
Reply to Reviewer 1: 
 
1. General comments.  
 
This paper presents a study including detailed analyses of ground-based observation data for 
snow precipitation events and a Bayesian retrieval results at GPM GMI channels. I’d like to add 
value to this study in providing additional information on observational characteristics of snow 
events, which has been challenging and generally not sufficient for both numerical modeling and 
satellite retrieval. The data and results are overall well organized and described, but there are 
some parts which need further clarifications and corrections for publication. Specific 
questions/comments I would suggest are below. 
 
Thank you for your comments and suggestions. Your comments are very helpful. We made 
corrections and clarifications based on these comments (original comments in italic). 
Additionally, some revisions are also made based on comments from a discussion contributor, 
mainly related to radar reflectivity correction. In the revised version, radar reflectivity has been 
corrected for atmosphere and liquid water absorption (attenuation due to ice scattering has 
readily been corrected by processing software). While detailed numbers are revised in several 
figures, the main conclusions remain unchanged.    
 
2. Specific comments. 
 
Line 23: Specify the region of the study. Different regions may show different snow 
characteristics. 
 
Indeed, the characteristics are region-dependent. We added the phrase “over Pyeongchang area 
in the east coast of the Korean Peninsula”.  
 
Line107-110: What does it exactly mean by this? Still explaining the Bayesian algorithms? 
Please clarify. 
 
Yes, here we are still explaining Bayesian algorithms. To clarify, this sentence is rewritten as: 
“The snowfall rates in a Bayesian algorithm database are often retrievals from radars and the 
brightness temperatures are either those collocated measurements of passive microwave 
radiometers or simulated by radiative transfer models.” 
 
Line 135: It would be helpful for readers to specify the greatest DTB, and the thresholds for each 
very shallow or very deep. 
 
This sentence is revised as: “The results show that the discrepancy between simulated and 
observed brightness temperatures is the greatest for very shallow (cloud top around 2 km) or 
very deep (cloud top around 8 km) snowing clouds with discrepancy value being over 10 K in 
the former and over 30 K in the latter case, although it is generally less than 3 K when averaged 
over all selected pixels under snowfall conditions.” 
 
Line 139: Please clarify the sentence. Add more explanation if needed. 



 
This sentence is revised as: “For very shallow snowing clouds, cloud liquid water may be rich 
and contributes substantially to the observed brightness temperatures. However, the radiative 
transfer model, which uses CloudSat radar and GMI retrievals as input, failed to account for this 
liquid water abundance, resulting in a large discrepancy between simulated and observed 
brightness temperatures.” 
 
Line 145 One additional sentence would be desirable to explain an object of the field study. & 
Line 146: Any reference for ICE-POP? 
 
A sentence and a reference are added. “The experiment focuses on the measurement, physics, 
and improved prediction of heavy orographic snow in the PyeongChang region of South Korea 
(Gehring et al., 2020).” 
 
Line 152-153: This study also includes a Bayesian retrieval for GPM GMI, not just to analyze 
the observational measurements. Any additional goal to emphasize the value of this study? 
 
A new sentence is added. “Furthermore, we examine how a Bayesian snowfall retrieval 
algorithm with GPM/GMI observations would perform for the snowing clouds observed during 
this field experiment.” 
 
Eq.(1): No need to adjust for snow events over Korea, and specifically for 94 GHz cloud radar? 
 
This equation was originally derived for CloudSat radar which has the same frequency (94 GHz) 
as this surface radar. So, adjustment for frequency is not needed. However, adjustment for snow 
events over Korea is an open question. The particle shapes and size distributions used for 
deriving Eq.(1) will differ from those in snow events over Korea. But it is difficult to know how 
they differ. So, uncertainties will be associated with using this equation. We added one sentence 
to mention this issue. “It should be mentioned that although Eq.(1) is developed for CloudSat 
radar which has the same frequency as the RPG-FMCW radar, uncertainties in particle shapes 
and size distributions will certainly cause errors in snow water content derived in this study.” 
 
Line 205-206: How to derive Tc. How is it considering the cloud base? 
 
We derived Tc by the air temperature at the height of the geometric middle of radar reflectivity 
profiles. In other word, cloud base is assumed to be the lowest level with valid radar echo. In 
case of snowfall, it is assumed to be the ground. A sentence is added to describe this derivation. 
“which [Tc] is determined in this study by the air temperature at the height of the geometric 
middle of valid radar reflectivity profiles.” 
 
Line 238: 0.1 m/s is only in this case or averaged from multiple cases? 
 
It is an average for multiple cases. We examined this and some other cases, and found 0.1 m/s is 
a reasonable threshold to determine cloud top. This exemplar case is given here to show how this 
threshold worked. 
 



Line 244: “While quantitative analysis was not ...” -> How do you expect this could impact on 
the results and future improvement (in conclusions)? 
 
Particle shapes definitely are useful information in understanding microphysics and improving 
retrieval algorithms. These data are treasures to be explored in the future. We added some 
discussions in the last (conclusions) section. “Lastly, it is worth mentioning that there are still 
many valuable datasets, such as particle shape and size distribution information from 
PARSIVEL, 2DVD and MASC, which we didn’t analyzed quantitatively in this study. A 
thorough analysis of those datasets in conjunction with the remote sensing data will undoubtably 
improve future snowfall retrieval algorithm development.” 
 
Line 266: “A common radar...” -> Any previous studies? & Line 268: Any references to 
determine snow event types over this region? 
 
This paragraph is completely rewritten. We added a summary of synoptic patterns for snowfall in 
the Pyeongchang area and their associated snow clouds types. A number of references are also 
provided. The deep clouds are commonly associated with low pressure systems, and the 
shallower clouds are associated with convective cells. The revised paragraph is as follows. 
“There are several synoptic weather patterns that cause snowfall over the Pyeongchang area. The 
first pattern is a synoptic low pressure system, so-called “cold low”, developed over the Yellow 
sea (west of Korea) or cold continent and causes the snowfall over the northern or middle part of 
Korea when moving to east (Chung et al. 2006; Ko et al. 2016; Park et al. 2019). As this system 
crosses the Korean peninsula, the system become weaker and shallower once moving over the 
Pyeongchang area. The precipitation intensity and depth of system depend on the strength of low 
pressure. The second synoptic pattern, “warm low,” develops over the warm ocean near East 
China sea or South sea and moves to north-east or east (Nam et al. 2014; Gehring et al 2020). 
This synoptic pattern brings abundant moisture to Korean Peninsula and is typically favored for 
vertically well-developed precipitation system. As the warm low pressure passes the Korean 
Peninsula and East sea, the winds over the Pyeongchang area and East sea turns to easterly or 
north-easterly, bringing in cold air to the east coastal area. Thus, we expect that the depth of 
precipitation system is likely first deep with large moisture and later becomes shallower as 
influenced by north-easterly cold air. The third interesting pattern, so-called “air-sea interaction”, 
is developed by the easterly or north-easterly flow due to the Kaema high over the northern 
mountain complex or high pressure over Manchuria by the eastward expansion of the Siberian 
high (Kim and Jin 2016; Kim el at 2019). Thus, the cold north-easterly or easterly flow enhances 
the interaction with warm moisture ocean, resulting in the development of shallow convection 
and thermal inversion in the lower troposphere. The shallow convective clouds move to the 
coastal and mountain area where they are lifted by the orography. An example of radar 
reflectivity cross section is shown in Fig.1 where deeper clouds lead to shallower convective 
cells. This is the case of the second synoptic type, warm low. During the passage of the warm 
low, the system reached to 9 km. However, the precipitation system is shallower than 1 km 
during easterly or north-easterly flow when the warm low pressure passed the East sea.”    
 
 
Line 291: -20 dBZ -> with that, light snow events can be yet counted sufficiently? 
 



Based on studies we know so far, -20 dBZ is a quite a low threshold. We added 2 sentences and a 
reference here to justify this threshold. “In a study by Wang et al. (2017) based on CloudSat 
radar reflectivity profiles, they found that precipitation onset often occurs when radar reflectivity 
is about -18 to -13 dBZ. We use the value of -20 dBZ as criterion in this study to make sure that 
all possible snowfall cases are included in the precipitation samples.” 
 
Line 294-295: Need more details about samples collected during the field experiment (such as 
the numbers basically as written in the conclusion part). 
 
This paragraph is rewritten to give info of the samples and the ways how the fractions are 
calculated. The revised text is as follows. 
“Surveying all observed data for the entire winter, approximately 374 hours of observations are 
deemed as snowfall events after we apply the -20 dBZ threshold at the lowest bin and the Sims 
and Liu (2015) algorithm to exclude rain events. These observations are then averaged over each 
5-minute interval to form 4491 samples. The relative frequencies of occurrence (area fraction, 
calculated by the number of samples of a given snow type divided by the total number of 
snowfall samples) and snowfall amount (volume fraction, calculated by the snowfall amount 
produced by a given snow type divided by the total snowfall amount by all types) for the three 
types of snowing clouds are shown in Fig.3.  The snowfall volume is the accumulated snowfall 
with the rate estimated by Eq.(2) from radar reflectivity at the lowest bin. Over half (67.4%) of 
the observed samples are near-surface snowfall, followed by shallow (21.2%) and then deep 
(11.4%) snowing clouds. However, deep snowing clouds contribute the most to the total snowfall 
volume (45.3%), followed by shallow (28.5%) and then near-surface (26.2%) snowing clouds.” 
 
Line 427-428: Are those averaged profiles from observed samples? 
 
Yes. We revised this sentence to clarify.  “Note that in these radiative transfer calculations, mean 
snowfall rate profiles derived from observations are used. The mean profiles are derived as 
follows. We first group all the observed snowfall rate profiles according to their cloud type, and 
then for each cloud type we average those profiles that fall into a given snowfall rate bin.” 
 
Line 429: The heights to place the liquid layer are right above the snow cloud layer? 
 
Actually, the liquid layer is within the snow cloud layer, but closer to the top part of the snow 
cloud layer. We assume the clouds are mixed phase clouds with the liquid embedded in the upper 
portion of the cloud layers. 
 
 Line 433-434: Add the decreased TB values. 
 
This sentence is revised. “ …, only about 1.5 K for 89 GHz and 2.5 K for 166 GHz occurring 
when liquid water path is very low.” 
 
Line 544-545:  Please make it clear that this is for the cases studied here or particularly over the 
target region in this study. 
 
We added “In this region during the observation period,” to clarify. 



 
Line 571: What it means exactly? The half of a priori database was from model simulations? 
 
This part is rewritten to make the meaning clear. Now it reads: “Moreover, we examined the 
ability of a Bayesian type algorithm to retrieve surface snowfall rate for snow events similar to 
those observed in this study when using GPM/GMI observations. First, using the approximately 
30,000 observed snow cloud and precipitation-free profiles, brightness temperatures at 
GPM/GMI channels are computed. Then, these snowfall rate and associated brightness 
temperature pairs are randomly divided into two equal-number groups. One group is used as 
“observations” and the other is used as the a priori database of the Bayesian algorithm.” 
 
3. Technical corrections. 
Line 288: Add year.  
Line 556: with vast majority of “them”  
Line 570: half “of” 
 
All are corrected as suggested. Thank you. 
 
 
  
 
 



Reply to Reviewer #2 
 
General comments:  
 
Thank you for your constructive comments and suggestions. We revised the manuscript based on 
your comments and suggestions. The following are responses to your specific comments 
(original comments in italic). Additionally, some revisions are also made based on comments 
from a discussion contributor, mainly related to radar reflectivity correction. In the revised 
version, radar reflectivity has been corrected for atmosphere and liquid water absorption 
(attenuation due to ice scattering has readily been corrected by processing software). While 
detailed numbers are revised in several figures, the main conclusions remain unchanged.    
 
Specific comments: 
 
How generalized are the findings and conclusions? For instance, Kulie (2016) found that 
shallow snow cloud can be associated with strong convection and heavy snowfall while almost 
all the shallow (and near-surface) snowfall in this study is less than 0.5 mm/hr (Fig.6). Please 
add some discussions to answer this question. 
 
We added that following discussions in section 4.2: “Kulie et al. (2016) found that globally 
shallow snow clouds can be associated with strong convections and heavy snowfall. The 
snowfall rates for shallow and near-surface snow clouds observed in this study are mostly lower 
than 0.5 mm h-1; heavy snowfall is mainly associated with deep snow clouds. One possible 
explanation of the difference is as follows.  The snowfall from shallow and near-surface snow 
clouds in this study mostly comes from convections associated with cold airmass outbreak from 
the northwest. Since the observation site is in the mountains in the east coastal region of the 
Korean Peninsula, substantial portion of the moisture picked up by the cold air from the warm 
ocean in the Yellow Sea (west of the Korean Peninsula) has been already transformed to snow 
before reaching the observation site.  In addition, the convective clouds and easterly flow can 
cross the mountains and produce heavy snowfall over the site in the case of strong winds and 
lower thermal stability. However, these types of events occurred relatively infrequently during 
the experiment when compared to the other snowfall types. Consequently, the snowfall 
associated with shallow and near-surface clouds at this site is relatively moderate.” 
 
 -Line 279: Add a sentence about the common cause of near-surface snowfall. Is it usually 
convective? 
 
The following sentence is added: “Similar to the case of shallow snow clouds, the near-surface 
snow clouds also mostly occur after front passing or during north-easterly/easterly flow, and are 
convective in nature.”   
 
-Line 320: What caused melting snow? What’s the temperature profile like? 
 
The melting is caused by temperature near 0ºC. See the PARSIVEL data below. Surface 
temperature is solid line with axis on the right. We added “with surface air temperature near 0ºC” 
in the sentence. 



 
 

-Line 321-325: Was riming also occurring during heavy snowfall? LWP was quite high at the 
time. 
 
The following are MASC pictures measured at 05-06UTC and around 20-21UTC. Both are large 
fluffy flakes, and seemed to show some riming. A phrase “snowflakes observed at surface are 
large aggregates and show indications of riming occurred” is added. 
 

 



 
 
 
-Line 356-359 The conclusion might be partially true for reflectivity between 2 and 10 but it’s 
not universal. It looks to me that Fig. 8(b) mainly shows high LWP associated with large surface 
reflectivity, i.e. heavy snowfall. The text needs to be modified. & Line 359-361:  Again, the 
conclusion is not universal, and the text needs to be modified. 
 
This paragraph is rewritten as follows.  
“The diagrams for mean and standard deviation of liquid water path shown in Figs.8b and 8c 
appear to indicate the following. For deep snow clouds (top higher than 4 km) with surface radar 
reflectivity greater than 6 dBZ, liquid water path has a large mean value but a small standard 
deviation. On the other hand, shallow snow clouds (top between 1.5 and 4 km) with moderate 
surface radar reflectivity (0-5 dBZ) have a moderate mean value but a high variability of liquid 
water path. There is an area with high mean value and high variability of liquid water path 
located at surface radar reflectivity between -10 and 0 dBZ and cloud top height between 4 and 6 
km, possibly corresponding to convective cells in early developing stage. For near-surface and 
shallow clouds, both the mean value and standard deviation of liquid water path appear to 
increase as surface radar reflectivity increases.” 
 
-Lines 368-370: It’s interesting that Fig.9(a) shows a concentration of data with high cloud top 
heights (>5 km) but GR between 50%-75% rather than close to 100%. Can you add some 
comments about the phenomena and maybe its cause? 
 
We suspected that this may be caused by clouds with multiple layers or decoupled upper and 
lower layers. The following sentence is added. “In Fig.9a, there is a concentration of points with 
high cloud top (>5 km) but glaciation ratio between 50% and 75% rather than 100%. It is likely 
that the phenomena are caused by clouds that have multiple layers or a cloud layer with 
dynamically decoupled upper and lower portions” 
 
-Line397-398: There is a shift in this tendency at 4km for deep snowing clouds: fall velocity 
becomes slower at 4km. There also seems a shift in the spectral width at this height. Is there an 
explanation for it? What’s the significance of this height? 



 
Interesting observation. In fact, the radar reflectivity CFADs also shows the shift near 4 km – 
below it, the frequency shows a vertical pattern while above it a left-leaning pattern. This seems 
to indicate the main precipitation growth occurs above 4 km. It must be related to large-scale 
updraft, namely, on average, bulk of the updraft occurs above 4 km in these deep clouds. We 
added a few sentences to describe this phenomenon. “It is also interesting to notice that there 
seems to be a regime shift for deep snow clouds near 4 km altitude; the frequency patterns 
appear to be different below and above this level for all the CFADs of radar reflectivity, Doppler 
velocity and spectrum width. Additionally, the slope of reflectivity suddenly changes around 8 
km and the absolute value of Doppler velocity reduced dramatically below 8 km.  A similar 
feature also appeared in the long-term observation with cloud radar (see Figs. 16 and 17 of Ye et 
al. 2020). The shift of growth regime was appeared at 8 km height (3~3.5 km above the bright 
band peak and corresponding to ~ -17 °C). This regime shift induced the updraft (reached 1 m s-
1) below this layer. However, Ye et al. (2020) could not explain the linkage between this regime 
shift and updraft below. While it is beyond the scope of this study, this phenomenon will be an 
interesting topic for future research on the cloud microphysics in this region.” 
 
-Line 445-446: Liquid water also has an impact on deep snowing clouds (Fig. 11 c and f) so 
underestimation is likely for this type of snowfall. Depending on the algorithm, overestimation is 
also possible for clouds with low LWP. This can be seen in Fig. 12(c) where S is overestimated 
below 0.2 mm/hr for low LWP. Suggest modifying this sentence accordingly. 
 
You are right. This sentence is modified as “Even for deep snowing clouds, cloud liquid water 
will impact snowfall retrieval with a result of an overestimation for low and an underestimation 
for high values of liquid water path.” 
 
-Figures 12 and 13: S is mostly underestimated if measured S is greater than about 
0.7 mm/hr in deep snowing clouds. Please add some discussions about it. 
 
A paragraph is added to discuss this problem. “In Figs. 12 and 13, it is also noted that an 
underestimation occurs when snowfall rate is greater than 0.7 mm h-1 for deep snowing clouds 
regardless over land or ocean. This underestimation may be due to the deficiency of the Bayesian 
scheme, in which the retrieval is a weighted average of snowfall rates of datum points in the a 
priori database that are radiometrically consistent with observations. When an observation is 
close to the upper boundary (i.e., high snowfall rates) in the database, the averaging takes a 
greater number of datum points with snowfall rates lower than the actual value than those with 
higher snowfall rates (no more datum points beyond upper boundary), thus resulting in an 
underestimation.” 
 
-Figures 12 and 13: Besides R2, also calculate bias and RMS for the evaluation of retrievals. 
 
Bias and rms are calculated and the values are added in the figures and text. 
 
-Line 492-496: I can’t fully agree with the statements here. First, low LWP (<50) snowfall is 
underestimated for near-surface snowing clouds but overestimated at the low end for deep 
snowing clouds so the magnitude of LWP does make a difference. Secondly, this study has shown 



that the type of snowfall (defined by cloud depth) instead of snowfall rate that has a significant 
impact on the retrieval skills. 
 
You are right. This statement is not supported by the results. Because this is not a major point we 
want to make, we decide to delete this sentence. 
 
Technical corrections:  
- Lines 381-382: There are no (a), (b), and (c) in Fig. 10. Needs to be consistent with the 
figure caption. / (a,b,c � top, middle, bottom) 
- Line 471: Change ‘merely sensible’ to ‘not sensitive’. 
- Figure 12: Make (a) and (b) larger even if the axis ranges will be different from (c). 
Same with Fig. 13. 
 
All are corrected as suggested. Figs.12 and 13 are replotted. Thank you. 
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Abstract 21 

 22 

Ground-based radar and radiometer data observed during the 2017-18 winter 23 

season over Pyeongchang area in the east coast of the Korean Peninsula were used to 24 

simultaneously estimate both cloud liquid water path and snowfall rate for three types of 25 

snowing clouds: near-surface, shallow and deep. Surveying all the observed data, it is 26 

found that near-surface cloud is the most frequently observed cloud type with an area 27 

fraction of over 60%, while deep cloud contributes the most in snowfall volume with about 28 

50% of the total. The probability distributions of snowfall rates are clearly different among 29 

the three types of clouds, with vast majority hardly reaching to 0.3 mm h-1 (liquid water 30 

equivalent snowfall rate) for near-surface, 0.5 mm h-1 for shallow, and 1 mm h-1 for deep 31 

clouds. However, liquid water path in the three types of clouds all has substantial 32 

probability to reach 500 g m-2. There is no clear correlation found between snowfall rate 33 

and liquid water path for any of the cloud types. Based on all observed snow profiles, 34 

brightness temperatures at Global Precipitation Measurement Microwave Imager channels 35 

are simulated, and the ability of a Bayesian algorithm to retrieve snowfall rate is examined 36 

using half the profiles as observations and the other half as a priori database. Under 37 

idealized scenario, i.e., without considering the uncertainties caused by surface emissivity, 38 

ice particle size distribution and particle shape, the study found that the correlation as 39 

expressed by R2 between the “retrieved” and “observed” snowfall rates is about 0.32, 0.41 40 

and 0.62, respectively, for near-surface, shallow and deep snowing clouds over land surface; 41 

these numbers basically indicate the upper limits capped by cloud natural variability, to 42 

which the retrieval skill of a Bayesian retrieval algorithm can reach. A hypothetical 43 

retrieval for the same clouds but over ocean is also studied, and a major improvement in 44 

skills is found for near-surface clouds with R2 increased from 0.32 to 0.52, while smaller 45 

improvement is found for shallow and deep clouds. This study provides a general picture 46 

of the microphysical characteristics of the different types of snowing clouds and points out 47 

the associated challenges in retrieving their snowfall rate from passive microwave 48 

observations. 49 

  50 
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1. Introduction 62 

 63 

Snowfall is an important component in the global hydrological cycle. Its global 64 

distribution may be observed using satellite-based passive and active microwave sensors. 65 

Currently, there are multiple satellites in operation carrying passive microwave sensors that 66 

are potentially able to be used for snowfall observations, which offers great spatial and 67 

temporal coverages for various snowfall related studies. Meanwhile, while only a few 68 

spaceborne active sensors are currently available for snowfall observations, they have the 69 

advantage of providing information on the vertical structure of precipitation. Nevertheless, 70 

whether active or passive sensors are used, in order to convert the observed radiative 71 

signatures (brightness temperature or radar reflectivity) to snowfall rate, two factors related 72 

to the snowing clouds play an essential role: one is the vertical extent of the cloud layer 73 

and the other is the cloud microphysical properties such as particles’ phase and amount. 74 

Using ground-based observations from multiple sensors, in this study we intend to 75 

understand these properties for three distinctive types of snowing clouds. By performing 76 

radiative transfer simulations, we further investigate the implication of the variability in 77 

microphysical properties to satellite snowfall retrievals from passive microwave 78 

observations. 79 

Snowfall retrieval has been investigated recently for both active and passive 80 

satellite measurements. The cloud radar onboard CloudSat satellite (Stephens et al., 2002; 81 

Tanelli et al., 2008) is the first spaceborne active sensor in operation that is suitable for 82 

snowfall observations. It has a minimum detectability of near −30 dBZ near the ground, 83 

allowing to observe the weak scattering signal from snowflakes. Kulie et al. (2016) used 84 

CloudSat cloud classification and snowfall rate retrievals to partition snowfall observations 85 

into shallow cumuliform and deep nimbostratus snowfall categories. Their results show 86 

that there are abundant shallow snow cloud cells globally and they can be associated with 87 

strong convection and heavy snowfall. For example, they found that shallow snowfall 88 

comprises about 36% in the 2006–10 CloudSat snowfall dataset by occurrence, while 89 

constituting some 18% of the estimated annual global snowfall accumulation. Shallow 90 

precipitation can be easily missed by space-borne radars. Although CloudSat radar 91 

provides information on the vertical structure of precipitation, there is a blind zone below 92 
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about 1.5 km due to ground clutter contamination. In most analysis, the lowest range bin 93 

(bin depth is ~240 m) where radar data are not contaminated by surface clutter is often the 94 

third (fifth) above the actual surface over oceanic (land) surfaces (Wood et al., 2013; Kulie 95 

and Bennartz, 2009; Liu, 2008a; Marchand et al., 2008). Hudak et al.(2008) studied the 96 

ability of CloudSat radar to detect precipitation in cold season clouds using data from a C 97 

band weather radar at King City, Ontario. They found that the most frequent cause of a 98 

miss in detection by CloudSat radar was due to ground clutter removal of valid echoes by 99 

the algorithm. Similarly, Chen et al. (2016) compared snowfall estimates from CloudSat 100 

radar (Wood et al., 2013) and ground radar derived Multi-Radar and Multi-Sensor (MRMS) 101 

product (Zhang et al., 2016), and found that the lowest height with valid estimate for most 102 

(99.41%) snowfall events in CloudSat product is over 1 km above surface, whereas it for 103 

76.41% of the corresponding MRMS observations is below 1 km.  104 

 Using satellite passive microwave observations at high frequency channels, 105 

snowfall may be retrieved due to the scattering of upwelling radiation by snowflakes 106 

(Katsumata et al., 2000; Bennartz and Bauer, 2003; Skofronick-Jackson and Johnson, 2011; 107 

Gong and Wu, 2017). Retrieval algorithms have been developed both in research mode 108 

(Kim et al., 2008; Kongoli et al., 2015; Liu and Seo, 2013; Noh et al., 2006; Skofronick-109 

Jackson et al., 2004) and for operations (Kummerow et al., 2015; Meng et al., 2017). 110 

Skofronick-Jackson et al. (2004) and Kim et al. (2008) developed physically-based 111 

retrieval algorithms which seek the best match between radiative transfer model simulated 112 

and satellite observed brightness temperatures. The Liu and Seo (2013) and  Kongoli et al. 113 

(2015) algorithms are mostly statistical in which many pairs of radar and/or gauge-114 

measured snowfall and satellite measured brightness temperatures are used to develop their 115 

statistical relations. The Noh et al. (2006) and Kummerow et al. (2015) snowfall algorithms 116 

are based on the Bayesian theorem; an a priori database linking snowfall and brightness 117 

temperatures needs to be prepared before conducting retrievals. The snowfall rates in a 118 

Bayesian algorithm database are often retrievals from radars and the brightness 119 

temperatures are either those collocated measurements of passive microwave radiometers 120 

or simulated by radiative transfer models. The Meng et al. (2017) algorithm uses a one-121 

dimensional variational method to seek the consistency between measured brightness 122 

temperatures and microphysical properties in the atmospheric column. Its performance has 123 
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been verified by surface radar and gauge observations over the U.S. with satisfactory 129 

results. 130 

Although the above successes have been achieved by previous investigators, there 131 

are still large discrepancies among different snowfall retrievals (Casella et al., 2017; 132 

Skofronick-Jackson et al., 2017; Tang et al., 2017). Algorithm uncertainty arises from 133 

many factors; one of them is the insufficient knowledge of microphysical properties of the 134 

snowing clouds, in particular, the amount of cloud liquid water. The increase in brightness 135 

temperature over cloudy skies due to liquid water emission in snowing clouds complicates 136 

the snowfall detection and retrieval problems (Liu and Curry, 1997; Liu and Seo, 2013; 137 

Wang et al., 2013). Wang et al. (2013) showed that the warming by liquid water emission 138 

has a similar magnitude to the cooling by ice scattering on microwave brightness 139 

temperatures at frequencies higher than 80 GHz. Liu and Seo (2013) discovered a warming 140 

rather than cooling signal in high-frequency brightness temperature in most snowfall cases 141 

they analyzed. 142 

In addition, correctly simulating brightness temperatures is needed for physical 143 

snowfall retrievals as well as data assimilation of radiance observations in numerical 144 

weather prediction models. Yin and Liu (2019) has studied the bias characteristics of 145 

observed minus simulated brightness temperatures at high frequency channels of Global 146 

Precipitation Measurement Microwave Imager (GPM/GMI) under snowfall conditions. In 147 

their study, a radiative transfer model that includes single-scattering properties of non-148 

spherical snow particles is used to simulate brightness temperatures at 89 through 183 GHz. 149 

The input snow water content profiles are derived from CloudSat radar measurements. The 150 

results show that the discrepancy between simulated and observed brightness temperatures 151 

is the greatest for very shallow (cloud top around 2 km) or very deep (cloud top around 8 152 

km) snowing clouds with discrepancy value being over 10 K in the former and over 30 K 153 

in the latter case, although it is generally less than 3 K when averaged over all selected 154 

pixels under snowfall conditions. They explained the results as follows. For very shallow 155 

snowing clouds, cloud liquid water may be rich and contributes substantially to the 156 

observed brightness temperatures. However, the radiative transfer model, which uses 157 

CloudSat radar and GMI retrievals as input,  failed to account for this liquid water 158 

abundance, resulting in a large discrepancy between simulated and observed brightness 159 
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temperatures. For very deep snowing clouds, they hypothesized that CloudSat radar 163 

experiences substantial attenuation as well as non-Rayleigh scattering, which leads to 164 

higher simulated brightness temperatures than observed. A better understanding of the 165 

microphysical properties in very shallow and very deep snowing clouds is clearly needed 166 

to reduce the discrepancies between simulated and observed brightness temperatures. 167 

A field experiment was conducted over the Korean Peninsula during the winter of 168 

2017-2018, coinciding with the 2018 winter Olympic Games (ICE-POP 2018: 169 

International Collaborative Experiments for PyeongChang 2018 Olympic and Paralympic 170 

Winter Games). The experiment focuses on the measurement, physics, and improved 171 

prediction of heavy orographic snow in the Pyeongchang region of South Korea (Gehring 172 

et al., 2020). During the field experiment, many ground-based observations including radar, 173 

radiometer and in situ observations were conducted. In this study, we analyze the vertical 174 

structure and microphysical properties of these snowing clouds, with focus on their 175 

potential impacts on satellite remote sensing of snow precipitation.  The main objective of 176 

the study is to gain better understanding of the characteristics of snowing clouds that are 177 

critical to satellite remote sensing of snowfall. Furthermore, we examine how a Bayesian 178 

snowfall retrieval algorithm with GPM/GMI observations would perform for the snowing 179 

clouds observed during this field experiment. 180 

 181 

2. Data and Methods 182 

 183 

2.1 Ground-based Cloud Radar and Radiometer 184 

Observations from the Radiometer Physics GmbH-Frequency Modulated Continuous 185 

Wave 94 GHz cloud radar (RPG-FMCW, 2015) are the primary data source for this study. 186 

This vertical pointing radar is installed at 37.66°N, 128.70°E (altitude 735 m above sea 187 

level) over Korean Peninsula during the ICE-POP 2018 field campaign. It has an operation 188 

frequency of 94 GHz for radar backscatter and Doppler spectrum measurement and an 189 

embedded 89 GHz passive channel for liquid water path measurement. It is noted that while 190 

we refer this instrument as a cloud radar for convenience, it indeed includes an independent 191 

passive microwave channel at 89 GHz, which is used for cloud liquid water estimation. 192 

There is clearly an advantage of this instrument in studying the composition of cloud liquid 193 
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and ice over those that measure radar reflectivity and brightness temperature by two 195 

separate instruments because this instrument measures emission and scattering signatures 196 

from the same cloud volume, therefore, avoids beam mismatching problem by a separated 197 

radar and radiometer. The vertical resolution of radar reflectivity measurement is selectable 198 

from 1, 5, 10, or 30 m, with overall radar calibration accuracy better than 0.4 dB. The 199 

minimum detectable radar reflectivity depends on the range and vertical resolution; at its 200 

typical operation mode of 30 m resolution, it is -36 dBZ at 10 km height, which is 201 

sufficiently sensitive for snowfall detection. In addition to radar reflectivity, the RPG-202 

FMCW also measures Doppler spectrum with a Doppler velocity resolution of 1.5 cm s-1.  203 

A detailed explanation of the calibration of this instrument can be found in Küchler et al. 204 

(2017). 205 

 206 
2.2 Retrieved Microphysical Variables  207 
 208 

In this study, the radar reflectivity Ze is converted to snow water content (SWC) 209 

and snowfall rate (S) using the Ze-SWC relation of  Yin and Liu (2017) and Ze-S relation 210 

of  Liu (2008a). Before performing these conversions, radar reflectivity was corrected for 211 

attenuation due to absorption by atmospheric gases and cloud liquid water, and scattering 212 

by ice particles. Absorption by atmospheric gases is calculated based on Rosenkranz (1998) 213 

for water vapor and Schwartz (1998) for oxygen with input of geophysical parameters 214 

interpolated from the Modern Era Reanalysis for Research and Applications Version-2 215 

(MERRA-2) (Gelaro et al., 2017). Absorption by cloud liquid water is computed using 216 

liquid water path derived by the method described later in this section and assuming cloud 217 

liquid water uniformly distributed vertically in the radar echo layer. Refractive index of 218 

liquid water is calculated based on Liebe et al. (1993). Attenuation due to ice scattering 219 

was readily performed by manufacture-provided processing software (RPG-FMCW, 2015).  220 

The Yin and Liu (2017) Ze-SWC relation is given by 221 

𝑆𝑊𝐶 = 0.024𝑍!".$%,            (1) 222 

where SWC is in g m-3 and Ze is in mm6 m-3. In developing the above equation, three snow 223 

particle types are employed: sectors, dendrites (Liu, 2008b), and oblate aggregates 224 

(Honeyager et al., 2016). The backscatter cross sections of the three snowflake types are 225 
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computed using discrete dipole approximation (DDA) (Draine and Flatau, 1994; Liu, 2004).  227 

It should be mentioned that although Eq.(1) is developed for CloudSat radar which has the 228 

same frequency as the RPG-FMCW radar, uncertainties in particle shapes and size 229 

distributions will certainly cause errors in snow water content derived in this study.  230 

The Liu (2008a) S-Ze relation is given by 231 

𝑍! = 11.5𝑆&.'%,     (2) 232 

where S is in mm h-1 (liquid water equivalent snowfall rate) and Ze is in mm6 m-3. The 233 

backscatter cross sections in Eq.(2)  are computed for rosettes, sectors and dendrites using 234 

DDA (Liu, 2008b). 235 

In addition to radar reflectivity, the mean Doppler velocity and spectral width, the 236 

RPG-FMCW also measures brightness temperature at 89 GHz. While there is a liquid water 237 

path (LWP) variable produced by the manufacture-provided software, details about the 238 

liquid water path retrieval algorithm and its accuracy have not been well documented. In 239 

this study, we chose to adapt the algorithm of Liu and Takeda (1988) in computing liquid 240 

water path from 89 GHz brightness temperatures. Briefly, the brightness temperature TB 241 

received by an up-looking radiometer can be divided into two portions, i.e., the cloud-free 242 

atmospheric emission and the liquid cloud water emission. The emissivity of the liquid 243 

water cloud ec may then be approximated by 244 

𝜀! =
"!(""$""!)
"#("!$""!)

	,	      (3) 245 

where Ta is a radiatively-mean temperature of the atmosphere in Kelvin, which can be 246 

evaluated by absorption-coefficient-weighted averaging atmospheric temperatures in 247 

vertical. Its value roughly equals to the temperature around 1.5 km altitude. Tc is the mean 248 

temperature of the cloud layer, which is determined in this study by the air temperature at 249 

the height of the geometric middle of valid radar reflectivity profiles. TBa is the brightness 250 

temperature from the liquid-free atmosphere, which is derived using interpolation between 251 

measured TBs at echo-free regions in this study. From ec calculated from (3), liquid water 252 

path (LWP) can be derived by 253 
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LWP = !"!
#$ℑ&

"#$%
"#&#'

𝑙𝑛	(1 − 𝜀() ,                                              (4) 265 

where m is the refractive index of water at temperature Tc, 𝜆 is wavelength, 𝜌(is liquid 266 

water density (1000 kg m-3) and ℑ{	} indicates taking the imaginary part. In this study, the 267 

refractive index of liquid water is calculated based on Liebe et al. (1993). It should be 268 

cautioned that the refractive index at high microwave frequencies may not be very accurate 269 

for supercooled liquid water as pointed by Kneifel et al. (2014), which can result in errors 270 

in the liquid water path estimation. Another error in the liquid water path estimation can 271 

be caused by the omission of the reflection by snow particles to the upwelling radiation 272 

originated from surface emission in the retrieval algorithm. Based on estimation by Kneifel 273 

et al. (2010), this reflection can enhance downward radiation by 5 K at 89 GHz where 274 

heavy snow cloud occurs. The formulation of the current liquid water path retrieval 275 

algorithm has the advantage of using cloud-free observations (TBa in Eq.3) as background 276 

to calculate cloud emissivity, which is particularly useful when water vapor observations 277 

are lacking. However, the drawback is that it cannot include the contribution by ice 278 

scattering.   279 

In Fig.1 shown is an example of the liquid water path retrieved in this study together 280 

with radar reflectivity cross sections and liquid water path retrieval from the manufacture-281 

provided algorithm. It is seen that in cloud-free regions our liquid water path retrievals are 282 

close to zero, while the manufacture-provided retrievals have a positive bias of about 30 g 283 

m-2. In cloudy regions, the two liquid water path values compare much closer to each other. 284 

Based on this comparison, we believe that the liquid water path values retrieved in this 285 

study are more reasonable. Therefore, our retrievals will be used in the following analysis. 286 

2.3 Snowing Cloud Detection  287 

All snow events have been identified from the RPG-FMCW observations during 1 288 

November 2017 through 30 April 2018 (6 months). To separate snow and rain at surface, 289 

the scheme of Sims and Liu (2015) is implemented. In their study, the effects of multiple 290 

geophysical parameters on precipitation phase were investigated using global surface-291 

based observations over multiple years. They showed that wet-bulb temperature is a key 292 

parameter for separating solid and liquid precipitation and the low-level temperature lapse 293 
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rate also affects the precipitation phase. Geophysical parameters from MERRA-2 296 

reanalysis (Gelaro et al., 2017) were used in this study as input to the Sims and Liu (2015) 297 

scheme. In addition, we use the near-surface reflectivity higher than -20 dBZ as the 298 

criterion for snowfall detection; all radar data analyzed for snowing clouds in the following 299 

sections have a near-surface radar reflectivity greater than -20 dBZ. In a study by Wang et 300 

al. (2017) based on CloudSat radar reflectivity profiles, they found that precipitation onset 301 

often occurs when radar reflectivity is about -18 to -13 dBZ. We use the value of -20 dBZ 302 

as criterion in this study to make sure that all possible snowfall cases are included in the 303 

precipitation samples. 304 

Cloud top height is used for the determination of cloud types. As shown in Fig.2, 305 

radar reflectivity above cloud top is often noisy as shown between 11 and 16 UTC. 306 

Therefore, it is often problematic to determine cloud top height by simply using a radar 307 

reflectivity threshold. However, we found that Doppler spectral width is a reliable indicator 308 

to identify clouds as shown in the bottom panel in Fig.2. Using visual examination of this 309 

and some other cases, we found that Doppler spectral width commonly reduces to less than 310 

0.1 m s-1 above cloud top.  In Fig. 2, we show in the upper panel the cloud top height in the 311 

black solid line as determined by the criterion of the spectral width >0.1 m s-1 for snowing 312 

clouds with near-surface radar reflectivity greater than –20 dBZ. It appears that the 313 

criterion well captures the cloud tops. 314 

2.4 Other Ancillary Data 315 

While quantitative analysis was not conducted, data collected at the same location by 316 

PARticle SIze VELocity (PARSIVEL; Löffler-Mang and Joss, 2000; Battaglia et al., 2010; 317 

Tokay et al., 2014), 2-Dimensional Video Distrometer (2DVD; Kruger and Krajewski, 318 

2002), and Multi-Angle Snowflake Camera (MASC; Garrett et al., 2012; Grazioli et al., 319 

2017) are used for confirmation of precipitation phase and particle types. A PARSIVEL is 320 

an optical disdrometer which uses a 54 cm2 laser beam in the wavelength of 650 nm. It 321 

measures the size and fall velocity of individual precipitation particles with diameter 322 

ranging from 0.2 mm to 25 mm for solid particles. An autonomous PARSIVEL unit (Chen 323 

et al., 2017) from NASA was collocated with the RPG-FMCW cloud radar during the field 324 

campaign. A collocated 2DVD provides detailed information on size, fall velocity, and 325 
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shape of individual hydrometeors with two orthogonal fast line-scan cameras. The camera 333 

provides images of particles which are matched for individual particles. The matched 334 

individual particles are then corrected for shape distortion. In addition, detail images of 335 

particles are provided from MASC that is composed of three cameras separated 336 

horizontally by an angle of 36 degrees and simultaneously takes high-resolution (35 µm 337 

per pixel) photographs of free-falling hydrometeors. Hydrometeor classification algorithm 338 

based on the supervised machine learning technique (Praz et al., 2017) is applied to the 339 

individual images of particles. This procedure identified the precipitation type (small 340 

particles, columnar crystals, planer crystals, combination of columnar and plate crystals, 341 

aggregates, and graupel) and the degree of riming. 342 

2.5 Dividing Snowing Clouds to Three Types 343 

There are several synoptic weather patterns that cause snowfall over the Pyeongchang 344 

area. The first pattern is a synoptic low pressure system, so-called “cold low”, developed 345 

over the Yellow sea (west of Korea) or cold continent and causes the snowfall over the 346 

northern or middle part of Korea when moving to east (Chung et al. 2006; Ko et al. 2016; 347 

Park et al. 2019). As this system crosses the Korean peninsula, the system become weaker 348 

and shallower once moving over the Pyeongchang area. The precipitation intensity and 349 

depth of system depend on the strength of low pressure. The second synoptic pattern, 350 

“warm low,” develops over the warm ocean near East China sea or South sea and moves 351 

to north-east or east (Nam et al. 2014; Gehring et al 2020). This synoptic pattern brings 352 

abundant moisture to Korean Peninsula and is typically favored for vertically well-353 

developed precipitation system. As the warm low pressure passes the Korean Peninsula 354 

and East sea, the winds over the Pyeongchang area and East sea turns to easterly or north-355 

easterly, bringing in cold air to the east coastal area. Thus, we expect that the depth of 356 

precipitation system is likely first deep with large moisture and later becomes shallower as 357 

influenced by north-easterly cold air. The third interesting pattern, so-called “air-sea 358 

interaction”, is developed by the easterly or north-easterly flow due to the Kaema high over 359 

the northern mountain complex or high pressure over Manchuria by the eastward expansion 360 

of the Siberian high (Kim and Jin 2016; Kim el at 2019). Thus, the cold north-easterly or 361 

easterly flow enhances the interaction with warm moisture ocean, resulting in the 362 

development of shallow convection and thermal inversion in the lower troposphere. The 363 
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shallow convective clouds move to the coastal and mountain area where they are lifted by 365 

the orography. 366 

An example of radar reflectivity cross section is shown in Fig.1 where deeper clouds 367 

lead to shallower convective cells. This is the case of the second synoptic type, warm low. 368 

During the passage of the warm low, the system reached to 9 km. However, the 369 

precipitation system is shallower than 1 km during easterly or north-easterly flow when the 370 

warm low pressure passed the East sea.  In consideration of the implications to satellite 371 

snowfall remote sensing, we group the snowing clouds into three types: deep, shallow and 372 

near-surface. The “deep” snowing clouds are those with cloud top higher than 4 km, which 373 

are considered to be easily detected by both space-borne radars and radiometers at high 374 

microwave frequencies. They are mostly generated by large-scale lifting of frontal systems. 375 

We define the “shallow” snowing clouds as those with cloud top between 1.5 and 4 km. 376 

Large part of the snowing clouds in this group are associated with convective cells in 377 

unstable airmasses after the passing of fronts. These are the group that space-radars and 378 

radiometers may sometimes have difficulties to detect because of their shallowness and 379 

liquid-water rich. The “near-surface” group is defined as those having cloud top lower than 380 

1.5 km. Similar to the case of shallow snow clouds, the near-surface snow clouds also 381 

mostly occur after low pressure passing or during north-easterly/easterly flow, and are 382 

convective in nature. Because of their shallowness, this group of snowing clouds will likely 383 

be hidden within ground-clutters for space-radars. Ground-based observations have the 384 

advantage to detect them from bottom up. 385 

In Fig.1, examples are shown for the three snowing cloud types, together with liquid 386 

water path retrieved from RPG-FMCW observations using algorithms described in section 387 

2.2. In this case, the largest value of liquid water path was seen in the transition from 388 

shallow to near-surface snowing clouds near 12 UTC, while the strongest radar reflectivity 389 

values (i.e., the heaviest snowfall) occurred in the deep snowing cloud between 01 to 05 390 

UTC on 24 December 2017.  391 

Surveying all observed data for the entire winter, approximately 374 hours of 392 

observations are deemed as snowfall events after we apply the -20 dBZ threshold at the 393 

lowest bin and the Sims and Liu (2015) algorithm to exclude rain events. These 394 
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observations are then averaged over each 5-minute interval to form 4491 samples. The 405 

relative frequencies of occurrence (area fraction, calculated by the number of samples of a 406 

given snow type divided by the total number of snowfall samples) and snowfall amount 407 

(volume fraction, calculated by the snowfall amount produced by a given snow type 408 

divided by the total snowfall amount by all types) for the three types of snowing clouds are 409 

shown in Fig.3.  The snowfall volume is the accumulated snowfall with the rate estimated 410 

by Eq.(2) from radar reflectivity at the lowest bin. Over half (67.4%) of the observed 411 

samples are near-surface snowfall, followed by shallow (21.2%) and then deep (11.4%) 412 

snowing clouds. However, deep snowing clouds contribute the most to the total snowfall 413 

volume (45.3%), followed by shallow (28.5%) and then near-surface (26.2%) snowing 414 

clouds. Pettersen et al. (2020) analyzed snowing clouds observed by a micro rain radar at 415 

Marquette, Michigan for 4 winter seasons. Snow clouds are divided into shallow (top 416 

height lower than 1.5 km) and deep events. They found that shallow clouds occur 2 times 417 

as often as deep clouds while both types contribute almost equally to annual snowfall 418 

accumulation. Those statistics are very similar to the results obtained in this study for 419 

snowfall events observed at Pyeongchang, Korea. Kulie et al. (2016) found that globally 420 

shallow snow clouds can be associated with strong convections and heavy snowfall. The 421 

snowfall rates for shallow and near-surface snow clouds observed in this study are mostly 422 

lower than 0.5 mm h-1; heavy snowfall is mainly associated with deep snow clouds. One 423 

possible explanation of the difference is as follows.  The snowfall from shallow and near-424 

surface snow clouds in this study mostly comes from convections associated with cold 425 

airmass outbreak from the northwest. Since the observation site is in the mountains in the 426 

east coastal region of the Korean Peninsula, substantial portion of the moisture picked up 427 

by the cold air from the warm ocean in the Yellow Sea (west of the Korean Peninsula) has 428 

been already transformed to snow before reaching the observation site. In addition, the 429 

convective clouds and easterly flow can cross the mountains and produce heavy snowfall 430 

over the site in the case of strong winds and lower thermal stability. However, these types 431 

of events occurred relatively infrequently during the experiment when compared to the 432 

other snowfall types. Consequently, the snowfall associated with shallow and near-surface 433 

clouds at this site is relatively moderate. 434 

 435 
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3. Microphysical Properties of Snowing Clouds 447 

 448 

3.1 Case Examples 449 

(a) Deep and “dry” followed by near-surface snowing clouds 450 

From 7 to 8 March 2018, a low-pressure system passed the south of the Korea 451 

Peninsula, and solid precipitation was observed at the radar site from 09 UTC on the 7th 452 

through 24 UTC on the 8th. In Fig.4 shown are cross section of radar reflectivity and time 453 

variation of liquid water path and snow water path (SWP, vertically integrated snow water 454 

content). Surface PARSIVEL and 2DVD observations indicated that snow particle types 455 

are mostly snowflakes from 09 UTC on the 7th to 06 UTC on the 8th, while rimed ice 456 

particles and graupels are also observed then after.  The radar and radiometer observations 457 

indicate that the deep clouds have cloud top higher than 8 km and peak snow water path 458 

value about 500 g m-2. However, liquid water in the deep clouds is low, with liquid water 459 

path constantly below 150 g m-2. Once the deep clouds pass the station, the clouds became 460 

much shallower, mostly being classified as near-surface snowing clouds. However, their 461 

liquid water path increased substantially with peak values close to 600 g m-2, which is 462 

consistent with the observed rimed ice particles and graupels during this period.  463 

(b)  Deep and “wet” followed by shallow snowing clouds 464 

 On 28 February 2018, deep snowing clouds associated with a low-pressure system 465 

were observed at the radar site, followed by shallow snowing clouds that lasted till 03 UTC 466 

on March 1. Radar reflectivity, liquid water path and snow water path are shown in Fig.5. 467 

Surface PARSIVEL observations indicated melting snow with surface air temperature near 468 

0ºC before 04 UTC on February 28, which may have contributed the liquid water path peak 469 

around 04 UTC. Heavy snowfall was observed from 04 to 14 UTC on 28 February; 470 

snowflakes observed at surface are large aggregates and show indications of riming 471 

occurred. Liquid water path was high for both the deep and shallow clouds with peaks 472 

higher than 400 g m-2 even without including the portion of melting snow before 04 UTC 473 

on the 28th. Rimed snow particles were observed at surface corresponding to the shallow 474 

snow cell based on 2DVD and MASC data. 475 

3.2 Liquid versus Ice in Snowing Clouds 476 
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 During the 6-month period, a total of 374 hours of snow precipitation have been 478 

observed by the RPG-FMCW.  The frequency distributions of 5-minute averaged surface 479 

snowfall rate and liquid water path are shown in Fig.6 with both surface snowfall rate and 480 

liquid water path in logarithm scale. On average, deeper clouds generate heavier snowfall; 481 

near-surface and shallow snowing clouds produce snowfall rarely heavier than 0.5 mm h-482 
1, while snowfall rate in deep snowing clouds reaches over 1 mm h-1. Higher values of 483 

cloud liquid water path are also more likely observed in deeper clouds. However, the 484 

likelihood of a substantial amount of liquid water in shallower clouds is also high. For 485 

example, for the liquid water path range of 100~250 g m-2 the frequency values are still 486 

reaching about 10% for near-surface and shallow snowing clouds. On the upper limit, 487 

liquid water path in all clouds only occasionally exceeds 500 g m-2. 488 

 In Fig.7, we show the scatterplot of surface snowfall rate versus liquid water path 489 

averaged over a 5-minute period. As indicated in case studies earlier, the two variables 490 

hardly vary in a correlated fashion, neither positively nor negatively. For deep snowing 491 

clouds, the heaviest snowfall corresponds to a liquid water path of about 200 g m-2, while 492 

further increasing in liquid water path does not seem to enhance surface snowfall. For 493 

shallow and near-surface snowing clouds, the snowfall rate is confined between 0 to 0.6 494 

mm h-1 while liquid water path stretches from 0 to 600 g m-2 without coherent variation 495 

between liquid water path and surface snowfall rate. Additionally, unlike heavy snowfall 496 

preferably occurring in deep snowing clouds, large values of liquid water path (say > 300 497 

g m-2) are almost equally probable to be found in near-surface, shallow and in deep snowing 498 

clouds. 499 

 The mean state and its variability of cloud liquid water are also examined in the 2-500 

dimensional space of near surface radar reflectivity and cloud top height, as shown in Fig.8. 501 

In this figure, the mean values of (a) the number of occurrences, (b) liquid water path, and 502 

(c) standard deviation of liquid water path in each 2 dBZ by 500 m grid are shown based 503 

on the 5-minute averaged data. The number of occurrences diagram indicates that heavier 504 

snowfall (stronger radar reflectivity) tends to have a higher cloud top for cases with near 505 

surface radar reflectivity greater than 0 dBZ although this tendency is not clear for cases 506 

with lower values of near surface radar reflectivity. The diagrams for mean and standard 507 
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deviation of liquid water path shown in Figs.8b and 8c appear to indicate the following. 508 

For deep snow clouds (top higher than 4 km) with surface radar reflectivity greater than 6 509 

dBZ, liquid water path has a large mean value but a small standard deviation. On the other 510 

hand, shallow snow clouds (top between 1.5 and 4 km) with moderate surface radar 511 

reflectivity (0-5 dBZ) have a moderate mean value but a high variability of liquid water 512 

path. There is an area with high mean value and high variability of liquid water path located 513 

at surface radar reflectivity between -10 and 0 dBZ and cloud top height between 4 and 6 514 

km, possibly corresponding to convective cells in early developing stage. For near-surface 515 

and shallow clouds, both the mean value and standard deviation of liquid water path appear 516 

to increase as surface radar reflectivity increases. 517 

To express the “dryness” of the snowing clouds, one may use the glaciation ratio 518 

(GR) defined as (Liu and Takeda, 1988): 519 

  𝐺𝑅 = )*+
,*+-)*+

× 100% .     (5) 520 

The GR parameter indicates the fraction of total condensed water in the column that has 521 

been converted to solid phase. In Fig.9, we show how the GR values are related to (a) cloud 522 

top height, (b) surface snowfall rate and (c) cloud mean temperature (temperature at the 523 

geometrical middle of a reflectivity profile). Generally speaking, clouds with higher tops, 524 

associated with higher snowfall rate or with colder mean temperature tend to have higher 525 

degrees of glaciation, although the scatters are extremely large. For example, for a shallow 526 

snowing cloud with 0.2 mm h-1 snowfall rate, its glaciation ratio can be any value from 527 

near 0 to about 100%, probably depending on the development stage of individual cells. In 528 

Fig.9a, there is a concentration of points with high cloud top (>5 km) but glaciation ratio 529 

between 50% and 75% rather than 100%. It is likely that the phenomena are caused by 530 

clouds that have multiple layers or a cloud layer with dynamically decoupled upper and 531 

lower portions. Corresponding to the clouds with their heaviest snowfall rate, deep snowing 532 

clouds have a glaciation ratio of about 60% while shallow and near-surface snowing clouds 533 

only have their glaciation ratio less than 20%, which adds extra difficulties for detecting 534 

snow in these types of clouds by passive microwave observations. There is loosely a trend 535 

that clouds with a lower mean temperature have a higher degree of glaciation. For near-536 
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surface snowing clouds, this trend is less clear with their glaciation degree hardly over 50%. 545 

Using data observed over Greenland, Pettersen et al. (2018) found that snowfall events for 546 

frontal deep clouds are often ice clouds with little liquid water while shallower clouds are 547 

typically mixed-phase clouds and contain plenty of supercooled liquid water. Their low 548 

glaciation rate for shallower clouds is similar to the result of this study.    549 

3.3 Vertical Structures 550 

 The mean vertical structure of the snowing clouds may be expressed by contoured 551 

frequency by altitude diagrams (CFADs; Yuter and Houze, 1995) of radar reflectivity, 552 

mean Doppler velocity, and Doppler spectral width, as shown in Fig. 10. For deep snowing 553 

clouds, the radar reflectivity CFADs show a relatively narrow spread with a sharp radar 554 

reflectivity decreases with the increase of altitude above 4 km (“left-tilting” structure), 555 

implying that most of the precipitation growth occurs above 4 km. For shallow clouds, the 556 

“left-tilting” structure starts from near surface and the frequency has broader distribution 557 

at each level. In contrast, the near-surface snowing clouds do not show such “left-tilting” 558 

structure, but rather have a broad distribution below their cloud top height, indicating that 559 

the precipitation maximum does not necessarily situate near the surface in these profiles. 560 

We interpret that the broad distribution of frequencies at each level is likely due to the 561 

convective nature of these clouds, so that the precipitation profile is largely determined by 562 

the development stage of the clouds. For example, developing clouds have their 563 

precipitation maximum in the upper portion while matured clouds have their precipitation 564 

maximum in the lower portion in the vertical profiles.   565 

 For mean Doppler velocity, the most likely values are around -1 m s-1 (the negative 566 

sign indicates downward movement), corresponding to the terminal velocity of unrimed to 567 

moderately rimed aggregates (Locatelli and Hobbs, 1974). There is a tendency that 568 

particles in upper levels fall somewhat slower than those in the lower levels. The Doppler 569 

spectral width indicates that particles in the upper levels have a narrower spectrum. 570 

Combining the vertical profiles of mean Doppler velocity and spectral width, it is 571 

concluded that ice particles at upper levels have a narrower size distribution and lower 572 

terminal velocity. It is also interesting to notice that there seems to be a regime shift for 573 

deep snow clouds near 4 km altitude; the frequency patterns appear to be different below 574 
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and above this level for all the CFADs of radar reflectivity, Doppler velocity and spectrum 580 

width. Additionally, the slope of reflectivity suddenly changes around 8 km and the 581 

absolute value of Doppler velocity reduced dramatically below 8 km.  A similar feature 582 

also appeared in the long-term observation with cloud radar (see Figs. 16 and 17 of Ye et 583 

al. 2020). The shift of growth regime was appeared at 8 km height (3~3.5 km above the 584 

bright band peak and corresponding to ~ -17°C). This regime shift induced the updraft 585 

(reached 1 m s-1) below this layer. However, Ye et al. (2020) could not explain the linkage 586 

between this regime shift and updraft below. While it is beyond the scope of this study, 587 

this phenomenon will be an interesting topic for future research on the cloud microphysics 588 

in this region.    589 

 590 

4. Implications to Passive Microwave Remote Sensing 591 

 592 

To understand how the microphysical properties in snowing clouds impact on 593 

passive microwave remote sensing, a radiative transfer model simulation at GPM/GMI 594 

channels has been conducted using the measured liquid and snow water quantities as a 595 

guidance for the model input. The radiative transfer model developed by Liu (1998) has 596 

been used in this simulation, which uses a four-stream discrete ordinates method to solve 597 

the radiative transfer equation. For snow particles, the single-scattering properties 598 

calculated by discrete dipole approximation for sector type snowflakes (Liu, 2008b) are 599 

used. Based on studies of Geer and Baordo (2014), the single-scattering properties for the 600 

sector type snowflakes work reasonably well in radiative transfer simulations for middle 601 

latitude snowstorms. Since the emphasis of this study is to assess the impact of cloud 602 

microphysics on satellite remote sensing, the variability of surface emissivity is not 603 

considered. In all the following simulations, we assign an emissivity of 0.9 for land surface 604 

for all GMI channels and a 5 m s-1 wind speed over ocean to compute surface emissivity.  605 

4.1 Masking Effect to Scattering Signatures by Cloud Liquid Water 606 
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 Based on analysis shown in section 3.2, liquid water path frequently varies from 0 614 

to 500 g m-2 for any of the 3 types of snowing clouds while snowfall rate at surface 615 

commonly reaches to 0.3, 0.5, and 1.0 mm h-1, respectively, for near-surface, shallow, and 616 

deep clouds. We examine how the cloud liquid would mask the ice scattering at two GMI 617 

frequencies, 89 and 166 GHz, at viewing angles of 53° for 89 GHz and 49° for 166 GHz 618 

using radiative transfer calculations. Using clear-sky brightness temperature TB0 as the base, 619 

Figure 11 shows how brightness temperature varies as liquid water path and surface 620 

snowfall rate increase. Note that in these radiative transfer calculations, mean snowfall rate 621 

profiles derived from observations are used. The mean profiles are derived as follows. We 622 

first group all the observed snowfall rate profiles according to their cloud type, and then 623 

for each cloud type we average those profiles that fall into a given snowfall rate bin. A 1-624 

km deep liquid cloud layer is placed at 0.5-1.5 km, 2.5-3.5 km and 4.5-5.5 km, respectively, 625 

for near-surface, shallow, and deep clouds. The liquid water path is increased from 0 to 626 

500 g m-2.     627 

 For near-surface snowing clouds, the decrease of brightness temperature due to ice 628 

scattering is very limited for either 89 or 166 GHz, only about 1.5 K for 89 GHz and 2.5 K 629 

for 166 GHz occurring when liquid water path is very low. Therefore, most likely this type 630 

of clouds displays a warming signature in the passive microwave observations due to the 631 

existence of liquid water clouds. For shallow snowing clouds, the modeling results show 632 

there is still a mostly warming at 89 GHz and an equal mix of warming and cooling at 166 633 

GHz. The masking effect still remains quite significant at 89 GHz even for deep snowing 634 

clouds; it can cause an increase in brightness temperature by more than 5 K from clear-sky 635 

value. The dominant scattering signature shows at 166 GHz for deep clouds. At surface 636 

snowfall rate of 1 mm h-1, brightness temperature can decrease from clear-sky value by 637 

more than 30 K (color bar only shows up to -15 K) when liquid water path is lower than 638 

100 g m-2.   639 

 Based on the above modeling results, it is clear that if only relying on scattering 640 

signature, i.e., brightness temperature depression, an algorithm will totally fail in retrieving 641 

snowfall rate for near-surface clouds and partially fail for shallow clouds. Even for deep 642 

snowing clouds, cloud liquid water will impact snowfall retrieval with a result of an 643 
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overestimation for low and an underestimation for high values of liquid water path. 652 

Therefore, a more plausible approach to the retrieval problem is to use a statistical method 653 

in which the algorithm utilizes any regularities naturally existing between cloud liquid and 654 

snow profiles to search for the most likely snowfall rate. One such approach is the Bayesian 655 

retrieval algorithm (Kummerow et al., 1996; Olson et al., 1996; Seo and Liu, 2005). This 656 

approach requires that the a priori database used in the retrieval has the same characteristics 657 

in both microphysical properties and occurring frequency as those in natural clouds.  658 

4.2 A Bayesian Retrieval Exercise 659 

 In this section, an idealized experiment is designed to examine how a Bayesian 660 

retrieval algorithm would perform for the three types of snowing clouds if we only take 661 

into account the error caused by the variability of liquid water path and snowfall rate 662 

profiles. In other words, we examine how well a Bayesian retrieval algorithm would 663 

perform, when assuming no variations in surface emissivity, snowflakes being a fixed type, 664 

and particle size distribution following an exponential form. Therefore, this exercise 665 

mainly assesses the problems caused by the uncertainties associated with cloud liquid and 666 

snow amounts. 667 

 First, a total of 30870 5-minute averaged snow profiles are constructed from the 6 668 

months long surface radar observations (including zero snowfall profiles). Each of the 669 

snow profile is accompanied with a liquid water path which is assigned to be a 1 km deep 670 

layer at 0.5-1.5 km, 2.5-3.5 km and 4.5-5.5 km, respectively, for near-surface, shallow, and 671 

deep clouds. Atmospheric temperature, pressure, and relative humidity profiles are also 672 

assigned to these profiles by interpolating MERRA-2 data spatially and temporally to the 673 

individual snow profiles. A radiative transfer model calculation is then performed to 674 

generate brightness temperatures at 11 GMI channels (all except the 10.7 GHz GMI 675 

channels) using the above profiles as input. The 10.7 GHz channel is not considered here 676 

because its brightness temperature is not sensitive to either liquid or ice hydrometeors and 677 

its GMI channel has too large a footprint size compared to other channels. It is also assumed 678 

that surface skin temperature is the same as surface air temperature and surface emissivity 679 

is a constant (0.9 for land) for all channels. A sector type snowflake (Liu, 2008b) and an 680 

exponential particle size distribution (Sekhon and Srivastava, 1971) are used for all the 681 
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cases. We then randomly divided the 30870 profiles and their computed brightness 686 

temperatures into two equal-number groups; one is used as the a priori database for the 687 

Bayesian retrieval algorithm, and the other as “observations” to test how well the surface 688 

snowfall rate can be retrieved from the “measured” brightness temperatures. To mimic a 689 

possible random error in the measured brightness temperatures, a random noise with a 690 

maximum magnitude of 1 K is added to the “measured” brightness temperatures before 691 

retrieval is performed. A detailed description of the Bayesian retrieval method can be found 692 

in Seo and Liu (2005). 693 

 In Fig.12 shown are the scatterplots of “measured” versus retrieved surface 694 

snowfall rate, separated by snow cloud types. The correction as indicated by R2 (square of 695 

linear correlation coefficient), bias and root-mean-square (rms) difference are shown in 696 

each diagram. The biases between the “measured” and retrieved snowfall rate are small for 697 

all snow cloud types, with values of 0.019, 0.033, and 0.03 mm h-1 for near-surface, shallow 698 

and deep snowing clouds, respectively. The values of rms differences are also small; they 699 

are 0.05, 0.11, and 0.16 mm h-1, respectively, for near-surface, shallow and deep snowing 700 

clouds. The color of the points in the figures indicates the value of liquid water path 701 

associated with individual profiles. Clearly, as the cloud layer deepens, the skill of the 702 

retrieval improves. The values of R2 increases from 0.32 for near-surface clouds, to 0.41 703 

for shallow clouds, and to 0.62 for deep clouds.  That is, the retrievals can resolve 32%, 704 

41%, and 62% of the variances in snowfall rate observations for near-surface, shallow and 705 

deep clouds, respectively.  706 

 A question one may naturally want to ask is: Will the retrieval skill be improved if 707 

the same clouds were moved to areas over ocean where liquid water information is 708 

distinguishable at some microwave channels (e.g., 89 GHz)? To answer this question, we 709 

perform the same retrieval exercise as mentioned above but assuming the clouds are over 710 

an ocean surface with a constant surface wind speed of 5 m s-1.  Similarly, half of the 30870 711 

samples are used as a priori database and half as “observations”. The retrieval results are 712 

shown in Fig.13. Similar to land cases, the biases and rms differences have small values 713 

for all cloud types. For deep snowing clouds, the R2 statistic indicates only small 714 

improvement in retrieval skills between over land and over ocean cases, although a visual 715 
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inspection of the scatterplot shows that a better correspondence between “measured” and 732 

retrieved values at snowfall rates lower than 0.2 mm h-1. The improvement in retrieval 733 

skills for over ocean shallow clouds is moderate with R2 of 0.54 versus 0.41 over land. The 734 

most significant improvement in retrieval skills occurs for over ocean near-surface snowing 735 

clouds, in which R2 increases from 0.32 over land to 0.52 over ocean. Note that land surface 736 

emissivity and ocean surface wind are fixed in the retrieval exercises. Therefore, the 737 

improvement is not due to a better knowledge of surface conditions, but rather due to the 738 

richer information content on cloud microphysics contained in “measured” brightness 739 

temperatures over ocean. One such piece of information must have come from the 740 

brightness temperature difference between two polarizations over ocean, which remines 741 

mostly zero over land surfaces.  The results shown in Fig.13 indicate that the extra 742 

polarization information helps the most for retrieving snowfall in shallower clouds.  743 

 In Figs. 12 and 13, it is also noted that an underestimation occurs when snowfall 744 

rate is greater than 0.7 mm h-1 for deep snowing clouds regardless over land or ocean. This 745 

underestimation may be due to the deficiency of the Bayesian scheme, in which the 746 

retrieval is a weighted average of snowfall rates of datum points in the a priori database 747 

that are radiometrically consistent with observations. When an observation is close to the 748 

upper boundary (i.e., high snowfall rates) in the database, the averaging takes more number 749 

of datum points with snowfall rates lower than the actual value than those with higher 750 

snowfall rates (no more datum points beyond upper boundary), thus resulting in an 751 

underestimation.       752 

 To understand the information conveyed in polarization difference of brightness 753 

temperatures, we performed a similar simulation to that described in Section 4.1, but 754 

replaced land surface to ocean surface with a wind speed of 5 m s-1. The changes of 755 

depolarization as liquid water path and snowfall rate increase are shown in Fig.14 for each 756 

of the 3 cloud types at 89 and 166 GHz. Depolarization is defined as DTB=TBV-TBH, where 757 

TBV and TBH are brightness temperatures at vertical and horizontal polarizations, 758 

respectively. The change is relative to clear-sky values, DTB0. The change in depolarization 759 

at 89 GHz is well corresponding to the change in liquid water path, without much 760 

dependence on snowfall rate, particularly for near-surface and shallow snowing clouds. 761 
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Therefore, it is plausible that the increased retrieval skill over ocean for near-surface and 768 

shallow clouds is due to the added information on liquid water contained in the polarization 769 

differences.   Comparing Figs.12 and 13, it seems that the added information is particularly 770 

helpful in improving retrievals at low snowfall rates.  771 

 772 

5. Conclusions 773 

 774 

 During the 2017-18 winter season, a ground-based radar and radiometer 775 

observation has been carried out over Korean Peninsula as part of the ICE-POP 2018 776 

campaign. Using the coincident radar and radiometer data, we were able to retrieve cloud 777 

liquid water path, snow water content and snowfall rate. These microphysical properties 778 

and their relation to cloud top height are analyzed in an effort to better understand their 779 

implications to satellite remote sensing of snowfall. In the analysis, we divide the 780 

approximately 374 hours of observed snowing clouds into near-surface, shallow and deep 781 

types, for which the cloud top height is below 1.5 km, between 1.5 and 4 km and above 4 782 

km, respectively.  The near-surface snowing clouds are most likely to be missed by 783 

currently available space-borne radars because of the blind zone caused by the 784 

contamination of surface clutter, and their shallowness and liquid water abundance may 785 

also present challenges to satellite radiometer observations. In this region during the 786 

observation period, the shallow snowing clouds commonly occur in unstable air mass after 787 

the passing of a cold front. It can be detected by space-borne radars with sufficient low 788 

minimum detectable radar reflectivity, but the mixture of cloud liquid emission and ice 789 

scattering complicates the retrievals by passive microwave observations. The deep 790 

snowing clouds are mostly located near frontal zones and low-pressure centers; their strong 791 

ice scattering signature makes it the most favorable type among the three for snowfall 792 

retrievals by both satellite radars and radiometers. Surveying all the observed data, it is 793 

found that near-surface snowing cloud is the most frequently observed cloud type with a 794 

frequency of occurrence over 60%, while deep snowing cloud contributes the most in 795 

snowfall volume with about 50% of the total snowfall amount.  796 
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 The probability distributions of surface snowfall rates are clearly different among 798 

the three types of snowing clouds, with vast majority of them hardly reaching to 0.3 mm h-799 
1 for near-surface, 0.5 mm h-1 for shallow, and 1 mm h-1 for deep snowing clouds. However, 800 

liquid water path in the three types of snowing clouds all has substantial likelihood to be 801 

between 0 to 500 g m-2, although deeper clouds are somewhat more likely with more liquid 802 

water as well. There is no clear correlation, either positive or negative, between surface 803 

snowfall rate and liquid water path. However, given the same surface snowfall rate, clouds 804 

with lower cloud top height tend to have higher liquid water path. The glaciation ratio 805 

defined by the ice fraction in the total condensed water in an atmospheric column is 806 

estimated and found to be related to cloud top height, surface snowfall rate and cloud mean 807 

temperature, although the relations are very scattered. A higher value of glaciation ratio is 808 

generally corresponding to a higher cloud top, a higher surface snowfall rate and lower 809 

cloud mean temperature.  810 

  Moreover, we examined the ability of a Bayesian type algorithm to retrieve surface 811 

snowfall rate for snow events similar to those observed in this study when using GPM/GMI 812 

observations. First, using the approximately 30,000 observed snow cloud and precipitation-813 

free profiles, brightness temperatures at GPM/GMI channels are computed. Then, these 814 

snowfall rate and associated brightness temperature pairs are randomly divided into two 815 

groups. One group is used as “observations” and the other is used as the a priori database 816 

of the Bayesian algorithm. Under idealized scenario, i.e., without considering the 817 

uncertainties caused by surface emissivity, ice particle size distribution and particle shape, 818 

the examination results indicate that the correlation as expressed by R2 between the 819 

“retrieved” versus “measured” snowfall rates is about 0.32, 0.41 and 0.62, respectively, for 820 

near-surface, shallow and deep snowing clouds over land surface. Since this is an extremely 821 

idealized retrieval exercise only dealing with the complicated mixture of cloud liquid and 822 

snow profiles, these numbers basically indicate the upper limits of how a retrieval 823 

algorithm can perform for these snowing clouds. A hypothetical retrieval for the same 824 

clouds but over ocean is also studied, and a major improvement in skill for near-surface 825 

clouds is found with R2 increased from 0.32 to 0.52, while improvement in skill is small 826 

for deeper clouds. The improvement is interpreted as that some liquid water information is 827 

resolved by the polarization difference contained in the over-ocean brightness temperatures. 828 
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This information helps the most for the otherwise information-poor observations for the 851 

near-surface clouds. 852 

 By analyzing the radar and radiometer data from one-winter-long observations and 853 

the results of a Bayesian retrieval dry run, this study gives a general picture of the 854 

characteristics of the different types of snowing clouds and points out the fundamental 855 

challenges in retrieving their snowfall rate from passive microwave observations. It is 856 

hopeful that these results can help developers improve physical assumptions in future 857 

algorithms as well as data users better interpret satellite retrieved snowfall products. Lastly, 858 

it is worth mentioning that there are still many valuable datasets, such as particle shape and 859 

size distribution information from PARSIVEL, 2DVD and MASC, which we didn’t 860 

analyzed quantitatively in this study. A thorough analysis of those datasets in conjunction 861 

with the remote sensing data will undoubtably improve future snowfall retrieval algorithm 862 

development. 863 
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 1106 

 1107 

 1108 

 1109 

Fig.1 (a) Radar reflectivity, (b) two liquid water path retrievals and (c) their differences 1110 

(LWP of our study plus manufacture product) for observations during 23 and 24 1111 

December 2017. In the top panel, cloud types as defined in the text are also indicated. 1112 

 1113 

  1114 
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 1116 

 1117 

 1118 

 1119 

Fig.2 Height-time cross section of (a) radar reflectivity and (b) Doppler spectral width for 1120 

observations on 25 November 2017. The cloud top for snowing clouds (surface radar 1121 

reflectivity greater than -20 dBZ) is also shown in the top panel. 1122 

 1123 

  1124 
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 1125 

 1126 

 1127 

Fig.3 (a) Area and (b) volume fractions of the 3 types of snowing clouds observed during 1128 

the 2017-18 winter season. 1129 
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 1132 

 1133 

 1134 

Fig.4 (a) Height-time cross section of radar reflectivity and (b) time series of liquid water 1135 

path (LWP, black) and snow water path (SWP, red) for observations on 7 and 8 March 1136 

2018.  1137 
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 1141 

 1142 

Fig.5 (a) Height-time cross section of radar reflectivity and (b) time series of liquid water 1143 

path (LWP, black) and snow water path (SWP, red) for observations from 27 February 1144 

through 1 March 2018.  1145 
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 1151 

 1152 

Fig.6 Frequency distribution of (a) liquid water path and (b) snowfall rate at surface 1153 

derived from all observed snowfall data during the 2017-18 winter. The frequency values 1154 

are normalized so that the sum of their values at all bins is 100%. 1155 

  1156 
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 1157 

 1158 

Fig.7 Scatterplot of liquid water path and surface snowfall rate. Each point is an average 1159 

of 5-minute data. All observed data during the 2017-18 winter are included. 1160 

 1161 

  1162 
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 1163 

 1164 

Fig.8 Two-dimensional distributions of (a) number of occurrences, (b) liquid water path 1165 

and (c) standard deviation of liquid water path as a function of near surface radar 1166 

reflectivity and cloud top height. All observed data during the 2017-18 winter are used in 1167 

calculate the distributions. 1168 

  1169 
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 1170 

 1171 

 1172 

Fig.9 Scatterplot of glaciation ratio (see definition in the text) with (a) cloud top height, 1173 

(b) surface snowfall rate and (c) cloud temperature based on 5-minute averages of all 1174 

observational data of snowing clouds in the 2017-18 winter. 1175 
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 1178 

 1179 

Fig.10 Contoured frequency by altitude diagram (CFADs) for radar reflectivity (top), 1180 

mean Doppler velocity (middle) and Doppler spectral width (bottom) for deep (left), 1181 

shallow (middle) and near-surface (right) snowing clouds. The frequency values are 1182 

calculated in such a way that the sum of all frequency values at each altitude is 100%. All 1183 

observed data from the 2017-18 winter are used.   1184 
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 1186 

 1187 

 1188 
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 1189 

Fig.11 Simulated brightness temperature change (relative to clear-sky) at GMI 89 GHz 1190 

(top) and 166 GHz (bottom) for near-surface (left), shallow (middle) and deep (right) 1191 

snowing clouds. The change is relative to values at clear-sky. 1192 

 1193 

 1194 
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Fig.12 1195 

Scatterplot of “measured” versus “retrieved” snowfall rate for (a) near-surface, (b) 1196 

shallow and (c) deep snowing clouds over land. Color of the points indicates liquid water 1197 

path associated with the case. Correlation is indicated by R2 in each diagram. Biases and 1198 

root-mean-square (RMS) differences are also indicated in the diagrams. 1199 
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 1202 

Fig.13 1203 

Scatterplot of “measured” versus “retrieved” snowfall rate for (a) near-surface, (b) 1204 

shallow and (c) deep snowing clouds over ocean. Color of the points indicates liquid 1205 

water path associated with the case. Correlation is indicated by R2 in each diagram. 1206 

Biases and root-mean-square (RMS) differences are also indicated in the diagrams. 1207 
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 1211 

Fig.14 Simulated change of depolarization for GMI 89 GHz (top) and 166 GHz (bottom) 1212 

for near-surface (left), shallow (middle) and deep (right) snowing clouds over ocean.  1213 

Depolarization is the brightness temperature difference between vertical and horizontal 1214 

polarizations. The change is relative to values at clear-sky. 1215 
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