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 1 

Abstract 21 

 22 

Ground-based radar and radiometer data observed during the 2017-18 winter were 23 

used to simultaneously estimate both cloud liquid water path and snowfall rate for three 24 

types of snowing clouds: near-surface, shallow and deep. Surveying all the observed data, 25 

it is found that near-surface cloud is the most frequently observed cloud type with an area 26 

fraction of over 60%, while deep cloud contributes the most in snowfall volume with about 27 

50% of the total. The probability distributions of snowfall rates are clearly different among 28 

the three types of clouds, with vast majority hardly reaching to 0.3 mm h-1 (liquid water 29 

equivalent snowfall rate) for near-surface, 0.5 mm h-1 for shallow, and 1 mm h-1 for deep 30 

clouds. However, liquid water path in the three types of clouds all has substantial 31 

probability to reach 500 g m-2. There is no clear correlation found between snowfall rate 32 

and liquid water path for any of the cloud types. Based on all observed snow profiles, 33 

brightness temperatures at Global Precipitation Measurement Microwave Imager channels 34 

are simulated, and the ability of a Bayesian algorithm to retrieve snowfall rate is examined 35 

using half the profiles as observations and the other half as a priori database. Under 36 

idealized scenario, i.e., without considering the uncertainties caused by surface emissivity, 37 

ice particle size distribution and particle shape, the study found that the correlation as 38 

expressed by R2 between the “retrieved” and “observed” snowfall rates is about 0.33, 0.48 39 

and 0.74, respectively, for near-surface, shallow and deep snowing clouds over land surface; 40 

these numbers basically indicate the upper limits capped by cloud natural variability, to 41 

which the retrieval skill of a Bayesian retrieval algorithm can reach. A hypothetical 42 

retrieval for the same clouds but over ocean is also studied, and a major improvement in 43 

skills is found for near-surface clouds with R2 increased from 0.33 to 0.54, while virtually 44 

no change in skills is found for deep clouds and only marginal improvement is found for 45 

shallow clouds. This study provides a general picture of the microphysical characteristics 46 

of the different types of snowing clouds and points out the associated challenges in 47 

retrieving their snowfall rate from passive microwave observations. 48 

 49 

  50 
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 2 

1. Introduction 51 

 52 

Snowfall is an important component in the global hydrological cycle. Its global 53 

distribution may be observed using satellite-based passive and active microwave sensors. 54 

Currently, there are multiple satellites in operation carrying passive microwave sensors that 55 

are potentially able to be used for snowfall observations, which offers great spatial and 56 

temporal coverages for various snowfall related studies. Meanwhile, while only a few 57 

spaceborne active sensors are currently available for snowfall observations, they have the 58 

advantage of providing information on the vertical structure of precipitation. Nevertheless, 59 

whether active or passive sensors are used, in order to convert the observed radiative 60 

signatures (brightness temperature or radar reflectivity) to snowfall rate, two factors related 61 

to the snowing clouds play an essential role: one is the vertical extent of the cloud layer 62 

and the other is the cloud microphysical properties such as particles’ phase and amount. 63 

Using ground-based observations from multiple sensors, in this study we intend to 64 

understand these properties for three distinctive types of snowing clouds. By performing 65 

radiative transfer simulations, we further investigate the implication of the variability in 66 

microphysical properties to satellite snowfall retrievals from passive microwave 67 

observations. 68 

Snowfall retrieval has been investigated recently for both active and passive 69 

satellite measurements. The cloud radar onboard CloudSat satellite (Stephens et al., 2002; 70 

Tanelli et al., 2008) is the first spaceborne active sensor in operation that is suitable for 71 

snowfall observations. It has a minimum detectability of near −30 dBZ near the ground, 72 

allowing to observe the weak scattering signal from snowflakes. Kulie et al. (2016) used 73 

CloudSat cloud classification and snowfall rate retrievals to partition snowfall observations 74 

into shallow cumuliform and deep nimbostratus snowfall categories. Their results show 75 

that there are abundant shallow snow cloud cells globally and they can be associated with 76 

strong convection and heavy snowfall. For example, they found that shallow snowfall 77 

comprises about 36% in the 2006–10 CloudSat snowfall dataset by occurrence, while 78 

constituting some 18% of the estimated annual global snowfall accumulation. Shallow 79 

precipitation can be easily missed by space-borne radars. Although CloudSat radar 80 

provides information on the vertical structure of precipitation, there is a blind zone below 81 
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about 1.5 km due to ground clutter contamination. In most analysis, the lowest range bin 82 

(bin depth is ~240 m) where radar data are not contaminated by surface clutter is often the 83 

third (fifth) above the actual surface over oceanic (land) surfaces (Wood et al., 2013; Kulie 84 

and Bennartz, 2009; Liu, 2008a; Marchand et al., 2008). Hudak et al.(2008) studied the 85 

ability of CloudSat radar to detect precipitation in cold season clouds using data from a C 86 

band weather radar at King City, Ontario. They found that the most frequent cause of a 87 

miss in detection by CloudSat radar was due to ground clutter removal of valid echoes by 88 

the algorithm. Similarly, Chen et al. (2016) compared snowfall estimates from CloudSat 89 

radar (Wood et al., 2013) and ground radar derived Multi-Radar and Multi-Sensor (MRMS) 90 

product (Zhang et al., 2016), and found that the lowest height with valid estimate for most 91 

(99.41%) snowfall events in CloudSat product is over 1 km above surface, whereas it for 92 

76.41% of the corresponding MRMS observations is below 1 km.  93 

 Using satellite passive microwave observations at high frequency channels, 94 

snowfall may be retrieved due to the scattering of upwelling radiation by snowflakes 95 

(Katsumata et al., 2000; Bennartz and Bauer, 2003; Skofronick-Jackson and Johnson, 2011; 96 

Gong and Wu, 2017). Retrieval algorithms have been developed both in research mode 97 

(Kim et al., 2008; Kongoli et al., 2015; Liu and Seo, 2013; Noh et al., 2006; Skofronick-98 

Jackson et al., 2004) and for operations (Kummerow et al., 2015; Meng et al., 2017). 99 

Skofronick-Jackson et al. (2004) and Kim et al. (2008) developed physically-based 100 

retrieval algorithms which seek the best match between radiative transfer model simulated 101 

and satellite observed brightness temperatures. The Liu and Seo (2013) and  Kongoli et al. 102 

(2015) algorithms are mostly statistical in which many pairs of radar and/or gauge-103 

measured snowfall and satellite measured brightness temperatures are used to develop their 104 

statistical relations. The Noh et al. (2006) and Kummerow et al. (2015) snowfall algorithms 105 

are based on the Bayesian theorem; an a priori database linking snowfall and brightness 106 

temperatures needs to be prepared before conducting retrievals. The snowfall in the 107 

database is often retrieved from radars and the brightness temperatures are either from 108 

collocated measurements by passive microwave radiometers or simulated by radiative 109 

transfer models. The Meng et al. (2017) algorithm uses a one-dimensional variational 110 

method to seek the consistency between measured brightness temperatures and 111 
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microphysical properties in the atmospheric column. Its performance has been verified by 112 

surface radar and gauge observations over the U.S. with satisfactory results. 113 

Although the above successes have been achieved by previous investigators, there 114 

are still large discrepancies among different snowfall retrievals (Casella et al., 2017; 115 

Skofronick-Jackson et al., 2017; Tang et al., 2017). Algorithm uncertainty arises from 116 

many factors; one of them is the insufficient knowledge of microphysical properties of the 117 

snowing clouds, in particular, the amount of cloud liquid water. The increase in brightness 118 

temperature over cloudy skies due to liquid water emission in snowing clouds complicates 119 

the snowfall detection and retrieval problems (Liu and Curry, 1997; Liu and Seo, 2013; 120 

Wang et al., 2013). Wang et al. (2013) showed that the warming by liquid water emission 121 

has a similar magnitude to the cooling by ice scattering on microwave brightness 122 

temperatures at frequencies higher than 80 GHz. Liu and Seo (2013) discovered a warming 123 

rather than cooling signal in high-frequency brightness temperature in most snowfall cases 124 

they analyzed. 125 

In addition, correctly simulating brightness temperatures is needed for physical 126 

snowfall retrievals as well as data assimilation of radiance observations in numerical 127 

weather prediction models. Yin and Liu (2019) has studied the bias characteristics of 128 

observed minus simulated brightness temperatures at high frequency channels of Global 129 

Precipitation Measurement Microwave Imager (GPM/GMI) under snowfall conditions. In 130 

their study, a radiative transfer model that includes single-scattering properties of non-131 

spherical snow particles is used to simulate brightness temperatures at 89 through 183 GHz. 132 

The input snow water content profiles are derived from CloudSat radar measurements. The 133 

results show that the discrepancy between simulated and observed brightness temperatures 134 

is the greatest for very shallow or very deep snowing clouds, although it is generally less 135 

than 3 K when averaged over all selected pixels under snowfall conditions. They explained 136 

the results as follows. For very shallow snowing clouds, cloud liquid water may be rich 137 

and contributes substantially to the observed brightness temperatures, while the radiative 138 

transfer model inputs based on CloudSat radar retrievals failed to account for this liquid 139 

water abundance. For very deep snowing clouds, they hypothesized that CloudSat radar 140 

experiences substantial attenuation as well as non-Rayleigh scattering, which leads to 141 

higher simulated brightness temperatures than observed. A better understanding of the 142 
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microphysical properties in very shallow and very deep snowing clouds is clearly needed 143 

to reduce the discrepancies between simulated and observed brightness temperatures. 144 

A field experiment was conducted over the Korean Peninsula during the winter of 145 

2017-2018, coinciding with the 2018 winter Olympic Games (ICE-POP 2018: 146 

International Collaborative Experiments for PyeongChang 2018 Olympic and Paralympic 147 

Winter Games). During the field experiment, many ground-based observations including 148 

radar, radiometer and in situ observations were conducted. In this study, we analyze the 149 

vertical structure and microphysical properties of these snowing clouds, with focus on their 150 

potential impacts on satellite remote sensing of snow precipitation.  The main objective of 151 

the study is to gain better understanding of the characteristics of snowing clouds that are 152 

critical to satellite remote sensing of snowfall. 153 

 154 

2. Data and Methods 155 

 156 

2.1 Ground-based Cloud Radar and Radiometer 157 

Observations from the Radiometer Physics GmbH-Frequency Modulated Continuous 158 

Wave 94 GHz cloud radar (RPG-FMCW, 2015) are the primary data source for this study. 159 

This vertical pointing radar is installed at 37.66°N, 128.70°E (altitude 735 m above sea 160 

level) over Korean Peninsula during the ICE-POP 2018 field campaign. It has an operation 161 

frequency of 94 GHz for radar backscatter and Doppler spectrum measurement and an 162 

embedded 89 GHz passive channel for liquid water path measurement. It is noted that while 163 

we refer this instrument as a cloud radar for convenience, it indeed includes an independent 164 

passive microwave channel at 89 GHz, which is used for cloud liquid water estimation. 165 

There is clearly an advantage of this instrument in studying the composition of cloud liquid 166 

and ice over those that measure radar reflectivity and brightness temperature by two 167 

separate instruments because this instrument measures emission and scattering signatures 168 

from the same cloud volume, therefore, avoids beam mismatching problem by a separated 169 

radar and radiometer. The vertical resolution of radar reflectivity measurement is selectable 170 

from 1, 5, 10, or 30 m, with overall radar calibration accuracy better than 0.4 dB. The 171 

minimum detectable radar reflectivity depends on the range and vertical resolution; at its 172 

typical operation mode of 30 m resolution, it is -36 dBZ at 10 km height, which is 173 
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sufficiently sensitive for snowfall detection. In addition to radar reflectivity, the RPG-174 

FMCW also measures Doppler spectrum with a Doppler velocity resolution of 1.5 cm s-1.   175 

 176 
2.2 Retrieved Microphysical Variables  177 
 178 

In this study, the radar reflectivity Ze is converted to snow water content (SWC) 179 

and snowfall rate (S) using the Ze-SWC relation of  Yin and Liu (2017) and Ze-S relation 180 

of  Liu (2008a). The Yin and Liu’s Ze-SWC relation is given by 181 

𝑆𝑊𝐶 = 0.024𝑍!".$%,            (1) 182 

where SWC is in g m-3 and Ze is in mm6 m-3. In developing the above equation, three snow 183 

particle types are employed: sectors, dendrites (Liu, 2008b), and oblate aggregates 184 

(Honeyager et al., 2016). The backscatter cross sections of the three snowflake types are 185 

computed using discrete dipole approximation (DDA) (Draine and Flatau, 1994; Liu, 2004).  186 

The Liu’s S-Ze relation is given by 187 

𝑍! = 11.5𝑆&.'%,     (2) 188 

where S is in mm h-1 (liquid water equivalent snowfall rate) and Ze is in mm6 m-3. The 189 

backscatter cross sections in the Liu (2008b) relation are computed for rosettes, sectors and 190 

dendrites using DDA. 191 

In addition to radar reflectivity, the mean Doppler velocity and spectral width, the 192 

RPG-FMCW also measures brightness temperature at 89 GHz. While there is a liquid water 193 

path (LWP) variable produced by the manufacture-provided software, details about the 194 

liquid water path retrieval algorithm and its accuracy have not been well documented. In 195 

this study, we chose to adapt the algorithm of Liu and Takeda (1988) in computing liquid 196 

water path from 89 GHz brightness temperatures. Briefly, the brightness temperature TB 197 

received by an up-looking radiometer can be divided into three portions, i.e., clear-sky 198 

emission, liquid cloud water emission, and upward emission from the surface and the 199 

atmosphere below cloud but being scattered back by the cloud. The emissivity of the liquid 200 

water cloud ec may then be approximated by 201 

𝜀! =
"!(""$""!)
"#("!$""!)

	,	      (3) 202 

https://doi.org/10.5194/acp-2020-757
Preprint. Discussion started: 30 July 2020
c© Author(s) 2020. CC BY 4.0 License.



 7 

where Ta is a radiatively-mean temperature of the atmosphere in Kelvin, which can be 203 

evaluated by absorption-coefficient-weighted averaging atmospheric temperatures in 204 

vertical. Its value roughly equals to the temperature around 1.5 km altitude. Tc is the mean 205 

temperature of the cloud layer. TBa is the brightness temperature from the liquid-free 206 

atmosphere, which is derived using interpolation between measured TBs at echo-free 207 

regions in this study. From ec calculated from (3), liquid water path (LWP) can be derived 208 

by 209 

LWP = !"!
#$ℑ&"

#$%
"#&#'

𝑙𝑛	(1 − 𝜀() ,                                              (4) 210 

where m is the refractive index of water at temperature Tc, 𝜆 is wavelength, 𝜌(is liquid 211 

water density (1000 kg m-3) and ℑ{	} indicates taking the imaginary part. 212 

In Fig.1 shown is an example of the liquid water path retrieved in this study together 213 

with radar reflectivity cross sections and liquid water path retrieval from the manufacture-214 

provided algorithm. It is seen that in clear-sky regions our liquid water path retrievals are 215 

close to zero, while the manufacture-provided retrievals have a positive bias of about 30 g 216 

m-2. In cloudy regions, the two liquid water path values compare much closer to each other. 217 

Based on this comparison, we believe that the liquid water path values retrieved in this 218 

study are more reasonable. Therefore, our retrievals will be used in the following analysis. 219 

2.3 Snowing Cloud Detection  220 

All snow events have been identified from the RPG-FMCW observations during 1 221 

November 2017 through 30 April 2018 (6 months). To separate snow and rain at surface, 222 

the scheme of Sims and Liu (2015) is implemented. In their study, the effects of multiple 223 

geophysical parameters on precipitation phase were investigated using global ground-224 

based observations over multiple years. They showed that wet-bulb temperature is a key 225 

parameter for separating solid and liquid precipitation and the low-level temperature lapse 226 

rate also affects the precipitation phase. Geophysical parameters from the Modern Era 227 

Reanalysis for Research and Applications Version-2 (MERRA-2) (Gelaro et al., 2017) 228 

were used in this study as input to the Sims and Liu scheme. In addition, we use the near-229 

surface reflectivity higher than -20 dBZ as the criteria for snowfall detection; all radar data 230 
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analyzed for snowing clouds in the following sections have a near-surface radar reflectivity 231 

greater than -20 dBZ.  232 

Cloud top height is used for the determination of cloud types. As shown in Fig.2, 233 

radar reflectivity above cloud top is often noisy as shown between 11 and 16 UTC. 234 

Therefore, it is often problematic to determine cloud top height by simply using a radar 235 

reflectivity threshold. However, we found that Doppler spectral width is a reliable indicator 236 

to identify clouds as shown in the bottom panel in Fig.2. Using visual examination, we 237 

found that Doppler spectral width commonly reduces to less than 0.1 m s-1 above cloud top.  238 

In Fig. 2, we show in the upper panel the cloud top height in the black solid line as 239 

determined by the criteria of the spectral width >0.1 m s-1 for snowing clouds with near-240 

surface radar reflectivity greater than –20 dBZ. It appears that the criteria well capture the 241 

cloud tops. 242 

2.4 Other Ancillary Data 243 

While quantitative analysis was not conducted, data collected at the same location by 244 

PARticle SIze VELocity (PARSIVEL; Löffler-Mang and Joss, 2000; Battaglia et al., 2010; 245 

Tokay et al., 2014), 2-Dimensional Video Distrometer (2DVD; Kruger and Krajewski, 246 

2002), and Multi-Angle Snowflake Camera (MASC; Garrett et al., 2012; Grazioli et al., 247 

2017) are used for confirmation of precipitation phase and particle types. A PARSIVEL is 248 

an optical disdrometer which uses a 54 cm2 laser beam in the wavelength of 650 nm. It 249 

measures the size and fall velocity of individual precipitation particles with diameter 250 

ranging from 0.2 mm to 25 mm for solid particles. An autonomous PARSIVEL unit (Chen 251 

et al., 2017) from NASA was collocated with the RPG-FMCW cloud radar during the field 252 

campaign. A collocated 2DVD provides detailed information on size, fall velocity, and 253 

shape of individual hydrometeors with two orthogonal fast line-scan cameras. The camera 254 

provides images of particles which are matched for individual particles. The matched 255 

individual particles are then corrected for shape distortion. In addition, detail images of 256 

particles are provided from MASC that is composed of three cameras separated 257 

horizontally by an angle of 36 degrees and simultaneously takes high-resolution (35 µm 258 

per pixel) photographs of free-falling hydrometeors. Hydrometeor classification algorithm 259 

based on the supervised machine learning technique (Praz et al., 2017) is applied to the 260 
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individual images of particles. This procedure identified the precipitation type (small 261 

particles, columnar crystals, planer crystals, combination of columnar and plate crystals, 262 

aggregates, and graupel) and the degree of riming. 263 

2.5 Dividing Snowing Clouds to Three Types 264 

The winter weather at the observational site is largely influenced by passing storms 265 

associated with low-pressure frontal systems. A common radar reflectivity cross section is 266 

similar to that shown in Fig.1 where deeper clouds lead to shallower convective cells. The 267 

deeper clouds are related to the low-pressure system crossing the Korean peninsula or 268 

passing its south and the shallower clouds are linked to air-sea interaction under the control 269 

of a high-pressure cold air system after front passing.  In consideration of the implications 270 

to satellite snowfall remote sensing, we group the snowing clouds into three types: deep, 271 

shallow and near-surface. The “deep” snowing clouds are those with cloud top higher than 272 

4 km, which are considered to be easily detected by both space-borne radars and 273 

radiometers at high microwave frequencies. They are mostly generated by large-scale 274 

lifting of frontal systems. We define the “shallow” snowing clouds as those with cloud top 275 

between 1.5 and 4 km. Large part of the snowing clouds in this group are associated with 276 

convective cells in unstable airmasses after the passing of fronts. These are the group that 277 

space-radars and radiometers may sometimes have difficulties to detect because of their 278 

shallowness and liquid-water rich. The “near-surface” group is defined as those having 279 

cloud top lower than 1.5 km. Because of their shallowness, this group of snowing clouds 280 

will likely be hidden within ground-clutters for space-radars. Ground-based observations 281 

have the advantage to detect them from bottom up. 282 

In Fig.1, examples are shown for the three snowing cloud types, together with liquid 283 

water path retrieved from RPG-FMCW observations using algorithms described in section 284 

2.2. In this case, the largest value of liquid water path was seen in the transition from 285 

shallow to near-surface snowing clouds near 12 UTC, while the strongest radar reflectivity 286 

values (i.e., the heaviest snowfall) occurred in the deep snowing cloud between 01 to 05 287 

UTC on 24 December.  288 

Surveying all observed data for the entire winter, the relative frequencies of 289 

occurrence (area fraction) and snowfall amount (volume fraction) for the three types of 290 
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snowing clouds are shown in Fig.3.  As described earlier, we used -20 dBZ at the lowest 291 

bin to identify snow events. The snowfall volume is the accumulated snowfall with the rate 292 

estimated by eq.(2) from radar reflectivity at the lowest bin. Over half (67.4%) of the 293 

observed samples are near-surface snowfall, followed by shallow (21.2%) and then deep 294 

(11.4%) snowing clouds. However, deep snowing clouds contribute the most to the total 295 

snowfall volume (45.3%), followed by shallow (28.5%) and then near-surface (26.2%) 296 

snowing clouds.  297 

 298 

3. Microphysical Properties of Snowing Clouds 299 

 300 

3.1 Case Examples 301 

(a) Deep and “dry” followed by near-surface snowing clouds 302 

From 7 to 8 March 2018, a low-pressure system passed the south of the Korea 303 

Peninsula, and solid precipitation was observed at the radar site from 09 UTC on the 7th 304 

through 24 UTC on the 8th. In Fig.4 shown are cross section of radar reflectivity and time 305 

variation of liquid water path and snow water path (SWP, vertically integrated snow water 306 

content). Surface PARSIVEL and 2DVD observations indicated that snow particle types 307 

are mostly snowflakes from 09 UTC on the 7th to 06 UTC on the 8th, while rimed ice 308 

particles and graupels are also observed then after.  The radar and radiometer observations 309 

indicate that the deep clouds have cloud top higher than 8 km and peak snow water path 310 

value about 400 g m-2. However, liquid water in the deep clouds is low, with liquid water 311 

path constantly below 150 g m-2. Once the deep clouds pass the station, the clouds became 312 

much shallower, mostly being classified as near-surface snowing clouds. However, their 313 

liquid water path increased substantially with peak values close to 600 g m-2, which is 314 

consistent with the observed rimed ice particles and graupels during this period.  315 

(b)  Deep and “wet” followed by shallow snowing clouds 316 

 On 28 February 2018, deep snowing clouds associated with a low-pressure system 317 

were observed at the radar site, followed by shallow snowing clouds that lasted till 03 UTC 318 

on March 1. Radar reflectivity, liquid water path and snow water path are shown in Fig.5. 319 
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Surface PARSIVEL observations indicated melting snow before 04 UTC on February 28, 320 

which may have contributed the liquid water path peak around 04 UTC. Heavy snowfall 321 

was observed from 04 to 14 UTC on 28 February. Liquid water path was high for both the 322 

deep and shallow clouds with peaks higher than 400 g m-2 even without including the 323 

portion of melting snow before 04 UTC on the 28th. Rimed snow particles were observed 324 

at surface corresponding to the shallow snow cell based on 2DVD and MASC data. 325 

3.2 Liquid versus Ice in Snowing Clouds 326 

 During the 6-month period, a total of 374 hours of snow precipitation have been 327 

observed by the RPG-FMCW.  The frequency distributions of 5-minute averaged surface 328 

snowfall rate and liquid water path are shown in Fig.6 with both surface snowfall rate and 329 

liquid water path in logarithm scale. On average, deeper clouds generate heavier snowfall; 330 

near-surface and shallow snowing clouds produce snowfall rarely heavier than 0.5 mm h-331 
1, while snowfall rate in deep snowing clouds reaches over 1 mm h-1. Higher values of 332 

cloud liquid water path are also more likely observed in deeper clouds. However, the 333 

likelihood of a substantial amount of liquid water in shallower clouds is also high. For 334 

example, for the liquid water path range of 100~250 g m-2 the frequency values are still 335 

reaching about 10% for near-surface and shallow snowing clouds. On the upper limit, 336 

liquid water path in all clouds only occasionally exceeds 500 g m-2. 337 

 In Fig.7, we show the scatterplot of surface snowfall rate versus liquid water path 338 

averaged over a 5-minute period. As indicated in case studies earlier, the two variables 339 

hardly vary in a correlated fashion, neither positively nor negatively. For deep snowing 340 

clouds, the heaviest snowfall corresponds to a liquid water path of about 200 g m-2, while 341 

further increasing in liquid water path does not seem to enhance surface snowfall. For 342 

shallow and near-surface snowing clouds, the snowfall rate is confined between 0 to 0.6 343 

mm h-1 while liquid water path stretches from 0 to 600 g m-2 without coherent variation 344 

between liquid water path and surface snowfall rate. Additionally, unlike heavy snowfall 345 

preferably occurring in deep snowing clouds, large values of liquid water path (say > 300 346 

g m-2) are almost equally probable to be found in near-surface, shallow and in deep snowing 347 

clouds. 348 
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 The mean state and its variability of cloud liquid water are also examined in the 2-349 

dimensional space of near surface radar reflectivity and cloud top height, as shown in Fig.8. 350 

In this figure, the mean values of (a) the number of occurrences, (b) liquid water path, and 351 

(c) standard deviation of liquid water path in each 2 dBZ by 500 m grid are shown based 352 

on the 5-minute averaged data. The number of occurrences diagram indicates that heavier 353 

snowfall (stronger radar reflectivity) tends to have a higher cloud top for cases with near 354 

surface radar reflectivity greater than 0 dBZ although this tendency is not clear for cases 355 

with lower values of near surface radar reflectivity. On average, the higher values of liquid 356 

water path are along the right-most edge of the data-covered area in the plot, indicating that 357 

given the same surface snowfall rate clouds with the lowest top height tend to contain the 358 

highest amount of liquid water. The variability of liquid water path as expressed by its 359 

standard deviation further indicates that liquid water path in clouds with lower top heights 360 

is more variable in magnitude as well. 361 

To express the “dryness” of the snowing clouds, one may use the glaciation ratio 362 

(GR) defined as (Liu and Takeda, 1988): 363 

  𝐺𝑅 = )*+
,*+-)*+

× 100% .     (5) 364 

The GR parameter indicates the fraction of total condensed water in the column that has 365 

been converted to solid phase. In Fig.9, we show how the GR values are related to (a) cloud 366 

top height, (b) surface snowfall rate and (c) cloud mean temperature (temperature at the 367 

geometrical middle of a reflectivity profile). Generally speaking, clouds with higher tops, 368 

associated with higher snowfall rate or with colder mean temperature tend to have higher 369 

degrees of glaciation, although the scatters are extremely large. For example, for a shallow 370 

snowing cloud with 0.2 mm h-1 snowfall rate, its glaciation ratio can be any value from 371 

near 0 to about 100%, probably depending on the development stage of individual cells. 372 

Corresponding to the clouds with their heaviest snowfall rate, deep snowing clouds have a 373 

glaciation ratio of about 60% while shallow and near-surface snowing clouds only have 374 

their glaciation ratio less than 20%, which adds extra difficulties for detecting snow in these 375 

types of clouds by passive microwave observations. There is loosely a trend that clouds 376 
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with a lower mean temperature have a higher degree of glaciation. For near-surface 377 

snowing clouds, this trend is less clear with their glaciation degree hardly over 50%.  378 

3.3 Vertical Structures 379 

 The mean vertical structure of the snowing clouds may be expressed by contoured 380 

frequency by altitude diagrams (CFADs; Yuter and Houze, 1995) of (a) radar reflectivity, 381 

(b) mean Doppler velocity, and (c) Doppler spectral width, as shown in Fig. 10. For deep 382 

snowing clouds, the radar reflectivity CFADs show a relatively narrow spread with a sharp 383 

radar reflectivity decreases with the increase of altitude above 3 km (“left-tilting” structure), 384 

implying that most of the precipitation growth occurs above 3 km. For shallow clouds, the 385 

“left-tilting” structure starts from near surface and the frequency has broader distribution 386 

at each level. In contrast, the near-surface snowing clouds do not show such “left-tilting” 387 

structure, but rather have a broad distribution below their cloud top height, indicating that 388 

the precipitation maximum does not necessarily situate near the surface in these profiles. 389 

We interpret that the broad distribution of frequencies at each level is likely due to the 390 

convective nature of these clouds, so that the precipitation profile is largely determined by 391 

the development stage of the clouds. For example, developing clouds have their 392 

precipitation maximum in the upper portion while matured clouds have their precipitation 393 

maximum in the lower portion in the vertical profiles.   394 

 For mean Doppler velocity, the most likely values are around -1 m s-1 (the negative 395 

sign indicates downward movement), corresponding to the terminal velocity of unrimed to 396 

moderately rimed aggregates (Locatelli and Hobbs, 1974). There is a tendency that 397 

particles in upper levels fall somewhat slower than those in the lower levels. The Doppler 398 

spectral width indicates that particles in the upper levels have a narrower spectrum. 399 

Combining the vertical profiles of mean Doppler velocity and spectral width, it is 400 

concluded that ice particles at upper levels have a narrower size distribution and lower 401 

terminal velocity.  402 

 403 

4. Implications to Passive Microwave Remote Sensing 404 

 405 
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To understand how the microphysical properties in snowing clouds impact on 406 

passive microwave remote sensing, a radiative transfer model simulation at GPM/GMI 407 

channels has been conducted using the measured liquid and snow water quantities as a 408 

guidance for the model input. The radiative transfer model developed by Liu (1998) has 409 

been used in this simulation, which uses a four-stream discrete ordinates method to solve 410 

the radiative transfer equation. For snow particles, the single-scattering properties 411 

calculated by discrete dipole approximation for sector type snowflakes (Liu, 2008b) are 412 

used. Based on studies of Geer and Baordo (2014), the single-scattering properties for the 413 

sector type snowflakes work reasonably well in radiative transfer simulations for middle 414 

latitude snowstorms. Since the emphasis of this study is to assess the impact of cloud 415 

microphysics on satellite remote sensing, the variability of surface emissivity is not 416 

considered. In all the following simulations, we assign an emissivity of 0.9 for land surface 417 

for all GMI channels and a 5 m s-1 wind speed over ocean to compute surface emissivity.  418 

4.1 Masking Effect to Scattering Signatures by Cloud Liquid Water 419 

 Based on analysis shown in section 3.2, liquid water path frequently varies from 0 420 

to 500 g m-2 for any of the 3 types of snowing clouds while snowfall rate at surface 421 

commonly reaches to 0.3, 0.5, and 1.0 mm h-1, respectively, for near-surface, shallow, and 422 

deep clouds. We examine how the cloud liquid would mask the ice scattering at two GMI 423 

frequencies, 89 and 166 GHz, at viewing angles of 53° for 89 GHz and 49° for 166 GHz 424 

using radiative transfer calculations. Using clear-sky brightness temperature TB0 as the base, 425 

Figure 11 shows how brightness temperature varies as liquid water path and surface 426 

snowfall rate increase. Note that in these calculations, we used the observed snowfall rate 427 

profiles derived for each cloud type and averaged for various snowfall rate bins. A 1-km 428 

deep liquid cloud layer is placed at 0.5-1.5 km, 2.5-3.5 km and 4.5-5.5 km, respectively, 429 

for near-surface, shallow, and deep clouds. The liquid water path is increased from 0 to 430 

500 g m-2.     431 

 For near-surface snowing clouds, the decrease of brightness temperature due to ice 432 

scattering is very limited for either 89 or 166 GHz, only a few Kelvin occurring when liquid 433 

water path is very low. Therefore, most likely this type of clouds displays a warming 434 

signature in the passive microwave observations due to the existence of liquid water clouds. 435 
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For shallow snowing clouds, the modeling results show there is still a mostly warming at 436 

89 GHz and an equal mix of warming and cooling at 166 GHz. The masking effect still 437 

remains quite significant at 89 GHz even for deep snowing clouds; it can cause an increase 438 

in brightness temperature by more than 5 K from clear-sky value. The dominant scattering 439 

signature shows at 166 GHz for deep clouds. At surface snowfall rate of 1 mm h-1, 440 

brightness temperature can decrease from clear-sky value by more than 30 K (color bar 441 

only shows up to -15 K) when liquid water path is lower than 100 g m-2.   442 

 Based on the above modeling results, it is clear that if only relying on scattering 443 

signature, i.e., brightness temperature depression, an algorithm will totally fail in retrieving 444 

snowfall rate for near-surface clouds and partially fail for shallow clouds. The only cloud 445 

type that may have reliable retrievals is the deep snowing cloud. Therefore, a more 446 

plausible approach to the retrieval problem is to use a statistical method in which the 447 

algorithm utilizes any regularities naturally existing between cloud liquid and snow profiles 448 

to search for the most likely snowfall rate. One such approach is the Bayesian retrieval 449 

algorithm (Kummerow et al., 1996; Olson et al., 1996; Seo and Liu, 2005). This approach 450 

requires that the a priori database used in the retrieval has the same characteristics in both 451 

microphysical properties and occurring frequency as those in natural clouds.  452 

4.2 A Bayesian Retrieval Exercise 453 

 In this section, an idealized experiment is designed to examine how a Bayesian 454 

retrieval algorithm would perform for the three types of snowing clouds if we only take 455 

into account the error caused by the variability of liquid water path and snowfall rate 456 

profiles. In other words, we examine how well a Bayesian retrieval algorithm would 457 

perform, when assuming no variations in surface emissivity, snowflakes being a fixed type, 458 

and particle size distribution following an exponential form. Therefore, this exercise 459 

mainly assesses the problems caused by the uncertainties associated with cloud liquid and 460 

snow amounts. 461 

 First, a total of 18752 5-minute averaged snow profiles are constructed from the 6 462 

months long surface radar observations (including zero snowfall profiles). Each of the 463 

snow profile is accompanied with a liquid water path which is assigned to be a 1 km deep 464 

layer at 0.5-1.5 km, 2.5-3.5 km and 4.5-5.5 km, respectively, for near-surface, shallow, and 465 
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deep clouds. Atmospheric temperature, pressure, and relative humidity profiles are also 466 

assigned to these profiles by interpolating MERRA-2 data spatially and temporally to the 467 

individual snow profiles. A radiative transfer model calculation is then performed to 468 

generate brightness temperatures at 11 GMI channels (all except the 10.7 GHz GMI 469 

channels) using the above profiles as input. The 10.7 GHz channel is not considered here 470 

because its brightness temperature is merely sensible to either liquid or ice hydrometeors 471 

and its GMI channel has too large a footprint size compared to other channels. It is also 472 

assumed that surface skin temperature is the same as surface air temperature and surface 473 

emissivity is a constant (0.9 for land) for all channels. A sector type snowflake (Liu, 2008b) 474 

and an exponential particle size distribution (Sekhon and Srivastava, 1971) are used for all 475 

the cases. We then randomly divided the 18752 profiles and their computed brightness 476 

temperatures into two equal-number groups; one is used as the a priori database for the 477 

Bayesian retrieval algorithm, and the other as “observations” to test how well the surface 478 

snowfall rate can be retrieved from the “measured” brightness temperatures. To mimic a 479 

possible random error in the measured brightness temperatures, a random noise with a 480 

maximum magnitude of 1 K is added to the “measured” brightness temperatures before 481 

retrieval is performed. A detailed description of the Bayesian retrieval method can be found 482 

in Seo and Liu (2005). 483 

 In Fig.12 shown are the scatterplots of “measured” versus retrieved surface 484 

snowfall rate, separated by snow cloud types. The correction as indicated by R2 (square of 485 

linear correlation coefficient) is shown in each diagram. There is virtually no bias between 486 

the “measured” and retrieved values. The color of the points in the figures indicates the 487 

value of liquid water path associated with individual profiles. Clearly, as the cloud layer 488 

deepens, the skill of the retrieval improves. The values of R2 increases from 0.33 for near-489 

surface clouds, to 0.48 for shallow clouds, and to 0.74 for deep clouds.  That is, the 490 

retrievals can resolve one-third, one-half and three-fourths of the variances in snowfall rate 491 

observations for near-surface, shallow and deep clouds, respectively. Another observation 492 

from the plots is that departure of points from the one-to-one line does not seem to relate 493 

to the magnitude of liquid water path, which implies that it is the randomness in the 494 

combination of liquid water path and snowfall rate that is reducing the algorithm’s skill, 495 

rather than the magnitude of liquid water path itself. 496 
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 A question one may naturally want to ask is: Will the retrieval skill be improved if 497 

the same clouds were moved to areas over ocean where liquid water information is 498 

distinguishable at some microwave channels (e.g., 89 GHz)? To answer this question, we 499 

perform the same retrieval exercise as mentioned above but assuming the clouds are over 500 

an ocean surface with a constant surface wind speed of 5 m s-1.  Similarly, half of the 18752 501 

samples are used as a priori database and half as “observations”. The retrieval results are 502 

shown in Fig.13. For deep snowing clouds, the R2 statistic indicates virtually no difference 503 

in retrieval skills between over land and over ocean cases, although a visual inspection of 504 

the scatterplot shows that a better correspondence between “measured” and retrieved 505 

values at snowfall rates lower than 0.2 mm h-1. The improvement in retrieval skills for over 506 

ocean shallow clouds is marginal with R2 of 0.54 versus 0.48 over land. The most 507 

significant improvement in retrieval skills occurs for over ocean near-surface snowing 508 

clouds, in which R2 increases from 0.33 over land to 0.54 over ocean. Note that land surface 509 

emissivity and ocean surface wind are fixed in the retrieval exercises. Therefore, the 510 

improvement is not due to a better knowledge of surface conditions, but rather due to the 511 

richer information content on cloud microphysics contained in “measured” brightness 512 

temperatures over ocean. One such piece of information must have come from the 513 

brightness temperature difference between two polarizations over ocean, which remines 514 

mostly zero over land surfaces.  The results shown in Fig.13 indicate that the extra 515 

polarization information helps the most for retrieving snowfall in near-surface clouds. 516 

 To understand the information conveyed in polarization difference of brightness 517 

temperatures, we performed a similar simulation to that described in Section 4.1, but 518 

replaced land surface to ocean surface with a wind speed of 5 m s-1. The changes of 519 

depolarization as liquid water path and snowfall rate increase are shown in Fig.14 for each 520 

of the 3 cloud types at 89 and 166 GHz. Depolarization is defined as DTB=TBV-TBH, where 521 

TBV and TBH are brightness temperatures at vertical and horizontal polarizations, 522 

respectively. The change is relative to clear-sky values, DTB0. The change in depolarization 523 

at 89 GHz is well corresponding to the change in liquid water path, without much 524 

dependence on snowfall rate, particularly for near-surface and shallow snowing clouds. 525 

Therefore, it is plausible that the increased retrieval skill over ocean for near-surface and 526 

shallow clouds is due to the added information on liquid water contained in the polarization 527 
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differences.   Comparing Figs.12 and 13, it seems that the added information is particularly 528 

helpful in improving retrievals at low snowfall rates.  529 

 530 

5. Conclusions 531 

 532 

 During the 2017-18 winter season, a ground-based radar and radiometer 533 

observation has been carried out over Korean Peninsula as part of the ICE-POP 2018 534 

campaign. Using the coincident radar and radiometer data, we were able to retrieve cloud 535 

liquid water path, snow water content and snowfall rate. These microphysical properties 536 

and their relation to cloud top height are analyzed in an effort to better understand their 537 

implications to satellite remote sensing of snowfall. In the analysis, we divide the 538 

approximately 374 hours of observed snowing clouds into near-surface, shallow and deep 539 

types, for which the cloud top height is below 1.5 km, between 1.5 and 4 km and above 4 540 

km, respectively.  The near-surface snowing clouds are most likely to be missed by 541 

currently available space-borne radars because of the blind zone caused by the 542 

contamination of surface clutter, and their shallowness and liquid water abundance may 543 

also present challenges to satellite radiometer observations. The shallow snowing clouds 544 

commonly occur in unstable air mass after the passing of a cold front. It can be detected by 545 

space-borne radars with sufficient low minimum detectable radar reflectivity, but the 546 

mixture of cloud liquid emission and ice scattering complicates the retrievals by passive 547 

microwave observations. The deep snowing clouds are mostly located near frontal zones 548 

and low-pressure centers; their strong ice scattering signature makes it the most favorable 549 

type among the three for snowfall retrievals by both satellite radars and radiometers. 550 

Surveying all the observed data, it is found that near-surface snowing cloud is the most 551 

frequently observed cloud type with a frequency of occurrence over 60%, while deep 552 

snowing cloud contributes the most in snowfall volume with about 50% of the total 553 

snowfall amount.  554 

 The probability distributions of surface snowfall rates are clearly different among 555 

the three types of snowing clouds, with vast majority of it hardly reaching to 0.3 mm h-1 556 
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for near-surface, 0.5 mm h-1 for shallow, and 1 mm h-1 for deep snowing clouds. However, 557 

liquid water path in the three types of snowing clouds all has substantial likelihood to be 558 

between 0 to 500 g m-2, although deeper clouds are somewhat more likely with more liquid 559 

water as well. There is no clear correlation, either positive or negative, between surface 560 

snowfall rate and liquid water path. However, given the same surface snowfall rate, clouds 561 

with lower cloud top height tend to have higher liquid water path. The glaciation ratio 562 

defined by the ice fraction in the total condensed water in an atmospheric column is 563 

estimated and found to be related to cloud top height, surface snowfall rate and cloud mean 564 

temperature, although the relations are very scattered. A higher value of glaciation ratio is 565 

generally corresponding to a higher cloud top, a higher surface snowfall rate and lower 566 

cloud mean temperature.  567 

  Using the approximately 19,000 observed snow cloud profiles, brightness 568 

temperatures at GPM/GMI channels are computed, and the ability of a Bayesian type 569 

algorithm to retrieve surface snowfall is examined using half the profiles as observations 570 

and half as a priori database. Under idealized scenario, i.e., without considering the 571 

uncertainties caused by surface emissivity, ice particle size distribution and particle shape, 572 

the examination results indicate that the correlation as expressed by R2 between the 573 

“retrieved” versus “measured” snowfall rates is about 0.33, 0.48 and 0.74, respectively, for 574 

near-surface, shallow and deep snowing clouds over land surface. Since this is an extremely 575 

idealized retrieval exercise only dealing with the complicated mixture of cloud liquid and 576 

snow profiles, these numbers basically indicate the upper limits of how a retrieval 577 

algorithm can perform for these snowing clouds. The result also implies that it is the 578 

randomness in the combination of liquid water path and snowfall rate that is limiting the 579 

algorithm’s skill, rather than the magnitude of liquid water path itself. A hypothetical 580 

retrieval for the same clouds but over ocean is also studied, and a major improvement in 581 

skill for near-surface clouds is found with R2 increased from 0.33 to 0.54, while virtually 582 

no change in skill is found for deep clouds and only marginal improvement is found for 583 

shallow clouds. The improvement seen in near-surface clouds is interpreted as that some 584 

liquid water information is resolved by the polarization difference contained in the over-585 

ocean brightness temperatures. This information helps the most for the otherwise 586 

information-poor observations for the near-surface clouds. 587 
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 By analyzing the radar and radiometer data from one-winter-long observations and 588 

the results of a Bayesian retrieval dry run, this study gives a general picture of the 589 

characteristics of the different types of snowing clouds and points out the fundamental 590 

challenges in retrieving their snowfall rate from passive microwave observations. It is 591 

hopeful that these results can help developers improve physical assumptions in future 592 

algorithms as well as data users better interpret satellite retrieved snowfall products.  593 

 594 
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 777 

 778 

 779 

 780 

Fig.1 (a) Radar reflectivity, (b) two liquid water path retrievals and (c) their differences 781 

(LWP of our study plus manufacture product) for observations during 23 and 24 782 

December 2017. In the top panel, cloud types as defined in the text are also indicated. 783 
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 786 

 787 

 788 

 789 

 790 

Fig.2 Height-time cross section of (a) radar reflectivity and (b) Doppler spectral width for 791 

observations on 25 November 2017. The cloud top for snowing clouds (surface radar 792 

reflectivity greater than -20 dBZ) is also shown in the top panel. 793 
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 796 

 797 

 798 

Fig.3 (a) Area and (b) volume fractions of the 3 types of snowing clouds observed during 799 

the 2017-18 winter season. 800 
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 803 

 804 

 805 

Fig.4 (a) Height-time cross section of radar reflectivity and (b) time series of liquid water 806 

path (LWP, black) and snow water path (SWP, red) for observations on 7 and 8 March 807 

2018.  808 
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 810 

 811 

 812 

Fig.5 (a) Height-time cross section of radar reflectivity and (b) time series of liquid water 813 

path (LWP, black) and snow water path (SWP, red) for observations from 27 February 814 

through 1 March 2018.  815 
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 819 

 820 

 821 

Fig.6 Frequency distribution of (a) liquid water path and (b) snowfall rate at surface 822 

derived from all observed snowfall data during the 2017-18 winter. The frequency values 823 

are normalized so that the sum of their values at all bins is 100%. 824 
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 826 

 827 

Fig.7 Scatterplot of liquid water path and surface snowfall rate. Each point is an average 828 

of 5-minute data. All observed data during the 2017-18 winter are included. 829 
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 832 

 833 

Fig.8 Two-dimensional distributions of (a) number of occurrences, (b) liquid water path 834 

and (c) standard deviation of liquid water path as a function of near surface radar 835 

reflectivity and cloud top height. All observed data during the 2017-18 winter are used in 836 

calculate the distributions. 837 
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 839 

 840 

 841 

Fig.9 Scatterplot of glaciation ratio (see definition in the text) with (a) cloud top height, 842 

(b) surface snowfall rate and (c) cloud temperature based on 5-minute averages of all 843 

observational data of snowing clouds in the 2017-18 winter. 844 
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  845 

 846 

 847 

Fig.10 Contoured frequency by altitude diagram (CFADs) for radar reflectivity (top), 848 

mean Doppler velocity (middle) and Doppler spectral width (bottom) for deep (left), 849 

shallow (middle) and near-surface (right) snowing clouds. The frequency values are 850 

calculated in such a way that the sum of all frequency values at each altitude is 100%. All 851 

observed data from the 2017-18 winter are used.   852 

 853 

 854 
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 857 

Fig.11 Simulated brightness temperature change (relative to clear-sky) at GMI 89 GHz 858 

(top) and 166 GHz (bottom) for near-surface (left), shallow (middle) and deep (right) 859 

snowing clouds. The change is relative to values at clear-sky. 860 
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 863 

Fig.12 Scatterplot of “measured” versus “retrieved” snowfall rate for (a) near-surface, (b) 864 

shallow and (c) deep snowing clouds over land. Color of the points indicates liquid water 865 

path associated with the case. Correlation is indicated by R2 in each diagram. 866 
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 868 

 869 

Fig.13 Scatterplot of “measured” versus “retrieved” snowfall rate for (a) near-surface, (b) 870 

shallow and (c) deep snowing clouds over ocean. Color of the points indicates liquid 871 

water path associated with the case. Correlation is indicated by R2 in each diagram. 872 
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 874 

Fig.14 Simulated change of depolarization for GMI 89 GHz (top) and 166 GHz (bottom) 875 

for near-surface (left), shallow (middle) and deep (right) snowing clouds over ocean.  876 

Depolarization is the brightness temperature difference between vertical and horizontal 877 

polarizations. The change is relative to values at clear-sky. 878 
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