We thank the reviewers for their time and insightful comments, which have substantially improved
the manuscript. We have revised the manuscript and addressed the comments raised by the
reviewers. The reviewers raised important comments on the rationales for our hypothesis, and the
effects of our findings on future simulations. The main purpose of the study is to investigate the
sensitivity of model predictions to the main inputs into the model. We apply different scenarios to
evaluate the importance of major sources during the November 2017 extreme pollution episode over
northern India. We feel this evaluation of inputs is needed to understand the extent that the forward
model can be configured to capture the events. A contemporary way to try to capture such events in
prediction mode is to employ data assimilation. The data assimilation results compensate for
deficiencies in the inputs as well as structural problems within the models. But the effectiveness of
data assimilation improves as the capabilities of the forward model improves. Therefore, our results
are also important for those using data assimilation to improve predictability. Below, please find our
responses to the reviewer’s comments. The reviewer’s comments are shown in black, our responses
are shown in red, and the modified section of the manuscript is shown in blue.

We appreciate your time and comments and look forward to your decision.

Best Regards,

Behrooz Roozitalab, on behalf of all co-authors



RC1:

In this study, the authors have used the WRF-Chem to simulate the intensive pollution episode in the
Indo-Gangetic Plain (IGP) in November 2017. They carried out 14 sensitivity simulations for different
scenarios based on biomass burning emissions, chemical boundary conditions, and dust emissions.
The model (base scenario) was evaluated for meteorological parameters (10 m wind speed and
direction, 2 m temperature, and surface water vapor) with MERRA-2. The simulated AOD and PM;5
were compared with observations from AERONET and CPCB/US Embassy monitors, respectively. The
authors have also looked into the daytime variation in ozone. The study is interesting because the
authors try to simulate the PM. s during November 6-13 using the emissions and aerosol-radiation
feedbacks but no assimilation. This study is similar to a recent study published in JGR by Kumar et al.,
2020 (https://doi.org/ 10.1029/2020JD033019). Overall, the manuscript needs a major revision. There
are too many figures, which makes it hard to get the message across the reader. The labels in the
figures are difficult to read. Here are my comments:

Authors Response:

We appreciate the reviewer for thoughtful comments. Please find our responses below. We also
moved some of the figures to the supplementary documents and improved the labels quality.

Main comments:

RC1-1: | do not understand the hypothesis behind 14 simulations and still not being able to simulate
the aerosols. The authors consider FINN_VIIRS_7Xperiod2 (base scenario) as the best scenario but the
bias is still high (for AOD and PM2.5) compared to the observations.

Authors Response:

We appreciate the reviewers concerns and we try to clarify them in the followings. (We split the
comments and address each part individually)

The main purpose of the study is to investigate the sensitivity of model predictions to the main inputs
into the model. Here we take the approach of systematically exploring the impacts of different
boundary conditions, dust, fire and anthropogenic emissions on the predictions of the pollution
episode in November 2017. Based on literature (e.g. (Beig et al., 2019)), three major sources can play
arole in this episode: - long-range transported dust incoming from boundaries, - long-range
transported dust emitted inside boundary, and — agricultural fires on north-west India. We apply
different scenarios to evaluate the importance of mentioned sources for the specific Nov. 2017
episode. We feel this evaluation of inputs is needed to understand the extent that the forward model
can be configured to capture the events. A contemporary way to try to capture such events in
prediction mode is to employ data assimilation. The data assimilation results compensate for
deficiencies in the inputs as well as structural problems within the models. But the effectiveness of
data assimilation improves as the capabilities of the forward model improves. Therefore, our results
are also important for those using data assimilation to improve predictability. We clarified these
points in the revised paper.

Text:



The main purpose of this study is to investigate the sensitivity of model predictions to the main inputs
into the model. Prediction of extreme pollution events is important as they have major impacts on
people and also make a strong impression regarding the capabilities of models. However, extreme
events are hard to predict because they are often heavily impacted by episodic emission sources. Here
we take the approach of systematically exploring the impacts of different boundary conditions, dust, fire
and anthropogenic emissions on the predictions of the pollution episode in November 2017. A
contemporary way to try to capture such events in prediction models is to employ data assimilation
(Kumar et al., 2020). The data assimilation results compensate for deficiencies in the inputs as well as
structural problems within the models. But the effectiveness of data assimilation improves as the
capabilities of the forward model improves. Therefore, our results are also important for those using
data assimilation to improve predictability.

There are different variations of inputs that can be used for each of these sources. In particular:

1. We investigate four global data (MOZART, CAMChem, CAMS, and MERRA-2) to find how long-
range transported dust incoming from boundaries affected air quality in India.

2. We modified the speciation of dust in dust emission module in the model to understand how
in-boundary dusts played role in this episode.

3. We looked at two different biomass burning (B.B.) inventory, representative of two different
methods of biomass burning emission inventories i.e. FRP and burned area, to find better B.B.
emission inventory for high resolution modeling of agricultural fires.

4. We also did some experiments to reveal whether B.B. emission inventories are either
systematically or occasionally biased low.

5. We also add one more experiment in the revised version to understand the impacts of
anthropogenic emissions as suggested by reviewer 2.

As a result, the large number of different scenarios were inevitable. Regarding the comment on high
uncertainty in the base scenario after many experiments, we acknowledge the reviewer’s concern.
However, these experiments document the extent to which modifying these inputs can improve the
prediction for this event.

For example, we found that statistics improved when we switched from a default scenario (ID:
FINN_MERRAZ2) to the base scenario (ID: FINN_VIIRS_7Xperiod2) as shown below, Fig. S2, and
discussion of Fig. 12a. For example, NMB were decreased by 62%. Moreover, the results for the base
scenario show a fair performance compared to suggested benchmark criteria by (Emery et al., 2017).
On the other hand, Fig. 12b and table S3 depict the statistics after excluding pollution episode days
and show even better performance and satisfies “the goal criteria” based on Emery et al. (2017).

Table 1 Statistics before (FINN_MERRAZ2) and after (FINN_VIIRS_7Xperiod2) modifying biomass burning emission inventory

Scenario RMSE (ugm) NMB (%) MB (%)
FINN_MERRA2 167.88 -44.32 -113.14
FINN_VIIRS_7Xperiod2 | 118.47 -16.6 -42.38




Furthermore, the aspect we looked to improve the modeling results is very different from
optimization aspects. As a result, we did not expect to see as good as data assimilation results that
strongly constrain the model. We evaluated our results in contrast with a new recent study by Kumar
et al. (2020). They used data assimilation to look at a different time-period (while covering the same
pollution episode). After assimilating MODIS AOD, their model performance for PM, s improved
significantly for the first day forecast: Mean bias (from -98.7 to -13.7 vs -42.38 in our study) and RMSE
(from 167.4 to 117.3 vs 118.47 in our study); that study has better Mean Bias but RMSE values are
very close to our values. We have added this evaluation in the revised paper.

Text:

Kumar et al. (2020) assimilated MODIS AOD to WRF-Chem in order to improve the air quality forecasts
over Delhi. In their study, Mean Bias for first-day forecast of PM, s concentration decreased from -98.7
ugm=to -13.7 ugm=. They also showed that RMSE decreased from 167.4 pgm=3to 117.3 ugm=. Our
results from the base scenario (Mean Bias: -42.38 pgm=>and RMSE: 118.47 ugm=3) shows comparable
results to the data assimilation technique, while still both models are biased low.

RC1-2: From Fig. 3, the simulated AOD is underestimated over the IGP and overestimated over the
rest of India. Comparison with AERONET (Fig. 4) shows that MERRA-2 does better over Jaipur because
from Fig. 3b it is evident that AOD over Jaipur is in the range 0.5-0.8. Both WRF-Chem and MERRA-2
should have the same resolution while comparing (Fig. S2) and color bar scale comparable to Fig. 3. In
conclusion, | think AOD is better simulated by MERRA-2 at both Jaipur and Kanpur. Please include the
statistics for AERONET vs WRFChem and MERRA-2 AOD.

Authors Response:

Thanks for the comment. We completely agree that model is biased low over the IGP and biased high
elsewhere and we have exclusively mentioned this point in the revised version. This behavior has
been also shown in another new study by Jena et al. (2020): Fig. 4 in Jena et al. (2020), where they
looked at December 2017 and January 2018.

Regarding the comparison of AOD over Jaipur, we agree that Fig. 3b shows averaged AOD over Jaipur
for November was in the range 0.5-0.8, as the reviewer mentioned, and MERRA-2 results are closer to
AERONET for non-episode days (AERONET data is missing for episode days). That is reasonable as
MERRA-2 modeling system assimilates satellite AOD. VIIRS data also supports high AOD bias of model
in Jaipur. However, it is also important that AERONET is missing data for the pollution episode
between Nov. 6™ and Nov. 13t as shown in Fig.4a. It suggests, as one possibility, that PM
concentrations were too high during this period that the instrument was not able to retrieve data at
that specific location. In the revised paper, we also include results where we scaled the particles
anthropogenic emissions by a factor of two based on some new emission estimates (ID:
Base_Anth2X). Using these anthropogenic emissions, averaged AOD bias for the IGP was reduced. This
shows the need for improved estimates of biomass burning as well as anthropogenic emissions.
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Figure 1 Bias of AOD at 550nm averaged over November 2017 base on a) base scenario b) base scenario with 2 times more
anthropogenic particle emissions (ID: Base_Anth2X)

In the revised version, we also added VIIRS retrievals, which supports better performance of MERRA-
2. Normalized Mean Bias between the model and AERONET was mentioned in the manuscript (Jaipur:
+29.9% and Kanpur: -27.4%) but we added the same metric values between MERRA-2 and AERONET
(Jaipur: -20.1% and Kanpur: -1.3%), which supports better performance of MERRA-2 in estimating
AOD.

We thank the reviewer for the comments on Fig. S2. We modified the map in the revised document.
Text:

Figure 4 shows time series of modeled, MERRA-2 product, VIIRS retrievals, and observed AOD at the
AERONET stations, located on Fig.1. AOD values at Kanpur, a station in the eastern IGP, were more than
1.0 before the pollution episode and reached up to 2.0 during the episode days, and decreased to values
between 0.5 and 1 for the rest of days. The model captured the general trend although missed high
AOD’s between Nov. 9" and 13%™, while MERRA-2 successfully captured the AOD trend through the
whole month, including days with enhanced AOD values. This shows that AOD assimilation in MERRA-2
significantly improves AOD predictions. At Jaipur, located in southern IGP, the model overestimated
AOD for the first five days of November. During the pollution episode days, the model is biased high
compared to MERRA-2 and VIIRS retrievals. AERONET data showed low AOD values before the pollution
episode but did not report values during the pollution episode. It suggests, as one possibility, that PM
concentrations were too high during this period that the instrument was not able to retrieve data. After
the pollution period, AOD values were lower than 0.5, showing relatively low PM concentrations. In
general, MERRA-2 showed better performance in terms of NMB (Kanpur: -1.3% and Jaipur:-20.1%)
compared with our model (Kanpur:-27.4% and Jaipur: +29.9%). Comparing averaged AOD with VIIRS
retrievals for BASE_ ANTHRO2X scenario showed lower bias over the IGP (Fig. in the supplementary
document). These results show the need for improved estimates of biomass burning as well as
anthropogenic emissions.
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Figure 2 Figure 4 Time series of modeled (green line), VIIRS retrievals (blue triangle), MERRA-2 (red line), and AERONET (black
dots) AOD at 550 nm during Nov. 2017 at a) Jaipur, b) Kanpur.

RC1-3: Lines 254-255: There are no major fires during November over western India/Rajasthan (as
seen in Fig. 10). Also, there is no major dust event but there is a possibility of anthropogenic dust
some of it being unique to the Indian region.

Authors Response:

Thanks for the comment that reveals the sentence was not clear. By western India for major fires, we
meant western IGP and specifically Punjab, as it is clear on one-day fire map for Nov. 5* (Fig. 10).

Regarding dust, we have major dust emissions in eastern Pakistan near India, where the PMyo
concentrations are more than 300 pgm=, and it can be seen on Fig. 14. However, neither these dust
emissions nor long-range transported dust affect Delhi’s air quality as explained in sections 3.5 and
3.6. Furthermore, it should be noted that the anthropogenic emissions used in the study include
anthropogenic dust.

We have modified line254-255 sentence to clarify these points in the revised version.
Text:

Moreover, AODs were high over western IGP, close to major fires of Punjab, with a gradual gradient
towards eastern and central India. Dust emission sources in the border of Pakistan also led to high AODs
although they did not affect Delhi as discussed in the supplementary document.

RC1-4: Lines 270-271: | do not agree with the authors’ explanation. As seen in Fig. 3, WRF-Chem is
simulating higher AOD values over western India/Rajasthan. The figures do not completely agree with
the statements made by the authors.

Authors Response:

We thank the reviewer and rewrote the paragraph on AERONET data as shown above.

RC1-5: Why are the authors comparing the diurnal variation (Fig. 5a)? Do the emissions have a diurnal
variation in the model?

Authors Response:



Thanks for the comment. In this study, all biomass burning emissions have diurnal variation in
contrast with monthly anthropogenic emissions. As a result, PM. s concentrations are subject to both
daily atmospheric processes and emissions.

RC1-6: Why wasn’t the PM, s data from CPCB stations used in Fig. 5a?
Authors Response:

Regarding the question about comparing model results with CPCB stations, we compared our results
against CPCB stations in Delhi in Fig. 6. In general during the whole paper, we show the results only at
one station (i.e. US Embassy) when we look at time-series and we show daily box and whisker plots
when we look at all CPCB stations. Our rationale is that: First, averaging data for time-series may
remove some information by smoothing data. Second, we intended to show results from MERRA-2 in
our time-series plots. Because of lower resolution of MERRA-2 data, almost all measurement stations
in Delhi are located in only one grid cell of MERRA-2, which leads to misinformation. As a result, we
decided to show time-series for only US Embassy location and box and whisker plots for CPCB
stations. Nonetheless, we show timeseries for US-embassy and all CPCB stations in Delhi below, which
shows CPCB averaged values have a similar trend to US-embassy data but with lower peaks.
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Figure 3 PM stimeseries in Delhi based on CPCB and US embassy data

RC1-7: Fig. 6 includes data from all the CPCB stations, how was the quality check performed on the
CPCB data? Please add the details on the quality check of CPCB data in the methods section.

Authors Response:

Thanks for the comment. We didn’t apply any filter to this data as we relied on quality control done
by CPCB (https://cpcb.nic.in/quality-assurance-quality-control/). However, we studied how applying
the following filters, done by Jena et al. (2020) and Kumar et al. (2020), change the dataset consisting
of total 12768 hourly data points:

Filter 1: Remove less than 10 ugm3instances: removes 31 data-points



Filter 2: Remove the hourly difference between 100 (or 150 or 200) ugm=: removes 186 (or 71 or
31) hourly-data

Filter 3: Remove values more than 200 (400) pgm3right after NAN value: 33 (19). It basically
removes data for Nov. 9" as it was applied after filter #2.

We found that the order of applying these filters is important. Below, statistics and timeseries for
different orders of filters are presented. Order of filters (1,2,3) removes data for Nov. 9*" and
significantly improves the model performance over Delhi. We added these findings in the
supplementary document and described in the revised version.

Text:

No additional quality control filters, other than the ones by CPCB (https://cpcb.nic.in/quality-assurance-

quality-control/), were applied. We evaluated the results after applying the filters proposed by other
studies (e.g. Kumar et al. (2020)); they had slight impacts on statistics (shown in the supplementary

document).
Table 2 Effect of applying filters to CPCB data on PM s statistics in Delhi
Hourly Obs. Hourly Model
Province Mean (tstd) Mean (tstd) 24-hours NMB (%) 24-hours NME (%) 24-hours R (%)
(ngm-3) (ngm-3)
CPCB-Delhi 255.5 (+146.6) 213.9 (¥113.9) -16.6 27.6 0.48
Only filter 3 248.4 (£140.3) 214.5 (£114.5) -13.9 26.4 0.49
Filter123 215.5 (+95.5) 214.8 (+115.2) -1.9 23.6 0.64
Filter132 248.6 (+140.8) 214.6 (+114.5) -13.9 26.4 0.49
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Figure 4 Effect of applying additional filters to CPCB data on averaged PM s timeseries in Delhi

RC1-8: Itis better to show the spatial plot along with the CPCB and US Embassy observations as a
scatter. It will show if the model was able to capture the spatial variation in observed PM..s. How does
MERRA-2 compare with the CPCB observations?

Authors Response:

As the model resolution is 15km in this study, we usually see more than one measured CPCB stations
are located in one model grid cell. For example, 17 stations in Delhi are located in only 6 grid cells;
repetition affects the scatter plot (Fig. 5a below). We also observe lower variability in box and whisker
plots of the model compared to observation data due to same reason. In other words, scatter plots
will not provide enough insights when considering all individual stations. To show the spatial
performance of the model, we plot the scatter plot for averaged concentration of different states.
Below, we show the scatter plot for Delhi, Haryana, and Rajasthan, which reveals the good spatial
performance of the model (Fig. 5b below). Adding data from Punjab to this plot (Fig. 5¢c below)
,significantly degrades the performance. The reason is due to extremely high bias in Punjab data.
Punjab observation data seem to be very uncertain, as it doesn’t show any signal of the pollution
episode while satellite data show huge amount of agricultural fires during those days. We added the
below scatter plots in the supplementary document. However, we think scatter plots were better
tools if we had more spatial data (e.g. a gridded dataset).



Regarding MERRA-2, due to large grid cell size of MERRA-2 (0.625x0.5deg), all CPCB stations of Delhi
are in the same grid cell. As a result, we only look at one representative station (i.e. US Embassy
station) when using MERRA-2 data.
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Figure 5 Scatter plots for a) all stations in Delhi combined b) averaged concentrations in Delhi, Haryana, and Rajasthan c)
averaged concentrations in Delhi, Haryana, Rajasthan, and Punjab. Filters are applied to CPCB data.

RC1-9: Lines 292-293: | do not completely agree with the explanation of transported dust from the
Middle East. Is PMo high over Delhi? Looking at the CALIPSO profile data shown in Beig et al., 2019, it
is polluted dust, which is different from desert dust. The authors can also look into the MISR data for
dust AOD. The authors have made a statement in section 3.6 that sensitivity tests do not show a
major influence of dust being transported from the Middle East.

Authors Response:

We completely agree with the reviewer and sorry for confusion. Our analysis do not show a major
influence of long-range transported dust as discussed in sections 3-5 and 3-6. Since lines 292-293,
which are in the section we were looking at the whole month and mentioning other studies’ views,
may be confusing for the reader on our point of view, we removed the following sentence:

“We looked at MERRA-2 surface PM.s concentration data for the study period to explore if dust was a
major source.”

RC1-10: Have the authors looked into the PBLH from the model and compared with the observations?
You might have to derive the PBLH from radiosonde observations. The authors attribute the low PM,s
on Nov 8-10 to the plume rise in the model. My understanding is half of the fire emissions will be
released within PBLH and the rest above it. The model is simulating higher PBLH as seen in Fig. 13. |
would suggest instead of comparing at the US Embassy only, include observation data from all CPCB
stations. PBLH in Delhi during November is less than 1000 m (Nakoudi et al., 2019, AMT). The days
when PBLH was low (less than 1000 m) in the model (Nov 7, 11-13), the simulated PM, s was
comparable to the observations.

Authors Response:

We thank the reviewer for this important comment. Unfortunately, there is not any measured PBLH
data available to compare the modeling results. On the other hand, estimating PBLH using sensing
data is a challenging task (Nakoudi et al., 2019)and needs specific considerations (Wang and Wang,



2014). As an example, we used specific humidity (and relative humidity) from radiosonde data for
Delhi (provided by university of Wyoming at http://weather.uwyo.edu/upperair/sounding.html ) and
attributed the height with lowest vertical gradient as the PBLH. As the figure below shows, WRF-Chem
diagnostic PBLH shows higher values (~*150m) for Nov. 6" 12UTC (17:30 IST). This result shows PBLH
overestimation. We agree with the reviewer that lower PBLH could entrain more aerosol and increase
concentrations and we have added the impacts of PBLH on aerosol loading and the importance of
accurate PBLH in the revised version. We also compared our modeling results to Nakoudi et al.
(2019)findings, which show comparable results. Our hourly averaged PBL has higher heights during
daytime compared to ones in winter by Nakoudi et al. (2019). We should note that their results do not
cover October and November (i.e. post-monsoon).

On the other hand, we added the PBLH line to the cross sections (white line) in Fig. 8. The line is not
obvious on 00 UTC times due to very low extent of the PBL. On Nov. 6"-12, we see very low PBL
upwind of Delhi and significant amount of smoke above boundary layer. Therefore, these findings
accompanied with Fig. 13b supports the argument that the plume rise in the model released the
emissions too high or the model did not mix the smoke sown fast enough (Plume rise module does
not have a constrain to release half of the emissions below PBLH and the rest above). We have used
new figure in the revised version.

However as mentioned earlier, the main purpose of this study is to investigate the sensitivity of model
predictions to the main inputs into the model. We believe another study is required to look at the
structure of the model and study the effects of different PBL parameterization modules on PBLH,
which is beyond the scope of this paper.

Regarding CPCB stations, as discussed earlier, one MERRA-2 grid cell includes all CPCB stations; as a
result, including them will not provide any insights. However, we agree with the reviewer’s comment
that the model showed comparable PM, s concentrations with lower PBLH as discussed above.

Text:

Increasing emissions also indirectly influenced modeled air quality over Delhi. As our model
configuration included feedbacks, absorbing aerosols in the atmosphere (products of fire emissions)
decreased the surface solar radiation budget, changed the dynamics of the atmosphere, reduced the
Planetary Boundary Layer (PBL) height, and increased aerosol concentrations. In other words, higher
PBLH leads to lower concentrations. For example, Murthy et al. (2020)found that PM,s concentration
decreased up to 14 pgm for 100m increase in PBLH. Figure 13shows the interactions between PBLH
and PM, s concentration at the location of US embassy. By increasing FINN inventory by 7 times, the PBL
height decreased by ~50% on Nov. 6th, (compare FINN_VIIRS_7Xperiod2 and FINN_MERRA-2 panels in
Fig. 13). As a result, another study is required to compare modeled PBL heights to observed data (e.g.
Nakoudi et al., 2019) and study the effects of different PBL parameterization modules on aerosol
concentrations.



q (g/kg) RH (%)

0 2 4 6 8 10 12 15 20 25 30 35 40 45
3500 IR IR EERERI R R R ‘...|‘...|‘...|‘..‘|‘..‘|H.‘Rd_ dePBLH di tic ===
] 1106122 B § adlosonde lagnostic
1 1106122 I WRF-Chem PBLH diagnostic ==--
3000 L
2500
1 a(g/kg) or RH(%) |
2000
1 dqg/dz or dRH/dz |
1500 -
1000 -
500
0+ . ——— T
0.0 -0.08 -0.06 -0.04 -0.02 0.00 0.2 -0.20 -0.10 0.00 0.10
dg/dz dRH/dz

Figure 6 The vertical blue lines represent the quantity (left: specific humidity, right: relative humidity) and vertical red lines show
the vertical gradients for mentioned parameters. We defined radiosonde diagnosed PBL height as the minimum gradient
(dashed green line) and WRF-Chem diagnosed PBLH is shown in dashed black line.
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Figure 7 Averaged hourly PBLH during November (top panel) and other different seasons (screenshot from Nakoudi et al. 2019)



Nov. 7th_00 Nov. 9th_00

4300.0
3440.0
2580.0
1720.0
860.0
0.0+

Height A.S.L. (m)

4300.0
3440.0
2580.0
1720.0
860.0
0.0

Height A.S.L. (m)
g

4300.0
3440.0
2580.0
1720.0
860.0
0.0+

—
@
S

2.5 concentration (ugm™

4300.0
3440.0
2580.0
1720.0

860.0

Height A.S.L. (m) Height A.S.L. (m)

sn(?a?, 75.39 28.56, 17.15 30.85, 75.39 28.56, 17.15 30.85, 75.39 28.56, 17.15
Latitude, Longitude Latitude, Longitude Latitude, Longitude

Figure 8 Figure 8 Vertical cross section of PMy s concentration through the path shown in Fig. 1 for the days between Nov. 5t
and Nov. 10t. For each day, two snapshots are shown at 00UTC (5:30AM local time) and 12UTC (5:30PM local time). The orange
star shows the location of Delhi through the path. White line shows the PBL height across the path

RC1-11: According to me, sections 3.3, 3.5 and, 3.6 do not add anything new to the paper. The
inclusion of missing fire emissions is an important part of the simulation. Also, it is worth to include a
comparison with the Kumar et al., 2020 study.

Authors Response:

We thank the reviewer for the comment. We moved sections 3-5 and 3-6 to the supplementary
document and replace them with one brief discussion at the end of section 3-4 (sensitivities on
biomass burning). These two sections show why long-range transported dust both outside and inside
of the domain did not influence air quality in Delhi during pollution episode of November 2017.
However, we decided to keep section 3-3 (PM speciation) as it conveys important information on
secondary aerosols.

We appreciate the reviewer for introducing the paper by Kumar et al., 2020. We compared our results
to their findings as discussed earlier.

Specific Comments:

RC1-12: Line 33: Ghude et al., 2016 do not mention the long-term health impacts due to an increase
in emissions based on current policies.

Authors Response:

We thank the reviewer for catching this mistake. We removed that reference.



RC1-13: Lines 42-45: David et al., 2019 show the impact of both transport and emissions on PM2.5 in
different regions in India. The authors can add results from the study.

Authors Response:
We added David et al. (2019)findings to the revised version.
Text:

Studies show that ozone and particulate matter with diameter less than 2.5 micron (PM3s), are
attributed to more than one million individual premature deaths in India (Cohen et al., 2017;HEI, 2018).
David et al. (2019) found anthropogenic emission within India led to about 80% of the total premature
death due to PM,sin India. Furthermore as industrial activities are growing, emissions are increasing
too; health impacts attributed to long-term exposure air pollution are predicted to increase based on
current policies (Conibear et al., 2018a).

Text:

David et al. (2019) attributed about 16% of total premature PM;s-related death to emissions outside
India.

RC1-14: Line 78: Add reference - Kumar et al., 2020 (JGR)
Authors Response:

We added this reference.

RC1-15: Lines 128-129: Studies by Conibear et al., 2018, Venkataraman et al., 2018, and David et al.,
2019 have shown that residential energy use is the main source of PM2.5 in India.

Authors Response:
Thanks. We emphasized the reviewer’s point in the revised version.
Text:

Biomass and biofuel use in residential sector for heating and cooking purposes have significant
contributions to air quality in India (Conibear et al., 2018a;David et al., 2019;Venkataraman et al., 2018)

RC1-16: Lines 203-204: “Irrespective ...” From where did the authors get this information?
Authors Response:

Thanks for the comment. This was from personal inspections but to be clear we modified the
sentence.



Text:

Irrespective of this condition, stations are placed on top of the buildings with restricted clean flow of air
(personal inspections).

RC1-17: Multiple places the authors mention “the model was able to capture ...” (For example, Lines
230, 266, 343) — please support your statements with statistics (MB, RMSE).

Authors Response:

Thanks. We added statistics when it was not mentioned.

RC1-18: Replace provinces with states (Lines 311, 315).
Authors Response:

Thanks. We replaced all ‘provinces’ with ‘states’

RC1-19: Line 374: Change “Fig. 1” to “Fig. 8”.
Authors Response:

Thanks. We clarified it.

RC1-20: Line 452: What are some of the other meteorological phenomena?
Authors Response:

Thanks for the comment. We mostly meant thick fires can be identified as clouds in retrieval
algorithm or they may be actual clouds and large amount of water vapors, leading to biases. Bright
surfaces (in deserts) are other uncertainty sources. We modified the sentence:

Text:

Some studies have shown that thick fires can be identified as clouds in retrieval algorithms (Dekker et
al., 2019;Huijnen et al., 2016).

RC1-21: Table 2: Arrange the table as explained in the text (section 2.2).
Authors Response:

Thanks for the comment. We rearranged it to first show the experiments on anthropogenic and
biomass burning emissions, then on boundary conditions, and lastly on dust emissions, to follow
section 2.2. We had to add the new sensitivity test to the bottom of the table as to keep the format.
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