Changes in stratospheric aerosol extinction coefficient after the 2018 Ambae eruption as seen by OMPS-LP and ECHAM5-HAM

Elizaveta Malinina1*, Alexei Rozanov1, Ulrike Niemeier2, Sandra Peglow3, Carlo Arosio1, Felix Wrana3, Claudia Timmreck2, Christian von Savigny3, and John P. Burrows1

1Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany
2Max-Planck Institute for Meteorology, Hamburg, Germany
3Institute of Physics, University of Greifswald, Greifswald, Germany

*now at the Canadian Centre for Climate Modelling and Analysis (CCCma), Environment and Climate Change Canada, Victoria, Canada

Correspondence: Alexei Rozanov (alex@iup.physik.uni-bremen.de)

Abstract. Stratospheric aerosols are an important component of the climate system. They not only change the radiative budget of the Earth but also play an essential role in ozone depletion. Most noticeable those effects are after volcanic eruptions when SO$_2$ injected with the eruption reaches the stratosphere, oxidizes and forms stratospheric aerosol. There have been several studies, where a volcanic eruption plume and the associated radiative forcing were analyzed using climate models. Besides, volcanic eruptions were studied using the data from satellite measurements; however, studies combining both models and measurement data are rare. In this paper, we compared changes in the stratospheric aerosol loading after the 2018 Ambae eruption observed by satellite remote sensing measurements and by a global aerosol model. We use vertical profiles of aerosol extinction coefficient at 869 nm retrieved at IUP Bremen from OMPS-LP (Ozone Mapping and Profiling Suite - Limb Profiler) observations. Here, we present the retrieval algorithm as well as a comparison of the obtained profiles with those from SAGE III/ISS (Stratospheric Aerosol and Gas Experiment III onboard International Space Station). The observed differences are within 25% for the most latitude bins, which indicates a reasonable quality of the retrieved limb aerosol extinction product. The volcanic plume evolution is investigated using both: monthly mean aerosol extinction coefficients and 10-day averaged data. The measurement results were compared with the model output from ECHAM5-HAM. In order to simulate the eruption accurately, we use SO$_2$ injections estimates from OMPS and OMI for the first phase of eruption and TROPOMI for the second phase. Generally, the agreement between the vertical and geographical distribution of the aerosol extinction coefficient from OMPS-LP and ECHAM is quite remarkable, in particular, for the second phase. We attribute the good consistency between the model and the measurements to the precise estimation of injected SO$_2$ mass and height as well as through nudging to ECMWF reanalysis data. Additionally, we compared the radiative forcing (RF) caused by the increase of the aerosol loading in the stratosphere after the eruption. After accounting for the uncertainties from different RF calculation methods, the RFs from ECHAM and OMPS-LP agree quite well. We estimate the tropical (20° N to 20° S) RF from the second Ambae eruption to be about -0.13 W/m2.

https://doi.org/10.5194/acp-2020-749
Preprint. Discussion started: 5 August 2020
© Author(s) 2020. CC BY 4.0 License.
1 Introduction

The importance of stratospheric aerosols in the climate system now well established. Stratospheric aerosols influence it both directly and indirectly. Firstly, they change the radiative budget of the Earth by scattering back to space the incoming short-wave solar radiation and, thereby, cause a net negative radiative forcing (RF) (see, e.g., Thomason and Peter, 2006; Kremser et al., 2016, and references therein). Secondly, stratospheric aerosols influence climate indirectly by participating in chemical reactions which lead to ozone depletion (see, e.g., Solomon, 1999; Ivy et al., 2017; WMO, 2018).

Aerosols are present in the stratosphere all the time. Even though there is some evidence of a presence of organic particles, soot, meteoritic dust as well as other solid particles in the stratosphere, the most abundant are the droplets of sulfuric acid with a commonly assumed weight percentage of 75% \(\text{H}_2\text{SO}_4 \) and 25% \(\text{H}_2\text{O} \). In the background state, stratospheric aerosols are formed by continuous emissions of carbonyl sulfide (OCS), dimethyl sulfide (DMS) and other sulfuric gases from the ocean surface. However, occasionally this state is perturbed. In recent years due to the increasing number of extreme weather events, biomass burning became a significant source of stratospheric aerosols. Thus, during large biomass burning events, like the Australian Bushfires of 2009 and 2019 (Siddaway and Petelina, 2011), as well as the Canadian Wildfires of 2017 (Khaykin et al., 2018; Bourassa et al., 2019; Kloss et al., 2019), sulfuric gases and other combustion products are transported into the stratosphere by convective clouds (pyrocumulonimbus). Another noticeable source of stratospheric sulfur is anthropogenic fossil fuel combustion in South East Asia, where the aerosol precursors are transported into the stratosphere with the Asian Monsoon (Randel et al., 2010). Although these sources are undoubtedly important, the large scale changes to the stratospheric aerosol layer are primarily driven by moderate and large volcanic eruptions which emit sulfur dioxide (\(\text{SO}_2 \)) directly into the upper troposphere lower stratosphere (UTLS region (e.g. Kremser et al., 2016, and references therein)).

Although volcanic eruptions are infrequent, they still significantly influence climate short and long-term. Consequently, it is essential to consider them in climate models. According to Solomon et al. (2011); Haywood et al. (2014); Schmidt et al. (2018, and references therein), it has been shown that climate models that neglect forcing from volcanic eruptions since the year 2000 tend to project a faster rate of global warming for the first 15 years of the 21st century than those models including this volcanic forcing. There are numerous global aerosol model studies of historic and more recent eruptions. For example, several papers focus on the June 1991 eruption of Mount Pinatubo (Niemeier et al., 2009; Feinberg et al., 2019; Dhomse et al., 2020). Some studies also evaluate more recent moderate and small eruptions of the 21st century (e.g. Haywood et al., 2010; Kravitz et al., 2010, 2011; Zhu et al., 2018; Lurton et al., 2018). Similarly, there are multiple studies which use measurement results to analyze the changes in stratospheric aerosol loading either after some event (e.g., volcanic eruptions or biomass burning events) (e.g., Siddaway and Petelina, 2011; Bourassa et al., 2019), or long term (e.g., Bingen et al., 2004; von Savigny et al., 2015; Malinina et al., 2018). However, the studies which directly compare modelled and measured aerosol parameters are quite rare. In the papers known to the authors, the monthly mean stratospheric aerosol optical depth (SAOD) was typically the parameter used to compare models and measurements (e.g., Haywood et al., 2010; Kravitz et al., 2010, 2011; Lurton et al., 2018). Brühl
et al. (2018) used data from two satellite platforms and compared the vertically resolved aerosol extinction coefficient \((\text{Ext})\) at different wavelengths with model data in the period from 2002 to 2012. However, they compared spatial averages and did not focus on the plume distribution from volcanoes assessing agreement only in general terms.

The scope of our study is to investigate the similarities and differences of how models and measurements show a volcanic plume evolution. For this reason, we use the time and altitude resolved \(\text{Ext}\) data retrieved from the limb viewing instrument OMPS-LP and the output from the ECHAM model. We also study the differences in the modeled RF and that calculated from the measured data. Our study was conducted on the example of the 2018 Ambae eruption. This particular eruption was chosen because it was one of the strongest in the last decade; although, it did not receive as much attention as Kilauea eruption earlier that year or the 2019 Raikoke eruption.

Ambae (or Aoba) island is located in the South Pacific in Vanuatu (15.39°S, 167.84°E): being a shield volcano with three lakes in its caldera. According to Moussallam et al. (2019, and references therein), the previous significant Ambae eruption happened about 350 years ago; this information agrees with that from Smithsonian Institution (2019), according to which the active period of 2017-2018 was the strongest ever for this volcano. This period started on the 6 September 2017 and lasted over a year ending on the 30 October 2018. The researchers divide the eruption into four phases (Moussallam et al., 2019); however, for the stratospheric aerosol community, the most essential are the third and the fourth phases, when \(\text{SO}_2\) was injected above the tropopause. Namely, the third phase from mid-March to mid-April 2018, is associated with ash falls and acid rains, the largest \(\text{SO}_2\) injection of the period occurred on the 6 April at 16-18 km altitude. However, the fourth phase in mid-July 2018 was more severe. Thus, on the 27 July 2018, along with ash, \(\text{SO}_2\) was injected into the UTLS region (17 km). For consistency reasons, further in the text "the first" or "April eruption" refers to the third phase, and "the second" or "July eruption" defines the fourth phase.

The paper is structured as follows. In Sec. 2, the OMPS-LP instrument and its stratospheric aerosol retrieval algorithm are presented. The comparison of OMPS data with the data from SAGE III/ISS can be found in Sec. 3. The OMPS-LP aerosol extinction climatology is described in Sec. 4. The aerosol extinction coefficient distribution retrieved from the measurements made by the OMPS-LP instrument is presented in Sec. 5. The distribution of aerosol extinction coefficient as well as estimation of \(\text{SO}_2\) mass from Ambae eruption is described in Sec. 6. Discussion of the results and the RF comparisons are presented in Sec. 7. The conclusions of the paper are provided in Sec. 8.

2 OMPS-LP and \(\text{Ext}\) retrieval algorithm

There is only a limited number of methods to observe stratospheric aerosols, and the only option to obtain a global distribution of stratospheric aerosol profiles is to use space-borne measurements. While the first decade of the twenty-first century is known as the "golden era" of stratospheric observations with such instruments as the Stratospheric Aerosol and Gas Experiment (SAGE) II, SAGE-III/Meteor (Damadeo et al., 2013), the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) (Gottwald and Bovensmann, 2011), the Global Ozone Monitoring by Occultation of Stars (GOMOS) (Bertaux et al., 2004) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) (Fischer et al.,
2008) being on-orbit, nowadays there is a very limited number of space-borne missions, which can be used to retrieve stratospheric aerosol information. At the time of writing, only the Optical Spectrograph and InfraRed Imager System (OSIRIS) (Llewellyn et al., 2004), the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) (Vernier et al., 2011), the Ozone Mapping and Profiling Suite (OMPS) and the SAGE-III onboard International Space Station (ISS) continue stratospheric aerosol measurements. At the same time, OSIRIS and CALIPSO launched in 2001 and 2006, respectively, are now well beyond their intended lifetimes. Therefore, in this paper, in order to obtain stratospheric aerosol characteristics, we use data from the OMPS instrument.

OMPS onboard Suomi National Polar-orbiting Partnership (SNPP) launched in late 2011 by NASA consists of three sensors: nadir mapper (NM), nadir profiler (NP) and limb profiler (LP) (Seftor et al., 2014). To retrieve information on stratospheric aerosols, only measurements from LP can be used.

OMPS-LP registers solar radiance scattered by the atmosphere. Unlike SCIAMACHY and OSIRIS, OMPS-LP does not use a diffraction grating; instead, a prism disperses the light on a two-dimensional CCD (charge-coupled device) detector, which registers the radiance simultaneously from all altitudes from 290 to 1000 nm with the spectral resolution from 1 nm to 30 nm depending on the wavelength (Jaross et al., 2014). The LP has three vertical slits; however, we use only the measurements from the central slit because of remaining pointing and stray-light issues on the side ones. Each slit registers vertically 105 pixels with a 1.5 km instantaneous field of view of each detector pixel. The radiances are registered with a vertical sampling of 1 km at the tangent point. The lowest and the highest registered altitudes vary depending on the latitude and season; nevertheless, the altitude span from 5 to 80 km is constantly covered (Jaross et al., 2014).

As it can be inferred from its name, initially, OMPS was designed to obtain ozone products, and in the instrument design, the UV-Vis parts of the spectrum were prioritized. As the prism dispersion is non-linear, the spectral resolution of the measurements at the wavelength longer than 500 nm degrades exponentially, reaching about 30 nm at 1000 nm. This results in the situation that the usual stratospheric aerosol extinction wavelength 750 nm, used by, e.g., SCIAMACHY and OSIRIS (Rieger et al., 2018) is not suitable for use as OMPS-LP measurements around this wavelength are affected by the O$_2$-A absorption band. Thus, for the stratospheric aerosol extinction retrieval, instead of 750 nm, we use the measurements at 869 nm (with a spectral resolution of 22 nm), because the spectral interval from 830 to 900 nm is absorption free.

Even though some aspects of our algorithm have been briefly described in Arosio et al. (2018) and Malinina (2019), here, we provide a consolidated summary. The OMPS V1.0.9 Ext$_{869}$ retrieval algorithm was adapted from the SCIAMACHY V1.4 algorithm (Rieger et al., 2018) and uses the same regularized iterative approach. However, here, we use the first-order Tikhonov regularization with the parameter value of 50 to smooth spurious oscillations in the level 1 V2.5 data. Based on the information provided by NASA, the signal-to-noise ratio (SNR) is set to 500 for all the tangent altitudes.

In V1.0.9, Ext$_{869}$ is retrieved on a 1 km grid from 10.5 to 33.5 km, with the measurement at 34.5 km being used as the reference. Additionally, the effective Lambertian albedo is simultaneously retrieved using the sun-normalized spectrum at 34.5 km. The retrieval is done under the assumption of stratospheric aerosols being spherical sulfate droplets (75% H$_2$SO$_4$ and 25% H$_2$O) with 0% relative humidity and unimodal lognormal particle size distribution. In this distribution the median radius (r_{med}) is equal to 0.08 µm and $\sigma=1.6$; the particle number density a priori profile is chosen in accordance with Extinction Coefficient.
for STRatospheric Aerosol (ECSTRA) background climatology (Fussen and Bingen, 1999). We use the refractive indices from the OPAC database (Hess et al., 1998), for the selected wavelength the refractive index equals $1.425 - 1.38597 \times 10^{-7}i$. The stratospheric aerosol profile is defined from 10 to 46 km; below and above, the number density profile is set to 0. After the retrieval, the Ext_{869} values higher than 0.1 km$^{-1}$ are considered to be cloud contaminated and thus are filtered. Here we want to highlight, that we increased our threshold extinction value for the identification of cloud contamination (Malinina, 2019), because the previous threshold was filtering some profiles with increased aerosol loading.

3 OMPS extinction comparison with SAGE-III/ISS

3.1 SAGE III/ISS instrument

Stratospheric Aerosol and Gas Experiment (SAGE) III on the International Space Station (ISS) started operating in early 2017 as a continuation of the SAM–SAGE data record. SAGE-III/ISS provides solar and lunar occultation, as well as limb-scatter measurements (Cisewski et al., 2014); however, for now, for stratospheric aerosol extinction coefficient retrievals, only solar occultation measurements are used. The principle of solar occultation is to measure solar irradiance attenuated by the Earth’s atmosphere between the Sun and the instrument during each sunrise and sunset. The solar occultation measurements are self-calibrating, and unlike limb instruments, for the Ext retrieval, no assumptions on the aerosol particle size distribution are needed, thus, making occultation measurements rather precise.

SAGE-III/ISS provides continuous measurements from 280 to 1040 nm with spectral resolution from 1 to 2 nm depending on the wavelength, which are registered on a 808×10 pixel CCD. Additionally, there is an infrared photodiode centered at 1550 nm (McCormick et al., 2019, and references therein). According to Cisewski et al. (2014), the aerosol extinction coefficients provided by NASA have 0.75 km vertical resolution. In the official NASA product, aerosol extinctions are provided in 0.5 km steps from 0 to 45 km. Due to the ISS orbit, the measurements are performed from 70° N to 70° S. It should be noted here that occultation measurements are very sparse in comparison to limb measurements. This is because for one orbit a solar occultation instrument can register one sunrise and one sunset, while a limb instrument does not have these limitations. For example, OMPS-LP provides 180 measurements per orbit, which drastically increases geographical sampling.

3.2 Comparison

The OMPS-LP Ext_{869} was originally retrieved to improve the ozone product (Arosio et al., 2018); however, it can also be used to evaluate the changes in stratospheric aerosol loading after volcanic eruptions and biomass burning events (Malinina, 2019). Here, it should be noted that there are three other OMPS aerosol extinction products. Two of them are the official NASA Ext_{675} products V1.0 (Loughman et al., 2018) and V1.5 (Chen et al., 2018). Moreover, at the University of Saskatchewan, as a part of the ozone retrieval, a tomographic Ext_{750} product was obtained (Bourassa et al., 2019). All four Ext products were retrieved at different wavelengths and using different approaches. Thus, their inter-comparison will be challenging and will contain uncertainties, e.g., associated with Ångström exponent calculations.
In order to evaluate the quality of our Ext_{869}, it was compared with the SAGE III/ISS solar occultation product. There are several advantages to this comparison. Firstly, SAGE III is an independent data set; thus, the OMPS instrumental uncertainties (e.g., scattering angle dependency) will not influence the comparison, as it would be with be the case for the other OMPS products. Secondly, SAGE III is an occultation instrument, which means that its Ext profiles are rather precise and independent of the aerosol PSD assumption, as, e.g., OSIRIS.

Another advantage of the comparison with SAGE III is the same measurement wavelength. Both, OMPS-LP and SAGE III provide measurements at 869 nm, so aerosol extinction does not need to be recalculated assuming an Ångström exponent. Even though the spectral resolution of the instruments at this wavelength is different (1.5 nm in SAGE III versus 30 nm in OMPS-LP), it does not influence the aerosol extinction coefficient strongly because the wavelength interval from 830 to 900 nm is absorption free.

For the comparison, individual profiles from the 07 June 2017 until the 31 August 2019 were used. The profiles were collocated using the following criteria, the difference between the profile’s coordinates should be less than 2.5° in latitude, 10° in longitude and 24 hours in time. Overall, there are 19264 collocated measurements used for this comparison. For SAGE III data, the same as for OMPS, the aerosol extinction values higher than 0.1 km$^{-1}$ were filtered out. Additionally, the SAGE III Ext_{869} values were excluded, if the uncertainty provided by NASA is higher than 50%. We did not filter negative Ext_{869} because this would bias the comparison.

The mean relative differences between OMPS and SAGE III Ext_{869} are presented in Fig. 1 in 20° latitude bins. For most of the altitudes in all latitude bins, the relative difference is within 25%. In the tropical and mid-latitudes, the only exceptions are the altitudes below 18 km, where despite filtering, the influence of clouds is still present. The largest differences are observed in high latitudes (40° to 80° in both hemispheres), in particular, at the altitudes above 24 km. For example, at about 28 km altitude, the differences reach up to 60% in these latitude bins. Generally, the above-described differences are similar to the relative differences between SCIAMACHY V1.4, OSIRIS v5.07 and SAGE II v7 (Rieger et al., 2018; Malinina, 2019). Additionally, Chen et al. (2019) showed that the differences seen between OMPS Ext_{675} V1.5 and SAGE III product have the same shape and order of magnitude. Rieger et al. (2018) studied precisely the reasons for the seen differences. Since the OMPS V1.0.9 algorithm is very similar to the SCIAMACHY V1.4 algorithm used in that study, and since the OMPS and SCIAMACHY have very similar geometries, the same explanations as Rieger et al. (2018) are appropriate. Thus, the most important sources of errors in limb retrievals arise from the uncertainly assumed aerosol loading at the reference tangent altitude as well as the unknown aerosol particle size distribution parameters. The latter factor mostly affects the high latitudes where the viewing geometries are close to forward and backward scattering.

Based on our comparison and the results from the other limb-occultation instrument studies, it can be concluded that our OMPS V1.0.9 Ext_{869} is of sufficient quality to be used for scientific purposes.
Figure 1. Mean relative difference in Ext_{869} between OMPS-LP and SAGE III/ISS, calculated as $200 \times (\text{OMPS-SAGE})/(\text{OMPS+SAGE})$. The shaded areas show \pm 1 standard deviation.

4 OMPS-LP aerosol extinction climatology

In order to study the aerosol extinction coefficient evolution after a volcanic eruption, the OMPS V1.0.9 product has to be averaged in some fashion. We have created two level 3 products, which are monthly and 10-day averaged Ext_{869}. Both products were put onto a regular grid with 2.5° latitude and 5° longitude steps.

An example of zonal monthly mean Ext_{869} averaged in 30° latitude bins for the whole OMPS operation period is presented in Fig. 2. In this figure, the volcanic eruptions and a relevant biomass burning event are shown with grey triangles with numbers. The information on the volcanic eruptions is presented in Tab. 1. We show only Ext_{869} within 60° in both hemispheres because, as it was pointed out in Sec. 3, the aerosol extinctions above these latitudes are associated with larger uncertainties.
Figure 2. Monthly mean aerosol extinction coefficient (Ext_{869}) distribution with time and altitude. Ext_{869} was retrieved from OMPS-LP measurements and averaged over longitude in 30° latitude bins. The triangles with numbers represent volcanic eruptions and biomass burning events (see Tab. 1).

Table 1. Volcanic eruptions and biomass burning events shown in Fig. 2.

<table>
<thead>
<tr>
<th>Number</th>
<th>Volcano</th>
<th>Date of the eruption</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Copahue</td>
<td>23 Dec. 2012</td>
<td>-37.51</td>
<td>-71.1</td>
</tr>
<tr>
<td>2</td>
<td>Kelut</td>
<td>13 Feb. 2014</td>
<td>-7.55</td>
<td>112</td>
</tr>
<tr>
<td>3</td>
<td>Sangeang Api</td>
<td>30 May 2014</td>
<td>-8.2</td>
<td>119.07</td>
</tr>
<tr>
<td>4</td>
<td>Calbuco</td>
<td>22 Apr. 2015</td>
<td>-41.19</td>
<td>-72.37</td>
</tr>
<tr>
<td>5</td>
<td>Canadian Wildfires</td>
<td>July-Aug. 2017</td>
<td>51.64</td>
<td>-121.3</td>
</tr>
<tr>
<td>6</td>
<td>Ambae</td>
<td>06 Apr. 2018</td>
<td>-15.4</td>
<td>167.84</td>
</tr>
<tr>
<td>6a</td>
<td></td>
<td>27 July 2018</td>
<td>-5.05</td>
<td>151.33</td>
</tr>
<tr>
<td>7</td>
<td>Raikoke</td>
<td>22 June 2019</td>
<td>48.3</td>
<td>153.4</td>
</tr>
<tr>
<td>8</td>
<td>Ulawun</td>
<td>26 July 2019</td>
<td>-0.05</td>
<td>151.33</td>
</tr>
</tbody>
</table>

Furthermore, the main scope of this paper is to study the tropical Ambae eruptions; thus, we do not focus our attention on aerosol loading in the high latitudes.

Analysis of Fig. 2 shows that there is a certain increase of Ext_{869} in the very beginning of OMPS operation in the Northern Hemisphere latitude bins. This is associated with the eruption of Nabro (13° N) in the middle of 2011. Additionally, one can see an increase of Ext_{869} some time after eruptions from Table 1 and from Canadian Wildfires of 2017 (number 5 in Fig. 2 and Table 1). The degree of the enhancement, as well as the time lag between the eruptions, seen in the latitude bands, are
dependent on the volcano’s location and the eruption strength. Usually, for the tropical eruptions, an increase in stratospheric aerosol loading is seen globally because the aerosols and precursors are transported with the Brewer-Dobson Circulation (BDC) to both hemispheres. Also, in the tropics, the BDC is responsible for the tape recorder effect, or delayed increase in Ext_{869} with the height. For example, in Fig. 2 (a) and (b), the tape recorder effect is seen for the Kelut, Sangeang Api, Calbuco and Ambae eruptions as well as for the Canadian Wildfires. For the eruptions in the mid-latitudes, the increase usually stays in the hemisphere where it occurred (e.g., Oman et al., 2006; von Savigny et al., 2015; Toohey et al., 2019; Malinina, 2019).

Another noticeable feature in Fig. 2 is the periodical increase of Ext in all latitude bins. There are several factors causing this pattern. For the tropical region, there is a periodic associated with the quasi-biennial oscillation (QBO). The influence of QBO on stratospheric aerosols was previously reported by e.g. Hommel et al. (2015); Brinkhoff et al. (2015); von Savigny et al. (2015); Malinina et al. (2018). Additionally, the annual seasonality in both tropics and mid-latitudes is related to two factors. First, there are some yearly changes in stratospheric aerosol loading (Hitchman et al., 1994; Bingen et al., 2004). But for the limb viewing instruments, the more important factor is the seasonality in solar scattering angle, which leads to artifacts of the retrieval predominately in the extratropical regions (see e.g. Rieger et al., 2018).

5 Aerosol extinction coefficient evolution after Ambae eruption as seen by OMPS-LP

As it was already highlighted in the introduction, Ambae was one of the largest eruptions of the last decade but has not been a focus of scientific or public interest. The eruptive period, which lasted over a year, had two explosive phases when SO$_2$ was injected into the stratosphere (the exact information on SO$_2$ mass estimation can be found in Sec. 6.1). The first emission was smaller, and the perturbation in Ext_{869} did not reach the altitudes above 21 km (see Fig. 2 (a) and (b)). The second emission was considerably larger; it perturbed Ext_{869} up to 23.5 km in the tropics and up to 22 km in the extratropical regions. Although, to better evaluate the plume evolution, we will further analyze 10-day averaged Ext_{869}.

The evolution with time and altitude of 10-day mean Ext_{869} averaged over longitudes at 18.5 and 20.5 km is presented in panels (a) and (b) of Fig. 3. Foremost, it should be noted that the increase of Ext_{869} in February – May 2018 in the latitudes above 25°N at 18.5 km and above 7°N at 20.5 km is related to the disappearing plume from the Canadian Wildfires of 2017. The first small increase in Ext_{869} associated with the April Ambae eruption appears at 18.5 km in the first week after the injection. The more significant increase is observed in early May 2018. At the time, the plume is located around 10–25°S and stays there until late June. In June, the increase in Ext_{869} starts to spread to the south, reaching 35–45°S in July 2018. At 20.5 km, the increase after the first SO$_2$ release is rather negligible. Nevertheless, there is still an area with the increased aerosol loading below 20°S from the beginning of May.

In late July 2018, at the fourth phase of the eruption, Ambae injected another portion of ash and SO$_2$. Almost at the same time, Ext_{869} increases at 18.5 km directly at the source. In about two weeks, the volcanic plume starts to spread both northwards and southwards and is located between the equator and 35°S in early September, reaching 45°N in November – December 2018. The southern border of the plume at 18 km is harder to identify because it mixes with the aerosol from the previous SO$_2$ release. However, an increased aerosol loading is observed to the south of 35°S in September and intensifies...
Figure 3. Evolution of the aerosol extinction coefficient (Ext_{869}) at 18.5 and 20.5 km altitude after Ambae eruptions of 2018. In panels (a) and (b) Ext_{869} was retrieved from OMPS-LP measurements; for panels (c) and (d) Ext_{869} was modelled by ECHAM-HAM. Both datasets were averaged over 10 day period.

further with the time. By mid October 2018, the plume starts to vanish around the equator and continues to weaken with time. At 20.5 km, the plume appears in mid-September 2018 at around 10°S, spreads northwards and southwards from that moment on, reaching its maximum in November. It is located in between 30° S and 35° N in mid December 2018. Again, at the southern border of the plume, there is an area of increased Ext_{869}, which is related to both eruptions.

6 Ambae eruption modelled with ECHAM-HAM

6.1 Estimation of SO$_2$ injection

In order to simulate the Ambae eruptions, as a first step the amount of SO$_2$ emissions and injection altitude should be determined. Although there are methods to retrieve SO$_2$ mass and altitude from nadir measurements, it is well known these methods do not allow to distinguish, if SO$_2$ was released into the stratosphere or into the upper troposphere (see e.g. Carboni et al., 2016). Carboni et al. (2016) suggest that the combination of limb and nadir instruments might give a better answer. For this reason, in our work we use a combination of MLS (Microwave Limb Sounder) (Pumphrey et al., 2015) and nadir SO$_2$ products to determine the altitude and the mass of SO$_2$ injection.

To assess the Ambae SO$_2$ burden and plume location, combined OMI (Ozone Monitoring Instrument) (Fioletov et al., 2011) and OMPS-NM (Carn et al., 2015) data were used for the April eruption. Yet for the July eruption, data from TROPOMI (TROPOspheric Monitoring Instrument) was taken into consideration. We do not use the same SO$_2$ satellite product for both
eruptive episodes because of two reasons. First, the TROPOMI data with a fine grid and extensive coverage is publicly available from the early May 2018, thus missing the first eruption. Second, even though the combined OMI and OMPS-NM dataset temporally covers both eruption phases, it contains spatial gaps, which results in less precise SO$_2$ mass assessment. Thus, the current choice provides a trade-off between the spatial coverage and overall data availability.

For the injection altitude estimation, MLS SO$_2$ number density profiles and tropopause altitude were used. Using the plume location from OMI/OMPS-NM and TROPOMI data (see below), the profiles collocated with the plumes for April and July 2018 were analyzed. Based on that data, it was identified that on the 6 April and the 27 July, the volcanic SO$_2$ reached the stratosphere. These days coincide with the information presented by Moussallam et al. (2019); Kloss et al. (2020); Smithsonian Institution (2019).

6.1.1 Combined OMI and OMPS-NM dataset

For the first eruption, OMI SO$_2$ level 2 data with the assumption of an SO$_2$ distribution in the lower stratosphere (center of mass altitude of 18 km (Li et al., 2017)) was used. Due to the OMI row anomaly, all rows > 21 (counting starts at 0) were excluded. The first ten rows were discarded in order to limit the across-track pixel width (Lu et al., 2013), so that only rows 10-21 were considered. Furthermore, the radiative cloud fractions less than 0.2 and a solar zenith angle less than 70° were required. SO$_2$ total columns with large negative values below -1E30 DU were not included in the analysis. A threshold of 0.05 g/m2 was introduced to distinguish the volcanic signal from the background. All satellite pixels that fulfilled the above requirements were averaged for each segment of the self-defined grid (see below). The SO$_2$ data was converted into units of g/m2 and multiplied with the segment area to obtain the SO$_2$ mass in units of g for every grid segment. All orbits measured on one day were combined so that the SO$_2$ mass in each segment for a specific day was determined.

OMPS-NM level 2 SO$_2$ data with the SO$_2$ column for the lower stratosphere (16 km) was used accordingly. Pixels at the edges of the swath were discarded, excluding rows < 2 and rows > 33 (counting starts at 0) (Fioletov et al., 2020; Zhang et al., 2017). Only data with a pixel quality flag equal to 0 and a solar zenith angle less than 84° were used. Again, a threshold of 0.05 g/m2 was applied, and the SO$_2$ mass per day for each grid segment was determined as described above for the OMI data.

The daily OMI and OMPS data were projected on a self-defined grid from 10° N to 45° S and from 150° E to 140° W with a resolution of 0.5° and averaged for each segment. The data was summed up over the entire grid to determine the total SO$_2$ mass for each day in this area. The results for the period from the beginning of March until the end of April 2018 are presented in the panel (a) of Fig. 4. The estimate for the day when SO$_2$ reached the stratosphere is marked with a red circle. Due to the large data gaps, this SO$_2$ mass is a minimum estimate for the SO$_2$ ejected during the eruption.

Before the 0.05 g/m2 threshold was applied, the combined satellite measurements covered approximately 40–70% of the self-defined grid.

The largest source of error for estimating the SO$_2$ emission is probably the choice of the assumed SO$_2$ profile because the vertical distribution of the SO$_2$ affects the air mass factor used for the retrieval of the vertical column densities.
Figure 4. The SO$_2$ mass calculated for a threshold of 0.05 g/m2 from the combined OMI and OMPS-NM for the first Ambae eruption in April (a) and from TROPOMI data for the July eruption (b).

6.2 TROPOMI dataset

The SO$_2$ mass emitted during the eruption of Ambae in late July of 2018 was estimated by analyzing SO$_2$ total vertical columns from the TROPOMI instrument (Veefkind et al., 2012) on the Copernicus Sentinel-5 Precursor satellite for the time period from the 1 July 2018 to the 29 September 2018. This instrument allows for global daily coverage of SO$_2$ with a spatial resolution of 3.5 \times 7 km.

A grid with a resolution of 0.1° in longitude and latitude, respectively, was defined from 10° N to 45° S and 150° E to 140° W. The utilized sulfur dioxide total vertical columns assuming an SO$_2$ profile represented by 1 km thick box filled with SO$_2$ and centered at 15 km altitude, in order to model conditions in an explosive eruption (Theys et al., 2017). Only vertical column densities with values less than 1000 mol/m2 and a quality value greater than 0.5 were considered for the analysis (Pedergnana et al., 2018). The total vertical column was multiplied by the SO$_2$ molar mass to get the SO$_2$ mass loading in the units of g/m2. Afterwards, a threshold of 0.05 g/m2 was applied. The SO$_2$ mass loadings exceeding the selected threshold were averaged in each grid segment, and the result multiplied by the segment area in order to obtain the SO$_2$ mass in units of g for every grid segment. Since some orbits overlap, 14 consecutive orbits covering a time span of approximately 24 h were bundled to a dataset batch and averaged for each grid segment. Finally, the SO$_2$ mass of the entire grid per batch are summed up to obtain the total SO$_2$ burden.

The SO$_2$ masses calculated for every batch and for the thresholds of 0.05 g/m2 during the Ambae eruption are presented in the panel (b) in Fig. 4. The date represents the date of the first orbit in each batch that intersects with the area of interest. With the red circle, the day SO$_2$ reached the stratosphere according to MLS data is marked. The SO$_2$ mass increased to a maximum of 0.36±0.04 Tg on the 27 July and declined by the 5 August to magnitudes of Gg. The SO$_2$ mass for a threshold of 0 g/m2 (not shown) exhibits a high SO$_2$ background of 0.2 Tg that is strongly increasing to a maximum of 0.57 Tg on the 27 July. It decreases to 0.15 Tg on the 5 August, before it goes back up to 0.27 Tg on the 14 August and decreases steadily afterwards.

The application of a threshold of 0 g/m2 seems to suggest an SO$_2$ background of approximately 0.2 Tg that is not apparent in
Fig. 4, using a more restrictive threshold. Focusing only on the additional SO\textsubscript{2} entry, i.e. the difference between the maximum SO\textsubscript{2} and the background emission of 0.2 Tg, a total burden of approximately 0.4 Tg SO\textsubscript{2} was emitted applying a threshold of 0 g/m2. This result is comparable to the maximal SO\textsubscript{2} burden in Fig. 4.

Furthermore, the calculated maximum of emitted SO\textsubscript{2} mass strongly depends on the SO\textsubscript{2} data product used. As mentioned in Sec. 6.1.1, the vertical SO\textsubscript{2} distribution affects the air mass factor that is used to retrieve the vertical column densities. Assuming a threshold of 0.05 g/m2 and an SO\textsubscript{2} profile with the SO\textsubscript{2} existing in a 1 km thick box at an altitude of 15 km, as discussed above, results in the maximal SO\textsubscript{2} mass of 0.36 Tg. This value increases to 0.57 Tg and even to approximately 1.6 Tg by assuming a 7 km profile and a profile from the TM5 model, respectively, emphasizing the importance of a reasonable assumption for the vertical SO\textsubscript{2} distribution.

6.3 Model experiment

The volcanic eruptions were modeled by MAECHAM5-HAM. ECHAM is a general circulation model (GCM) which was used in the middle atmosphere version of the GCM ECHAM5 (Giorgetta et al., 2006). The horizontal resolution was about 1.8\textdegree, spectral truncation at wave-number 63 (T63) with 95 vertical layers up to 0.01 hPa. The large wave numbers of the model were nudged to ERA5 reanalysis data (Hersbach et al., 2018) to achieve realistic wind and transport conditions.

Interactively coupled to ECHAM is the aerosol microphysical model HAM (Stier et al., 2005), which calculates the oxidation of sulfur and sulfate aerosol formation, including nucleation, accumulation, condensation and coagulation processes. A simple stratospheric sulfur chemistry is applied above the tropopause (Timmreck, 2001; Hommel et al., 2011). The sulfate is radiatively active for both SW and LW radiation and coupled to the radiation scheme of ECHAM. These simulations use the model setup described in Niemeier et al. (2009) and Niemeier and Timmreck (2015). Hereafter we refer to MECHAM5-HAM as ECHAM.

The experiment setup used the estimated SO\textsubscript{2} emissions from Sec. 6.1. We injected 0.12 Tg SO\textsubscript{2} at altitudes of 82 to 102 hPa on the 6 April for four hours and 0.36 Tg SO\textsubscript{2} at altitudes between 74 and 90 hPa on the 27 July for 24 hours, starting at 18h UTC. The long eruption phase was chosen to take the observed series of eruptions into account. To slow down the oxidation of SO\textsubscript{2} due to the limited availability of OH in a volcanic cloud (Mills et al., 2017), the concentration of OH was limited in the first days after the eruption: Day 1 to 10 to 40% and day 10 to 20 to 60% of the prescribed OH. The sea surface temperature (SST) is set to a climatological value (Hurrell et al., 2008).

In order to be consistent with OMPS-LP measurements, the output of ECHAM was interpolated to the same altitudinal grid as provided by OMPS-LP. ECHAM provides Ext at 550 and 825 nm, thus, for the comparison consistency, the simulated Ext was recalculated to 869 nm and afterwards the 10-day averages were calculated.

6.4 Aerosol extinction coefficient evolution after Ambae eruption as modelled by ECHAM

The simulated distribution of Ext_{869} with time and latitude at 18.5 and 20.5 km is presented in panels (c) and (d) of Fig. 3. In these panels, it is seen that at 18.5 km the aerosol extinction coefficient starts to increase almost right after the first eruption and reaches its peak in May. The main part of the volcanic aerosol stays in the tropics between 30° S and the equator. A small amount of aerosol is dispersed meridionally right after the eruption. After the second eruption, at the end of July, the
first aerosol is formed right after the eruption with Ext increasing slowly until it reaches the maximum in September. Most aerosol is located to the south of 10° N. In the last days of September, the plume is still very well pronounced and it starts to spread meridionally, mostly southwards. By beginning of October Ext increases also in the Northern Hemisphere at 20° N, this increase spreads with the time to 40° in the late December. The plume starts to weaken in the beginning of November.

At 20.5 km the plume from the first eruption appears in late June. The plume at this altitude is quite weak and does not extend much over the latitudes. Basically, it is a small blob in between the equator and 10° S. The increase in Ext associated with the second eruption appears at 20.5 km in very late August, by the middle of September the plume intensifies and starts to expand meridionally. It reaches its maximum by November, when the increase is seen from 10° N to 40° S. From that moment, the plume starts to slowly disappear. In late December, the Ext increase is seen from 30° N to 45° S.

7 Discussion

7.1 Aerosol extinction coefficient

In order to evaluate the consistency of the results from OMPS and ECHAM, panels (a), (b) and (c), (d) of Fig. 3 need to be compared. It is obvious that the model and the observations are very close to each other, in particular, at 18.5 km. The plume from the first eruption appears and intensifies at the same time at 18.5 km; however, in the model, it is weaker, and it reaches 20.5 km about a month later. This is most likely related to the fact that in the model, neither the anthropogenic nor biomass burning sources are taken into account.

The Ambae plume from the July eruption looks even more similar in the model results and measurements. Not only the plume appears at the same time at 18.5 km and is located at the same latitudes, but also both model and measurements show a wave-shape of the plume. The curvature in both plumes appears in mid September, however, in the OMPS-LP data, the plume is bending stronger to the north. It should also be noted that the ECHAM simulations show a more intensive and longer living plume at this altitude. Additionally, in the OMPS-LP data, in the second part of October, the aerosols move evenly north- and southward, while in the ECHAM data, the plume is transported rather to the south. In ECHAM data at 20.5 km, the July plume appears about two-three weeks earlier than in the OMPS measurements. Though the intensity of the modeled plume at this altitude is slightly weaker, the absolute differences are smaller than at 18.5 km. However, the horizontal distribution of the modeled plume is less consistent with the measurements. While the plume in ECHAM stays with the time at the same geographical location mostly in the Southern hemisphere, in the OMPS data, it has a C-shape around the equator.

It should be highlighted that even though there are some differences between the modeled and measured Ext, the consistency is quite remarkable. There are two main factors which contributed to this particular agreement between OMPS and ECHAM, namely, rather precise SO₂ mass and height estimation as well as nudging of meteorological data. Thus, it is seen that the second plume, whose emission was estimated from TROPOMI data, was modeled more accurately. At the same time, our internal studies showed that the ECHAM SO₂ sensitivity plays a key role in the lifetime and distribution of the plume.

It is a well-known feature of ECHAM that the meridional transport is too strong, causing a relatively short lifetime of sulfate (e.g. Niemeier et al., 2009), especially compared to results of other models (e.g. Marshall et al., 2018). Therefore, the nudging
Figure 5. Evolution of zonal mean aerosol extinction coefficient (Ext_{869}) in the tropics (20°S – 20°N) with altitude and time after Ambae eruptions of 2018. In the panel (a) the data from OMPS-LP is presented, in the panel (b) the simulation with ECHAM is plotted. Both datasets were averaged over a 10-day period.

of the meteorological data provided a realistic transport pattern resulting in good agreement with OMPS-LP measurements. However, the nudging database, the ERA5 reanalysis, is a model product as well. Thus, small differences to observations are rather possible, especially in the stratosphere. Additionally, the stratospheric aerosol layer is close to the ozone layer at 24 km.

ECHAM uses prescribed ozone and OH values, which do not change due to the presence of volcanic aerosol.

Another way to assess the degree of consistency between the model and the measurements is to analyze the vertical distribution of Ext with the time (see Fig. 5). Since most of the plume stayed in the tropical region, for Fig. 5 the OMPS (panel (a)) and ECHAM (panel (b)) Ext were averaged between 20° S and 10° N. In this figure, it is again obvious that in the model the perturbation from the volcano reached the same altitudes. Additionally, it is seen that the plume was weaker for the April eruption. However, consistency for the second eruption is again striking. Not only the plume has the same overall shape, but it is located at the same time coordinates, with the only exception of a slightly increased blob in the OMPS data at 19.5 km in November. Thus, vertical transport is slightly weaker in ECHAM, which explains some of the differences to the OMPS data in the horizontal cross-section at 20.5 km.
Here it should be highlighted again that the vertical lofting of the volcanic cloud is related to the BDC with an upward branch in the tropics. The patterns in Fig. 5 are a prime example of the stratospheric tape-recorder effect, noticed earlier. For the model experiment, one should bear in mind that the absorption of terrestrial radiation by stratospheric aerosols causes an additional vertical updraft which enhances the BDC effect in the tropics (Niemeier et al., 2011).

7.2 Radiative forcing

In order to assess the RF from Ambae eruption, we analyzed the ECHAM RF output as well as the RF calculated from OMPS-LP measurements. For the latter, we use the empirical approximation given by Eq. (1) as suggested by Hansen et al. (2005):

\[
RF \approx -25 \cdot \tau_{550},
\]

where \(\tau_{550}\) is the stratospheric aerosol optical depth at 550 nm. Although originally proposed for the globally averaged model data, Eq. (1) was used for the RF assessment from the measurement results as well (see e.g. Solomon et al., 2011; von Savigny et al., 2015). As the focus of our study is on the additional RF after the tropical Ambae eruptions, we do not consider global averages but limit the comparison to 20° S – 20°N region.

To apply Eq. (1) to the OMPS-LP data, we determined \(\tau_{550(869)}\) by integrating the \(Ext_{869}\) from instantaneous tropopause height to 33.5 km and then converted the result to 550 nm wavelength by using an Ångström exponent of 2.47, which is appropriate for the particle size distribution used in the \(Ext_{869}\) retrieval (see Sec. 2). The tropopause height values were obtained for each single OMPS-LP measurement by using corresponding ECMWF-ERA5 temperature profiles. The WMO definition of the tropopause based on the temperature lapse rate was implemented (WMO, 1957). Afterwards the \(\tau_{550(869)}\) values were averaged over 10-days period. For consistency, we also applied Eq. (1) to the ECHAM \(\tau\). Additionally, from all datasets mean tropical \(\tau\) in the period from 01 April to 19 July 2018 was subtracted to remove the effects of background aerosol. Even though the chosen period contains the effects of the first weaker Ambae eruption, it is a common "cleaner" period available for all datasets and thus is considered to be optimal for the study.

The normalized RFs are presented in Fig. 6. Here, the tropical all-sky RF, calculated as an anomaly to a control simulation without the Ambae eruption, is presented with a green line as a function of time. The OMPS-LP RF, calculated employing Eq. (1), is shown with a red line. To illustrate the validity of the Hansen’s formula to a non-global dataset, it was also applied to the \(\tau_{550}\) obtained directly from the ECHAM model. The result is shown with the solid blue line in the figure. The influence of the assumed particle size distribution on the \(Ext\) and/or \(\tau\) conversion to a different wavelength is illustrated by the recalculation of ECHAM \(\tau_{869}\) to \(\tau_{550(869)}\) using the fixed Ångström exponent as it was done for OMPS-LP. The RF resulting from Eq. (1) applied to ECHAM \(\tau_{869}\) converted to \(\tau_{550(869)}\) is presented with a dashed blue line in Fig. 6. Both dates of Ambae eruptions are marked with vertical dotted grey lines.

Analyzing the Fig. 6, it becomes obvious that the effect of the first smaller Ambae eruption is negligible for the RF. All four lines show almost no temporal change in between the eruptions (1 April to 27 July 2018) and are located around 0 W/m². Even though from all datasets the RF for the period was subtracted, it was a mean value, resulting in temporal behavior being
Figure 6. The radiative forcing (RF) from ECHAM and OMPS-LP averaged over the tropics (20° S – 20° N). The green line shows the difference between ECHAM internal RF calculated accounting for and neglecting the Ambae eruptions. Red and blue lines show respectively the RF calculated with Eq. (1) from OMPS-LP τ_{869} converted to $\tau_{550}(869)$, ECHAM τ_{550} (blue solid) and ECHAM τ_{869} converted to $\tau_{550}(869)$ (blue dashed). From all datasets the respective mean RF in the period from the 1 April to the 19 July 2018 was subtracted.

unaffected by this normalization. After the second eruption, all four lines drop significantly. The ECHAM internal RF (green line) reaches its maximum of -0.11 W/m2 in the first week of September, and afterwards the RF declines slowly up to -0.08 W/m2 by the late December 2018. The solid blue line, or the RF calculated with Eq. (1) from ECHAM τ_{550}, has very similar behavior with the green line; however, it reaches the maximum (-0.13 W/m2) in the late September and keeps the offset from the green line by \approx0.02 W/m2 until the end of 2018. The calculated RF from ECHAM $\tau_{550}(869)$ reaches its maximum at the same time as the solid blue line, but its absolute value is significantly larger (-0.22 W/m2). Further with time, the offset between dashed and solid blue lines becomes somewhat smaller, reaching a value of 0.05 W/m2 in December. At the same time, the red line showing the RF calculated with Eq. 1 from OMPS-LP drops heavily after the second eruption but becomes noisier from September on. The maximum in RF (-0.22 W/m2) is observed in November 2018, which agrees with panel (a) of Fig. 5. The OMPS-LP RF decreases afterwards to about -0.19 W/m2 by the end of the year.

In the discussion of Fig. 6, it is important to draw reader’s attention to the offset between the ECHAM RFs calculated with Eq. (1) from τ_{550} and $\tau_{550}(869)$. After the second eruption, the difference reaches up to 70%. This difference is a prime example of the influence of assumed particle size distribution parameters on the RF calculations. For example, at the plume maximum, the difference is almost as large as the forcing, but it decreases while the stratosphere relaxes. Considering these discrepancies, the respective similarities of the ECHAM $\tau_{550}(869)$ and OMPS-LP RFs (dashed blue and red lines), as well as ECHAM τ_{550} and ECHAM output (solid blue and green lines), are remarkable. Here it should be noted that although there are obvious differences between the curves, they generally have quite good temporal correlation and capture the second eruption very well.
Combining the above mentioned facts, the following conclusion can be drawn. Even when applied to the tropical region rather than globally, the Hansen’s formula given by Eq. (1) provides a reliable approximation of RF with about 20% accuracy. In turn, the τ conversion to a different wavelength is a more significant source of uncertainty with a potential to increase the estimated RF by up to 70%. After accounting for those uncertainties, a very good agreement between the RF values from ECHAM and those from OMPS-LP is observed. For the particular Ambae eruption studied in this paper, we estimate the tropical radiative forcing caused by an increase in stratospheric aerosols to be about $-0.13 \, \text{W/m}^2$.

8 Conclusions

The distribution of aerosol extinction coefficients at 869 nm in the stratosphere after the 2018 Ambae eruption was compared using the data retrieved from the OMPS-LP observations and that modeled by ECHAM.

We present here the retrieval algorithm (V1.0.9) of stratospheric aerosol extinction coefficient profiles at 869 nm from the OMPS-LP instrument. The retrieval algorithm was adopted from SCIAMACHY V1.4 and shows similar results in comparison with solar occultation instruments. The comparison of OMPS V1.0.9 product with the aerosol extinction coefficient observations from SAGE III/ISS showed that the mean relative difference is less than 25% for the profiles in between 40°S and 40°N. In the higher latitudes, the difference is somewhat larger; it is less than 35% below 25 km but can reach about 60% at 28 km.

We also show the changes in the aerosol extinction coefficient after the 2018 Ambae eruption using monthly mean and 10-day average data. Ambae caused one of the largest perturbations in the aerosol layer for the OMPS operating period. Volcanic aerosols rise over time to about 21 km in the tropics within the tropical pipe of BDC (the tape-recorder effect). Analysing the 10-day average data, it has been seen that the plume from the first phase of the eruption was relatively weak and did not spread outside tropics. The second eruption in July was much larger, and the aerosols also spread to the mid-latitudes of both hemispheres.

The measurement data was compared with the model output from a global aerosol model (ECHAM). In order to simulate the Ambae eruption accurately, the injected SO_2 emission was estimated using combined OMPS and OMI data for the April eruption (0.12 Tg) and TROPOMI data for the July eruption (0.36 Tg). The altitudinal distribution of the SO_2 was assessed using MLS profiles. Thus, the resulting simulation showed that the model and measurements agree well with each other. The main differences concern the intensity and the lifetime of the volcanic perturbation. While for the first eruption, ECHAM underestimated the strength of plume as well as the time it reached 20.5 km altitude; for the second eruption, the modeled plume reached higher altitudes about two to three weeks earlier, and the plume lived longer, being overall slightly weaker at that altitude. Although the differences in the measured and modeled plumes exist, they are rather minor, and the consistency is remarkable. The good agreement is explained by the rather precise SO_2 injection mass and height assessment, as well as by the nudging of meteorological data.

We also compare aerosol radiative forcing (RF) caused by the increase in stratospheric aerosol loading from the second Ambae eruption in the tropics. While the time courses of RF for the ECHAM output and ECHAM and OMPS-LP recalculated RFs generally agree quite well, the absolute values vary significantly. The empirical formula used in our assessment works
well not only for the globally averaged aerosol optical depths but also for the tropical region. However, this approach suffers from the errors associated with the assumed particle size distribution for the datasets where the Ångström exponent has to be used. We estimate the RF in the tropics after the second 2018 Ambae eruption to be about -0.13 W/m².

In general, if the initial data (SO₂ mass, day and height of injection as well as meteorological data) is quite precise, the models give a very good estimate of the plume distribution, and the calculation of the radiative forcing can be made for an isolated plume without additional assumptions. Overall, the best results can be achieved only by combining observational data and modeling capabilities. Thus, it is very important to unite the measurement and model community together, for example, as the research unit VolImpact does (von Savigny et al., 2020).

Authors contributions. EM initiated the study, provided OMPS-LP aerosol extinction coefficient product, compared it to SAGE-III/ISS, prepared the Figures and wrote most of the paper text (Sec. 1 - 5, 6.4, 7 and 8). AR developed the retrieval software, supervised the work at the University of Bremen and revised the paper. UN performed model simulations, wrote Sec. 6.3 and 7, helped with the literature survey and revised the text. SP performed SO₂ mass estimations, wrote Sec. 6.1 and revised the text. CA formatted OMPS L1 data, analyzed MLS data, provided tropopause heights for OMPS-LP and revised the text. FW actively participated in the result discussions and revised the text. CT helped with literature survey; CvS and CT initiated and proposed the research unit, they and JPB led the project and revised the text.

Competing interests. The authors declare no competing interests.

Acknowledgements. This work was funded in parts by the German Research Foundation (DFG) through the research unit VolImpact (FOR 2820): projects VolARC, VolDyn and VolClim, ESA through Ozone-CCI+ project, and the University of Bremen and state of Bremen. The model simulations were performed on the computer of the Deutsches Klima Rechenzentrum (DKRZ). We are also thankful to NASA for OMI (NASA GES DISC, 2020a) and OMPS-NM (NASA GES DISC, 2020b) L2 data as well as for OMPS-LP L1 data which was downloaded from the NASA Langley Research Center Eosdis Distributed Active Archive Center. MLS and SAGE-III/ISS L2 data was obtained from NASA’s Earthdata (2020a) and NASA’s Earthdata (2020b) respectively. S5P TROPOMI data was downloaded from S5P Data Hub (2020).
References

Dhomse, S. S., Mann, G. W., Antuña Marrero, J. C., Shallcross, S. E., Chipperfield, M. P., Carslaw, K. S., Marshall, L., Abraham, N. L., and Johnson, C. E.: Evaluating the simulated radiative forcings, aerosol properties and stratospheric warmings from the 1963

