns were conducted from 2006 to 2016 and the submicron-to-fine ratio was used to derive the concentration of fine particles. The simulation for the year of 2012 were used.

Figure S7. The statistical measures of the simulation-to-observation ratios of hourly mean mass concentrations of OA at the IAP site in Beijing from July 2011 to May 2013. The upper and lower edges of the boxes, the whiskers, the middle lines, and the solid dots denote the 25th and 75th percentiles, the 5th and 95th percentiles, the median values, and the mean values, respectively.

Figure S8. Box and whisker plots of the ratios of MERRA2- and radiosonde-derived BLH at 8:00 and 20:00 in the four seasons as well as 14:00 in summer in Beijing from July 2011 to May 2013. The upper and lower edges of the boxes, the whiskers, the middle lines, and the solid dots denote the 25th and 75th percentiles, the 5th and 95th percentiles, the median values, and the mean values, respectively.

Figure S9. Diurnal profiles of the hourly-mean simulated and observed HONO concentrations at the Wangdu site in Beijing.

Figure S10. Monthly mean SO_2 emissions from the MEIC inventory and the top-down estimate derived by Koukouli et al. (2018) and the ratios between the two emissions.

Figure S11. The monthly mean concentrations of nitrate in August 2012 in the observation, simulation with updated wet deposition for nitrate, and standard simulation at the IAP site in Beijing.

Figure S12. The weekly mean concentrations of (a) nitrate in the observation and Case 0, 5, and 6 and (b) sulfate in the observation and Case 0 and 8 at the IAP site in Beijing during the selected wintertime and summertime periods.