

Supplement of

**Characterization of Submicron Organic Particles in Beijing During Summertime:
Comparison Between SP-AMS and HR-AMS**

Junfeng Wang^{1,2,*}, Jianhuai Ye², Dantong Liu³, Yangzhou Wu³, Jian Zhao⁴, Weiqi Xu⁴, Conghui Xie⁴, Fuzhen Shen¹, Jie Zhang⁵, Paul E. Ohno², Yiming Qin², Xiuyong Zhao⁶, Scot T. Martin², Alex K.Y. Lee⁷, Pingqing Fu⁸, Daniel J. Jacob², Qi Zhang⁹, Yele Sun⁴, Mindong Chen¹ and Xinlei Ge^{1,*}

¹Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China

²School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States

³Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, China

⁴State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

⁵Department of Atmospheric Science, Colorado State University, Fort Collins, CO, United States

⁶State Environmental Protection Key Laboratory of Atmospheric Physical Modeling and Pollution Control, State Power Environmental Protection Research Institute, Nanjing, China

⁷Department of Civil and Environmental Engineering, National University of Singapore, Singapore

⁸Institute of Surface-Earth System Science, Tianjin University, Tianjin, China

⁹Department of Environmental Toxicology, University of California Davis, Davis, CA, United States

*Corresponding author: Xinlei Ge (Email: caxinra@163.com); Junfeng Wang (Email: wangjunfeng@g.harvard.edu).

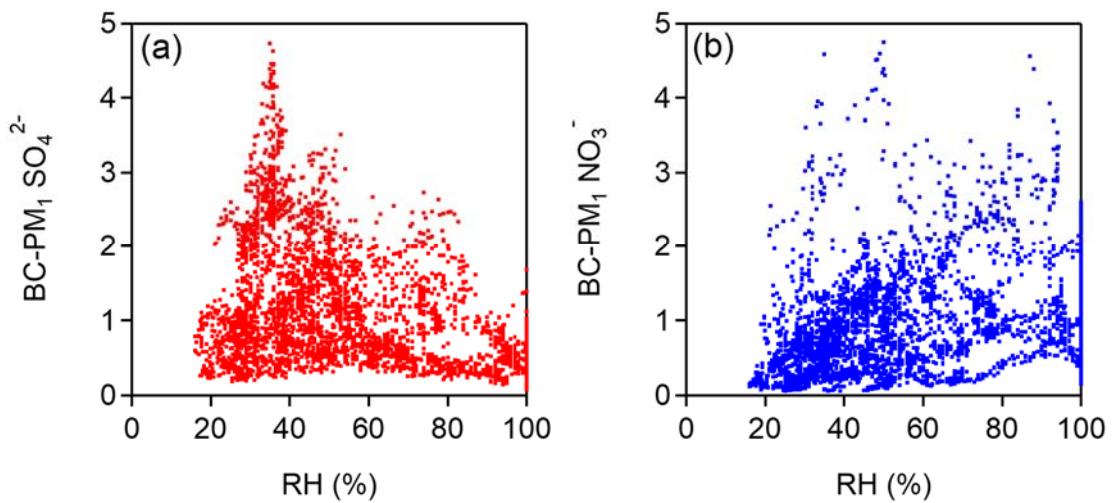


Figure S1. BC-PM₁ SO_4^{2-} (a) and NO_3^- (b) as a function of RH.

Table S1. Comparisons of gaseous species, BC-PM₁ and NR-PM₁ species in different periods.

species/parameters	Case I	Case II	entire campaign
NO ₂ (ppb)	26.7 ± 13.5	14.9 ± 5.9	19.1 ± 13.1
O ₃ (ppb)	41.7 ± 30.0	84.6 ± 30.6	59.4 ± 34.7
T (°C)	26.1 ± 4.1	29.8 ± 3.8	26.7 ± 4.9
BC-PM ₁ Org vs NO ₂ /O ₃ (r^2)	0.42/0.15	0.12/0.02	0.23/0.0003
NR-PM ₁ Org vs NO ₂ /O ₃ (r^2)	0.15/0.001	0.05/0.05	0.06/0.08
BC-PM ₁ vs NR-PM ₁ (r^2)	0.27	0.66	0.49
BC-PM ₁ vs NR-PM ₁ (slope)	0.74	0.73	0.70
BC-PM ₁ vs NR-PM ₁ (y-intercept)	0.90	0.81	0.86
BC-PM ₁ vs HOA (slope)	0.73	0.84	0.68
BC-PM ₁ vs HOA (y-intercept)	0.51	0.31	0.60
BC-PM ₁ vs LO-OOA (slope)	0.71	0.81	0.61
BC-PM ₁ vs MO-OOA (slope)	0.74 ± 0.32	0.46 ± 0.13	0.52 ± 0.24
BC-PM ₁ vs MO-OOA (y-intercept)	0.24 ± 0.11	0.19 ± 0.06	0.18 ± 0.09
BC-PM ₁ to NR-PM ₁ ratio (slope)	0.37 ± 0.12	0.31 ± 0.07	0.30 ± 0.11
BC-PM ₁ to NR-PM ₁ ratio (y-intercept)	1.19 ± 0.52	1.46 ± 0.52	1.23 ± 0.57
BC-PM ₁ to LO-OOA (slope)	0.50 ± 0.27	0.40 ± 0.16	0.48 ± 0.39
BC-PM ₁ to LO-OOA (y-intercept)	2.12 ± 0.64	0.51 ± 0.15	1.06 ± 0.96

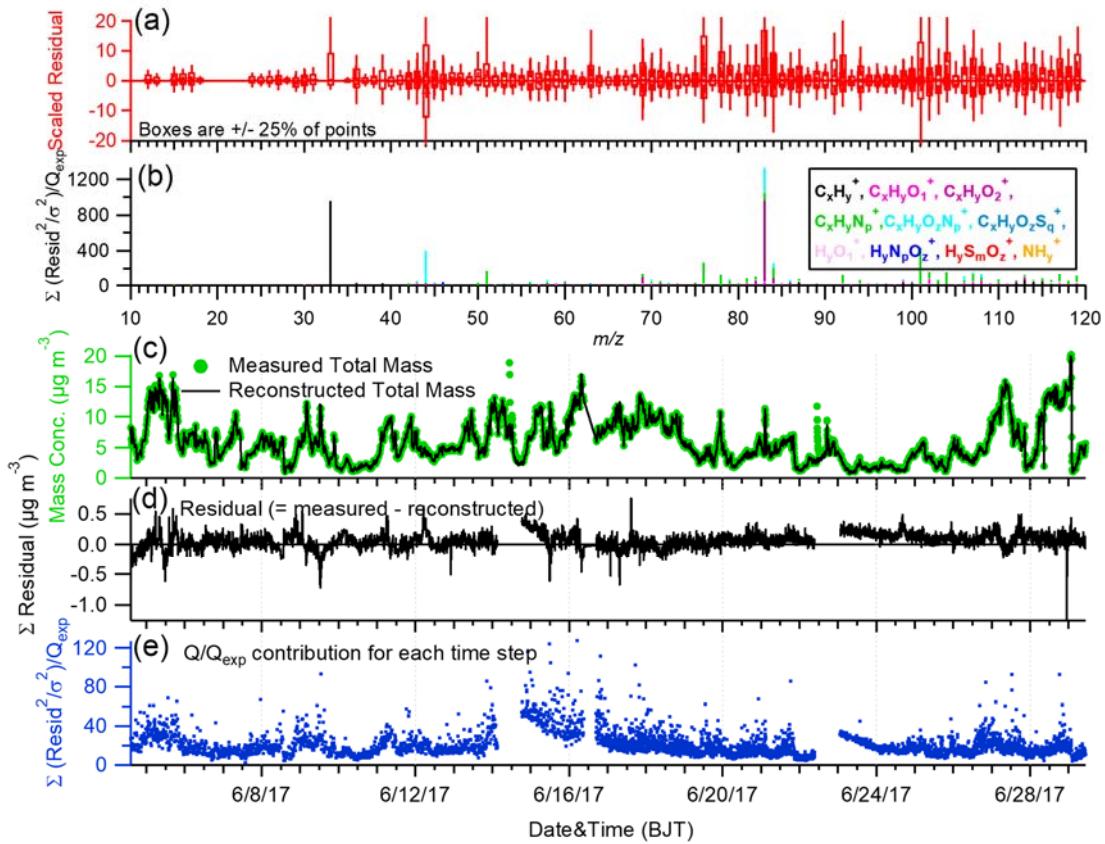


Figure S2. (a) the box and whiskers plot showing the distributions of scaled residuals for each m/z , (b) the Q/Q_{exp} values for each ion, (c) time series of the measured and reconstructed total organics mass concentrations, (d) time series of the residual concentrations, and (e) the Q/Q_{exp} values for each point in time.

Table S2. Correlations of BC-PM₁ OA factors with their traces.

<i>r</i> ²	HOA	A-BBOA	OOA1	OOA2	OOA3
BC	0.70	0.07	0.43	0.10	0.10
C ₄ H ₉ ⁺	0.92	0.13	0.35	0.02	0.02
C ₉ H ₇ ⁺	0.63	0.10	0.39	0.03	0.03
NO ₂ (gas)	0.57	0.00	0.20	0.02	0.00
C ₂ H ₃ O ⁺	0.26	0.44	0.72	0.30	0.03
C ₃ H ₅ O ⁺	0.23	0.50	0.67	0.34	0.03
C ₆ H ₁₀ O ⁺	0.50	0.36	0.60	0.19	0.02
C ₂ H ₄ O ₂ ⁺	0.26	0.71	0.27	0.31	0.04
C ₃ H ₅ O ₂ ⁺	0.23	0.72	0.27	0.35	0.02
CH ₄ N ⁺	0.20	0.61	0.25	0.46	0.00
K ₃ SO ₄ ⁺	0.06	0.64	0.06	0.38	0.00
O ₃ (gas)	0.27	0.17	0.00	0.33	0.01
O _x	0.08	0.26	0.04	0.45	0.01
SO ₄ ²⁻	0.01	0.15	0.06	0.92	0.11
NO ₃ ⁻	0.01	0.00	0.04	0.05	0.97

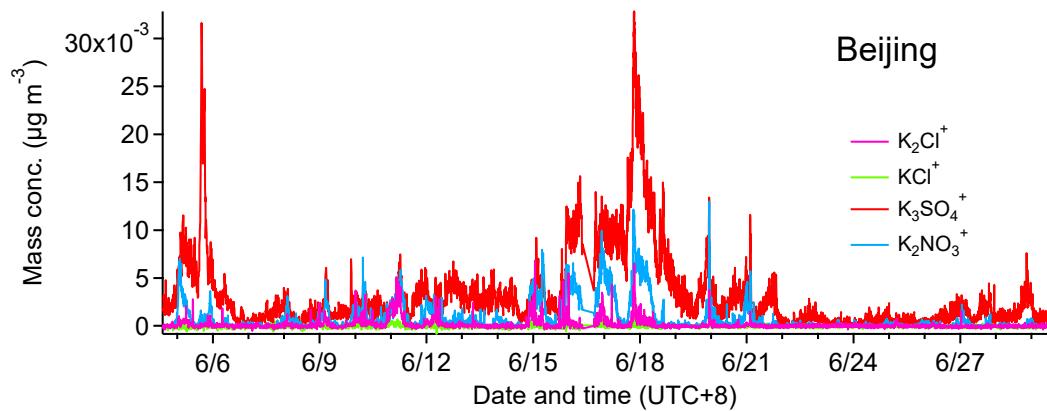


Figure S3. Time series of potassium-related ion fragments measured by SP-AMS.

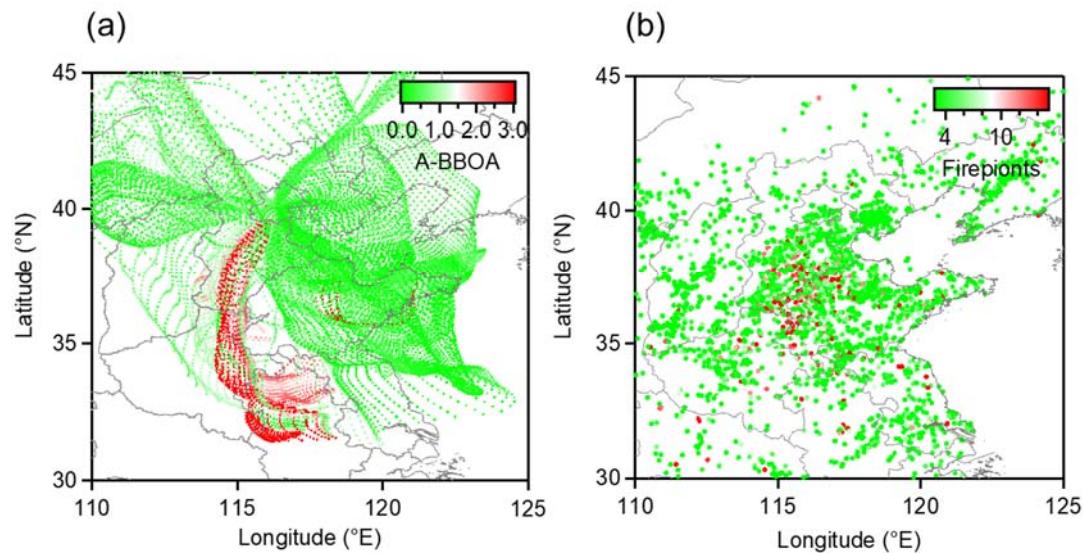


Figure S4. (a) 72-h back-trajectories from June 4 to 25, 2017 (Colored by A-BBOA mass concentration ($\mu\text{g m}^{-3}$)), (b) fire-point plot (the color scale shows the numbers of fire points which was observed by NASA (<https://earthdata.nasa.gov/firms.>)).

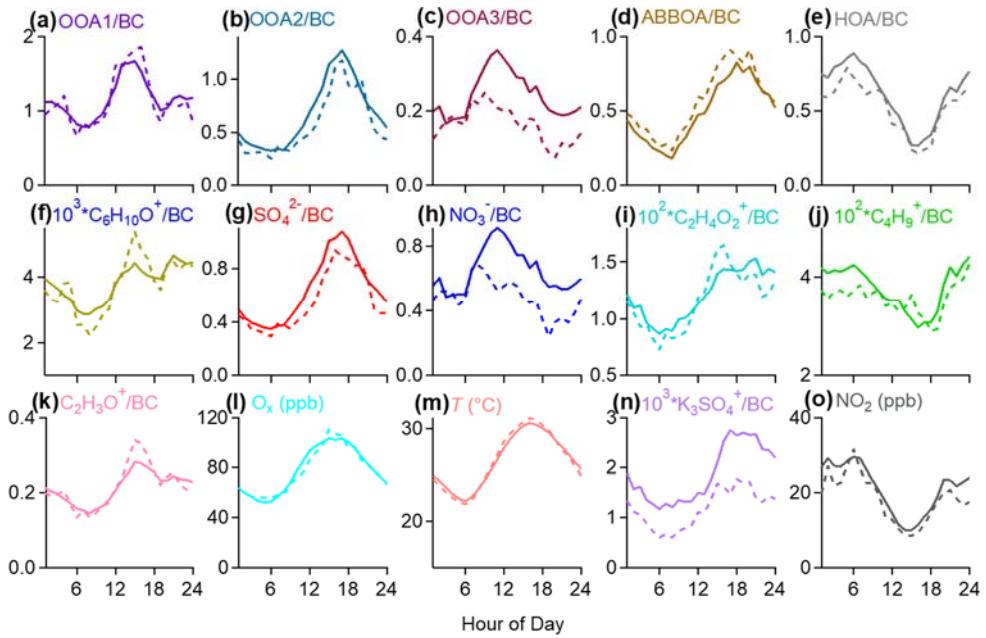


Figure S5. Diurnal cycles of mass ratios of BC-related species to BC core (five OA factors, tracer ion fragments, SO_4^{2-} and NO_3^-), T , and concentrations of gaseous species (O_x and NO_2). Mean values were in solid lines, mediate values were in dotted lines.

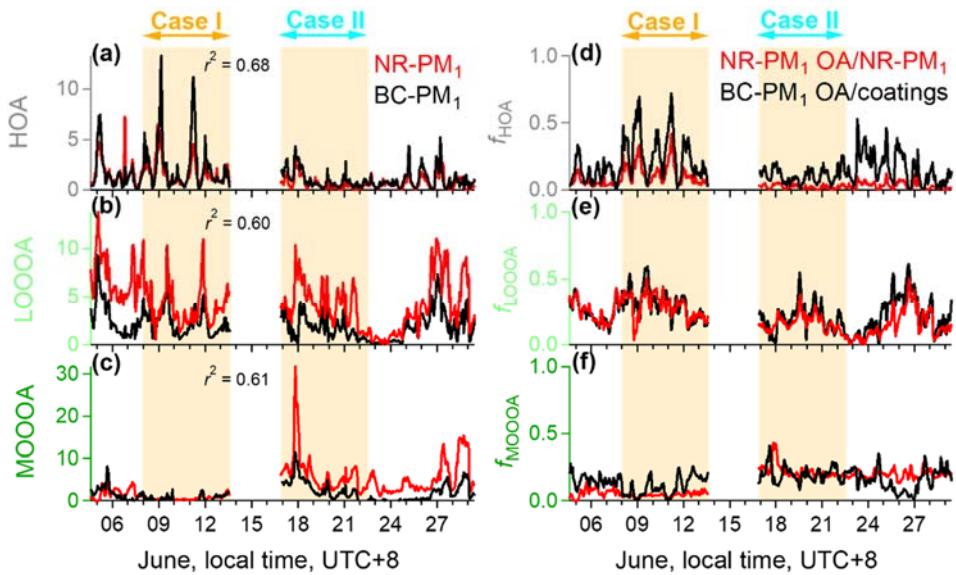


Figure S6. Temporal variations of NR-PM₁ and BC-PM₁ (a-c) HOA, LOOOA, and MOOOA (left panels) and (d-e) their fractions. NR-PM₁ OA factors are in red, and the BC-PM₁ OA factors are in black. Here BC-PM₁ MOOOA is only the sum of OOA2 (sulfate-related OOA), and OOA3 (nitrate-related OOA).