
We thank the reviewers for their time and insightful comments, which have substantially improved 

the manuscript. We have revised the manuscript and addressed the comments raised by the 

reviewers. The reviewers raised important comments on the rationales for our hypothesis, and the 

effects of our findings on future simulations. The main purpose of the study is to investigate the 

sensitivity of model predictions to the main inputs into the model. We apply different scenarios to 

evaluate the importance of major sources during the November 2017 extreme pollution episode over 

northern India. We feel this evaluation of inputs is needed to understand the extent that the forward 

model can be configured to capture the events. A contemporary way to try to capture such events in 

prediction mode is to employ data assimilation. The data assimilation results compensate for 

deficiencies in the inputs as well as structural problems within the models. But the effectiveness of 

data assimilation improves as the capabilities of the forward model improves. Therefore, our results 

are also important for those using data assimilation to improve predictability. Below, please find our 

responses to the reviewer’s comments. The reviewer’s comments are shown in black, our responses 

are shown in red, and the modified section of the manuscript is shown in blue. 

 

We appreciate your time and comments and look forward to your decision. 

 

Best Regards,  

Behrooz Roozitalab, on behalf of all co-authors 

  



RC1:   

In this study, the authors have used the WRF-Chem to simulate the intensive pollution episode in the 

Indo-Gangetic Plain (IGP) in November 2017. They carried out 14 sensitivity simulations for different 

scenarios based on biomass burning emissions, chemical boundary conditions, and dust emissions. 

The model (base scenario) was evaluated for meteorological parameters (10 m wind speed and 

direction, 2 m temperature, and surface water vapor) with MERRA-2. The simulated AOD and PM2.5 

were compared with observations from AERONET and CPCB/US Embassy monitors, respectively. The 

authors have also looked into the daytime variation in ozone. The study is interesting because the 

authors try to simulate the PM2.5 during November 6-13 using the emissions and aerosol-radiation 

feedbacks but no assimilation. This study is similar to a recent study published in JGR by Kumar et al., 

2020 (https://doi.org/ 10.1029/2020JD033019). Overall, the manuscript needs a major revision. There 

are too many figures, which makes it hard to get the message across the reader. The labels in the 

figures are difficult to read. Here are my comments: 

Authors Response: 

We appreciate the reviewer for thoughtful comments. Please find our responses below. We also 

moved some of the figures to the supplementary documents and improved the labels quality. 

 

Main comments: 
RC1-1:  I do not understand the hypothesis behind 14 simulations and still not being able to simulate 

the aerosols. The authors consider FINN_VIIRS_7Xperiod2 (base scenario) as the best scenario but the 

bias is still high (for AOD and PM2.5) compared to the observations. 

Authors Response: 

We appreciate the reviewers concerns and we try to clarify them in the followings. (We split the 

comments and address each part individually) 

The main purpose of the study is to investigate the sensitivity of model predictions to the main inputs 

into the model. Here we take the approach of systematically exploring the impacts of different 

boundary conditions, dust, fire and anthropogenic emissions on the predictions of the pollution 

episode in November 2017. Based on literature (e.g. (Beig et al., 2019)), three major sources can play 

a role in this episode: - long-range transported dust incoming from boundaries, - long-range 

transported dust emitted inside boundary, and – agricultural fires on north-west India. We apply 

different scenarios to evaluate the importance of mentioned sources for the specific Nov. 2017 

episode. We feel this evaluation of inputs is needed to understand the extent that the forward model 

can be configured to capture the events. A contemporary way to try to capture such events in 

prediction mode is to employ data assimilation. The data assimilation results compensate for 

deficiencies in the inputs as well as structural problems within the models. But the effectiveness of 

data assimilation improves as the capabilities of the forward model improves. Therefore, our results 

are also important for those using data assimilation to improve predictability. We clarified these 

points in the revised paper.   

Text: 



The main purpose of this study is to investigate the sensitivity of model predictions to the main inputs 

into the model. Prediction of extreme pollution events is important as they have major impacts on 

people and also make a strong impression regarding the capabilities of models. However, extreme 

events are hard to predict because they are often heavily impacted by episodic emission sources. Here 

we take the approach of systematically exploring the impacts of different boundary conditions, dust, fire 

and anthropogenic emissions on the predictions of the pollution episode in November 2017. A 

contemporary way to try to capture such events in prediction models is to employ data assimilation 

(Kumar et al., 2020). The data assimilation results compensate for deficiencies in the inputs as well as 

structural problems within the models. But the effectiveness of data assimilation improves as the 

capabilities of the forward model improves. Therefore, our results are also important for those using 

data assimilation to improve predictability.   

 

There are different variations of inputs that can be used for each of these sources. In particular: 

1. We investigate four global data (MOZART, CAMChem, CAMS, and MERRA-2) to find how long-

range transported dust incoming from boundaries affected air quality in India. 

2. We modified the speciation of dust in dust emission module in the model to understand how 

in-boundary dusts played role in this episode. 

3. We looked at two different biomass burning (B.B.) inventory, representative of two different 

methods of biomass burning emission inventories i.e. FRP and burned area, to find better B.B. 

emission inventory for high resolution modeling of agricultural fires. 

4. We also did some experiments to reveal whether B.B. emission inventories are either 

systematically or occasionally biased low. 

5. We also add one more experiment in the revised version to understand the impacts of 

anthropogenic emissions as suggested by reviewer 2.   

As a result, the large number of different scenarios were inevitable. Regarding the comment on high 

uncertainty in the base scenario after many experiments, we acknowledge the reviewer’s concern. 

However, these experiments document the extent to which modifying these inputs can improve the 

prediction for this event.  

For example, we found that statistics improved when we switched from a default scenario (ID: 

FINN_MERRA2) to the base scenario (ID: FINN_VIIRS_7Xperiod2) as shown below, Fig. S2, and 

discussion of Fig. 12a. For example, NMB were decreased by 62%. Moreover, the results for the base 

scenario show a fair performance compared to suggested benchmark criteria by (Emery et al., 2017). 

On the other hand, Fig. 12b and table S3 depict the statistics after excluding pollution episode days 

and show even better performance and satisfies “the goal criteria” based on Emery et al. (2017). 

Table 1 Statistics before (FINN_MERRA2) and after (FINN_VIIRS_7Xperiod2) modifying biomass burning emission inventory 

Scenario RMSE (µgm-3) NMB (%) MB (%) 

FINN_MERRA2 167.88 -44.32 -113.14 

FINN_VIIRS_7Xperiod2 118.47 -16.6 -42.38 
 



Furthermore, the aspect we looked to improve the modeling results is very different from 

optimization aspects. As a result, we did not expect to see as good as data assimilation results that 

strongly constrain the model. We evaluated our results in contrast with a new recent study by Kumar 

et al. (2020). They used data assimilation to look at a different time-period (while covering the same 

pollution episode). After assimilating MODIS AOD, their model performance for PM2.5 improved 

significantly for the first day forecast: Mean bias (from -98.7 to -13.7 vs -42.38 in our study) and RMSE 

(from 167.4 to 117.3 vs 118.47 in our study); that study has better Mean Bias but RMSE values are 

very close to our values. We have added this evaluation in the revised paper. 

Text: 

Kumar et al. (2020) assimilated MODIS AOD to WRF-Chem in order to improve the air quality forecasts 

over Delhi. In their study, Mean Bias for first-day forecast of PM2.5 concentration decreased from -98.7 

µgm-3 to -13.7 µgm-3. They also showed that RMSE decreased from 167.4 µgm-3 to 117.3 µgm-3. Our 

results from the base scenario (Mean Bias: -42.38 µgm-3 and RMSE: 118.47 µgm-3) shows comparable 

results to the data assimilation technique, while still both models are biased low. 

RC1-2:  From Fig. 3, the simulated AOD is underestimated over the IGP and overestimated over the 
rest of India. Comparison with AERONET (Fig. 4) shows that MERRA-2 does better over Jaipur because 
from Fig. 3b it is evident that AOD over Jaipur is in the range 0.5-0.8. Both WRF-Chem and MERRA-2 
should have the same resolution while comparing (Fig. S2) and color bar scale comparable to Fig. 3. In 
conclusion, I think AOD is better simulated by MERRA-2 at both Jaipur and Kanpur. Please include the 
statistics for AERONET vs WRFChem and MERRA-2 AOD. 
Authors Response: 

Thanks for the comment. We completely agree that model is biased low over the IGP and biased high 

elsewhere and we have exclusively mentioned this point in the revised version. This behavior has 

been also shown in another new study by Jena et al. (2020): Fig. 4 in Jena et al. (2020), where they 

looked at December 2017 and January 2018.  

Regarding the comparison of AOD over Jaipur, we agree that Fig. 3b shows averaged AOD over Jaipur 

for November was in the range 0.5-0.8, as the reviewer mentioned, and MERRA-2 results are closer to 

AERONET for non-episode days (AERONET data is missing for episode days). That is reasonable as 

MERRA-2 modeling system assimilates satellite AOD. VIIRS data also supports high AOD bias of model 

in Jaipur. However, it is also important that AERONET is missing data for the pollution episode 

between Nov. 6th and Nov. 13th as shown in Fig.4a. It suggests, as one possibility, that PM 

concentrations were too high during this period that the instrument was not able to retrieve data at 

that specific location. In the revised paper, we also include results where we scaled the particles 

anthropogenic emissions by a factor of two based on some new emission estimates (ID: 

Base_Anth2X). Using these anthropogenic emissions, averaged AOD bias for the IGP was reduced. This 

shows the need for improved estimates of biomass burning as well as anthropogenic emissions.  



 

Figure 1 Bias of AOD at 550nm  averaged over November 2017 base on a) base scenario b) base scenario with 2 times more 
anthropogenic particle emissions (ID: Base_Anth2X) 

In the revised version, we also added VIIRS retrievals, which supports better performance of MERRA-

2. Normalized Mean Bias between the model and AERONET was mentioned in the manuscript (Jaipur: 

+29.9% and Kanpur: -27.4%) but we added the same metric values between MERRA-2 and AERONET 

(Jaipur: -20.1% and Kanpur: -1.3%), which supports better performance of MERRA-2 in estimating 

AOD.   

We thank the reviewer for the comments on Fig. S2. We modified the map in the revised document.  

Text: 

Figure 4 shows time series of modeled, MERRA-2 product, VIIRS retrievals, and observed AOD at the 

AERONET stations (location shown on Fig.1). AOD values at Kanpur, a station in the eastern IGP, were 

more than 1.0 before the pollution episode and reached up to 2.0 during the episode days, and 

decreased to values between 0.5 and 1 for the rest of days. The model captured the general trend 

although missed high AOD’s between Nov. 9th and 13th, while MERRA-2 successfully captured the AOD 

trend through the whole month, including days with enhanced AOD values. This shows that AOD 

assimilation in MERRA-2 significantly improves AOD predictions. At Jaipur, located in southern IGP, the 

model overestimated AOD for the first five days of November. During the pollution episode days, the 

model is biased high compared to MERRA-2 and VIIRS retrievals. AERONET data showed low AOD values 

before the pollution episode but did not report values during the pollution episode. It suggests, as one 

possibility, that PM concentrations were too high during this period that the instrument was not able to 

retrieve data. After the pollution period, AOD values were lower than 0.5, showing relatively low PM 

concentrations. In general, MERRA-2 showed better performance in terms of NMB (Kanpur: -1.3% and 

Jaipur:-20.1%) compared with our model (Kanpur:-27.4% and Jaipur: +29.9%). Comparing averaged AOD 

with VIIRS retrievals for BASE_ANTHRO2X scenario showed lower bias over the IGP (Fig. S7). These 

results show the need for improved estimates of biomass burning as well as anthropogenic emissions. 

Base - VIIRS Base_Anth2X - VIIRS



 
Figure 2 Figure 4 Time series of modeled (green line), VIIRS retrievals (blue triangle), MERRA-2 (red line), and AERONET (black 
dots) AOD at 550 nm during Nov. 2017 at a) Jaipur, b) Kanpur. 

 
RC1-3:  Lines 254-255: There are no major fires during November over western India/Rajasthan (as 
seen in Fig. 10). Also, there is no major dust event but there is a possibility of anthropogenic dust 
some of it being unique to the Indian region. 
Authors Response: 

Thanks for the comment that reveals the sentence was not clear. By western India for major fires, we 

meant western IGP and specifically Punjab, as it is clear on one-day fire map for Nov. 5th (Fig. 10).  

Regarding dust, we have major dust emissions in eastern Pakistan near India, where the PM10 

concentrations are more than 300 µgm-3, and it can be seen on Fig. 14. However, neither these dust 

emissions nor long-range transported dust affect Delhi’s air quality as explained in sections 3.5 and 

3.6. Furthermore, it should be noted that the anthropogenic emissions used in the study include 

anthropogenic dust.  

We have modified line254-255 sentence to clarify these points in the revised version. 

Text: 

Moreover, AODs were high over western IGP, close to major fires of Punjab, with a gradual gradient 
towards eastern and central India. Dust emission sources in the border of Pakistan also led to high AODs 
although they did not affect Delhi as discussed in the supporting document. 
 
RC1-4:  Lines 270-271: I do not agree with the authors’ explanation. As seen in Fig. 3, WRF-Chem is 
simulating higher AOD values over western India/Rajasthan. The figures do not completely agree with 
the statements made by the authors. 
Authors Response: 

We thank the reviewer and rewrote the paragraph on AERONET data as shown above. 

RC1-5:  Why are the authors comparing the diurnal variation (Fig. 5a)? Do the emissions have a diurnal 

variation in the model?  

Authors Response: 

(a) FINN_VIIRS_7Xperiod2
MERRA-2
OBS (AERONET)
VIIRS 

(b)



Thanks for the comment. In this study, all biomass burning emissions have diurnal variation in 

contrast with monthly anthropogenic emissions. As a result, PM2.5 concentrations are subject to both 

daily atmospheric processes and emissions.  

RC1-6:  Why wasn’t the PM2.5 data from CPCB stations used in Fig. 5a? 

Authors Response: 

Regarding the question about comparing model results with CPCB stations, we compared our results 

against CPCB stations in Delhi in Fig. 6. In general during the whole paper, we show the results only at 

one station (i.e. US Embassy) when we look at time-series and we show daily box and whisker plots 

when we look at all CPCB stations. Our rationale is that: First, averaging data for time-series may 

remove some information by smoothing data. Second, we intended to show results from MERRA-2 in 

our time-series plots. Because of lower resolution of MERRA-2 data, almost all measurement stations 

in Delhi are located in only one grid cell of MERRA-2, which leads to misinformation. As a result, we 

decided to show time-series for only US Embassy location and box and whisker plots for CPCB 

stations. Nonetheless, we show timeseries for US-embassy and all CPCB stations in Delhi below, which 

shows CPCB averaged values have a similar trend to US-embassy data but with lower peaks.  

 

Figure 3 PM2.5 timeseries in Delhi based on CPCB and US embassy data 

RC1-7:  Fig. 6 includes data from all the CPCB stations, how was the quality check performed on the 

CPCB data? Please add the details on the quality check of CPCB data in the methods section. 

Authors Response: 

Thanks for the comment. We didn’t apply any filter to this data as we relied on quality control done 

by CPCB (https://cpcb.nic.in/quality-assurance-quality-control/). However, we studied how applying 

the following filters, done by Jena et al. (2020) and Kumar et al. (2020), change the dataset consisting 

of total 12768 hourly data points: 

Filter 1: Remove less than 10 µgm-3 instances: removes 31 data-points  

CPCB-obs:  -----
CPCB_model:

Usembassy_obs:  
Usembassy_model: 



Filter 2: Remove the hourly difference between 100 (or 150 or 200) µgm-3 : removes 186 (or 71 or 

31 ) hourly-data 

Filter 3: Remove values more than 200 (400) µgm-3 right after NAN value: 33 (19). It basically 

removes data for Nov. 9th as it was applied after filter #2.  

We found that the order of applying these filters is important. Below, statistics and timeseries for 

different orders of filters are presented. Order of filters (1,2,3) removes data for Nov. 9th and 

significantly improves the model performance over Delhi. We added these findings in the 

supplementary document and described in the revised version. 

Text: 

No additional quality control filters, other than the ones by CPCB (https://cpcb.nic.in/quality-assurance-

quality-control/), were applied. We evaluated the results after applying the filters proposed by other 

studies (e.g. Kumar et al. (2020)); they had slight impacts on statistics (shown in the supporting 

document).  

Table 2 Effect of applying filters to CPCB data on PM2.5 statistics in Delhi 

Province 
Hourly Obs. 
Mean (±std) 

(µgm-3) 

Hourly Model 
Mean (±std) 

(µgm-3) 
24-hours NMB (%) 24-hours NME (%) 24-hours R (%) 

CPCB-Delhi 255.5 (±146.6) 213.9 (±113.9) -16.6 27.6 0.48 

Only filter 3 248.4 (±140.3) 214.5 (±114.5) -13.9 26.4 0.49 

Filter123 215.5 (±95.5) 214.8 (±115.2) -1.9 23.6 0.64 

Filter132 248.6 (±140.8) 214.6 (±114.5) -13.9 26.4 0.49 

 



 

Figure 4 Effect of applying additional filters to CPCB data on averaged PM2.5 timeseries in Delhi 

RC1-8:  It is better to show the spatial plot along with the CPCB and US Embassy observations as a 

scatter. It will show if the model was able to capture the spatial variation in observed PM2.5. How does 

MERRA-2 compare with the CPCB observations? 

Authors Response: 

As the model resolution is 15km in this study, we usually see more than one measured CPCB stations 

are located in one model grid cell. For example, 17 stations in Delhi are located in only 6 grid cells; 

repetition affects the scatter plot (Fig. 5a below). We also observe lower variability in box and whisker 

plots of the model compared to observation data due to same reason. In other words, scatter plots 

will not provide enough insights when considering all individual stations. To show the spatial 

performance of the model, we plot the scatter plot for averaged concentration of different states. 

Below, we show the scatter plot for Delhi, Haryana, and Rajasthan, which reveals the good spatial 

performance of the model (Fig. 5b below). Adding data from Punjab to this plot (Fig. 5c below) 

,significantly degrades the performance. The reason is due to extremely high bias in Punjab data. 

Punjab observation data seem to be very uncertain, as it doesn’t show any signal of the pollution 

episode while satellite data show huge amount of agricultural fires during those days. We added the 

below scatter plots in the supplementary document. However, we think scatter plots were better 

tools if we had more spatial data (e.g. a gridded dataset). 

Filter 3

Filter1-Filter2-Filter3

Filter1-Filter3-Filter2



Regarding MERRA-2, due to large grid cell size of MERRA-2 (0.625x0.5deg), all CPCB stations of Delhi 

are in the same grid cell. As a result, we only look at one representative station (i.e. US Embassy 

station) when using MERRA-2 data.  

 

Figure 5 Scatter plots for a) all stations in Delhi combined b) averaged concentrations in Delhi, Haryana, and Rajasthan c) 
averaged concentrations in Delhi, Haryana, Rajasthan, and Punjab. Filters are applied to CPCB data. 

RC1-9:  Lines 292-293: I do not completely agree with the explanation of transported dust from the 

Middle East. Is PM10 high over Delhi? Looking at the CALIPSO profile data shown in Beig et al., 2019, it 

is polluted dust, which is different from desert dust. The authors can also look into the MISR data for 

dust AOD. The authors have made a statement in section 3.6 that sensitivity tests do not show a 

major influence of dust being transported from the Middle East. 

Authors Response: 

We completely agree with the reviewer and sorry for confusion. Our analysis do not show a major 

influence of long-range transported dust as discussed in sections 3-5 and 3-6. Since lines 292-293, 

which are in the section we were looking at the whole month and mentioning other studies’ views, 

may be confusing for the reader on our point of view, we removed the following sentence:  

“We looked at MERRA-2 surface PM2.5 concentration data for the study period to explore if dust was a 

major source.” 

RC1-10:  Have the authors looked into the PBLH from the model and compared with the observations? 

You might have to derive the PBLH from radiosonde observations. The authors attribute the low PM2.5 

on Nov 8-10 to the plume rise in the model. My understanding is half of the fire emissions will be 

released within PBLH and the rest above it. The model is simulating higher PBLH as seen in Fig. 13. I 

would suggest instead of comparing at the US Embassy only, include observation data from all CPCB 

stations. PBLH in Delhi during November is less than 1000 m (Nakoudi et al., 2019, AMT). The days 

when PBLH was low (less than 1000 m) in the model (Nov 7, 11-13), the simulated PM2.5 was 

comparable to the observations. 

Authors Response: 

We thank the reviewer for this important comment. Unfortunately, there is not any measured PBLH 

data available to compare the modeling results. On the other hand, estimating PBLH using sensing 

data is a challenging task (Nakoudi et al., 2019)and needs specific considerations (Wang and Wang, 

a) All stations in Delhi b) Averaged on Delhi, Haryana, Rajasthan c) Averaged on Delhi, Haryana, Rajasthan, Punjab



2014). As an example, we used specific humidity (and relative humidity) from radiosonde data for 

Delhi (provided by university of Wyoming at http://weather.uwyo.edu/upperair/sounding.html ) and 

attributed the height with lowest vertical gradient as the PBLH. As the figure below shows, WRF-Chem 

diagnostic PBLH shows higher values (~150m) for Nov. 6th 12UTC (17:30 IST). This result shows PBLH 

overestimation. We agree with the reviewer that lower PBLH could entrain more aerosol and increase 

concentrations and we have added the impacts of PBLH on aerosol loading and the importance of 

accurate PBLH in the revised version. We also compared our modeling results to Nakoudi et al. 

(2019)findings, which show comparable results. Our hourly averaged PBL has higher heights during 

daytime compared to ones in winter by Nakoudi et al. (2019). We should note that their results do not 

cover October and November (i.e. post-monsoon). 

On the other hand, we added the PBLH line to the cross sections (white line) in Fig. 8. The line is not 

obvious on 00 UTC times due to very low extent of the PBL. On Nov. 6th-12, we see very low PBL 

upwind of Delhi and significant amount of smoke above boundary layer. Therefore, these findings 

accompanied with Fig. 13b supports the argument that the plume rise in the model released the 

emissions too high or the model did not mix the smoke sown fast enough (Plume rise module does 

not have a constrain to release half of the emissions below PBLH and the rest above). We have used 

new figure in the revised version. 

However as mentioned earlier, the main purpose of this study is to investigate the sensitivity of model 

predictions to the main inputs into the model. We believe another study is required to look at the 

structure of the model and study the effects of different PBL parameterization modules on PBLH, 

which is beyond the scope of this paper. 

Regarding CPCB stations, as discussed earlier, one MERRA-2 grid cell includes all CPCB stations; as a 

result, including them will not provide any insights. However, we agree with the reviewer’s comment 

that the model showed comparable PM2.5 concentrations with lower PBLH as discussed above.  

Text: 

Increasing emissions also indirectly influenced modeled air quality over Delhi. As our model 

configuration included feedbacks, absorbing aerosols in the atmosphere (products of fire emissions) 

decreased the surface solar radiation budget, changed the dynamics of the atmosphere, reduced the 

Planetary Boundary Layer (PBL) height, and increased aerosol concentrations. In other words, higher 

PBLH leads to lower concentrations. For example, Murthy et al. (2020)found that PM2.5 concentration 

decreased up to 14 µgm-3  for 100m increase in PBLH. Figure 12 shows the interactions between PBLH 

and PM2.5 concentration at the location of the US embassy. By increasing FINN inventory by 7 times, the 

PBL height decreased by ~50% on Nov. 6th, (compare FINN_VIIRS_7Xperiod2 and FINN_MERRA-2 panels 

in Fig. 12). However, a measured PBLH dataset can provide better insights. As a result, another study is 

required to compare modeled PBL heights to observed data (e.g. Nakoudi et al., 2019) and study the 

effects of different PBL parameterization modules on aerosol concentrations.  



 

Figure 6 The vertical blue lines represent the quantity (left: specific humidity, right: relative humidity) and vertical red lines show 
the vertical gradients for mentioned parameters. We defined radiosonde diagnosed PBL height as the minimum gradient 

(dashed green line) and WRF-Chem diagnosed PBLH is shown in dashed black line. 

 

 

Figure 7 Averaged hourly PBLH during November (top panel) and other different seasons (screenshot from Nakoudi et al. 2019) 

WRF-Chem PBLH diagnostic

Radiosonde PBLH diagnostic

q(g/kg) or RH(%)

dq/dz or dRH/dz



 

Figure 8 Figure 8 Vertical cross section of PM2.5 concentration through the path shown in Fig. 1 for the days between Nov. 5th 
and Nov. 10th. For each day, two snapshots are shown at 00UTC (5:30AM local time) and 12UTC (5:30PM local time). The orange 
star shows the location of Delhi through the path. White line shows the PBL height across the path 

RC1-11:  According to me, sections 3.3, 3.5 and, 3.6 do not add anything new to the paper. The 

inclusion of missing fire emissions is an important part of the simulation. Also, it is worth to include a 

comparison with the Kumar et al., 2020 study. 

Authors Response: 

We thank the reviewer for the comment. We moved sections 3-5 and 3-6 to the supplementary 

document and replace them with one brief discussion at the end of section 3-4 (sensitivities on 

biomass burning). These two sections show why long-range transported dust both outside and inside 

of the domain did not influence air quality in Delhi during pollution episode of November 2017. 

However, we decided to keep section 3-3 (PM speciation) as it conveys important information on 

secondary aerosols.  

We appreciate the reviewer for introducing the paper by Kumar et al., 2020. We compared our results 

to their findings as discussed earlier. 

 

Specific Comments: 

RC1-12:  Line 33: Ghude et al., 2016 do not mention the long-term health impacts due to an increase 

in emissions based on current policies. 

Authors Response: 

We thank the reviewer for catching this mistake. We removed that reference.  

 

Nov. 5th_00

Nov. 5th_12

Nov. 6th_00

Nov. 6th_12

Nov. 7th_00

Nov. 7th_12

Nov. 8th_00

Nov. 8th_12

Nov. 9th_00

Nov. 9th_12

Nov. 10th_00

Nov. 10th_12



RC1-13:  Lines 42-45: David et al., 2019 show the impact of both transport and emissions on PM2.5 in 

different regions in India. The authors can add results from the study. 

Authors Response: 

We added David et al. (2019)findings to the revised version. 

Text: 

Studies show that ozone and particulate matter with diameter less than 2.5 micron (PM2.5), are 

attributed to more than one million individual premature deaths in India (Cohen et al., 2017;HEI, 2018). 

David et al. (2019) found anthropogenic emission within India led to about 80% of the total premature 

death due to PM2.5 in India. Furthermore as industrial activities are growing, emissions are increasing 

too; health impacts attributed to long-term exposure air pollution are predicted to increase based on 

current policies (Conibear et al., 2018a).  

 

Text: 

David et al. (2019) attributed about 16% of total premature PM2.5-related death to emissions outside 

India.  

 

RC1-14:  Line 78: Add reference - Kumar et al., 2020 (JGR) 

Authors Response: 

We added this reference. 

 

RC1-15:  Lines 128-129: Studies by Conibear et al., 2018, Venkataraman et al., 2018, and David et al., 

2019 have shown that residential energy use is the main source of PM2.5 in India. 

Authors Response: 

Thanks. We emphasized the reviewer’s point in the revised version. 

Text: 

Biomass and biofuel use in residential sector for heating and cooking purposes have significant 

contributions to air quality in India (Conibear et al., 2018a;David et al., 2019;Venkataraman et al., 2018) 

 

RC1-16:  Lines 203-204: “Irrespective …” From where did the authors get this information? 

Authors Response: 

Thanks for the comment. This was from personal inspections but to be clear we modified the 

sentence. 



Text: 

Irrespective of this condition, some of CPCB stations are placed on top of the buildings with restricted 

clean flow of air (personal inspections). 

 

RC1-17:  Multiple places the authors mention “the model was able to capture ...” (For example, Lines 

230, 266, 343) – please support your statements with statistics (MB, RMSE). 

Authors Response: 

Thanks. We added statistics when it was not mentioned.  

 

RC1-18:  Replace provinces with states (Lines 311, 315). 

Authors Response: 

Thanks. We replaced all ‘provinces’ with ‘states’ 

 

RC1-19:  Line 374: Change “Fig. 1” to “Fig. 8”. 

Authors Response: 

Thanks. We clarified it. 

 

RC1-20:  Line 452: What are some of the other meteorological phenomena? 

Authors Response: 

Thanks for the comment. We mostly meant thick fires can be identified as clouds in retrieval 

algorithm or they may be actual clouds and large amount of water vapors, leading to biases. Bright 

surfaces (in deserts) are other uncertainty sources. We modified the sentence: 

Text: 

Some studies have shown that thick fires can be identified as clouds in retrieval algorithms (Dekker et 

al., 2019;Huijnen et al., 2016). 

 

RC1-21:  Table 2: Arrange the table as explained in the text (section 2.2). 

Authors Response: 

Thanks for the comment. We rearranged it to first show the experiments on anthropogenic and 

biomass burning emissions, then on boundary conditions, and lastly on dust emissions, to follow 

section 2.2. We had to add the new sensitivity test to the bottom of the table as to keep the format.  
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RC2:   
This study investigates the processes causing severe air pollution episodes in New Delhi, India by 
focusing on one such event observed during November 2017. Specifically, the authors evaluate the 
impact of biomass burning emissions, long-range transport of dust, and dust emissions on WRF-Chem 
simulated PM2.5. The model captured the day to day variability but missed the peak pollution peak 
during 7-10 Nov. Secondary Inorganic Aerosols and Secondary Organic Aerosols are estimated to 
contribute 30% and 27% of total PM2.5 concentrations in Delhi. Back trajectories showed influence of 
agricultural fires in Punjab on PM2.5 in Delhi. Long-range transport of dust is not found to affect air 
quality in Delhi during this time. High biases in model AOD were observed over central India and low 
biases over the eastern IGP.  
While such studies are very important as they provide important information about the sources 
leading to dangerous air pollution episodes and inform the mitigation strategies, unfortunately this 
study does not consider all the key sources of uncertainties in the model simulations and may 
misinform the mitigation strategies. I am particularly concerned about the ignorance of anthropogenic 
emission uncertainties that were left out irrespective of several evidences pointing to their key role in 
the analysis presented in the paper itself. The authors should also provide a clear description of the 
rationale behind selecting biomass burning and dust aerosols as the most important sources of 
uncertainties in the model simulations. Below I provide my major and minor comments. 
Authors Response: 

We appreciate the reviewer for pointing to important issues. We addressed the comments and 

concerns here and below: 

We share the view about the critical role of anthropogenic emissions roles in air quality over the IGP. 

The uncertainty in anthropogenic emissions lead to concentration biases for typical days. Moreover, 

we acknowledge the importance of anthropogenic emissions since emissions due to heating also 

increase as the weather gets cold during Oct. and Nov. We added a scenario in which we increased all 

particles anthropogenic emissions by a factor of 2 based on recent emission work in Delhi (ID: 

Base_Anth2X). In following comments, we present its results. 

However, agricultural fires have a more significant contribution in post-monsoon extreme pollution 

events in Delhi (Kulkarni et al., 2020). Moreover, (Beig et al., 2019) showed that extreme pollution 

episodes during November 2017 was mainly due to agricultural fires and long-range transported dust. 

Lines 46-52 discuss these points although we agree that there are some exceptions, too. For example, 

extensive use of firecrackers and fireworks in the Diwali festival on October 20th in 2017 led to PM2.5 

concentrations above 600 (µgm-3) Therefore, we focused only on November to exclude that episode. 

On the other hand, our simulation results after excluding extreme pollution days show fair statistics 

(Table S3). We highlighted the importance of anthropogenic emissions in the revised paper and tried 

to express the reviewers point in the study limitations section in the revised version:  

Text: 

During this study, we did not primarily focus on improving anthropogenic emissions over the region in 

order to capture extreme pollution episode. However, anthropogenic emissions are low in global 

emission inventories and needed to be improved (Jat et al., 2020). Moreover, very low biased 

concentrations for some days and trajectory results suggest the existence of some other sources, 

primarily anthropogenic sources, upwind of Delhi that should be studied more. 



Main comments: 
RC2-1:  Figure 3 shows that increasing the fire emissions by a factor of 7 is too high and leads to large 
overestimation of AOD especially in the western part of the domain. Large underestimation in the IGP 
is reflecting the underestimation of anthropogenic emissions but no sensitivity experiment was 
designed to look into that. So, the “base” configuration might be showing good performance in Delhi 
for wrong reasons.  
Authors Response: 

We appreciate reviewer’s genuine and important concerns. Please find our responses, below. (We 

split the comments and address each part individually) 

 

Regarding Biases in Fig. 3: As you and reviewer 1 mentioned, we completely agree that model is 

biased low over the IGP and biased high elsewhere and we have exclusively mentioned this point in 

the revised version. We acknowledge that uncertainty of anthropogenic emissions is playing an 

important role in these biases. We did another experiment where we increased anthropogenic 

emissions for all the particles by a factor of 2 (ID: Base_Anth2X). This modification increased PM2.5 

concentrations in Delhi up to ~150 µgm-3, which led to overestimation (in contrast to underestimation 

in base scenario) at most of non-episode days (time-series shown below). Although this scenario did 

not help capturing concentrations during the episode, it confirms the need for better anthropogenic 

emissions. On the other hand, it increased the AOD bias over southern IGP while reduced the bias 

over IGP (bias map shown below). These results suggest anthropogenic emission inventories have 

higher bias over IGP compared with non-IGP regions. However, we acknowledge the importance of 

having dynamic (daily) anthropogenic emission inventory. 

Text: 
Although different meteorological parameters can be responsible for the biases, accuracy of 
anthropogenic emissions is important. For example, recent local anthropogenic emission inventories 
developed for Delhi have higher particle emissions than in the regional inventory used in this study, 
which impacts modeled PM2.5 concentrations for typical days (Kulkarni et al., 2020). We conducted 
BASE_ANTHRO2X scenario to investigate the effect of uncertainties in the anthropogenic emissions. This 
scenario increased PM2.5 concentrations in Delhi up to ~150 µgm-3, which led to overestimation (in 
contrast to underestimation in base scenario) at many of non-episode days (Fig. S7). Although this 
scenario did not help in capturing the high concentrations during the episode, it confirms the need for 
better anthropogenic emissions. On the other hand, it reduced the bias over IGP (Fig. S7). These results 
point out the need for best estimates of emissions of both anthropogenic and biomass.  
 



 

Figure 1 a) Timeseries for PM2.5 concentration at the location of US embassy using Base scenario and Base_Anth2X scenario B) 
Bias of AOD at 550nm averaged over November 2017 base on b) base scenario c) base scenario with 2 times more 
anthropogenic particle emissions (ID: Base_Anth2X) 

In addition, our experiments were primarily focused to capture the extreme pollution episode over 

Delhi as the reviewer pointed out. On the other hand, we would like to mention an important point 

regarding the accuracy of the base scenario for other locations: 

Below, we show the AOD biases for our base scenario (as in Fig3.c) on left panel, FINN_MERRA2 

scenario (a scenario without any enhancement on fire emissions) on middle, and the difference 

between these two scenarios on the right panel.  

The bias pattern of FINN_MERRA2 has also been reported in another study by Jena et al. (2020). They 

looked at a different time period (Dec. 2017 to Jan. 2018) but they show same pattern with lower 

values (which is most possibly due to lower concentrations in their period of interest). Their results 

(specifically Fig.4 in Jena et al., 2020) support the importance of anthropogenic emissions as the 

reviewer mentioned, and we acknowledge that as discussed above.  

On the other hand, looking at base and FINN_MERRA2 reveals that we clearly improved the AOD 

results for Punjab. It also shows low bias of FINN_MERRA2 shifted to high bias of base scenario for 

Haryana. The difference between base scenario and FINN_MERRA2 scenario (right panel) shows the 

impact of increasing FINN emissions by 7 times for a 8-days period; it increased the mean AOD biases 

over the whole domain by 0.09 (±0.23).   

 
Figure 2 Bias of AOD at 550nm averaged over November 2017 base on a) base scenario b) a scenario without any modifications 
on biomass burning emissions (ID: FINN_MERRA2), c) difference between Base and FINN_MERRA2  

Base - VIIRS Base_Anth2X - VIIRS

US-Embassy

Base
Base_Anth2X
OBS

a)

b) c)

Base - VIIRS FINN_MERRA2 - VIIRS Base – FINN_MERRA2a) b) c)



 
RC2-2:  Fig. 4a shows an AOD of 4 which is unrealistic for Jaipur. It looks like the authors paid all the 
attention to getting PM2.5 in Delhi correct simply by upscaling the emissions in the upwind regions but 
no care was taken to maintain the model performance in the upwind regions. Consequently, the 
model shows a positive bias in PM2.5 in Punjab with a spatial variability (reflected by standard 
deviation in Table 3) that is nearly 3.5 times higher than the observed variability in Punjab. Nov. 24 
case (no fire day) also supports the idea that the anthropogenic emissions are substantially 
underestimated.  
Authors Response: 

Regarding Fig4.a, we agree that the model is generally biased high over the Jaipur. Moreover, VIIRS 

data also show low AOD values for Jaipur during episode days. That is reasonable as MERRA-2 

modeling system assimilates satellite AOD. However, it is also important that AERONET is missing data 

for the pollution episode between Nov. 6th and Nov. 13th as shown in Fig.4a. It suggests, as one 

possibility, that PM concentrations were too high during this period that the instrument was not able 

to retrieve data at that specific coordinates. We modified the discussion on Fig.4 in the revised 

version.  

Text: 

Figure 4 shows time series of modeled, MERRA-2 product, VIIRS retrievals, and observed AOD at the 

AERONET stations (location shown on Fig.1). AOD values at Kanpur, a station in the eastern IGP, were 

more than 1.0 before the pollution episode and reached up to 2.0 during the episode days, and 

decreased to values between 0.5 and 1 for the rest of days. The model captured the general trend 

although missed high AOD’s between Nov. 9th and 13th, while MERRA-2 successfully captured the AOD 

trend through the whole month, including days with enhanced AOD values. This shows that AOD 

assimilation in MERRA-2 significantly improves AOD predictions. At Jaipur, located in southern IGP, the 

model overestimated AOD for the first five days of November. During the pollution episode days, the 

model is biased high compared to MERRA-2 and VIIRS retrievals. AERONET data showed low AOD values 

before the pollution episode but did not report values during the pollution episode. It suggests, as one 

possibility, that PM concentrations were too high during this period that the instrument was not able to 

retrieve data. After the pollution period, AOD values were lower than 0.5, showing relatively low PM 

concentrations. In general, MERRA-2 showed better performance in terms of NMB (Kanpur: -1.3% and 

Jaipur:-20.1%) compared with our model (Kanpur:-27.4% and Jaipur: +29.9%). Comparing averaged AOD 

with VIIRS retrievals for BASE_ANTHRO2X scenario showed lower bias over the IGP (Fig. S7). These 

results show the need for improved estimates of biomass burning as well as anthropogenic emissions. 



 

Figure 3 Figure 4 Time series of modeled (green line), VIIRS retrievals (blue triangle), MERRA-2 (red line), and AERONET (black 
dots) AOD at 550 nm during Nov. 2017 at a) Jaipur, b) Kanpur. 

 
RC2-3:  Figure S3 shows that PM2.5 concentrations in Punjab were lower than those in Haryana and 
increasing the fire emissions by a factor of 7 introduced large uncertainties in model simulations as 
the model PM2.5 in Punjab became nearly a factor of 4 higher than the observations. If crop residue 
burning was the major source of this air pollution episode, one must see the highest observed 
concentrations in Punjab followed by Haryana and Delhi. Such a pattern exists in the model but not in 
the observations reflecting that the increasing fire emissions by a factor of 7 is not a reasonable 
choice. The authors have used back air trajectory to corroborate their assumption that crop residue 
burning is the major source but backward trajectories only show that the air masses passed over the 
fire region before arriving at Delhi and are possibly influenced by the fire emissions but they do not 
tell that agricultural fires are the main source of PM2.5 during this episode. Backward trajectory 
analysis in Figure 7 also shows that PM2.5 during the pollution episode was driven by a combination of 
both the anthropogenic and fire emissions. Thus, this approach presents the danger of attributing 
missing anthropogenic sources to fire sources and may misinform the mitigation strategies if used for 
that purpose. Therefore, I recommend the authors to include additional sensitivity simulations 
exploring the role of anthropogenic emission uncertainties. 
Authors Response: 

Regarding the discussion about low measured concentrations in Punjab, VIIRS satellite images clearly 

show massive agricultural fires in this state during November (e.g. Fig.10d). However, we do not see 

any PM2.5 enhancement in observation data over Punjab as the reviewer mentioned (Fig. S3). As a 

result, we believe the observed values during episode days in Punjab have high uncertainty. We have 

emphasized this point in the revised version. As discussed above and in back trajectory analysis, all 

the evidences show that extreme pollution episode has been due mainly to agricultural fires but we 

have pointed out the importance of anthropogenic emissions too. For example, it was mentioned in 

the manuscript that short-term increase in anthropogenic emissions (due to social reasons) may have 

intensified the pollution but quantifying those sources can be the subject of another whole study. 

Text: 
In Punjab, measured data did not report PM2.5 enhancement during the extreme episode, while the 
model showed very high concentrations after scaling fire emissions by a factor of 7. However, VIIRS 

(a) FINN_VIIRS_7Xperiod2
MERRA-2
OBS (AERONET)
VIIRS 

(b)



satellite images (e.g. Fig. 9d) clearly show massive agricultural fires in this state during November and its 
signals were expected in the measured data. 
 
RC2-4:  Fig 4 and related discussion: In addition to the AOD, could you please evaluate the Angstrom 
exponent to examine if there any differences in the abundance of fine and coarse mode particles and 
if the model was able to capture those variations. Can you also plot VIIRS AOD in Figure 4 to see if the 
satellite observed an AOD of 4 in Jaipur? 
 
Authors Response: 

We thank the reviewer for the comment. VIIRS AOD is added to Fig. 4 in the revised version and show 

low AOD values over Jaipur. We modified the text as described above.  

Regarding Angstrom Exponent, we added the following discussion to the paper and added the figures  

(shown below) to the supplementary document: 

Text: 

We also looked at Angstrom Exponent (AE) at Jaipur and Kanpur to understand if the model captured 

the mode of the particles (Fig. S8). Over Jaipur the model is biased high compared to AERONET data 

(NMB: 30%) and shows more finer aerosols. After Nov. 20th, both AERONET and VIIRS retrievals suggest 

the dominance of coarser aerosols, while the AE for the model does not follow the same trend. 

However, PM2.5/PM10 ratio shows more coarse aerosols compared to the rest of the month (Fig. S9). 

Over Kanpur, the model AE is biased high (NMB: 50.8%). On the other hand, the model shows closer AE 

values to VIIRS retrievals. For example, both the model and VIIRS retrieval show similar reduction in AE 

on Nov. 8th and 9th. Kumar et al. (2014) also reported slight AE overestimation in WRF-Chem during a 

pre-monsoon dust storm at Kanpur and Jaipur. Furthermore, model and AERONET have variational trend 

while MERRA-2 is smooth during the whole month at both Jaipur and Kanpur.  

 

Figure 4 Time series of modeled (green line), VIIRS retrievals (blue triangle), MERRA-2 (red line), and AERONET (black dots) 
Angstrom Exponent during Nov. 2017 at a) Jaipur, b) Kanpur. 
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Figure 5 Modeled PM25/PM10 ratio (Base scenario) at a) Jaipur and b) Kanpur 

 

RC2-5:  Fig 5/Table 3: Could you please add a few panels in Figure 5 showing the evaluation against 
the CPCB data? 
Authors Response: 

Fig.6 in the paper shows the box and whisker plots for CPCB stations in Delhi. In general during the 

whole paper, we show the results only at one station (i.e. US Embassy) when we look at time-series 

and we show daily box and whisker plots when we look at all CPCB stations. As the model resolution 

is 15km, we usually see more than one measured CPCB stations are located in one model grid cell. For 

example, 17 stations in Delhi are located in only 6 grid cells; repetition affects the scatter plot (Fig. 6a 

below). We also observe lower variability in box and whisker plots of the model compared to 

observation data due to same reason. In other words, scatter plots will not provide enough insights 

when considering all individual stations. To show the spatial performance of the model, we plot the 

scatter plot for averaged concentration of different states. Below, we show the scatter plot for Delhi, 

Haryana, and Rajasthan, which reveals the good spatial performance of the model (Fig. 6b below). 

Adding data from Punjab to this plot (Fig. 6c below) significantly degrades the performance. The 

reason is due to extremely high bias in Punjab data. Punjab observation data doesn’t seem to be right 

as it doesn’t show any signal of the pollution episode while satellite data show huge amount of 

agricultural fires during those days. We added the below scatter plots in the supplementary. However, 

we think scatter plots were better tools if we had more spatial data (e.g. a gridded dataset). 

a) JAIPUR

b) KANPUR



 

Figure 6 Scatter plots for a) all stations in Delhi combined b) averaged concentrations in Delhi, Haryana, and Rajasthan c) 
averaged concentrations in Delhi, Haryana, Rajasthan, and Punjab. Filters are applied to CPCB data. 

RC2-6:  Line 301: I think the model observation comparison for the non-episode periods looks good 

because of the scale of Figure 5a. A zoom into the figure 5a shows that on several occasions, the 

model showed a bias of up to 100 ug/m3 even in the non-episode period. 

Authors Response: 

We appreciate the comment. We agree that for some typical days the error is high, which can be 

related to the accuracy of anthropogenic emissions and we have mentioned that when presenting the 

results between lines 320-326. However, statistics for the whole November after excluding days 

between Nov. 7th and Nov. 10th (4 days), also show fair results as shown below.  

 

Table 1 Statistics for all days in November 2017 after excluding extreme days of Nov. 7th, 8th, 9th, 10th compared with data 
from CPCB stations in Delhi 

Scenario 
Hourly 
Mean 

Hourly 
Standard 
Deviation 

24-
hours 

R 

24-
hours 
RMSE 

24-
hours 
NMB 

24-
hours 
NME 

24-
hours 

MB 

24-
hours 

ME 

CPCB Obs data 215.26 97.58       

FINN_VIIRS_7Xperiod2 209.91 104.94 0.7 55.11 -2.44 18.96 -5 38.94 

 
RC2-7:  Line 308: Are you referring to the model biases relative to MERRA-2 here? If yes, is it 
reasonable to do so given large biases in MERRA-2 simulated PM2.5 itself as shown in Figure 5a? 
Authors Response: 

We appreciate the reviewer’s concern. We agree that MERRA-2 may have large biases, as we saw in 

Fig. 5a. However, in this paper, we use MERRA-2 as an observation package when we do not have any 

other data to evaluate our results. Looking at domain wide PM2.5 concentrations is one of those cases. 

We assume that enhancing MERRA-2 modeling system by data assimilation makes it a fair benchmark.     

RC2-8:  Line 368-369: Why do you attribute this error only to transport and not to uncertainties in 
anthropogenic emissions or other physical processes in the model. 

a) All stations in Delhi b) Averaged on Delhi, Haryana, Rajasthan c) Averaged on Delhi, Haryana, Rajasthan, Punjab



Authors Response: 

We thank the comment. For Nov. 8th, the back trajectory was passing through anthropogenic sources; 

so, we hypothesized that the model may have missed major fire emission due to transport. But, we 

agree with the reviewer that other mentioned factors can be important, as well. We have modified 

that sentence to:  

Text: 

The model underestimated PM2.5 concentrations on Nov. 8th, which can be partly related to errors in 

transport as the trajectories for Nov. 8th_12 crossed eastern parts of Punjab. However, other physical 

processes or lower anthropogenic emissions can also be responsible for low bias. 

RC2-9:  Figure 8: Could you please add PBL height to these panels to help understand whether the 
smoke was injected in the free troposphere. 
Authors Response: 

We thank the reviewer for the comment. Below, we added the PBLH line to the cross sections (white 

line). The line is not obvious on 00 UTC times due to very low extent of the PBL. On Nov. 6th-12, we see 

very low PBL upwind of Delhi and significant amount of smoke above boundary layer. Therefore, 

these findings accompanied with Fig. 13b supports the argument that the plume rise in the model 

released the emissions too high or the model did not mix the smoke down fast enough. We modified 

the text in the revised version. 

Text: 

To further understand the regional scale transport of the smoke plumes, we plotted cross section of 

PM2.5 over the path from Punjab through Delhi (Fig. 8, path line shown in Fig. 1). PM2.5 concentrations 

showed typical values on Nov. 5th_00 although they still exceeded the standard limits. On Nov. 5th_12, 

concentrations significantly increased over Punjab area because of fires and the winds brought them on 

a path towards Delhi. The Punjab’s smoke did not completely cross Delhi yet on Nov. 6th as back 

trajectories for 00 and 12 UTC hours also showed the effects of anthropogenic emissions and fires in 

eastern Delhi. On the other hand, a significant amount of smoke was above the boundary layer as 

shown in Nov. 6th_12 panel. Due to shifting winds on Nov. 7th (as shown in Fig. 2), the smoke upwind of 

Delhi blew over Delhi and led to extremely high concentrations. Although the model captured the 

median in Nov. 7th, it missed the maximum extent of observed values. Cross sections on Nov. 8th, 9th, and 

10th show the residual Punjab’s smoke in the boundary layer, while we saw the model underestimated 

PM2.5 concentrations on these days. Measured PM2.5 concentrations over Delhi show a decreasing trend 

between Nov. 8th and Nov. 10th (Fig. 6). Vertical profiles for the base scenario also show the model 

captured high biomass burning emission period on Nov. 6th (Fig. 12). However, it also showed high 

amounts of smoke above the PBL. Cross sections for Nov. 11th to Nov 14th can be found in the supporting 

document (Fig. S12). These results suggest that plume rise in the model released the emissions too high 

or the model did not mix the smoke down fast enough. Vijayakumar et al. (2016) showed agricultural 

fires can transport via upper troposphere and subside over Delhi using ECMWF map. Social reasons can 

also be important as the first reaction of people during hazy days is to drive to work which directly 

(exhaust emission) and indirectly (road dusts) worsen air pollution.  

 



 

Figure 7 Figure 8 Vertical cross section of PM2.5 concentration through the path shown in Fig. 1 for the days between Nov. 5th 
and Nov. 10th. For each day, two snapshots are shown at 00UTC (5:30AM local time) and 12UTC (5:30PM local time). The orange 
star shows the location of Delhi through the path. White line shows the PBL height across the path 

Minor comments: 

RC2-10:  Line 100: Replace ‘*’ with the ‘x’ and also elsewhere in the paper where you describe the 
resolution. 
Authors Response: 

We replaced all of them. 

RC2-11:  Line 194-195: Have you applied any filtering criteria to the CPCB data? 

Authors Response: 

We didn’t apply any filter to this data as we relied on quality control done by CPCB 

(https://cpcb.nic.in/quality-assurance-quality-control/). However, we studied how applying the 

following filters, done by Jena et al. (2020) and Kumar et al. (2020), change the dataset consisting of 

total 12768 hourly data points: 

Filter 1: Remove less than 10 µgm-3 instances: removes 31 data-points  

Filter 2: Remove the hourly difference between 100 (or 150 or 200) µgm-3: removes 186 (or 71 or 

31 ) hourly-data 

Filter 3: Remove values more than 200 (400) µgm-3 right after NAN value: 33 (19). It basically 

removes data for Nov. 9th as it was applied after filter #2.  

We found that the order of applying these filters is important. Below, statistics and timeseries for 

different orders of filters are presented. Order of filters (1,2,3) removes data for Nov. 9th and 

Nov. 5th_00

Nov. 5th_12

Nov. 6th_00

Nov. 6th_12

Nov. 7th_00

Nov. 7th_12

Nov. 8th_00

Nov. 8th_12

Nov. 9th_00

Nov. 9th_12

Nov. 10th_00

Nov. 10th_12



significantly improves the model performance over Delhi. We added these findings in the 

supplementary document and described in the revised version. 

Text: 

No additional quality control filters, other than the ones by CPCB (https://cpcb.nic.in/quality-assurance-

quality-control/), were applied. We evaluated the results after applying the filters proposed by other 

studies (e.g. Kumar et al. (2020)); they had slight impacts on statistics (shown in the supporting 

document).  

Table 2 Effect of applying filters to CPCB data on PM2.5 statistics in Delhi 

Province 
Hourly Obs. 
Mean (±std) 

(µgm-3) 

Hourly Model 
Mean (±std) 

(µgm-3) 
24-hours NMB (%) 24-hours NME (%) 24-hours R (%) 

CPCB-Delhi 255.5 (±146.6) 213.9 (±113.9) -16.6 27.6 0.48 

Only filter 3 248.4 (±140.3) 214.5 (±114.5) -13.9 26.4 0.49 

Filter123 215.5 (±95.5) 214.8 (±115.2) -1.9 23.6 0.64 

Filter132 248.6 (±140.8) 214.6 (±114.5) -13.9 26.4 0.49 

 

 

Figure 8 Effect of applying additional filters to CPCB data on averaged PM2.5 timeseries in Delhi 

 

Filter 3

Filter1-Filter2-Filter3

Filter1-Filter3-Filter2



RC2-12:  Equation (1): I assume this equation is used to calculate MERRA-2 PM2.5 and not WRF-Chem. 
Authors Response: 

Yes, it is to calculate PM2.5 for MERRA-2 and we used WRF-Chem diagnosed PM2.5 variable directly.  

 

RC2-13:  Line 288-289: But the underestimation could also be because of the underestimation of 
emissions from Delhi. 
Authors Response:  

Yes, we modified the sentence: 

Text: 

This suggests either low local anthropogenic emissions in Delhi or some missing pollution sources 

upwind of Delhi that were not included in the emission estimates led to underestimation. 

 

RC2-14:  Line 322-333: This is not true as EDGAR-HTAP provides monthly varying emissions with higher 

emissions in winter.  

Authors Response:  

We appreciate the reviewer and apologize for this mistake. All the experiment have been done using 

monthly EDGAR-HTAP data and it was just a drafting mistake. It has been removed in the revised 

version. 

 

RC2-15:  Figure 6: It would be useful to mark period 1 and period 2 in the figure. 

Authors Response: 

Thanks for the comment. We added period1 and period2 that have been used for emission 

modifications to Fig. 6. 

 

RC2-16:  Line 365: Change “lower” to “smaller”. 

Authors Response: 

We changed that. 

 

RC2-17:  Line 567: change “intensify” to “accuracy”. 

Authors Response: 

We changed the “intensify the accuracy” to “improve the accuracy” 
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RC3: 
In this study, the authors used the WRF-Chem to simulate the pollution episode during Nov 
2017 over New Delhi and evaluated the impacts of biomass burning emissions, long-range 
transport of dust, and dust emissions on simulated PM2.5. The model was evaluated by 
comparing simulated meteorological parameters and simulated AOD and PM2.5 with MERRA2 
data and observational data. This study provides information on the sources that contribute 
to the severe PM pollution during Nov 2017. The paper is well organized but improvements in 
presentation are needed.  
Authors Response: 

We appreciate the reviewer for pointing to important issues. We try to address the comments and 

concerns here and below: 

 
My comments are as follows. 
 
RC3-1:  In the design of the simulations, why increasing the emissions by 5, 7 or 10 times? Are 
these numbers chosen only to get a better simulation of PM in Delhi?  
Authors Response: 

We thank the reviewer for the point. Yes, we used simulation results in Delhi as the criteria for 

choosing the proper scaling factor. Moreover, the increasing factors were chosen arbitrarily and we 

have mentioned this as the limitation of our study in the revised version. In this study, we intended 

primarily to show the bias in biomass burning emission inventory is not systematic and clarify high 

uncertainty for extremely polluted days. Another bias correction study is required to find the relation 

between highly polluted days and optimized increasing factor to modify biomass burning emission 

inventories.  

Text: 

The choice of the scaling factor for increasing fire emissions was arbitrary in this study. Due to scarcity of 

observation data, we were not able to apply complicated mathematical scaling techniques based on 

data assimilation to scale the fire emissions (Saide et al., 2015). 

 
RC3-2:  Why this study chose to evaluate the impacts from only biomass burning and dust? 
How about other anthropogenic emissions which is also important source to severe PM2.5 
events.  
Authors Response: 

We focused on biomass burning and dust emissions in this study based on previous studies during this 

period (e.g. Beig et al. (2019)). However, we acknowledge the importance of anthropogenic emissions 

since emissions due to heating also increase as the weather gets cold during Oct. and Nov. We 

conducted another scenario, in which we increased the particles anthropogenic emissions by a factor 

of 2 (ID: BASE_ANTHRO2X). This modification increased PM2.5 concentrations in Delhi up to ~150 µgm-

3, which led to overestimation (in contrast to underestimation in base scenario) at most of non-

episode days (time-series shown below). Although this scenario did not help capturing concentrations 



during the episode, it confirms the need for better anthropogenic emissions. On the other hand, it 

increased the AOD bias over southern IGP while reduced the bias over IGP (bias map shown below). 

These results suggest anthropogenic emission inventories have higher bias over IGP compared with 

non-IGP regions. However, we acknowledge the importance of having dynamic (daily) anthropogenic 

emission inventory. 

Text: 
Although different meteorological parameters can be responsible for the biases, accuracy of 
anthropogenic emissions is important. For example, recent local anthropogenic emission inventories 
developed for Delhi have higher particle emissions than in the regional inventory used in this study, 
which impacts modeled PM2.5 concentrations for typical days (Kulkarni et al., 2020). We conducted 
BASE_ANTHRO2X scenario to investigate the effect of uncertainties in the anthropogenic emissions. This 
scenario increased PM2.5 concentrations in Delhi up to ~150 µgm-3, which led to overestimation (in 
contrast to underestimation in base scenario) at many of non-episode days (Fig. S7). Although this 
scenario did not help in capturing the high concentrations during the episode, it confirms the need for 
better anthropogenic emissions. On the other hand, it reduced the bias over IGP (Fig. S7). These results 
point out the need for best estimates of emissions of both anthropogenic and biomass. .Maps also show 
that averaged PM2.5 concentrations over most of India were higher than the air quality standard. 

 

Figure 1 a) Timeseries for PM2.5 concentration at the location of US embassy using Base scenario and Base_Anth2X scenario B) 
Bias of AOD at 550nm averaged over November 2017 base on b) base scenario c) base scenario with 2 times more 
anthropogenic particle emissions (ID: Base_Anth2X) 

RC3-3:  This study simulates the haze event during Nov 2017 by adjusting boundary 
conditions and emissions, how about other haze events in India? How to apply the findings of 
this study in the simulation of other haze events in India? 
Authors Response: 

We appreciate the reviewer for this important point. The main purpose of the study is to investigate 

the sensitivity of model predictions to the main inputs into the model. Prediction of extreme pollution 

events is important as they have major impacts on people and also make a strong impression 

regarding the capabilities of models. However, extreme events are hard to predict because they are 

often heavily impacted by episodic emission sources. Here we take the approach of systematically 

exploring the impacts of different boundary conditions, dust, fire and anthropogenic emissions on the 

predictions of the pollution episode in November 2017. We feel this evaluation of inputs is needed to 

understand the extent that which the forward model can be configured to capture the events. A 

contemporary way to try to capture such events in prediction mode is to employ data assimilation. 

The data assimilation results compensate for deficiencies in the inputs as well as structural problems 

Base - VIIRS Base_Anth2X - VIIRS

US-Embassy

Base
Base_Anth2X
OBS

a)

b) c)



within the models. But the effectiveness of data assimilation improves as the capabilities of the 

forward model improves. Therefore, our results are also important for those using data assimilation 

to improve predictability.  

 Below, please also find other findings: 

- We showed that biomass burning emission inventories miss some small fire emission and 

introduced a new technique to use satellite data to fill these missing sources. 

- We showed that biomass burning emission inventories occasionally underestimate emissions 

in hazy events up to 7 times lower, where bias correction techniques need to be applied.  

- We showed either the plume rise in the model release the agricultural fire emissions too high 

or the model does not mix the smoke down fast enough. These should be considered in future 

hazy event simulations. 

- We found Secondary aerosols comprise more than half of the particles in Delhi. It suggests 

simple aerosol modules like GOCART cannot simulate the actual speciation of particles in 

Delhi. 

Text: 

The main purpose of this study is to investigate the sensitivity of model predictions to the main 

inputs into the model. Prediction of extreme pollution events is important as they have major 

impacts on people and also make a strong impression regarding the capabilities of models. 

However, extreme events are hard to predict because they are often heavily impacted by episodic 

emission sources. Here we take the approach of systematically exploring the impacts of different 

boundary conditions, dust, fire and anthropogenic emissions on the predictions of the pollution 

episode in November 2017. A contemporary way to try to capture such events in prediction models 

is to employ data assimilation (Kumar et al., 2020). The data assimilation results compensate for 

deficiencies in the inputs as well as structural problems within the models. But the effectiveness of 

data assimilation improves as the capabilities of the forward model improves. Therefore, our results 

are also important for those using data assimilation to improve predictability.   
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Abstract. Indo-Gangetic Plain (IGP) experienced an intensive air pollution episode during November 2017. Weather Research 

and Forecasting model with Chemistry (WRF-Chem), a coupled meteorology–chemistry model, was used to simulate this episode. 

In order to capture PM2.5 peaks, we modified input chemical boundary conditions and biomass burning emissions. CAM-Chem 10 

and MERRA-2 global models provided gaseous and aerosol chemical boundary conditions, respectively. We also incorporated 

VIIRS active fire points to fill missing fire emissions in FINN and scaled by a factor of seven for an 8-days period. Evaluations 

against various observations indicated the model captured the temporal trend very well although missed the peaks on Nov. 7th, 8th, 

and 10th. Modeled aerosol composition in Delhi showed Secondary Inorganic Aerosols (SIA) and Secondary Organic Aerosols 

(SOA) comprised 30% and 27% of total PM2.5 concentration, respectively, during November, with a modeled OC/BC ratio of 2.72. 15 

Back trajectories showed agricultural fires in Punjab were the major source for extremely polluted days in Delhi. Furthermore, 

high concentrations above the boundary layers in vertical profiles suggested either the plume rise in the model released the 

emissions too high, or the model did not mix the smoke down fast enough. Results also showed long-range transported dusts did 

not affect Delhi’s air quality during the episode. Spatial plots showed averaged Aerosol Optical Depth (AOD) of 0.58 (±0.4) over 

November. The model AODs were biased high over central India and low over eastern IGP, indicating improving emissions in 20 

eastern IGP can significantly improve the air quality predictions. We also found high ozone concentrations over the domain, which 

indicates ozone should be considered in future air quality management strategies alongside particulate matters.  

1. Introduction 

Ambient air pollution remains a major environmental issue, even after significant worldwide efforts starting after the deadly smog 

of London in 1952. It is the fifth-ranking risk of death and a major threat to climate and ecosystem (Cohen et al., 2017;Ramanathan 25 

and Carmichael, 2008;Sitch et al., 2007). Air pollution contains many species; particulate matter (PM) is currently the air pollutant 

of most concern, especially in developing countries like India. India is an emerging economy with burgeoning population that has 

accelerated its industrial activities in the last three decades, leading to wide spread air pollution and resulting adverse health effects. 

There are many Indian cities on the list of most polluted cities of the world (World-Bank, 2018;Guttikunda et al., 2014;WHO, 

2016). Studies show that ozone and particulate matter with diameter less than 2.5 micron (PM2.5), are attributed to more than one 30 

million individual premature deaths in India (Cohen et al., 2017;HEI, 2018). David et al. (2019) found that anthropogenic emissions 

within India led to about 80% of the total premature death due to PM2.5 in India. Furthermore as industrial activities are growing, 

emissions are increasing too; health impacts attributed to long-term exposure air pollution are predicted to increase based on current 

policies (Conibear et al., 2018a) (Conibear et al., 2018a;Ghude et al., 2016).  

Short-term extreme pollution events lead to increased hospital admissions and mortalities (Anenberg et al., 2018;Rajak and 35 

Chattopadhyay, 2019). Forest and agricultural fires, dust storms, increased local activities, and stagnant meteorological conditions 
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are major contributing factors in these air pollutions episodes (Beig et al., 2019;Jethva et al., 2018). While forecasting models help 

authorities to notify people of these extreme pollution events, hindcasting models help scientists improve the capabilities of the 

models to predict pollution events, identify the main responsible factors causing these events, and inform policy makers as they 

develop pollution control strategies. However, the ability of air quality models for simulating short-term events highly depends on 40 

the quality of input chemical data (i.e. emissions). For example, the total amount of global fire emissions can differ by a factor of 

3-4 based on the emission inventory used (Pan et al., 2020). Furthermore, dust storms can travel long distances and influence 

another region’s air quality (Ashrafi et al., 2017;Beig et al., 2019). David et al. (2019) attributed about 16% of total premature 

PM2.5-related death to emissions outside India. Moreover, studies of  Black Carbon (BC) in southern Asia revealed that local 

emissions in western India can affect eastern and southern regions’ air quality (Kumar et al., 2015a). As a result, global models, 45 

which provide boundary conditions needed by regional air quality models, can significantly affect the simulated results (He et al., 

2019).  

The Indo-Gangetic Plain (IGP) experiences high levels of air pollution during the post monsoon season (October to early 

December) due to stagnant meteorological conditions and higher air pollution emissions (Adhikary et al., 2007;Marrapu et al., 

2014). Figure 1a shows the averaged Aerosol Optical Depth (AOD) retrieved from Visible Infrared Imaging Radiometer Suite 50 

(VIIRS) remote sensing instrument during November 2017 over northern India. The IGP region has the highest AOD values with 

the largest values in the north-western parts, which is mostly due to crop residue burning (Beig et al., 2020;Jethva et al., 2018;Liu 

et al., 2018;Venkataraman et al., 2018;Vijayakumar et al., 2016). Kulkarni et al. (2020) found India’s north-western agricultural 

fires could contribute up to 75% of Delhi’s PM2.5 concentration.  

Not only is there significant spatial variation over the IGP, but also PM2.5 concentrations change on a daily basis (Fig. 1c). Delhi, 55 

the capital of India with annual average PM2.5 concentration of 120 µgm-3 (Amann et al., 2017), experienced a severe extreme air 

pollution during November 2017. Figure 1c shows the daily averaged PM2.5 concentrations measured with the US-EPA instrument 

located at the US Embassy in Delhi. Daily PM2.5 concentrations reached values more than 900 µgm-3, 15 (37.5) times higher than 

24-hour averaged Indian standards (World Health Organization (WHO) guidelines) (WHO, 2006). However, it is clear that no day 

is compliant with the air quality standard values. After this extreme pollution episode, the Indian government officially initiated a 60 

comprehensive air quality plan called the National Clean Air Programme (NCAP) to reduce the air pollution (MoEF&CC, 2019).  

Different groups have studied this period. Dekker et al. (2019) attributed carbon monoxide (CO) accumulation between Nov. 11th 

and Nov. 14th to stagnant meteorological conditions; specifically, low wind speeds and shallow atmospheric boundary layers. 

Moreover, they argued regional air pollution transport was mostly responsible for this extreme pollution episode (Dekker et al., 

2019). However, Beig et al. (2019) concluded biomass burning emissions after post-monsoon crop productions, accompanied with 65 

long range transported dust from Middle East led to very high pollution levels although stagnant condition favoured it.  

While the current focus of research groups and governments is on PM, ozone concentrations also show high values during the post 

monsoon season. Figure 1d shows measured daily ozone concentrations at one CPCB station in Delhi; concentrations exceeded 

India’s ozone air quality guidelines. Moreover, the ozone concentrations followed a similar daily variation as PM during November 

2017 (Fig. 1d). As a result, extreme pollution episodes cause not only PM-related health issues but also increase the risk of Chronic 70 

Obstructive Pulmonary Disease (COPD) (the most important health outcome of ozone pollution) (Conibear et al., 2018b;EPA, 

2013).  
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Figure 1 WRF-Chem modeling domain, ground measurement stations, and observed air quality: a) modeling domain and location of Delhi (⁎) 

and AERONET stations at Jaipur and Kanpur (▲), and underlying VIIRS AOD (550nm) averaged over November 2017, the black line also 75 
shows the path that was used for vertical cross section analysis. b) location of  CPCB stations (black stars) and US Embassy station (red star), c) 

Calendar map of averaged daily PM2.5 concentration measured at US Embassy, d) Calendar map of averaged daily ozone concentration measured 

at North Campus, DU 

Models usually underestimate the concentrations during extreme pollution periods unless they apply chemical data assimilation 

(Dekker et al., 2019;Kulkarni et al., 2020;Kumar et al., 2015b;Kumar et al., 2020) (Dekker et al., 2019;Kulkarni et al., 2020;Kumar 80 

et al., 2015b). Moreover, there are different input data in terms of chemical boundary conditions and fire emissions that can affect 

air quality modeling results (He et al., 2019). The main purpose of this study is to investigate the sensitivity of model predictions 

to the main inputs into the model. Prediction of extreme pollution events is important as they have major impacts on people and 

also make a strong impression regarding the capabilities of models. However, extreme events are hard to predict because they are 

often heavily impacted by episodic emission sources. Here we take the approach of systematically exploring the impacts of different 85 

boundary conditions, dust, fire and anthropogenic emissions on the predictions of the pollution episode in November 2017. A 

contemporary way to try to capture such events in prediction model is to employ data assimilation (Kumar et al., 2020). The data 

assimilation results compensate for deficiencies in the inputs as well as structural problems within the models. But the effectiveness 

of data assimilation improves as the capabilities of the forward model improves. Therefore, our results are also important for those 

using data assimilation to improve predictability. The main objective of this study is to investigate the impacts of different global 90 

input data sets on improving modeled PM2.5 concentrations over the IGP during Nov. 2017. We hypothesize that incorporating 

different available datasets with each other can improve modeling results. In this study, we use the Weather Research and 

Forecasting model coupled to Chemistry (WRF-Chem). Through a series of sensitivity experiments, we evaluate the impacts of 

biomass burning emissions coming from FINN and QFED, chemical boundary conditions retrieved from MOZART, CAM-chem, 

CAMS, and MERRA-2 global models, role of incorporating VIIRS active fire hot spots to improve biomass burning emission 95 

inventories and global models to improve chemical boundary conditions, and changes in dust and anthropogenic emissions, on 

modeled PM2.5 concentration during November 2017. We also evaluate ozone predictions. 

This paper is organized as follows. First, the WRF-Chem model configuration, sensitivity experiments, and the observation 

datasets, including ground measurements and satellite data, are described. Then, after evaluating the model performance for the 

(a)
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best experiment, the impacts of using different datasets as input data on modeled PM2.5 concentrations during November 2017 are 100 

analyzed and discussed.  

2. Methods 

2.1. WRF-Chem configuration: 

WRF-Chem is a numerical modeling framework that solves transport, chemistry, and physics of the atmosphere (Grell et al., 2005). 

The online interaction between meteorology, thermodynamic processes, and atmospheric chemistry makes it a powerful and 105 

reliable model in the community. WRF-Chem model (Version 4.0) with 1-domain centered on Delhi with 15 km horizontal grid 

resolution and 39 vertical levels was used in this study. The domain was set to be big enough to include the north-west biomass 

burning and urban emission sources in the simulation process as they are shown to be contributors to poor air quality in the region 

in previous studies (Amann et al., 2017). In the following, we present the model configuration for the base scenario (ID: 

FINN_VIIRS_7Xperiod2). 110 

National Center for Environmental Prediction (NCEP) Global Forecasting System (GFS-FNL) 1*x1-degree and 6-hours spatial 

and temporal resolution meteorological-fields (https://rda.ucar.edu/datasets/ds083.2/) were used as initial and boundary conditions 

for the meteorology. Community Atmosphere Model with Chemistry (CAM-chem) data (Buchholz, 2019) with horizontal 

resolution of 0.9*x1.25 degree and 56 vertical levels provided chemical boundary conditions for gaseous species. MERRA-2 

reanalysis data with 0.625*x0.5 degree horizontal and 72 vertical model levels were used for aerosol species (Bosilovich et al., 115 

2015). However, input data have uncertainties and small uncertainties in nonlinear governing equations of numerical weather 

predictions can lead to non-negligible errors in results (Xiu, 2010). As a result, re-initialization of NWP models is suggested instead 

of free runs (Abdi‐Oskouei et al., 2020). In this study, the model ran for 30 hours each day starting at 00Z while the first 6 hours 

data were discarded to account for daily spin-up. Meteorological initial and boundary conditions, and chemical boundary conditions 

were re-initialized daily at 00Z using global models. However other than for the first cycle in which global models provided initial 120 

chemical conditions data, chemical fields from the previous cycle were used as the next cycle’s initial chemical conditions. Table 

1 summarizes the WRF-Chem physical and chemical configuration options.  

Studies have shown improvements for ozone simulations in Delhi using more complicated chemistry mechanisms like Model for 

Ozone and Related chemical Tracers (MOZART) and CBMZ comparing to simple mechanisms like RACM and RADM (Gupta 

and Mohan, 2015;Sharma et al., 2017). MOZART gas phase chemistry mechanism and the four-bin Model for Simulating Aerosol 125 

Interactions and Chemistry (MOSAIC-4bin) were used for modeling atmospheric chemistry and aerosol properties as suggested in 

previous studies over India (Kumar et al., 2015a). MOZART, version 4 mechanism was initially developed for global modeling of 

ozone and other tracers in the troposphere (Emmons et al., 2010). Although it includes 97 gas-phase and bulk aerosol, all 

monoterpenes, which are important in ozone chemistry, were lumped together. As a result, Hodzic et al. (2015) added a detailed 

treatment of monoterpenes and Knote et al. (2014) updated the isoprene oxidation scheme in the MOZART mechanism in WRF-130 

Chem. MOSAIC is an aerosol model that considers a wide range of aerosol species that are important in regional scale and treats 

the chemical and microphysical processes between them including nucleation, coagulation, thermodynamics and phase 

equilibrium, and gas-particle partitioning (Zaveri et al., 2008). Hodzic and Jimenez (2011) updated secondary organic aerosol 

(SOA) formation mechanism and the updated version is available in WRF-Chem for doing regional air quality modeling studies. 

MOSAIC-4bin, used in current study, calculates all the above-mentioned aerosol physics and chemistry in four sectional aerosol 135 

size bins with the assumption that each bin is internally mixed and all the particles within a bin have the same chemical composition 

(Zaveri et al., 2008). 
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In India, both anthropogenic and natural sources have important impacts on air quality. Biomass and biofuel use in residential 

sector for heating and cooking purposes have significant contributions to air quality in India (Conibear et al., 2018a;David et al., 

2019;Venkataraman et al., 2018). Moreover, Tthere are more than 1000 power plants and brick kilns in India that are major 140 

anthropogenic sources for SO2 and particulate matters, respectively (Guttikunda and Calori, 2013). Other than these industrialized 

sources, literature shows that biomass burning (e.g. agricultural waste burning) contributes to 37 percent of air pollution over sub-

continent (Kumar et al., 2015a). Hemispheric Transport of Air Pollution (HTAP v2.2) (Janssens-Maenhout et al., 2015) emission 

inventory of 2010 with 0.1 degree horizontal resolution, mapped to MOZART-MOSAIC mechanism 

(https://www2.acom.ucar.edu/wrf-chem/wrf-chem-tools-community), was used as the base anthropogenic emission inventory. 145 

Although accuracy of urban anthropogenic emission inventories have significant effects on air quality modeling studies (Gupta 

and Mohan, 2015;Kumar et al., 2012;Sharma et al., 2017), the focus of this paper is to capture the air pollution due to regional 

sources; we didn’t use higher resolution emission inventories for Delhi.  

Fire INventory from NCAR, version 1.5 (FINNv1.5) and Model of Emissions of Gases and Aerosols from Nature (MEGAN v. 

2.0.4) were used as biomass burning emission and biogenic emission inventories, respectively (Guenther et al., 2006;Wiedinmyer 150 

et al., 2011). However, other studies have noticed that uncertainties in FINN emissions can significantly modify the results 

(Kulkarni et al., 2020). Therefore, two modifications were applied to FINN data to provide better input data: filling missing fires 

using VIIRS Fire Radiation Power (FRP) data and scaling the fire emissions (scaling procedure described in detail later). Liu et al. 

(2018) used FRP values to approximate the stubble burning areas affecting Delhi’s air quality. In their statistical study, 99% of 

post monsoon FRP values were attributed to agricultural fires (Liu et al., 2018). In this study, we used FRP values to improve fire 155 

emissions. Specifically, we first regridded VIIRS 375m resolution FRP data to our domain. Then at each hour, for all grid cells 

that have FINN emissions, we find the corresponding mean VIIRS FRP, and do a linear regression between FRP and emission 

flux. Afterwards, we apply the regression line parameters on VIIRS FRP for the grid cells that don’t have any FINN emission, to 

estimate the flux. It should be mentioned, all the available FRP data were utilized disregarding the retrieval’s confidence level. 

Moreover, we used VIIRS instead of MODIS data as it provided higher resolution active fire points data (375m vs. 1km), which 160 

is an important point for small fires. For example, no active fire points in Moderate Resolution Imaging Spectroradiometer 

(MODIS) instrument were reported in 2018 post-monsoon for Uttar Pradesh (Kulkarni et al., 2020). Figure 9Figure 10 shows more 

fire grid cells in eastern IGP and central India when incorporating VIIRS data to FINN inventory. We acknowledge that this 

technique is a first-order approximation and can have large errors as FINN is based on burned area algorithms from MODIS 

retrieved data; more detailed research is required to improve the idea.  165 

Dust storms are an important natural pollution source that have caused many pollution events over some parts of India (Kumar et 

al., 2014a). Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) mechanism was used to calculate the 

threshold wind velocity and total dust emission, which about 70 percent of total mass was then distributed in different bins of the 

other inorganics (OIN aerosol component in WRF-Chem; OIN represents all primary inorganic PM) component in the model with 

the assumption that the rest are larger than PM10 (Zhao et al., 2010). This is based on the study in Northern Africa, where Zhao et 170 

al. (2010) allocated about 1% in bins with diameter less than 2.5 micron and 69% of the dust in bin 4( 2.5-10 microns), and assumed 

the rest were bigger than 10 micron and will not remain in the atmosphere for an influential period. 

Table 1 Details of WRF-Chem physical and chemical setup configuration  

Process Method 

Domain 1domain (15km horizontal resolution) 

Landuse MODIS 20-category 

Field Code Changed

https://www2.acom.ucar.edu/wrf-chem/wrf-chem-tools-community
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TimeStep 60 seconds based on CFL stability criterion (Courant et al., 

1928) 

Vertical 39 (top at 5hpa) 

Microphysics Morrison double-moment scheme (Morrison et al., 2005) 

Longwave Radiation RRTMG, called every 5 minutes 

Shortwave Radiation Goddard, called every 5 minutes 

Planetary Boundary Layer MYNN-level3 (Nakanishi and Niino, 2009) 

Land Surface Noah Land Surface Model (Wang et al., 2018) 

Gas-Phase Chemistry MOZART-4, called every 10 minutes 

Photolysis Scheme New TUV, called every 10 minutes 

Aerosol Scheme MOSAIC 4-bin (no aqueous phase chemistry), called every 10 

minutes 

Dust GOCART (Ginoux et al., 2001) 

Initial and Boundary meteorology NCEP FNL 

2.2. Sensitivity experiments 

Three sets of experiments were performed to explore the impact of using different global data, as either boundary conditions or 175 

emissions, and dust emission formulation on PM2.5 and AOD predictions (Table 2). It should be mentioned that all the modeling 

options and other input data remained unchanged unless specified.  

One set of experiments focused on the sensitivity of the predictions to biomass burning emissions. First, we compared the impacts 

of two different biomass burning emission inventories, namely FINN and Quick Fire Emission Dataset (QFED) (Darmenov and 

da Silva, 2013). Specifically, simulations using QFED (ID: QFED_CAMCHEM) and FINN (ID: FINN_CAMCHEM) were 180 

performed to understand the impact of different fire detection algorithms. When using QFED, it should be mentioned that we 

mapped total CO values to VOC species in MOZART chemistry mechanism based on emission factors provided in literature 

instead of using VOCs emissions directly from QFED (Akagi et al., 2011). Second, we investigated whether FINN fire emissions 

were underestimated for all the days (ID: FINN_10Xall), some days (ID: FINN_10Xperiod1), or just one day before the pollution 

episode on Nov. 5th (ID: FINN_10Xday). Then after modifying FINN using VIIRS FRP data, we did a sensitivity test with changing 185 

the period for scaling fire emissions. Specifically, we scaled fire emissions for a 15-days period between Nov. 3rd and 17th (ID: 

FINN_VIIRS_10Xperiod1) and an 8-days period between Nov. 5th and 13th (ID: FINN_VIIRS_10Xperiod2). Finally, weWe also 

evaluated the performance for a scaling factor of 10 in comparison with 7 (ID: FINN_VIIRS_7Xperiod2). Anthropogenic 

emissions over India also have high uncertainties (Saikawa et al., 2017). As a result, we studied how increasing the anthropogenic 

aerosol emissions by a factor of 2 affect the results (ID: BASE_ANTHRO2X).    190 

Another set of experiments evaluated the impacts of chemical boundary conditions. Many global datasets can be used in regional 

air quality modeling. Simulations were performed using CAM-chem (ID: FINN_CAMCHEM), MOZART (ID: FINN_MOZART), 

Copernicus Atmosphere Monitoring Service (CAMS, ID: FINN_CAMS.), and a combination of CAM-chem for gaseous and 

MERRA-2 for aerosol species (ID: FINN_MERRA2) global modeling systems. It is important to note that CAMS and MERRA-2 

are reanalysis models and use observed data to improve the results. CAMS assimilates MODIS and Advanced Along-Track 195 

Scanning Radiometer (AATSR) satellite instruments AOD (Inness et al., 2019). MERRA-2 assimilates AOD from multiple sources 

including MODIS, Multiangle Imaging Spectroradiometer (MISR), Advanced Very High Resolution Radiometer (AVHRR), and 

Aerosol RObatic NETwork (AERONET) although assimilating some products have been stopped after 2014 (Randles et al., 2017).  

Field Code Changed

Formatted: Superscript
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Finally, simulations were conducted for various dust emission modifications. In one simulation, we turned off dust emission option 

in the model (ID: NO_DUST), while in another simulation, we increased total dust emissions by 5 times to explore if dust emission 200 

were underestimated in the model (ID: DUST_5X). Moreover, we changed the allocation of total dust in different bins of MOSAIC 

module to see whether different allocation of aerosols can contribute to the observed extreme pollution in Delhi (ID: 

DUST_allocation). Specifically, we reduced 30% from the 4th bin (2.5-10 micron) and distributed 25% of it in 3rd bin (0.625-2.5 

micron) and 5% in 2nd bin (0.156-0.625 micron). More allocation to bins 2 and 3 were not considered, as it was not realistic to the 

large-size nature of dust aerosols. FINN_10Xall scenario represents the simulation with turned-on dust option (original allocation) 205 

in the model. The detailed results from experiments on boundary conditions and dust emissions can be found in the supporting 

document.   

Table 2 List of scenarios performed in this study 

Simulation ID Initial/Boundary Chemical (Gaseous / 

Aerosol) Condition 

Biomass Burning Emission Inventory DUST 

FINN_VIIRS_7Xperiod2 

(base scenario) 

CAMchem (gas) + MERRA2 (aerosol) 7 times higher (FINN+VIIRS) for Nov 

5th to Nov 13th 

GOCART 

FINN_VIIRS_10Xperiod2 CAMchem (gas) + MERRA2 (aerosol) 10 times higher (FINN+VIIRS) for Nov 

5th to Nov 13th 

GOCART 

FINN_VIIRS_10Xperiod1 CAMchem (gas) + MERRA2 (aerosol) 10 times higher (FINN+VIIRS) for Nov 

3rd to Nov 17th 

GOCART 

FINN_10Xperiod1 CAMchem (gas) + MERRA2 (aerosol) 10 times higher FINN for Nov 3rd to Nov 

17th  

GOCART 

FINN_10Xday CAMchem (gas) + MERRA2 (aerosol) 10 times higher FINN for Nov 5th GOCART 

FINN_10Xall CAMchem (gas) + MERRA2 (aerosol) 10 times higher FINN  GOCART 

NO_DUST CAMchem (gas) + MERRA2 (aerosol) 10 times higher FINN  Turned Off 

DUST_5X CAMchem (gas) + MERRA2 (aerosol) 10 times higher FINN  5 times higher 

GOCART 

emission 

DUST_allocation CAMchem (gas) + MERRA2 (aerosol) 10 times higher FINN GOCART put 

30% of bin 4 in 

bins 2 and 3 

FINN_MERRA2 CAMchem (gas) + MERRA2 (aerosol) FINN GOCART 

FINN_MOZART MOZART (gas + aerosol) FINN GOCART 

FINN_CAMS CAMS (gas + aerosol) FINN GOCART 

FINN_CAMCHEM CAMchem (gas + aerosol) FINN GOCART 

QFED_CAMCHEM CAMchem (gas +aerosol) QFED GOCART 

Table 2 List of scenarios performed in this study 

Simulation ID Initial/Boundary Chemical (Gaseous / 

Aerosol) Condition 

Biomass Burning Emission Inventory DUST 

Reference Scenario 

FINN_VIIRS_7Xperiod2 

(base scenario) 

CAMchem (gas) + MERRA2 (aerosol) 7 times higher (FINN+VIIRS) for Nov 

5th to Nov 13th 

GOCART 

Biomass Burning Emission Sensitivities 
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QFED_CAMCHEM CAMchem (gas +aerosol) QFED GOCART 

FINN_CAMCHEM CAMchem (gas + aerosol) FINN GOCART 

FINN_10Xall CAMchem (gas) + MERRA2 (aerosol) 10 times higher FINN  GOCART 

FINN_10Xday CAMchem (gas) + MERRA2 (aerosol) 10 times higher FINN for Nov 5th GOCART 

FINN_10Xperiod1 CAMchem (gas) + MERRA2 (aerosol) 10 times higher FINN for Nov 3rd to Nov 

17th  

GOCART 

FINN_VIIRS_10Xperiod1 CAMchem (gas) + MERRA2 (aerosol) 10 times higher (FINN+VIIRS) for Nov 

3rd to Nov 17th 

GOCART 

FINN_VIIRS_10Xperiod2 CAMchem (gas) + MERRA2 (aerosol) 10 times higher (FINN+VIIRS) for Nov 

5th to Nov 13th 

GOCART 

Boundary Condition Sensitivities  

FINN_MOZART MOZART (gas + aerosol) FINN GOCART 

FINN_CAMS CAMS (gas + aerosol) FINN GOCART 

FINN_MERRA2 CAMchem (gas) + MERRA2 (aerosol) FINN GOCART 

Dust Emission Sensitivities 

NO_DUST CAMchem (gas) + MERRA2 (aerosol) 10 times higher FINN  Turned Off 

DUST_5X CAMchem (gas) + MERRA2 (aerosol) 10 times higher FINN  5 times higher 

GOCART 

emission 

DUST_allocation CAMchem (gas) + MERRA2 (aerosol) 10 times higher FINN GOCART put 

30% of bin 4 in 

bins 2 and 3 

Anthropogenic Emission Sensitivity 

BASE_ANTHRO2X Similar to Base scenario (ID: FINN_VIIRS_7Xperiod2) except anthropogenic aerosol emissions increased 

by a factor of 2  

 210 

2.3. Observation data 

The model performance was evaluated using ground measurements, space-borne instruments, and global reanalysis data. 

Specifically, we used data collected by the Central Pollution Control Board (CPCB) over the domain for doing statistics. It includes 

stations over Delhi (19 stations), Rajasthan (10 stations), Haryana (4 stations), and Punjab (3 stations). No additional quality control 

filters, other than the ones by CPCB (https://cpcb.nic.in/quality-assurance-quality-control/), were applied. We evaluated the results 215 

after applying the filters proposed by other studies (e.g. Kumar et al. (2020)); they had slight impacts on statistics (shown in the 

supporting information). PM2.5 data measured by an US EPA instrument at the US embassy in Delhi was used as the reference 

station. Level-2 VIIRS remote sensing instrument data onboard Suomi-National Polar-Orbiting Partnership (S-NPP) was used for 

comparing the spatial pattern of AOD and fire counts over the domain. Specifically, aerosol products with around 6km horizontal 

resolution based on the Deep Blue algorithm (Hsu et al., 2019) and 375 m active fire products based on VNP14IMG algorithm 220 

(Schroeder et al., 2014) were used. There are only two AERONET stations in the domain (Fig. 1a). AERONET data at these two 

sites confirmed the reliability of VIIRS retrieved data (Fig. S1). MERRA-2 gridded data was also used to evaluate the model 

performance. MERRA-2 reanalysis is based on the assimilation of many meteorological data and the assimilation of AOD from 

multiple satellites (Gelaro et al., 2017). The on-ground continuous monitoring stations guidelines state that instruments should 

sample at heights between 3-10m. Irrespective of this condition, some of CPCB stations are placed on top of the buildings with 225 
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restricted clean flow of air (personal inspections). some blockades to 360-degree clean view. While we observed little impact of 

this situation on the concentrations in a well-mixed layer, a meteorological parameter like wind speed data can shows erratic 

behaviour. As a result, we used MERRA-2 meteorological data to evaluate the WRF-Chem simulations using 10m wind speed and 

direction, 2m temperature, surface water vapor mixing ratio variables. 

We also compared MERRA-2 AOD (at 550nm) and PM2.5 predictions with WRF-Chem results to evaluate how the assimilation 230 

of AOD affected the predictions. The MERRA-2 PM2.5 was based on the mass mixing ratios of black carbon, organic carbon, dust, 

sea-salt, and sulfate. Since ammonium concentration is not available, it is common in the literature to assume that sulfate ion will 

be completely neutralized by ammonium and form ammonium sulfate and therefore a factor of 1.375 was assumed in calculating 

inorganic aerosol concentrations (Buchard et al., 2016;He et al., 2019;Provençal et al., 2017). On the other hand, literature suggest 

organic carbon concentration should be multiplied by 1.4 to compensate for other missing organic compounds to estimate the 235 

organic mass (Buchard et al., 2016;Chow et al., 2015;He et al., 2019;Provençal et al., 2017;Turpin and Lim, 2001). However, 

Turpin and Lim (2001) argued that this scaling factor should be 2.6 for biomass burning particles; we used 2.6 according to our 

studied time period and potential black carbon sources: 

[𝑃𝑀] = [𝐵𝐶] + 2.6 ∗ [𝑂𝐶] + 1.375 ∗ [𝑆𝑂4] + [𝐷𝑈𝑆𝑇] + [𝑆𝑆]        (1) 

Where BC is black carbon, OC is organic carbon, SO4 is sulfate, DUST is dust, and SS is sea salt concentrations. As dust and sea 240 

salt data are reported in multiple bins, different bins should be used for different particle diameters.  

The metrics we used to assess the performance of the simulations are Root Mean Squared Error (RMSE), Mean Error (ME), 

Normalized Mean Bias (NMB), Normalized Mean Error (NME) and correlation coefficient (R) as defined in supporting 

information document (Emery et al., 2017;Emery et al., 2001). Since low values can have significant impacts on normalized values, 

which are used in mean normalized metrics, normalized mean values are better metrics and used in this study (Emery et al., 2017).  245 

3. Results and discussions 

3.1. Model performance 

Our analysis between different simulations revealed that FINN_VIIRS_7Xperiod2 scenario had the best statistical performance of 

the configurations studied. This scenario is called the base scenario and we evaluate it in this section. Performance of the base 

model in capturing the meteorological parameters was evaluated using MERRA-2 data for 10m wind speed and direction, 2m 250 

temperature, and surface water vapor mixing ratio. Figure 2 (a, b, c, d) show these comparisons at the location of the US Embassy 

in Delhi (28.59° N, 77.19° E). The model was able to capture the general diurnal trend for all these variables and the sharp shift in 

wind direction between Nov. 13th and Nov. 17th, after the extreme pollution episode. Negatively biased wind speed with ME of 1.1 

m/s and RMSE of 1.28 m/s shows the model generally underestimated wind speed and it was most predominant between Nov. 17th 

and Nov. 25th. Figure 2c shows the model did not accurately capture nighttime 2m temperature minima but captured the maximum 255 

values with overall overestimated ME of 3.52° C and RMSE of 4.01° C. The wind speed satisfied the  benchmark RMSE value of 

2.0 m/s, while temperature was higher than the targeted ME goal of 2.0° C (Emery et al., 2001). The representation error plays an 

important role in evaluating results due to different horizontal resolutions in the model and MERRA-2 dataset (~0.15*x0.15 vs 

0.625*x0.5 degree), specifically in urban areas. For instance, the same statistics for a rural area in Rajasthan (27.0° N, 73.0° E; not 

shown) have smaller biases and are compliant with benchmark values (RMSE of 0.99 m/s for wind speed and ME of 1.08° C for 260 

2 m temperature). For water vapor mixing ratio the model clearly captured the daily variations; specially, the increase after the 

pollution episode (Nov. 13th). However, it showed a very sharp day-to-night shift during the pollution episode days. The spatial 

performance of the model averaged over November during daytime hours (8AM to 6PM) is shown in Fig. 2 (panels e, f, g, h, i, j). 
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The sharp gradient between Himalayas and IGP regions in the north-east, the gradient between land and sea in the south-west, and 

the slight gradient between different land types in north-west of the domain for both 10m wind speed and 2m temperature were 265 

captured well. Overall, the model was able to capture the general daily variations and spatial trends when compared to MERRA-2 

data.  
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(e) WRF-Chem 10m Ws (f) MERRA-2 10m Ws

(g) WRF-Chem 2m T (h) MERRA-2 2m T

(a)

(b)

FINN_VIIRS_7Xperiod2
OBS

(c)

(d)

(i) WRF-Chem Qv (j) MERRA-2 Qv
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Figure 2 Temporospatial meteorological performance of base scenario simulation: Time series of simulated (green line) and MERRA-2 (black 270 
dots) hourly a) 10 m wind speed, b) 10 m wind direction, c) 2m temperature, d) surface water vapor at US Embassy coordinates. e,f) Averaged 

daytime (8AM-6PM) 10 m wind speed maps of modeled (e) and MERRA-2 (f). g,h) Averaged daytime (8AM-6PM) 2 m temperature maps of 

simulated (g) and MERRA-2 (h). i,j) Averaged daytime (8AM-6PM) surface water vapor mixing ratio (g/kg) maps of model (i) and MERRA-2 

(j) 

Figure 3 shows spatial distribution of the base scenario, VIIRS data, and the bias for 550 nm AOD, averaged over all the days in 275 

Nov., Nov. 5th as a day with intensive fire emissions, and Nov. 24th as an illustrative day after the extreme pollution episode. Model 

showed high AODs over Delhi and Punjab, confirming satellite data. Moreover, AODs were high over western IGP, close to major 

fires of Punjab, with a gradual gradient towards eastern and central India. Dust emission sources in the border of Pakistan also led 

to high AODs although they did not affect Delhi as discussed in the supporting document. Moreover, AODs were high over western 

India, close to major fire and dust emission sources, with a gradual gradient towards eastern and central India. However, the values 280 

were lower in eastern IGP compared to VIIRS data. In general, the model underestimates AOD over IGP and overestimates 

elsewhere. WRF-Chem predicted the averaged AOD over the whole domain for Nov. 2017 to be 0.58 (±0.4), while VIIRS data 

showed 0.43(±0.26). AOD maps for Nov. 5th show the model generally underestimated AOD values for the entire IGP region, 

except for Punjab. Moreover, the model underestimated aerosol loadings over central India. Other studies have reported biased 

low AOD and corresponding PM2.5 concentrations over other polluted regions (He et al., 2019;Song et al., 2018). Nov. 24th, on the 285 

other hand, represented a day with no significant fire emission. The model did a good job capturing AOD values in the central 

parts of India and around Delhi. However, the model missed high AOD values in eastern IGP. MERRA-2 data also did not show 

(e) WRF-Chem 10m Ws (f) MERRA-2 10m Ws

(g) WRF-Chem 2m T (h) MERRA-2 2m T

(a)

(b)

FINN_VIIRS_7Xperiod2
OBS

(c)

(d)

(i) WRF-Chem Qv (j) MERRA-2 Qv
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high AODs over the border and did not capture extremely high AODs over Punjab, although it showed some AOD enhancements 

(Fig. S62).  

Figure 4 shows time series of modeled, MERRA-2 product, VIIRS retrievals, and observed AOD at the AERONET stations 290 

(location shown on Fig.1). AOD values at Kanpur, a station in the eastern IGP, were more than 1.0 before the pollution episode 

and reached up to 2.0 during the episode days, and decreased to values between 0.5 and 1 for the rest of days. The model captured 

the general trend although missed high AOD’s between Nov. 9th and 13th, while MERRA-2 successfully captured the AOD trend 

through the whole month, including days with enhanced AOD values. This shows that AOD assimilation in MERRA-2 

significantly improves AOD predictions. At Jaipur, located in southern IGP, the model overestimated AOD for the first five days 295 

of November. During the pollution episode days, the model is biased high compared to MERRA-2 and VIIRS retrievals. 

AERONET data showed low AOD values before the pollution episode but did not report values during the pollution episode. It 

suggests, as one possibility, that PM concentrations were too high during this period that the instrument was not able to retrieve 

data. After the pollution period, AOD values were lower than 0.5, showing relatively low PM concentrations. In general, MERRA-

2 showed better performance in terms of NMB (Kanpur: -1.3% and Jaipur:-20.1%) compared with our model (Kanpur:-27.4% and 300 

Jaipur: +29.9%). Comparing averaged AOD with VIIRS retrievals for BASE_ANTHRO2X scenario showed lower bias over the 

IGP (Fig. S7). These results show the need for improved estimates of biomass burning as well as anthropogenic emissions. We 

also looked at Angstrom Exponent (AE) at Jaipur and Kanpur to understand if the model captured the mode of the particles (Fig. 

S8). Over Jaipur the model is biased high compared to AERONET data (NMB: 30%) and shows more finer aerosols in the model. 

After Nov. 20th, both AERONET and VIIRS retrievals suggest the dominance of coarser aerosols, while the AE for the model does 305 

not follow the same trend. However, PM2.5/PM10 ratio shows more coarse aerosols compared to the rest of the month (Fig. S9). 

Over Kanpur, the model AE is biased very high (NMB: 50.8%). On the other hand, the model shows closer AE values to VIIRS 

retrievals. For example, both the model and VIIRS retrieval show similar reduction in AE on Nov. 8th and 9th. Kumar et al. (2014b) 

also reported slight AE overestimation in WRF-Chem during a pre-monsoon dust storm at Kanpur and Jaipur. Furthermore, model 

and AERONET have variational trend while MERRA-2 is smooth during the whole month at both Jaipur and Kanpur.    310 

Figure 4 shows time series of modeled, MERRA-2 product, and observed AOD at the AERONET stations, located on Fig.1. AOD 

values at Kanpur, a station on eastern IGP, were more than 1.0 before the pollution episode and reached up to 2.0 during the episode 

days, and decreased to values between 0.5 and 1 for the rest of days. The model captured the general trend although missed high 

AOD’s between Nov. 9th and 13th, which led to negative NMB of -27.4%. MERRA-2 successfully captured the AOD trend through 

the whole month, including days with enhanced AOD values. It shows how AOD assimilation in MERRA-2 significantly improves 315 

AOD predictions. Jaipur AERONET station, located in southern IGP, showed low AOD values before the pollution episode but 

did not report values during the pollution episode. MERRA-2 shows very similar values to AERONET measured AODs. However, 

MERRA-2 values are low during the extreme pollution episode, which may be related to missing values in assimilated products. 

After the pollution period, AOD values were lower than 0.5, showing relatively low PM concentrations. The model overestimated 

AOD for the first five days of Nov., which led to overall high biased NMB of 29.9%. However, it is important that the error for 320 

days after the pollution episode were small. 

Figure 5a shows time series plot of base scenario and observed PM2.5 concentration at the US Embassy station. Observed values 

were high throughout the month on the order of 200 µgm-3 with a diurnal variations due to changes in the mixing heights. The 

extreme pollution episode began on Nov. 7th, when PM2.5 concentrations increased to more than 800 µgm-3. On Nov. 8th, the values 

increased even more to about 1000 µgm-3. PM2.5 concentrations  started decreasing on Nov. 9th and continued throughon Nov. 10th. 325 

However, values increased again and were high between Nov. 11th and Nov. 13th. Afterwards, they returned to ~ 200 µgm-3 for the 

rest of the month. The model accurately captured the magnitude and diurnal cycle for PM2.5 for non-episodic days. Moreover, the 
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model was able to see the sharp increase in concentration in the beginning of the episode starting from Nov. 7 th with reported PM2.5 

concentrations of ~650 µgm-3. This sharp increase was captured after incorporating VIIRS data into FINN emissions accompanied 

by scaling the emissions by a factor of 7. In fact, increased emissions from fires in agricultural fields in the north-west on previous 330 

days and favorable north-westerly winds, as shown on Fig.2 explain this concentration hike. However, the model underestimated 

the concentrations for the next three days. Then, the model captured the second enhancement. Although wind direction showed 

good agreement with MERRA-2 dataset and wind speed was biased low and even more favorable for stagnant conditions, modeled 

PM2.5 concentrations had a large negative bias for the period between Nov. 8th and Nov. 10th. This suggestssuggests  either low 

local anthropogenic emission within Delhi oreither low anthropogenic emissions in Delhi or  some missing pollution sources 335 

upwind of Delhi that were not included in the emission estimates led to underestimation.  

Dekker et al. (2019) studied CO concentrations during Nov. 2017 using satellite observations and they reported low emissions as 

one of the reasons for large negative concentration biases, although they proposed unfavorable meteorological condition as the 

main reason for high CO concentrations in Delhi, between Nov. 11th and Nov 14th. Moreover, Cusworth et al. (2018) reported that 

MODIS based biomass burning emission inventories miss many small fires over India. Beig et al. (2019) concluded that long range 340 

transported dust coming from Middle East was a major source for this extreme pollution episode. We looked at MERRA-2 surface 

PM2.5 concentration data for the study period to explore if dust was a major source. Figure 5a also shows that MERRA-2 did not 

capture high surface PM2.5 concentrations after Nov. 8th either. Navinya et al. (2020) reported that MERRA-2 underestimates PM2.5 

over India, especially during post-monsoon season. More discussions on the extreme pollution episode are provided in the 

following section.  345 

Starting on Nov. 13th, the modeled concentrations went down as winds shifted to easterlies and wind speed increased. Beig et al. 

(2019) found PM2.5 concentrations after the pollution episode were lower compared with similar periods in previous years. 

Thereafter, the concentrations went back to values for Delhi before the episode. The model did a fairly good job in capturing the 

trend during non-episode periods (Table S4). Increasing anthropogenic emissions (ID: BASE_ANTHRO2X) on simulation results 

overestimated PM2.5 concentrations in the US embassy location during non-episode days (Fig. S7)., indicating that the 350 

anthropogenic emissions provided by of the HTAP emission inventory are reasonable.  

Figure 5b and Figure 5c show the averaged PM2.5 maps for all the hours over the studied region in the base simulation and MERRA-

2 dataset. The model was able to capture higher concentrations over north-western India and the border with Pakistan where 

agricultural fire and dust emissions play the most important role for extreme pollution episodes over IGP. However, the model 

showed higher values than MERRA-2 over southern Punjab, the region with high biomass burning emissions (Kulkarni et al., 355 

2020). Since MERRA-2 assimilates satellite AOD data as its major aerosol forcing, it will not be able to capture high concentrations 

if satellite retrieval algorithms miss corresponding high AODs. 

Figure 5b and Figure 5c also show that the model was biased high over central India and biased low over eastern IGP. . These 

results indicate improving emissions in eastern IGP can significantly improve the simulation results. Conibear et al. (2018a) also 

reported limited success of models to capture the spatial variability of PM2.5 over India in 2016, specifically during winter. Table 360 

3 provides statistics for 24-hours averaged PM2.5 concentrations for base scenario simulation for Delhi and its western 

statesprovinces. Statistics for Delhi show NMB of -16.6%, which passes the “criteria” benchmark of 30% , while NME of 27.6% 

shows better performance and complies with the benchmark “goal” of 35% for the whole month (Emery et al., 2017). Correlation 

coefficient of 0.48 is also higher than the benchmark criteria of 0.4. Statistics significantly improve after excluding the four 

extremely polluted days between Nov. 7th and Nov. 10th and all are within benchmark goals (Table S43). Kumar et al. (2020) 365 

assimilated MODIS AOD to WRF-Chem in order to improve the air quality forecasts over Delhi. In their study, Mean Bias for 

first-day forecast of PM2.5 concentration decreased from -98.7 µgm-3 to -13.7 µgm-3. They also showed that RMSE decreased from 
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167.4 µgm-3 to 117.3 µgm-3. Our results from the base scenario (Mean Bias: -42.38 µgm-3 and RMSE: 118.47 µgm-3) shows 

comparable results to the data assimilation technique, while still both models are biased low.  

 Statistics for Haryana provincestate (4 stations) show good performance (NMB of -7.5% and correlation coefficient of 0.4). The 370 

model was biased high for Rajasthan (10 stations NMB: 15.5%) and Punjab (3 stations NMB: 17%). The model slightly 

overestimated PM2.5 concentrations during the episode days in Rajasthan but captured the concentrations during the rest of the 

month (Fig. S103). In Punjab, measured data did not report PM2.5 enhancement during the extreme episode, while the model 

showed very high concentrations after scaling fire emissions by a factor of 7. However, VIIRS satellite images (e.g. Fig. 9d) clearly 

show massive agricultural fires in this state during November and its signals were expected in the measured data. The overall 375 

scatter plots including the averaged values for each state shows good spatial performance of the base scenario (Fig. S11).   

Although different meteorological parameters can be responsible for the biases, accuracy of anthropogenic emissions is important. 

For example, recent local anthropogenic emission inventories developed for Delhi have higher particle emissions than in the 

regional inventory used in this study, which impacts modeled PM2.5 concentrations for typical days (Kulkarni et al., 2020). We 

conducted BASE_ANTHRO2X scenario to investigate the effect of uncertainties in the anthropogenic emissions. This scenario 380 

increased PM2.5 concentrations in Delhi up to ~150 µgm-3, which led to overestimation (in contrast to underestimation in base 

scenario) at many of non-episode days (Fig. S7). Although this scenario did not help in capturing the high concentrations during 

the episode, it confirms the need for better anthropogenic emissions. On the other hand, it reduced the bias over IGP (Fig. S7). 

These results point out the need for best estimates of emissions of both anthropogenic and biomass.  Moreover, HTAP provides 

annual averaged emission inventories, which allocates the same amount of emission to each month, while colder seasons have 385 

generally more residential emitted pollutants. Furthermore, consumption and emission rates of 2010 needed to be tuned for a more 

recent year in order to get better results. .Maps also show that averaged PM2.5 concentrations over most of India were higher than 

the air quality standard.  
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Figure 3 Spatial distributions of AOD at 550 nm averaged over whole November (top panel), Nov. 5th (middle panel), and Nov. 24th (bottom 390 
panel). WRF-Chem maps represent base scenario results. Differences between model and VIIRS are also shown. 

(d) WRF-Chem 550nm AOD (Nov. 5th) (e) VIIRS 550nm AOD (Nov. 5th)

(g) WRF-Chem 550nm AOD (Nov. 24th) (h) VIIRS 550nm AOD (Nov. 24th)

(f) WRF-Chem - VIIRS (Nov. 5th)

(i) WRF-Chem - VIIRS (Nov. 24th)

(a) Averaged WRF-Chem 550nm AOD (b) Averaged VIIRS 550nm AOD (c) WRF-Chem - VIIRS (Averaged)
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Figure 4 Time series of modeled (green line), VIIRS retrievals (blue triangle), MERRA-2 (red line), and AERONET (black dots) AOD at 550 

nm during Nov. 2017 at a) Jaipur, b) Kanpur. 395 

(a)

(b)

FINN_VIIRS_7Xperiod2
MERRA-2
OBS
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MERRA-2
OBS (AERONET)
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Figure 5 Temporospatial air quality performance of base scenario simulation: a) Time series of simulated (green line), MERRA-2 (red line), and 

ground measurement (black dots) hourly PM2.5 concentration at US Embassy coordinates. b, c) Hourly averaged PM2.5 concentration maps of 

model regridded to MERRA-2 resolutioned (b) and MERRA-2 (c).  400 

Table 3 Mean (±standard deviation), Normalized Mean Bias (NMB), Normalized Mean Error (NME), and Pearson Correlation Coefficient (R) 

averaged for all CPCB stations in different provinces states during Nov. 2017. Model values are for base scenario (FINN_VIIRS_7Xpeiod2). 

Mean values are for hourly data, while NMB, NME, and R relates 24-hours averaged values. 

ProvinceState 

Hourly Obs. 

Mean (±std) 

(µgm-3) 

Hourly Model 

Mean (±std) 

(µgm-3) 

24-hours NMB (%) 24-hours NME (%) 24-hours R (%) 

Delhi 255.5 (±146.6) 213.9 (±113.9) -16.6 27.6 0.48 

Haryana 177.7 (±77.6) 165.8 (±89.9) -7.5 29.5 0.40 

Punjab 139.9 (±54.7) 166.7 (±198.3) 17 55.5 0.24 

Rajasthan 123.4 (±62.7) 147.7 (±62.7) 15.5 34.4 0.22 

3.2. Extreme pollution episode analysis 

Figure 6a shows the box and whisker plots for daily PM2.5 concentration for the base scenario and all of the CPCB stations in Delhi. 405 

24-hour averaged measured values over all CPCB stations in Delhi for PM2.5 ranged between 133 µgm-3 and 664 µgm-3, which is 

about 2 and 11 times, respectively, higher than India 24-hours standard value of 60 µgm-3. The model showed overall good 

performance for daily PM2.5 concentrations for typical days (Table S4: NMB of -2.44 and R of 0.7) and followed the observed 

trend in the extreme pollution episode (Fig. 6), which suggests the overall meteorology and transport patterns were captured by the 

simulations. However, the model started the episode on Nov. 6th and significantly overestimated the concentrations. The model 410 

captured the median for Nov. 7th very well, although measured values span a wider range. The model missed the high concentrations 

on Nov. 8th, which led to underestimations on Nov. 9th and Nov. 10th, as well, regardless of capturing the decreasing trend. However, 

the model was able to simulate the second wave of the episode starting on Nov. 11th and accurately captured the median and range 

FINN_VIIRS_7Xperiod2
MERRA-2
OBS

(a)

(b) WRF-Chem PM2.5 (c) MERRA-2 PM2.5

FINN_VIIRS_7Xperiod2
MERRA-2
OBS

(a)

(b) WRF-Chem PM2.5 (c) MERRA-2 PM2.5
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of PM2.5 concentrations on Nov. 12th and Nov. 13th. It is important to point out that the underestimation of PM on the 9th and 10th 

persisted for all of the sensitivity cases performed. This suggests either the transport in the model during these days missed high 415 

source regions and/or significant emission sources for these days were not included in the inventories.  

Back trajectories can be used to provide insights into modelled concentrations during the extreme pollution episode. Back 

trajectories were calculated for releasing 10,000 air parcels at 100 m above ground level and over eastern Delhi using the FLEXible 

PARTicle dispersion model (FLEXPART) with inputs from WRF‐Chem model output (Brioude et al., 2013). Figure 7 shows 72-

hours mean back trajectory maps for Nov. 6th, 7th, 8th, 9th, and 10th. The releasing times are 00 (red line) and 12 (blue line) UTC on 420 

each day. Also plotted are the fire (grey line) and anthropogenic (black line) emissions along the trajectory. The model started to 

build up PM2.5 concentrations on Nov. 6th and was biased high (Fig. 67a). Back trajectories for Nov. 6th_00 show PM2.5 

concentrations were majorly due to anthropogenic emissions (Fig. 7a). However, Nov. 6th_12 trajectories in Fig. 7c show a spike 

in fire emissions on the previous hours (backward hours: 5 and 30), which immediately led to high PM2.5 concentrations. Moreover, 

trajectory paths for this day reveal that emissions belonged to fires east of Delhi. Figure 9Figure 10 shows that the fires east of 425 

Delhi in the base scenario are due to incorporating VIIRS data into the fire emissions. Therefore, high biased PM2.5 concentration 

may be related to the scaling factor applied to eastern Delhi fires. On Nov. 7th, the model perfectly captured PM2.5 median (Fig. 

67a). Back trajectories for Nov. 7th_00 (Fig. 7d,e) show the beginning of a shift in wind direction and PM2.5 concentration was 

exclusively due to fire emissions on Nov. 5th (backward hour: 40). Compared to Nov. 7th_00, fire emission footprints for Nov. 

7th_12 trajectories are lowersmaller, while higher for local anthropogenic emissions. Back trajectories for Nov. 8th show the 430 

northern parts’ contribution for both releasing times, although trajectories for Nov. 8th_00 crossed through central parts of Punjab. 

Moreover, local anthropogenic emission sources affected Nov. 8th_00 trajectories. The model underestimated PM2.5 concentrations 

on Nov. 8th, which can be partly related to errors in transport as the trajectories for Nov. 8th_12 crossed eastern parts of Punjab. 

However, other physical processes or lower anthropogenic emissions can also be responsible for low bias. However, the model 

underestimated PM2.5 concentrations on Nov. 8th, which can be related to errors in transport as the trajectories for Nov. 8th_12 435 

crossed eastern parts of Punjab. Delhi’s air quality in Nov. 9th_00 was still getting affected by northern parts, while trajectories for 

Nov. 9th_12 shifted towards the east. Since, trajectories for Nov. 9th do not show any fire or anthropogenic emissions’ pulse, either 

the model missed the dynamics of that day or emission sources. Nov. 10th trajectories show eastern flow, again, and no fire emission 

contribution.  

To further understand the regional scale transport of the smoke plumes, we plotted cross section of PM2.5 over the path from Punjab 440 

through Delhi (Fig. 8, path line shown in Fig. 1). PM2.5 concentrations showed typical values on Nov. 5th_00 although they still 

exceeded the standard limits. On Nov. 5th_12, concentrations significantly increased over Punjab area because of fires and the 

winds brought them on a path towards Delhi. The Punjab’s smoke did not completely cross Delhi yet on Nov. 6th as back trajectories 

for 00 and 12 UTC hours also showed the effects of anthropogenic emissions and fires in eastern Delhi. On the other hand, a 

significant amount of smoke was above the boundary layer as shown in Nov. 6th_12 panel.The smoke was mixed in the boundary 445 

layer and reached to altitudes more than 2km as shown in Nov. 6th_12 panel. Due to shifting winds on Nov. 7th (as shown in Fig. 

72), the smoke upwind of Delhi blew over Delhi and led to extremely high concentrations. Although the model captured the median 

in Nov. 7th, it missed the maximum extent of observed values. Cross sections on Nov. 8th, 9th, and 10th show the residual Punjab’s 

smoke in the boundary layer, while we saw the model underestimated PM2.5 concentrations on these days. Measured PM2.5 

concentrations over Delhi show a decreasing trend between Nov. 8th and Nov. 10th (Fig. 6). Vertical profiles for the base scenario 450 

also show the model captured high biomass burning emission period on Nov. 6th (Fig. 123). However, it also showed high amounts 

of smoke above the PBL. Vertical cCross sections for Nov. 11th to Nov 14th can be found in the supporting information (Fig. 

S124).These results suggest that plume rise in the model released the emissions too high or the model did not mix the smoke down 
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fast enough. Vijayakumar et al. (2016) showed agricultural fires can transport via upper troposphere and subside over Delhi using 

ECMWF map. Social reasons can be also important as the first reaction of people during hazy days is to drive to work which 455 

directly (exhaust emission) and indirectly (road dusts) worsen air pollution.  
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Figure 6 Box and Whisker plots of observed (black) and modeled daily PM2.5 concentration averaged over all CPCB stations in Delhi: a) 

FINN_VIIRS_7Xperiod2, b) FINN_VIIRS_10Xperiod2, c) FINN_VIIRS_10Xperiod1. Shaded area show the time window that biomass burning 460 
emissions were increased. 
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Figure 7 Back trajectory plots of PM2.5 concentration (base scenario) on different days for 72 hours: In each row, the map shows back 

trajectory path for the mass mean location for releasing 10000 particles on eastern Delhi at 00 UTC (red line) and 12 UTC (blue line), where 

the underlying map shows FINN grid cells on that day. Time series show PM2.5 concentrations (primary y-axis) and emissions (secondary y-465 
axis) for Anthropogenic (black dots) and FINN (gray line) inventories along the path. a, b, c) November 6th. d, e, f) November 7th. g, h, i) 

November 8th. j, k, l) November 9th. m, n, o) November 10th.00 and 12 UTC denote 5:30 AM and 5:30 PM local time, respectively.  

(d) Nov. 7th_00 

(b) Nov. 6th

(a) Nov. 6th_00 (c) Nov. 6th_12 

(e) Nov. 7th

(f) Nov. 7th_12 

(h) Nov. 8th

(g) Nov. 8th_00 (i) Nov. 8th_12 

(k) Nov. 9th

(j) Nov. 9th_00 (l) Nov. 9th_12 

(n) Nov. 10th

(m) Nov. 10th_00 (o) Nov. 10th_12 
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Figure 8 Vertical cross section of PM2.5 concentration through the path shown in Fig. 1 for the days between Nov. 5th and Nov. 10th. For each 470 
day, two snapshots are shown at 00UTC (5:30AM local time) and 12UTC (5:30PM local time). The orange star shows the location of Delhi 

through the path. White line shows the PBL height across the path.  

3.3.1.1. Aerosol composition in Delhi 

Figure 9 shows the modeled PM2.5 composition, both in concentrations and by fraction, at the location of the US Embassy in Delhi. 

Secondary aerosols (secondary organic aerosols (SOAs) + secondary inorganic aerosol (SIA) consisting of Ammonium (NH4) + 475 

Nitrate (NO3) + Sulfate (SO4)) comprised 57% of the total averaged PM2.5 concentration, whereas primary aerosols (BC + Organic 

Carbon (OC) + OIN) constituted the rest. Gani et al. (2019) measured PM1 in Delhi and reported 50-70% for secondary aerosols, 
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and PM1 constituted ~85% of PM2.5 concentration. SOAs, individually, comprise 27% of the aerosol mass, while SIAs account for 

30% of the mass. Amongst inorganic species, NO3, NH4, and SO4 comprise 19%, 7%, and 4%, respectively. Gani et al. (2019) 

reported the same ranked order but with different percentages. Major contribution of NO3 in winter is also reported in other studies 480 

(Pant et al., 2015). BC fraction was 7%, which is very close to the measured fraction of 6.4% in wintertime PM1 (Gani et al., 2019). 

Pant et al. (2015) reported averaged OC and elemental carbon concentrations of 104.4 µgm-3 and 46.3 µgm-3, respectively, which 

is consistent with our OC/BC ratio of 2.72. Comparing modeled BC1 data with available data for this period (Gani et al., 2019) 

shows an overall  measured to modeled ratio of 1.22, which is consistent with the range other studies reported (Kumar et al., 

2015b;Moorthy et al., 2013).  485 

 

Figure 9 PM2.5 composition at US Embassy coordinates in base scenario: a) Concentration values, b) Fractional values. 

3.4.3.3. Sensitivity to changes in biomass burning emission inventories  

Biomass burning emissions used in the base scenario in order to capture the extreme pollution episode were tuned after exploring 

how these inventories influenced PM2.5 concentrations (Table S2). First, we looked at two different emission inventories based on 490 

different methodologies and horizontal resolutions; Specifically, FINNv1.5 and QFEDv2.5r1. Both inventories rely on MODIS 

data; FINN is based on active fire points and estimates of burned area, whereas QFED uses FRP approach (Pan et al., 2020). Figure 

9Figure 10 shows the grid cells with biomass burning emissions based on QFED (panel a), FINN (panel b), and FINN_VIIRS 

composition (panel c), used in base scenario, accompanied with active fire points seen by VIIRS (panel d) based on the Fire 

Information for Resource Management System (FIRMS) product for Nov. 5th. It shows FINN captured more fire points in the 495 

domain although missing some in eastern IGP and central India while QFED missed almost all of the fire points in Punjab on that 

specific day. As a result, the QFED simulation did not show any major signal for PM2.5 concentration on Nov. 7th, whereas the 

experiment using FINN inventory (ID: FINN_CAMCHEM) followed the measured start of the episode period, regardless of its 

low bias (Fig. S135). In general, results using QFED inventory had worse statistics (Fig. 112 and Table S32), which is mostly due 

to the inability of the inventory to capture the fire points over the domain and it can be attributed to both the technique and the 500 

(a) Concentration

(b) Fraction

Field Code Changed
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resolution as QFED data have ~10 km resolution, whereas FINN data has ~1 km resolution. Pan et al. (2020) found high uncertainty 

between different biomass burning emission inventories over Southeast Asia. They showed FINN is, in general, a better dataset 

for tropical regions as its 2-days continuous fire emission compensates for the lack of daily MODIS coverage used in QFED (Pan 

et al., 2020;Wiedinmyer et al., 2011). Dekker et al. (2019) increased the GFAS biomass burning emission inventory by 5 times 

and did not see any improvement on CO simulation and reported about 2 percent contribution from fires on Delhi’s air quality. 505 

Our results confirms that FINN provides better biomass burning emissions for India for this period and sheds light on the 

importance of choosing proper biomass burning emission inventory for a specific domain.  

 

Figure 910 Spatial fire coverage in different datasets for Nov. 5th: a) QFED fire grid cells b) FINN fire grid cells c) FINN fire grid cells filled 510 
missing points with VIIRS d) VIIRS active fire points and corresponding FRP values. 

However, the signals from the simulation using FINN biomass burning emission inventory were not high enough as it recorded a 

maximum concentration of 400 µgm-3 while the corresponding measured value was 680 µgm-3. Since observation data are sporadic 

over India and there were not many ground measurement stations available, sophisticated techniques such as inversion modeling 

were not feasible (Saide et al., 2015). As a result, manual tuning of the emission data was performed. The first attempt was to 515 

understand if FINN required to be increased for the whole month, a 15-days period around the episode, or just on Nov. 5th, which 

had many fire points in Punjab (Fig. 910). Figure 10Figure 11 shows PM2.5 time series averaged over all CPCB stations based on 

these scenarios. Increasing FINN emissions for the whole month (ID: FINN_10Xall) led to an overestimation in the first 5 days of 

November but it significantly helped capturing high peaks on Nov. 7th and 8th. Moreover, it increased the concentrations on Nov 

12th and 13th regardless of missing the peaks. However, it did not show any improvements between Nov. 9th and 12th, which 520 

suggests that the included fires did not influence Delhi’s air quality during this period. On the other hand, increasing FINN 

emissions data by 10 times for all days led to very high PM2.5 concentrations on later days (Nov 20th-27th). It showed that FINN 

data were not systematically biased low. In other words, these results suggest that FINN algorithm underestimated the magnitude 

of only some fires emission amounts. Some studies have shown that thick fires can be identified as clouds in retrieval algorithms 

or some other meteorological phenomenon may cause biases (Dekker et al., 2019;Huijnen et al., 2016). As another experiment, we 525 

increased FINN emission only on Nov 5th since that day had original high values in the inventory (ID: FINN_10Xday). This 

experiment resulted in better PM2.5 concentrations on the last third of November. However, it captured only high concentrations of 

(a) QFED (b) FINN (d) VIIRS(c) FINN+VIIRS

(a) QFED (b) FINN (d) VIIRS(c) FINN+VIIRS
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Nov. 7th and missed the peak of Nov. 8th as well as underestimated on some other days including Nov 13th. Finally, we multiplied 

the fire emissions by 10 for a 15 days period between Nov. 3rd and 17th (ID: FINN_10Xperiod1). In this way, we were able to 

capture the peaks on Nov. 7th and 8th, see major contributions between Nov. 12th and 14th, and realistic values between Nov 19th 530 

and 27th. It should be mentioned this 15-days period was chosen arbitrary and better scaling factors could be achieved by 

implementing tracers in the model, which is out ofbeyond the scope of this paper. 

Although this experiment significantly improved the statistical performance for the CPCB stations, the model was spatially 

underestimating concentrations over eastern IGP (Fig. S6). Moreover, we observed lower fire grid cells in FINN inventory 

comparing to VIIRS active fire points (Fig. 10). As a result, we tested how incorporating VIIRS data into FINN in order to fill 535 

missing fire grid cells would improve the results. Figure 10Figure 11 shows how incorporating VIIRS data improved the 

performance on Nov. 12th and Nov. 13th (ID: FINN_VIIRS_10Xperiod1). However, the model started the episode too early on 

Nov. 6th and overestimated PM2.5 concentrations after the episode. This suggests that the 15-days period for increasing FINN 

emissions could be too long; we then changed the scaling period from 15 to 8 days between Nov. 5th and Nov. 13th (ID: 

FINN_VIIRS_10Xperiod2). This modification led to higher PM2.5 concentrations on Nov. 7th as Fig. 6 shows. Moreover, the model 540 

was still biased high on after-episode days, which led to choosing the increasing factor of 7 (FINN_VIIRS_7Xperiod2) as our best 

experiment. 

Figure 11Figure 12a shows the Taylor diagram for hourly PM2.5 concentrations based on the studied experiments, representing 

their statistical performance, for all the days in November. It shows that switching between different experiments mostly improved 

the standard deviation values. The QFED_CAMCHEM experiment had the lowest standard deviation, but missed high PM2.5 545 

concentration values. On the other hand, three experiments using VIIRS-integrated fire emissions had closer standard deviations 

to measured value. Although the base scenario had good statistical metrics, standard deviation and correlation coefficient were 

lower, compared to other two VIIRS-included and BASE_ANTHRO2X scenarios for all the days. The reason is that overestimation 

of other scenarios for Nov. 7th and after-episode days compensate for underestimation between Nov. 8th and Nov. 10th. Figure 

11Figure 12b shows the same variables for all the days except Nov. 8th, 9th, and 10th. It shows that the base scenario had the best 550 

statistical performance for non-extremely polluted days.  

 

Figure 1011 Time series of model PM2.5 sensitivity to 10 times increase in FINN emission inventory for different periods: 

FINN_VIIRS_10Xperiod1: Nov. 3rd to 17th, FINN_10Xperiod1: Nov. 3rd to 17th, FINN_10xday: Nov 5th, FINN_10Xall: all days. Black dots 

presents ground measurements data averaged over all CPCB stations in Delhi. 555 

FINN_VIIRS_10Xperiod1
FINN_10Xperiod1
FINN_10Xday
FINN_10Xall
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Figure 1112 Taylor Diagram of hourly PM2.5 concentration based on different simulation scenarios for: a) all the days, b) all the days except 

Nov. 8th, 9th, 10th. Plus signs denote experiments after incorporating VIIRS data to FINN, Circles denote different experiments on biomass burning 

emission inventory, triangles denote dust emission experiments, and squares denote chemical boundary condition experiments. Green colors 560 
show best performance in each experiment. Black star denotes standard deviation of all CPCB stations averaged in Delhi. The statistics plotted 

are standard deviation on the radial axis and Pearson correlation coefficient (r) on the angular axis, and the gray lines indicate normalized Centered 

RMSE (CRMSE). 

Figure 12Figure 13 shows vertical distributionsprofiles of PM2.5 as a function of time at the US Embassy coordinates for variations 

using the FINN inventory and MERRA-2. Increasing the emissions in FINN inventory significantly increased PM2.5 concentrations 565 

both vertically and temporally. Although the concentrations got closer to MERRA-2 data, the timing for the peak ofthere was a 

shift inthe boundary layer on Nov. 6th was different. By incorporating VIIRS data to FINN and adding more fire emissions, the 

boundary layer values peaked on Nov. 6th earlier and looks much more like MERRA-2 data. Figure 12Figure 13 also shows more 

particles at altitudes above the boundary layer, which do not influence surface concentrations. Furthermore, it suggests the scaling 

factor for the base scenario could be smaller than 7 if the aerosols had been in the boundary layer. It can be partly related to the 570 

plume rise module in the WRF-Chem model that may have emitted species at too high altitudes. Increasing emissions also 

indirectly influenced modeled air quality over Delhi. As our model configuration included feedbacks, absorbing aerosols in the 

(a) (b)
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atmosphere (products of fire emissions) decreased the surface solar radiation budget, changed the dynamics of the atmosphere, 

reduced the Planetary Boundary Layer (PBL) height, and increased aerosol concentrations. In other words, higher PBLH leads to 

lower concentrations. For example, Murthy et al. (2020) found that PM2.5 concentration decreased up to 14 µgm-3  for 100m increase 575 

in PBLH. Figure 12Figure 13 also shows the interactions between PBLH and PM2.5 concentration at the location of the US 

embassy.these phenomena. By increasing FINN inventory by 7 times, the PBL height decreased by ~50% on Nov. 6th, (compare 

FINN_VIIRS_7Xperiod2 and FINN_MERRA-2 panels in Fig. 132). However, a measured PBLH dataset can provide better 

insights. As a result, another study is required to compare modeled PBL heights to observed data (e.g. Nakoudi et al. (2019)) and 

study the effects of different PBL parameterization modules on aerosol concentrations. Vertical time series plotsprofiles for other 580 

experiments using FINN can be found in the supporting informationdocument (Fig. S715).  

We also did two sets of experiments to understand if long-range transported dust from middle east or in-boundary dust emissions 

impacted air quality in Delhi. Our sensitivity tests suggest that dusts had very low contribution to air quality in Delhi during Nov. 

2017. Detailed discussion on their impacts have been presented in the supporting document. 
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Figure 1213 Vertical cross section of PM2.5 sensitivity to major changes in FINN emission inventory at US Embassy coordinates: a) MERRA-2 

data as true values, b) FINN_VIIRS_7Xperiod2, c) FINN_10Xperiod, d) FINN_MERRA2. Black lines present planetary boundary layer height. 

Vertical black line crossing all panels shows boundary layer peak on Nov. 6th for MERRA-2 and other experiments.  

3.5. Sensitivity to changes in boundary conditions data 590 

Figure 14 shows the hourly averaged PM2.5 and PM10 concentration maps during the studied period using four different boundary 

conditions as described in methods section. The major difference between these maps is on the western parts of the domain. The 

conceptual model in Beig et al. (2019) suggested that long range transported dust coming from Pakistan and Middle East influenced 

air quality in northern India during this period. FINN_MERRA2 simulation had the highest values for both PM2.5 and PM10, which 

shows that some parts of the domain were affected by pollution from the boundaries. FINN_CAMS simulation shows lower 595 

concentrations, which can be attributed to CAMS assimilation technique. On the other hand, FINN_MOZART and 

FINN_CAMCHEM scenarios are very similar to each other. Overall, data assimilation as applied in MERRA-2 can improve the 

a) MERAA-2

c) FINN_10Xperiod1

d) FINN_MERRA2

b) FINN_VIIRS_7Xperiod2
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regional modeling features for the domains that get affected by long-range transported dust. However, pollutants coming from 

boundaries had small influences on Delhi region’s air quality, during the studied period (Fig. 12 and Table S2)  

 600 

Figure 14 Responses of PM2.5 and PM10 to changes in boundary conditions coming from: a, e) MERRA-2, b, f) CAMS, c, g) MOZART, and d, 

h) CAM-Chem. 

3.6. Sensitivity to changes in dust emissions  

Sensitivity tests using different boundary conditions showed that long range transported dust coming from Middle East did not 

majorly influence air quality in Delhi. However, our domain covers some desert regions in eastern Pakistan and their dust emission 605 

impacts were evaluated. Figure 15 shows the response of hourly averaged PM2.5 and PM10 concentrations to changes in the dust 

emissions. Turning on the dust option affected PM2.5 and PM10 concentrations in eastern parts of Pakistan and some parts of the 

borders between Pakistan and India, but did not affect Delhi (Fig. S8). In another experiment, we increased the total dust emissions 

by 5 times, which increased PM10 concentrations significantly over western parts of the domain, close to source. This small-range 

transport is due to the mass of large dust particles and accompanying higher dry deposition rates. It also increased PM2.5 610 

concentrations and influenced some western parts of India with smaller size aerosols. However, they did not reach Delhi region, 

as the statistics over Delhi show no improvements (Fig. 12 and Table S2). In another experiment, changing the allocation of total 

dust in different bins as explained in methods section changed the aerosol regime in the west parts of the domain. Specifically, 

larger areas were effected by small size aerosols. Changing allocation of dusts, directly affected PM2.5 concentrations in Delhi 

during the extreme pollution episode. Specifically, it increased PM2.5 concentrations by ~20 µgm-3 on Nov. 8th. However, it was 615 

less than 5% contribution (Fig. 12 and Table S2). Moreover, increasing dust emissions had both positive and negative effects on 

concentrations (e.g. positive effect on Nov. 20th and negative effect on Nov. 28th), which are due to indirect effects of aerosols (Fig. 

S8). We did not perform more experiments as these tests suggest that in-domain dust sources were not a major source of extreme 

pollution episode in Delhi during November 2017. It should be mentioned that dust experiments, had lowest correlation 

coefficients, since the fire emissions were significantly high for all the days in all of them (Fig. 12). 620 

(a) PM2.5: FINN_MERRA2 (b) PM2.5: FINN_CAMS (c) PM2.5: FINN_MOZART (d) PM2.5: FINN_CAMCHEM

(e) PM10: FINN_MERRA2 (f) PM10: FINN_CAMS (g) PM10: FINN_MOZART (h) PM10: FINN_CAMCHEM
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Figure 15 Responses of PM2.5 and PM10 to changes in dust emissions: a, e) dust is turned off, b, f) dust is turned on, c, g) dust 

emissions are increased by 5 times, and d, h) dust emissions with different allocation in MOSAIC bins. 

3.4. Aerosol composition in Delhi 

Using MOSAIC aerosol module enabled the model to track speciation of aerosols during Nov. 2017. In this section Figure 9 shows 625 

the mWe analyzed the modeled PM2.5 composition, both in concentrations and by mass fraction, at the location of the US Embassy 

in Delhiwas analysed (Fig. S16). Secondary aerosols (secondary organic aerosols (SOAs) + secondary inorganic aerosol (SIA) 

consisting of Ammonium (NH4) + Nitrate (NO3) + Sulfate (SO4)) comprised 57% of the total averaged PM2.5 concentration, 

whereas primary aerosols (BC + Organic Carbon (OC) + OIN) constituted the rest. Gani et al. (2019) measured PM1 in Delhi and 

reported 50-70% for secondary aerosols, and PM1 constituted ~85% of PM2.5 concentration. SOAs, individually, comprise 27% of 630 

the aerosol mass, while SIAs account for 30% of the mass. Amongst inorganic species, NO3, NH4, and SO4 comprise 19%, 7%, 

and 4%, respectively. Gani et al. (2019) reported the same ranked order but with different percentages. Major contribution of NO3 

in winter is also reported in other studies (Pant et al., 2015). BC fraction was 7%, which is very close to the measured fraction of 

6.4% in wintertime PM1 (Gani et al., 2019). Pant et al. (2015) reported averaged OC and elemental carbon concentrations of 104.4 

µgm-3 and 46.3 µgm-3, respectively, which is consistent with our OC/BC ratio of 2.72. Comparing modeled BC1 data with available 635 

data for this period (Gani et al., 2019) shows an overall  measured to modeled ratio of 1.22, which is consistent with the range 

other studies reported (Kumar et al., 2015b;Moorthy et al., 2013).  

(b) PM2.5: FINN_10Xall (c) PM2.5: DUST_5X (d) PM2.5: DUST_allocation
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Figure 9 PM2.5 composition at US Embassy coordinates in base scenario: a) Concentration values, b) Fractional values. 

 640 

3.7.3.5. Ozone concentration analysis 

Figure 13Figure 16a shows the box and whisker plots for daytime (8AM-6PM) ozone concentration for the base scenario and all 

of the CPCB stations in Delhi. Observed values ranged between 10 ppb and 110 ppb and the range between lower and upper 

quartiles was about 20 ppb, showing high ozone variability over Delhi. Moreover, observed values were higher during the extreme 

pollution episode. It indicates particles are not the only issue during PM pollution episodes in Delhi. The modeled median was in 645 

the range of observed values, especially on non-episode days. However, model overestimated ozone concentrations on Nov. 7th. 

Moreover, the range of observed ozone concentrations were wider than modeled values. In general, model captured the trend fairly 

good with correlation coefficient of 0.57, but was biased high with NMB of 18% for daytime hours throughout whole November. 

High biased ozone concentration in Delhi is reported in other studies (Gupta and Mohan, 2015). 

 Figure 13Figure 16b shows the daytime ozone concentration maps averaged over November 2017. Central regions of India show 650 

higher ozone concentrations compared to northern IGP region. On the other hand, ozone concentration in urban regions were lower 

than rural areas. This is  due to lower ozone production in higher NOx emissions in urban areas (Ghude et al., 2016;Karambelas et 

al., 2018). Averaged ozone concentration over the domain throughout Nov. 2017 was 77 ppb using the base scenario. Ozone 

concentrations decreased by up to 27 ppb when using a scenario without any modifications to aerosol emissions (Fig. S917). 

Regardless, the averaged values are 9-17 ppb higher than annual averaged concentration of 60 ppb in year 2011 (Ghude et al., 655 

2016). Overall, high measured and modeled ozone concentrations and positive correlation with PM2.5 are concerning and demand 

for more studies. Moreover, recent observed values over Delhi indicated that, during the COVID-19 pandemic that all activities 

were suspended, PM2.5 concentration went down while the trend and range of ozone concentration remained unchanged (Jain and 

Sharma, 2020).  

(a) Concentration

(b) Fraction
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Figure 1316 Daytime (8AM-6PM) ozone modeling performance in base scenario: a) Box and Whisker plots of observed (black) and modeled 

(purple) concentrations averaged over all CPCB stations in Delhi. b) November 2017 daytime averaged concentrations. 

3.8.3.6. Study limitations 

In this study, we used a simple framework to modify Fire emissions with satellite data. Specifically, we used VIIRS data to fill 

FINN emissions, which are based on MODIS retrievals. We used VIIRS data as they had higher resolution (375m) for active fire 665 

points. Furthermore, we used linear regression to find the relation between VIIRS FRP and FINN emissions of available grid cells 

and applied that to FRP values in VIIRS to estimate the emissions. We acknowledge these are first estimates and the performance 

of this technique using MODIS data and more complicated statistical works need to be studied further. 

During this study, we did not primarily focus on improving anthropogenic emissions over the region in order to capture extreme 

pollution episode. However anthropogenic emissions are low in global emission inventories and needed to be improved (Jat et al., 670 

2020). Moreover, very low biased concentrations for some days and trajectory results suggest the existence of some other sources, 

primarily anthropogenic sources, upwind of Delhi that should be studied more. 

Furthermore, geostationary satellites can significantly improve our technique as more retrievals could improveintensify the 

accuracy. In this study, VIIRS or (MODIS) provided only one or two retrievals in one day for each point, while recentlynew 

launched geostationary satellites, such as GEMS, would provide high temporal frequency data that could improve emission 675 

inventories.  

The choice of On the other hand, choosing the scalingmultiplication factor for increasing fire emissions was arbitrary in this study. 

dDue to scarcity of observation data, we were not able to apply complicated mathematical scaling techniques based on data 

assimilation to scale the fire emissions (Saide et al., 2015). Low number of observation data also limited our statistical assessments. 

Agricultural fire emissions are small and vary day to day and atmospheric dynamics can significantly change their fate. We 680 

didn’tdid not focus on physics and dynamics of the WRF-Chem model as they were out ofbeyond the scope of this study. These 

are important limitations that readers have to keep in mind when exposed to the results. 

4. Summary and conclusion 

In this study, we used WRF-Chem model to improve the air quality modeling during extreme pollution episode in November 2017 

in the IGP. Various modifications on chemical boundary conditions and biomass burning emissions were tested. Multiple datasets, 685 

including ground measurements of PM2.5, surface measurements and satellite AOD, and reanalysis models were used to evaluate 

the model. In our best scenario, CAM-Chem and MERRA-2 global models provided gaseous and aerosol chemical boundary 

conditions, respectively. Moreover, active fire points in VIIRS remote sensing instrument were used to fill the missing fire emission 

sources in FINN biomass burning emissions. Furthermore, the modified FINN emissions were scaled by a factor of 7 for an eight-

days period to capture peak PM2.5 concentrations. 24-hours averaged NMB, NME, and R averaged for all CPCB stations in Delhi 690 

during all the days in November were -16.6%, 27.6%, and 0.48, respectively, satisfying suggested benchmark criteria (Emery et 

(b)(a)
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al., 2017). These metrics significantly improved when excluding four extremely polluted days between Nov. 7th and Nov. 10th and 

all were within benchmark goals (Emery et al., 2017). Overall, we improved modeling results by incorporating different available 

datasets with each other. 

The spatial performance of the model was also evaluated using VIIRS AOD. The model overestimated AOD over the domain with 695 

monthly averaged value of 0.58 (±0.4), confirming other studies (Kulkarni et al., 2020). Specifically, the model captured high 

AODs over Delhi and Punjab, overestimated AODs over central India, and underestimated AODs over eastern IGP. Our results 

indicate improving emissions, mostly anthropogenic emissions, in eastern IGP can significantly improve the air quality predictions. 

Our modeling results revealed secondary aerosols comprised 57% of total PM2.5 concentration during November, confirming 

measurement studies (Gani et al., 2019). Secondary organic aerosols individually, comprised 27% of the total aerosol mass, while 700 

secondary inorganics accounted for 30% of the mass.  

Back trajectories and vertical profiles were used to study the extreme pollution episode sources. Back trajectories showed a shift 

in trajectories from east to north on Nov. 7th. As a result, agricultural fire emissions were transported from Punjab to Delhi. The 

trajectories remained on north path for 3 days and then shifted again to east. However, the model underestimated the concentrations 

on these days. Vertical profiles showed a lot of smoke above boundary layers. These results indicated either the plume rise in the 705 

model released the emissions too high, or the model did not mix the smoke down fast enough. Social reasons can also add to high 

PM2.5 concentrations during extreme pollution episodes, as people prefer to use their personal vehicles more often.  

We also evaluated how QFED and FINN biomass burning emission inventories affected PM2.5 concentration results over Delhi. 

QFED had worse statistics, which is mostly due to the inability of the inventory to capture the fire points over the domain. It can 

be attributed to both the technique and the resolution as QFED data have ~10 km resolution, whereas FINN data has ~1 km 710 

resolution, as other studies have shown FINN provides better data for India (Pan et al., 2020). We also found FINN underestimated 

fire emissions for some extremely high emission days, and needed to be scaled. It can be mostly because satellite retrievals reported 

thick smokes as clouds and missed them, as shown in other studies (Dekker et al., 2019). 

The base scenario was chosen after evaluating the results for various chemical boundary conditions, including CAM-Chem, 

MERRA-2, MOZART, and CAMS global models. We found long-range transported dust from middle-east was not affecting 715 

Delhi’s air quality during the extreme pollution episode. Moreover, we found MERRA-2 provided better aerosol products over 

India, although studies have shown they underestimate over India (Navinya et al., 2020). We also found in-domain dust emission 

sources in the border with Pakistan did not affect Delhi’s air quality.  

While the focus of current study was on PM, we found high ozone concentration in northern India. Averaged daytime ozone 

concentration over the domain was 77 ppb for November 2017, using the base scenario. Although the model overestimated ozone 720 

concentrations in Delhi by NMB of 18%, it indicates ozone is a problem that needs to be considered. 

In general, air quality in IGP region is influenced by both local and regional sources. Although availability of new satellites such 

as GEMS, which covers some parts of India, can improve air quality predictions using data assimilation techniques, local emission 

inventories can vary day-by-day and significantly affect the modeling results. More works are required to quantify these impacts. 

Moreover, ozone concentrations showed a positive correlation with PM2.5 over IGP. It suggests that control strategies should 725 

consider the regional co-benefits of PM2.5/ozone perturbations simultaneously, which is the focus of our future work.  

Data Availability The WRF-Chem output results for aerosol species are available from Iowa Research Online at 

https://doi.org/10.25820/data.006126 (Roozitalab et al., 2020). 
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