

1 **Explicit modelling of isoprene chemical processing in polluted air**
2 **masses in suburban areas of the Yangtze River Delta region:**
3 **radical cycling and formation of ozone and formaldehyde**
4

5 **Kun Zhang^{a, b}, Ling Huang^{a, b}, Qing Li^{a, b}, Juntao Huo^c, Yusen Duan^c, Yuhang Wang^d, Elly**
6 **Yaluk^{a, b}, Yangjun Wang^{a, b}, Qingyan Fu^c, Li Li^{a, b*}**

7 ^a School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China

8 ^b Key Laboratory of Organic Compound Pollution Control Engineering, Shanghai University, Shanghai,
9 200444, China

10 ^c Shanghai Environmental Monitoring Center, Shanghai, 200235, China

11 ^d School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA

12 *Correspondence to Li Li (Lily@shu.edu.cn)*

13

14 **Abstract**

15 In recent years, ozone pollution has become among the most severe environmental
16 problems in China. Evidence from observations have showed increased frequency of high O₃
17 levels in suburban areas of the Yangtze River Delta (YRD) region. To better understand the
18 formation mechanism of local O₃ pollution and investigate the potential role of isoprene
19 chemistry in the budgets of ROx (OH+HO₂+RO₂) radicals, synchronous observations of
20 volatile organic compounds (VOCs), formaldehyde (HCHO) and meteorological parameters
21 were conducted at a suburban site of the YRD region in 2018. Five episodes with elevated O₃
22 concentrations under stagnant meteorological conditions were identified; an observation-based
23 model (OBM) with the Master Chemical Mechanism was applied to analyze the photochemical
24 processes during these high O₃ episodes. The high levels of O₃, nitrogen oxides (NOx), and
25 VOCs facilitated strong production and recycling of ROx radicals with the photolysis of

26 oxygenated VOCs (OVOCs) being the primary source. Our results suggest that, local biogenic
27 isoprene is important **in** suburban photochemical processes. Removing isoprene could
28 drastically slow down the efficiency of ROx recycling and reduce the concentrations of ROx.
29 **Besides, the** absence of isoprene chemistry could further lead to decrease in the daily average
30 concentration of O₃ and HCHO by 34% and 36%, respectively. **Therefore, this** study
31 **emphasizes** the **importance of isoprene** chemistry in suburban atmosphere, **particularly** with
32 the participation of anthropogenic NO_x. **Moreover, our results provide** insights into the radical
33 chemistry that essentially drives the formation of secondary pollutants (e.g. O₃ and HCHO) in
34 **the suburban of** YRD region.

35 **Keywords:** Isoprene; Observation-based model (OBM); Radical; Ozone; Yangtze River Delta

36 **1. Introduction**

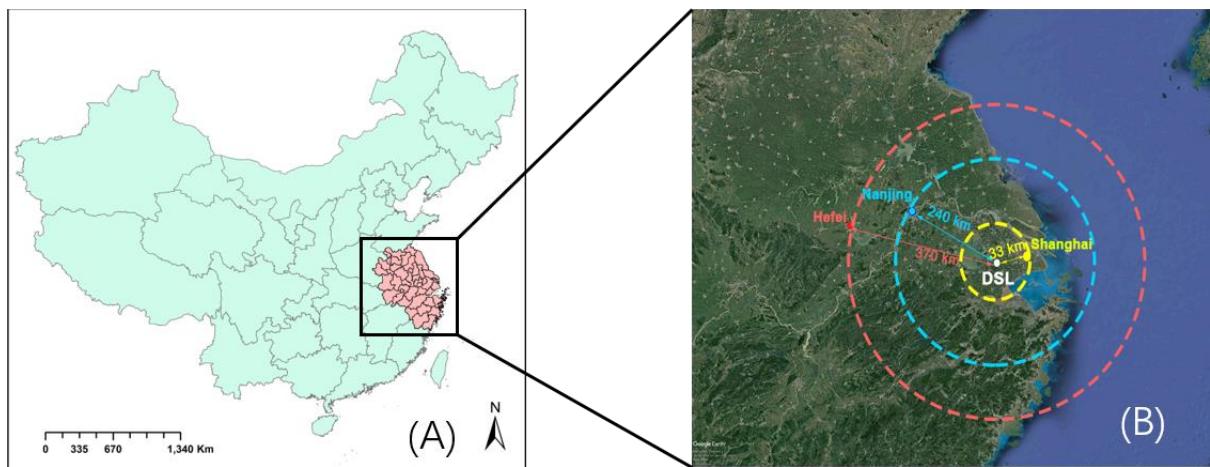
37 The hydroxyl radical (OH), hydro peroxy radical (HO₂) and organic peroxy radical (RO₂),
38 collectively known as ROx dominate the oxidative capacity of the atmosphere and hence
39 govern the removal of primary contaminants (e.g. volatile organic compounds (VOCs)) and
40 the formation of secondary pollutants (e.g. ozone (O₃), secondary organic aerosols (SOAs))
41 (Liu et al., 2012; Xue et al., 2016). ROx radicals can undergo efficient recycling (e.g. OH→
42 RO₂→RO→HO₂→OH) and produce O₃ and oxygenated VOCs (OVOCs) (Liu et al., 2012;
43 Tan et al., 2019; Xue et al., 2016). In addition, the photolysis of OVOCs can in turn produce
44 primary RO₂ and HO₂ radicals, and further accelerate the recycling of ROx (Liu et al., 2012).
45 The reaction rates of different VOCs with ROx vary significantly (Atkinson and Arey, 2003;
46 Atkinson et al., 2006). For instance, the reaction rate constants for OH with ethane and ethene
47 are 0.248×10^{-12} (cm molecule⁻¹ s⁻¹) and 8.52×10^{-12} (cm molecule⁻¹ s⁻¹), respectively. Among
48 the hundreds **and** thousands of VOC species, isoprene (C₅H₈, 2-methyl-1,3-butadiene) is
49 **among** the most active and abundant biogenic VOCs (BVOCs) species globally (Wennberg et

50 al., 2018). Over the past decades, isoprene emission sources have been extensively studied
51 (Gong et al., 2018) and recent works have focused on the degradation pathways and the impact
52 of isoprene chemistry on regional forest chemistry (Gong et al., 2018; Wolfe et al., 2016a).
53 Previous studies showed that isoprene could be quickly oxidized by atmospheric oxidants (e.g.
54 OH, O₃ or NO₃) (Wolfe et al., 2016a; Gong et al., 2018; Jenkin et al., 2015). Due to the rapid
55 reaction between OH and isoprene (100×10^{-12} cm³ molecule⁻¹ s⁻¹ at 298 K), more than 90% of
56 the total daytime isoprene is removed via this reaction (Wennberg et al., 2018). The reaction
57 between OH and isoprene is initiated by the addition of OH and can generate isoprene
58 hydroxyperoxy radicals (ISOPO₂) (Wennberg et al., 2018; D'Ambro et al., 2017; Liu et al.,
59 2013; Jenkin et al., 2015). ISOPO₂ isomers could then interconvert rapidly due to reversible
60 O₂ addition and are finally removed via reactions with HO₂ or NO (Jenkin et al., 2015; Wolfe
61 et al., 2016a). Hence, the degradation process of isoprene is tightly associated with RO_x
62 recycling. According to He et al. (2019), isoprene chemistry could strongly influence the
63 photochemical formation of O₃, with a relative incremental reactivity (RIR) of ~0.06%/.
64 Besides, HCHO is also formed via several pathways during the depletion of isoprene (Jenkin
65 et al., 2015; Wolfe et al., 2016a) and is found to be highly sensitive to isoprene emissions (Zeng
66 et al., 2019).

67 The Yangtze River Delta (YRD) region is one of the most developed city-clusters in
68 eastern China and is under serious O₃ pollution (Zhang et al., 2019; Zhang et al., 2020a; Chan
69 et al., 2017). At the suburban area of YRD, high levels of O₃ have been frequently observed
70 (Zhang et al., 2019; Zhang et al., 2020a). Several studies have investigated the relationship
71 between O₃ and its precursors (Chan et al., 2017; Lin et al., 2020; Zhang et al., 2020a; Zhang
72 et al., 2020b), but few studies have addressed the atmospheric oxidizing capacity and radical
73 chemistry involved in these complicated photochemical processes (Tan et al., 2019; Zhu et al.,
74 2020b). Previous studies have pointed out that the high levels of O₃ at suburban areas of

75 Shanghai could be attributed to the transport of O₃ or its precursors from urban areas (Lin et
76 al., 2020; Zhang et al., 2019; Li et al., 2016; Li et al., 2019). On the contrary, high O₃
77 concentrations were frequently observed in suburban areas under stable meteorological
78 conditions. Therefore, given the dense vegetation cover in suburban YRD and weak transport
79 of air masses, the importance of local isoprene chemistry regarding ozone formation remains
80 unclear.

81 In this study, we conducted a comprehensive set of in-situ observations of isoprene
82 concentration, meteorological conditions, and concentrations of atmospheric pollutants
83 (including O₃, NO_x, CO, VOCs, and HCHO) to understand the impact of isoprene chemistry
84 on atmospheric photochemical processes in suburban YRD region. We used an observation-
85 based model (OBM) to explore the role of local isoprene chemistry in radical budgets and the
86 formation of O₃ and HCHO. Results from this study provides insights into the isoprene
87 chemistry in the suburban region of a fast-developing city-cluster.


88 **2. Methodology**

89 **2.1 Field measurement**

90 The observations were conducted at a supersite (120.98°E, 31.09°N) in the suburban areas
91 of the YRD region (Figure 1). It is located in the west of Shanghai and is close to the Dianshan
92 Lake Scenic area, with relatively higher vegetation cover than the urban areas. To investigate
93 the local isoprene chemistry and its influence on O₃ and HCHO formation, continuous
94 measurements were conducted from April 7th to September 25th, 2018, when photochemical
95 activity and O₃ formation is significant.

96

97

98

99 **Figure 1.** (A) map of China with YRD region highlighted in pink; and (B) satellite map of YRD region
100 (created with Google Earth© on 23rd July 2020).

101 **Table 1. Measurements performed during the ozone season.**

Species/Parameter	Experimental Technique	Time resolution	Lower Detectable limit
O ₃	Model 49i, Thermo Fischer Scientific, USA	60 s	0.5 ppbv
NO and NO ₂	Model 42i, Thermo Fischer Scientific, USA	60 s	0.4 ppbv
CO	Model 48i, Thermo Fischer Scientific, USA	60 s	40 ppbv
HCHO	AL4021, Aero-Laser, GER	90 s	0.1 ppbv
VOCs species	GC866, Agilent., USA	1 hour	-
Temperature, relative humidity, wind speed and wind direction	Meteorological station, Vaisala, FIN	60 s	-

102

103 The measuring instruments are shown in Table 1. Wind speed (WS), wind direction (WD),
104 **ambient pressure (P)**, temperature (T), and relative humidity (RH) were simultaneously
105 observed by a meteorological station (Vaisala., FIN). According to China's air quality standard,
106 several criteria air pollutants were measured during this experiment. **For instance**, O₃ was
107 measured by an ultraviolet photometric analyzer (Model 49i, Thermo Fischer Scientific., USA),
108 **with** a detection limit of 0.5ppbv, **whereas** nitrogen oxides (NO and NO₂) were simultaneously
109 observed by a chemiluminescence instrument (Model 42i, Thermo Fischer Scientific., USA),
110 **with** a detection limit of 0.4ppbv. **Likewise**, carbon monoxide (CO) was monitored by a gas
111 filter correlation infrared absorption analyzer (Model 48i, Thermo Fischer Scientific., USA),
112 **with** a detection limit of 0.04ppm. All the online instruments used for gas analyzer were auto-

113 zero every day, and were multi-point calibrated every month. All the instruments used for the
114 online observation were housed on top of a 5-floor-high building, which was about 15 m above
115 the ground level.

116 A total of 55 VOC species, including 28 alkanes, 10 alkenes (including isoprene), 16
117 aromatics and acetylene were continuously analyzed at our sampling site by two online gas
118 chromatographs with flame ionization detector (GC-FID) systems (GC-866 airmoVOC C₂-C₆
119 #58850712 and airmoVOC C₆-C₁₂ #283607112, Agilent., USA) with a time resolution of 1
120 hour during the study period. Ambient samples are directly inhaled into this system by a pump.
121 Low carbon VOCs (C₂-C₆) are captured by a low temperature (-10 °C) pre-concentration
122 system, while high carbon VOCs are concentrated by a built-in room temperature pre-
123 concentration system. Then the preconcentration system are heated and desorb VOCs, which
124 are eventually carried into the chromatographic columns by helium. Individual VOCs separated
125 in the columns are eventually detected by FID systems. Formaldehyde (HCHO) was
126 continuously measured by a Hantzsch fluorescence technique (AL4201, Aerolaser GmbH.,
127 GER), which is based on fluorometric Hantzsch reaction in the liquid phase, requiring the
128 quantitative transfer of HCHO from gas phase to liquid phase. A Hantzsch reagent
129 (acetylacetone) was used in this instrument.

130 **2.2 Observation-based model**

131 In this study, a zero-dimensional (0-D) box model (F0AM) (Wolfe et al., 2016b) based on
132 the University of Washington Chemical Model (UWCM) was used to simulate the atmospheric
133 chemical processes. Dry deposition and atmospheric dilution were considered in this model.
134 The Master Chemical Mechanism (MCM) v3.3.1 with more than 5,800 chemical species and
135 17,000 reactions was used in this study to enable a detailed description of the complex
136 chemical reactions. In addition to gas-phase reactions, several heterogeneous processes
137 including the uptake of HO₂, N₂O₅ and HCHO on aerosol surface as well as heterogeneous

138 sources of nitrous acid (HONO) were considered in our simulation. The rate constants and
 139 uptake coefficient of these reactions were obtained from the study of Riedel et al. (2014), Xue
 140 et al. (2014) and Li et al. (2014). Since key parameters such as aerosol surface area (S_A) and
 141 particle diameter (r) were not measured, an average S_A ($640 \text{ nm}^2/\text{cm}^3$) was adopted from the
 142 field campaign in Shanghai (Wang et al., (2014)).

143 **Table 2. Heterogenous reactions and associated rate constants used in the OBM model.**

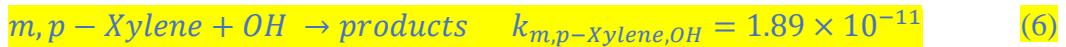
Reactions	Reaction rate constant	Reference
$N_2O_5 \rightarrow CLNO_2 + HNO_3$	$\gamma\omega S_A/4$ (for $CLNO_2$ formation) $(2 - \phi)\gamma\omega S_A/4$ (for HNO_3 formation)	Riedel et al. (2014)
$NO_2 \rightarrow HONO$	$k_g = \frac{1}{8} \times \omega \gamma_g \left(\frac{S}{V}\right)$	Xue et al. (2014)
$HO_2 \rightarrow products$	$k = \left(\frac{r}{D_g} \frac{4}{\gamma} \omega\right)^{-1} S_A$	Xue et al. (2014)
$HCHO \rightarrow products$	$k = \frac{1}{4} \omega \gamma S_A$	Li et al. (2014)

γ = uptake coefficient for the given reactant with aerosol surface area; ϕ = product yield; ω =mean molecular speed of the given reactant (m/s); S_A =RH corrected aerosol surface area concentration (nm^2/cm^3); r =surface-weighted particle radius.

144
 145 Photolysis frequencies (J values) were calculated by a trigonometric parameterization
 146 based on solar zenith angle (SZA):

$$J = I \cos(SZA)^m \exp(-n \sec(SZA)) \quad (1)$$

147 where I , m and n are constants unique to each photolysis reaction, derived from least-
 148 squares fits to J values computed with fixed solar spectra and literature cross-section and
 149 quantum yields (Wolfe et al., 2016b). Hourly average concentrations of speciated VOCs
 150 (except HCHO), NO, NO_2 , CO and meteorological parameters (such as T, RH and P) were


151 used to constrain the F0AM model. Since nitrous acid (HONO) was not measured during our
152 observation, it was fixed as 2% of the observed NO₂ concentration. This constant ratio is well
153 observed in different field studies and performed well in previous box model studies (Tan et
154 al., 2019). Before each simulation, the model was run 3 days as spin up to reach a steady state
155 for unmeasured species (e.g., OH and NO₃ radicals).

156 The comparison of simulated and observed O₃ and HCHO concentrations are shown in
157 Figure S1 and Figure S2. The index of agreement (IOA), mean bias (MB) and normalized mean
158 bias (NMB) are used to evaluate the model performance. These three parameters can be
159 calculated by Equation (2) to (4), where S_i, O_i, and \bar{O} are the simulated, observed, and average
160 observed value of the target compound. In this study, the IOA, MB and NMB of O₃ was 0.90,
161 0.76 and 10%, respectively. These results suggest that the model can reasonably reproduce the
162 variations of O₃ and could be used for further analysis. As for HCHO, the IOA, MB, and NMB
163 was 0.74, 2.43 and 48%, respectively. In general, the model overestimated HCHO
164 concentration, especially on July 29 and July 30. According to previous studies, the
165 inconsistency between simulated and observed HCHO is attributed to uncertainties in the
166 treatment of dry deposition, faster vertical transport, uptake of HCHO and fresh emissions of
167 VOCs precursors (Li et al., 2014). In addition, primary HCHO sources can contribute up to 76%
168 of total HCHO concentration in urban areas (Li et al., 2010). However, due to the lack of
169 primary HCHO sources for areas around DSL, primary HCHO emissions were not included in
170 our model. Although there exists some bias, the model results still provide valuable information
171 of secondary formation of HCHO at suburban areas. To assess the reliability of model results
172 without OH observation, we compared the OBM-simulated OH concentration with that
173 calculated using the ratio of ethylbenzene (E) and m,p-xylene (X) that share common emission
174 sources but with different reactivity with OH radicals (shown in Equation (5)~(8)).

$$IOA = 1 - \frac{\sum(S_i - O_i)^2}{\sum(|S_i - \bar{O}| + |O_i - \bar{O}|)^2} \quad (2)$$

$$MB = \frac{\sum(S_i - O_i)}{N} \quad (3)$$

$$NMB = \frac{\sum(S_i - O_i)}{\sum O_i} \times 100\% \quad (4)$$

$$[X]_t = [X]_0 \times e^{-[OH] \times k_{X, OH} \times t} \times f_{d, B} \quad (7)$$

$$[OH]_{\bar{X}} = \frac{1}{t \times (k_{E, OH} - k_{X, OH})} \times \left[\ln \left(\frac{[E]}{[X]} \right)_0 - \ln \left(\frac{[E]}{[X]} \right)_t \right] \quad (8)$$

175 where $[X]_0$ and $[X]_t$ are the mixing ratio of X at the initial time and after transport time t. $k_{X, OH}$
 176 is the temperature dependent reaction rate coefficient of m,p-xylene with OH, which was taken
 177 from the IUPAC database (<http://iupac.pole-ether.fr/>), whereas $f_{d, B}$ is the dilution factor of m,p-
 178 xylene in the atmosphere. In this study, we assume that the rates of turbulent mixing and
 179 horizontal convection are similar for E and X. Therefore, during the transport time Δt , the
 180 dilution factor of E and X are the same. Therefore, rearranging Equation (7) and extending this
 181 analysis to E and X will yield Equation (8), where $[OH]_{\bar{X}}$ is the estimated regional mixing
 182 ratio of OH by ethylbenzene and m, p-xylene ratio. The calculated average regional
 183 concentrations of OH ($8.39 \pm 5.11 \times 10^6$ molecules cm^{-3}) was in the same magnitude of the
 184 OBM-simulated result ($4.59 \pm 5.11 \times 10^6$ molecules cm^{-3}), suggesting that the OBM-simulated
 185 radical concentration is reliable.

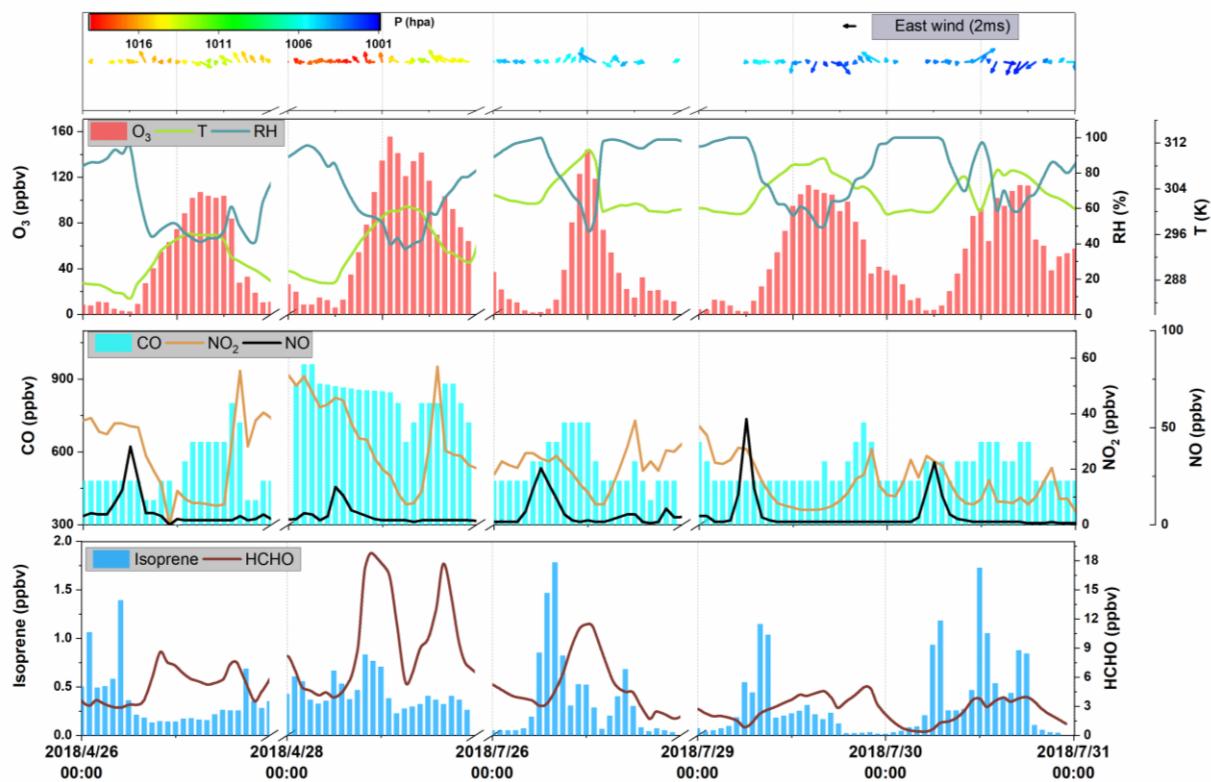
186 To quantify the changes of atmospheric oxidative capacity (AOC) in response to isoprene
 187 chemistry, two parallel scenarios (S0 and S1) were conducted with isoprene chemistry disabled
 188 in S1. In both cases, identical chemical mechanism and meteorological conditions were used
 189 to drive the model simulations. A comparative analysis of the scenarios revealed the impact of
 190 isoprene chemistry on AOC and secondary formation of O_3 and HCHO .

191 **3. Results and discussions**

192 **3.1 Overview of the observations**

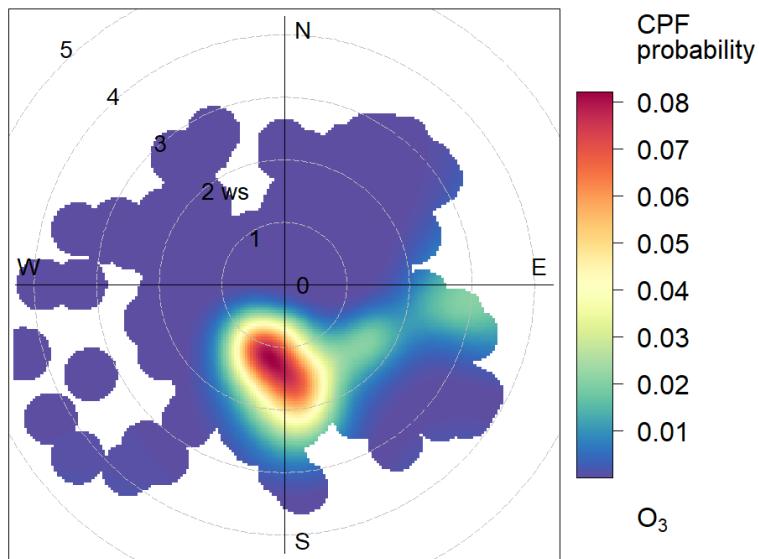
193 To investigate the impact of local chemistry on ozone formation and avoid the influence
194 of emission transportation, five days under stagnant condition (with daily average wind speed
195 less than 2m/s and maximum daily 8-h average (MDA8) O₃ concentration >75 ppb) were
196 identified as typical local chemistry cases. Figure 2 shows the time series of observed
197 meteorological parameters (P, T, and RH), trace gases (NO, NO₂ and O₃), isoprene and HCHO
198 on selected days. During those episodes, the air masses reaching the site were mainly from
199 southeast and southwest (Figure 2). The weak wind was not conducive to the regional
200 transportation of air pollutants. The observed O₃, NO₂, NO, CO, and TVOC ranged from 1.40
201 to 155.40 ppbv (52.72 ± 44.43 ppbv, average value, the same below), 5.36 to 57.95 ppbv (21.58
202 ± 12.88 ppbv), 0.75 to 54.51 ppbv (5.40 ± 8.13 ppbv), 400 to 960 ppbv (597 ± 153 ppbv), and
203 2.34 to 20.33 ppbv (7.28 ± 4.32 ppbv) respectively. During the five episodes, the average
204 concentration of alkanes (13.97 ± 9.12 ppbv), alkenes (3.27 ± 2.31 ppbv) and aromatics (4.93
205 ± 2.69 ppbv) was about 53%, 18%, and 50% respectively, higher than that of the whole
206 observation period. The conditional probability function (CPF) is applied to reveal the
207 relationship between high O₃ concentrations and wind (Figure 3). The detailed description of
208 CPF can be found in the supplementary information (Text S1). The results suggest that high
209 O₃ concentrations (>131 ppb) was usually observed when the site was influenced by weak
210 south wind. This implies that the high O₃ was mostly formed locally. Although this site is
211 distant from urban areas, high levels of NO were found during early morning, emanating
212 particularly from nearby heavy-duty vehicle emissions. As for NO₂, only one peak was found
213 at dusk. This was in contrast with previous results in urban areas (Zhang et al., 2019). It is
214 worth noting that NO₂ and O₃ concentrations were high even during nighttime, suggesting that
215 the AOC remained high at nighttime. It should also be noted that, flat CO pattern was found

216 during morning when NO_x peaks were observed. This inconformity can be attributed to the
217 coarse resolution of CO analyzer (about 80 ppbv) and CO emission source (mainly gasoline
218 vehicles in terms of vehicle exhaust) while NO_x is mainly emitted by heavy-duty vehicle
219 exhausts. Therefore, since DSL site is far from urban area, it is unlikely to have gasoline
220 vehicles in early morning. On the contrary, there are sometimes heavy-duty trucks passing by,
221 causing peaks of NO in early morning.


222 The daily average isoprene concentration was 0.37 ± 0.36 ppbv, and is comparable to the
223 observations by Gong et al. (2018) at a forested mountaintop site (0.287 ± 0.032 ppbv). To
224 estimate the influence of isoprene on atmospheric oxidation capability, we adopted the
225 approach by Zhu et al. (2020) to calculate the OH reactivity (k_{OH}). Results suggested that
226 isoprene, accounting for ~19% of the total k_{OH} , was the most significant VOC species with
227 respect to k_{OH} (0.89 ± 0.44 s⁻¹). This indicates the significant role of isoprene in the
228 photochemistry of a suburban area. The average HCHO was 5.01 ± 3.80 ppbv, which was ~2
229 times of that observed at a rural site of Hong Kong (Yang et al., 2020). It is worth noting that
230 HCHO could reach an average of 18.69 ppbv at midday.

231 Based on explicit calculation, the total concentration of OVOC was obtained. However,
232 due to the complexity of OVOC formation, which could have hundreds of precursors for just
233 one OVOC specie and the complex chain reactions converting VOCs to OVOCs, it is difficult
234 to derive an accurate relationship between VOCs and OVOCs. But since VOCs were mainly
235 oxidized by OH and O₃ during daytime, in this study, we chose multi-linear regression model
236 (Eq.(9)) to roughly explore the relationship between VOCs and simulated OVOCs.

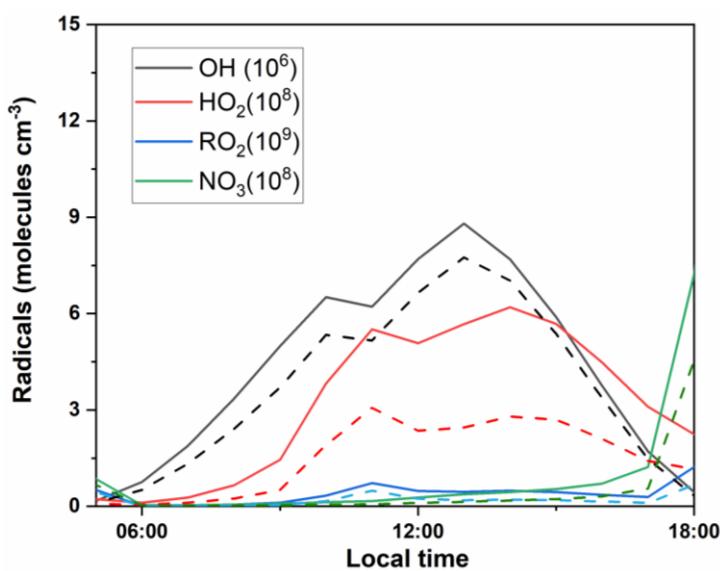
$$[OVOC] = \beta_0 + \beta_1[Alkane] + \beta_2[Alkene] + \beta_3[Aromatic] + \beta_4[OH] + \beta_5[O_3] \quad (9)$$


237 where β_0 , β_1 , β_2 , β_3 , β_4 , and β_5 are the coefficients from linear regression; [OVOC] and [OH]
238 are the predicted concentration of OVOC and OH, respectively; [Alkane], [Alkene],
239 [Aromatic], [O₃] are the observed concentration of alkanes, alkenes, aromatics, and O₃,

240 respectively. The Sig value and statistical reliability criteria (R) was 0.000 and 0.853 (shown
 241 in Table S2 and Figure S3), respectively, indicating that the linear relationship represented by
 242 equations (9) is statistically reliable. Similarly, the β_1 , β_2 , β_3 was 0.027, 0.623, and 0.820,
 243 respectively, suggesting that alkenes and aromatics are significant for the simulated OVOC
 244 concentration.

245

246 **Figure 2. Time series of hourly averages for O₃, CO, NO, NO₂, isoprene, HCHO, and meteorological**
 247 **parameters.**


248 **CPF at the 95th percentile (=131)**

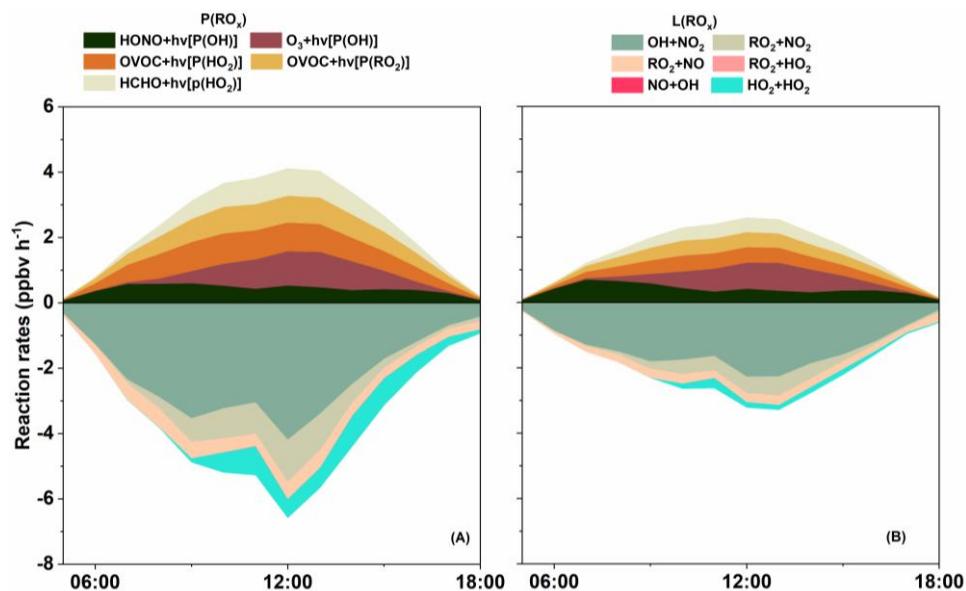
249 **Figure 3. CPF polar plot of O₃ at DSL station.**

250 **3.2 Simulated concentrations of radicals**

251 Figure 4 shows the simulated average daytime variation of major radicals in the base
 252 scenario (S0). It should be noted that, the discussion below is limited to local conditions (cases
 253 with average wind speed lower than 2m/s), since transportation of emissions are not considered
 254 in the 0-dimensional model. The daily average simulated concentration of OH, HO₂, RO₂, and
 255 NO₃ was 4.88×10^6 , 3.49×10^8 , 0.31×10^9 and 0.31×10^8 molecules cm⁻³, respectively. The
 256 simulated daily average OH concentration is comparable to a summertime simulation in
 257 Beijing (9×10^6 molecules cm⁻³) (Liu et al., 2019) and at a suburban site in Hong Kong in 2013
 258 ($1.5 \pm 0.2 \times 10^6$ molecules cm⁻³) (Xue et al., 2016). In addition, the average simulated daytime
 259 OH concentration was ~33% lower than that simulated at a forested mountaintop site in
 260 southern China (Gong et al., 2018). To verify the performance of OBM model, regional
 261 daytime mixing ratios of OH were also calculated by a parameterization method using
 262 measured ethylbenzene and *m,p*-xylene ratios. The calculated average regional concentrations
 263 of OH ($8.39 \pm 5.11 \times 10^6$ molecules cm⁻³) was in the same magnitude of the OBM-simulated

264 result ($4.88 \pm 5.11 \times 10^6$ molecules cm^{-3}), suggesting that the OBM-simulated radical
 265 concentration is reliable. Furthermore, at the DSL site, the simulated maximum HO_2
 266 concentration (6.19×10^8 molecules cm^{-3}) was close to that reported in Beijing (6.8×10^8
 267 molecules cm^{-3}) (Liu et al., 2012), but was $\sim 32\%$ higher than that in Wuhan (4.7×10^8 molecules
 268 cm^{-3}) (Zhu et al., 2020a). Due to high reactivity of RO_2 and high concentration of HO_x , RO_2
 269 kept low level during daytime. As for NO_3 , it can be quickly decomposed during daytime,
 270 leading to the negligible concentration in the daytime.

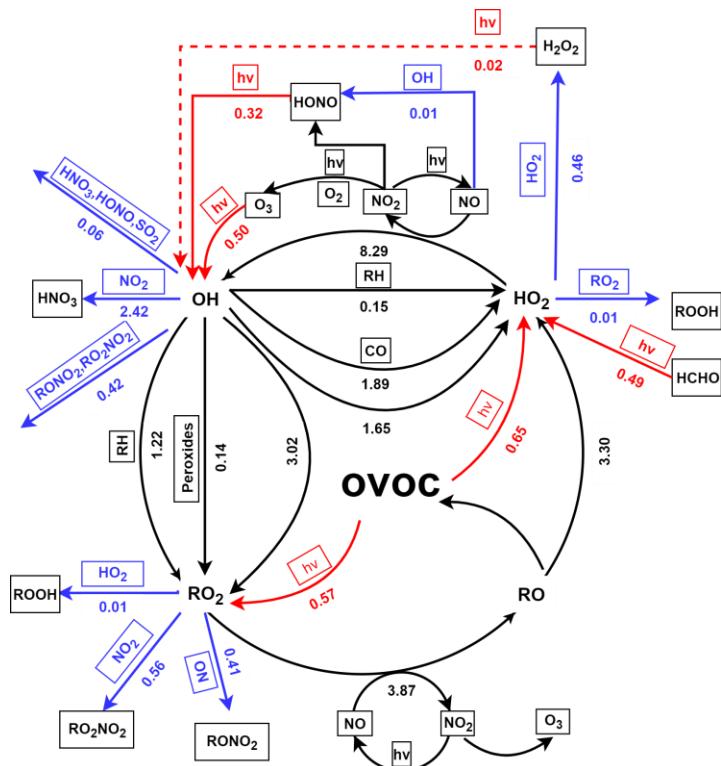
271
 272 **Figure 4.** Simulated average daytime variation of OH , HO_2 , RO_2 and NO_3 in S0 (solid lines) and S1 (dash
 273 lines).


274 3.3 Recycling of ROx radicals

275 Figure 5(A) shows the primary sources of ROx in S0 and its detailed daytime budget.
 276 Minor ROx sources, e.g. ozonolysis of alkenes, are not shown in the figure. Photolysis of O_3
 277 was the predominant primary source of OH, with a daytime mean production rate of 0.50 ppbv
 278 h^{-1} , which was comparable to that found by Liu et al. (2012) in Beijing, but was 0.40 ppbv h^{-1}
 279 lower than the result reported by Xue et al. (2016). Similarly, another important OH source is
 280 the photolysis of HONO , contributing 0.32 ppbv h^{-1} of daytime OH production in our
 281 simulation. This result is much lower than other related studies (Liu et al. (2019) and Xue et al.

282 (2016)), possibly due to the excessive constrain on HONO (since HONO was not directly
283 monitored) during our experiment.

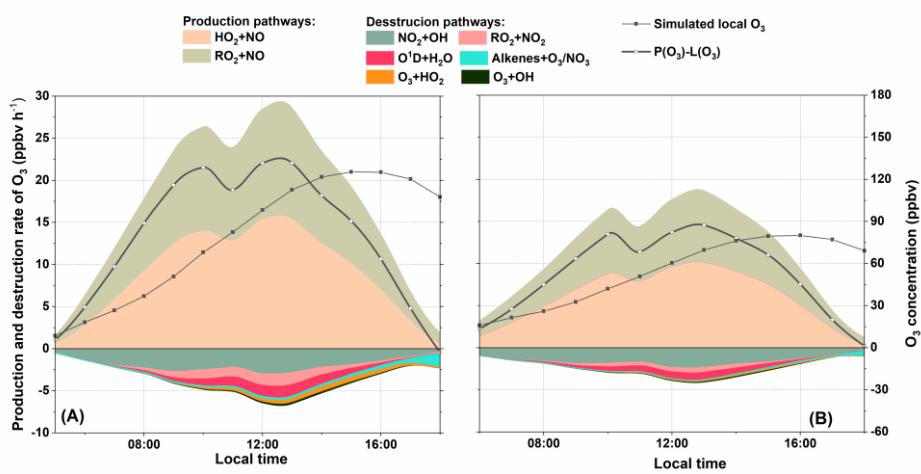
284 Sensitivity analysis was conducted to quantify the influence of different HONO/NO₂ ratio
285 on radical recycling (Text S2, Figure S4 and Table S1). As expected, a lower HONO/NO₂ ratio
286 leads to a lower HONO concentration, and subsequently less OH generation from the
287 photolysis of HONO. The sensitivity analysis shows that when HONO/NO₂ ratio is 0.005, the
288 daytime OH level could decrease by 15.28%. Conversely, a higher HONO/NO₂ (e.g., 0.04) can
289 promote OH concentration by 14.08%. This result illustrates the importance of HONO
290 photolysis in the generation of OH, and therefore simultaneous ambient measurements of
291 HONO is highly recommended for future analysis of local radical recycling. Regarding HO₂,
292 the photolysis of OVOC (excluding HCHO) is the predominant source with a daytime mean
293 production rate of 0.65 ppbv h⁻¹ and maxima of 0.92 ppbv h⁻¹, which is comparable to Xue et
294 al. (2016). The photolysis of HCHO can also contribute 0.48 ppbv h⁻¹ to the daytime production
295 of HO₂, which is close to the results of Xue et al. (2016). As for RO₂, the photolysis of OVOC
296 was the largest source (0.57 ppbv h⁻¹), which was relatively lower than the results found at an
297 urban site (Liu et al., 2012). Therefore, regarding RO_x in DSL site, the daytime primary radical
298 production was dominated by the photolysis of OVOC (except for HCHO), followed by the
299 photolysis of HCHO and O₃. However, the photolysis of HONO can become the overwhelming
300 RO_x source around sunrise, which suggests that HONO can be an important OH reservoir
301 species at night. Summing up all the sources of RO_x gives a total primary daytime RO_x
302 production rate of 2.55 ppbv h⁻¹ (0.84 ppbv h⁻¹ for OH, 1.14 ppbv h⁻¹ for HO₂, and 0.57 ppbv
303 h⁻¹ for RO₂), which was 61~69% lower than those in Beijing (6.6 ppbv h⁻¹, Liu et al. (2012))
304 and Hong Kong (8.11 ppbv h⁻¹, Xue et al. (2016)), indicating that the recycling of RO_x in
305 Beijing and Hong Kong could be much reactive.


306 RO_x radicals are ultimately removed from the atmosphere via deposition of radical
 307 reservoir species, e.g. H₂O₂, HNO₃, and ROOH (Liu et al., 2012). The terminate processes of
 308 RO_x was dominated by their reactions with NO_x. Specifically in this study, the reaction of
 309 OH+NO₂, RO₂+NO₂, RO₂+NO, forming HNO₃, RO₂NO₂, and RONO₂, accounted for 2.42,
 310 0.56, and 0.41 ppbv h⁻¹ of the daytime RO_x radical sink, respectively. This is consistent with
 311 the understanding that reactions with NO_x usually dominate the radical sink under high NO_x
 312 environments (Xue et al., 2016; Liu et al., 2012). In addition, RONO₂ and RO₂NO₂ could in
 313 turn react with OH, leading to 0.41 ppbv h⁻¹ of daytime OH sinks (Figure 6). Summing up the
 314 primary sources and sinks gives a negative value of net RO_x production, suggesting that the
 315 RO_x was in a stage of gradual depletion.

316
 317 **Figure 5. Simulated primary daytime sources and sink of RO_x in S0 (A) and S1 (B).**

318 Furthermore, the daytime (6:00-18:00) average budget of RO_x is shown in Figure 6.
 319 Evidently, the production of OH was dominated by the reaction of HO₂+NO (8.29 ppbv h⁻¹)
 320 in RO_x recycling, whereas RO₂ was produced by the reaction of OH with OVOC (3.02 ppbv
 321 h⁻¹), alkyl (RH) (1.21 ppbv h⁻¹), and peroxides (0.14 ppbv h⁻¹). Besides, the reaction of
 322 RO₂+NO can result in strong production of RO (3.87 ppbv h⁻¹). Moreover, the reaction of RO
 323 and O₂ was the major contributor to HO₂ production, followed by the reaction of OH with CO

324 (1.89 ppbv h⁻¹), OVOC (1.59 ppbv h⁻¹), and RH (0.15 ppbv h⁻¹). It is worth noting that the top
325 two fast reactions within the recycling of RO_x (HO₂+NO and RO₂+NO) were related to NO_x.
326 As mentioned in the study of Liu et al. (2012), this result could be mainly due to the abundance
327 of NO (e.g. ~50 ppbv in the morning). Obviously, these recycling processes dominate the total
328 production of OH, HO₂ and RO₂ radicals. As suggested in the study of Xue et al. (2016) and
329 Liu et al. (2012), the radical propagation is efficient and enhances the effect of the newly
330 produced radicals in the polluted atmospheres with the co-existence of abundant NO_x and
331 VOCs.


332
333 **Figure 6. Summary of daytime (06:00-18:00) average budgets of ROx radicals (in ppbv h⁻¹). Primary ROx**
334 **sources and sinks are in red and blue, respectively, and the black lines represent the processes in ROx**
335 **and NOx recycling.**

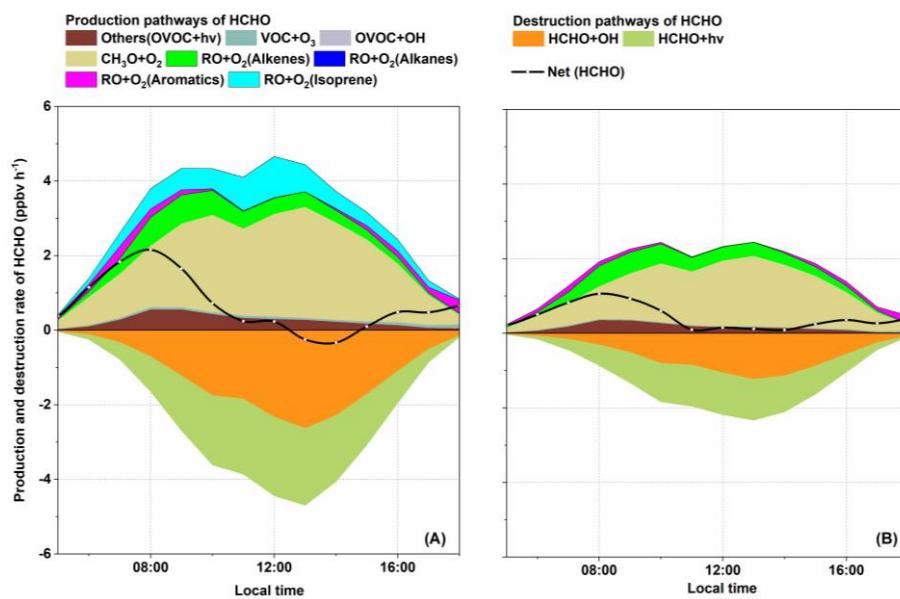
336 3.4 Formation and sink of O₃

337 Figure 7 illustrates the diurnal variation of simulated O₃ concentration, net production rate
338 (including the formation and sink pathways) in S0. In the troposphere, O₃ is formed via the
339 reactions of NO with peroxy radicals (e.g. HO₂ and RO₂) (Liu et al., 2012; Xue et al., 2016;

340 Zhu et al., 2020a). Consequently, the daytime reaction of HO_2+NO and RO_2+NO contributed
 341 an average of 9.34 and 8.52 ppbv h^{-1} of the O_3 produced. Coincidentally, the maximum rate of
 342 HO_2+NO (15.36 ppbv h^{-1}) and RO_2+NO (13.26 ppbv h^{-1}) both occurred at 13:00 LST. Our
 343 results reveal a total daytime production rate of O_3 ($\text{P}(\text{O}_3)$): the sum of HO_2+NO and RO_2+NO
 344 at 17.86 ppbv h^{-1} , which is in line with related study in Beijing (32 ppbv h^{-1} , Liu et al. (2012))
 345 and Hong Kong (6.7 ppbv h^{-1} , Liu et al. (2019)).

346 Due to the fast cycling of both O_3 and NO_2 , the sink of O_3 resulted from several reactions
 347 leading to the destruction of O_3 and NO_2 . In our case, the reaction of NO_2+OH is the
 348 predominant scavenging pathway of O_3 , with an average daytime reaction rate of 1.89 ppbv h^{-1}
 349 (49%, percentage of the total O_3 sink rate.). This is comparable to the study of Liu et al. (2012
 350 and 2019). In addition, the reaction of RO_2+NO_2 was the second contributor to O_3 sink with a
 351 mean contribution of 0.62 ppbv h^{-1} (16%). Other pathways, e.g. photolysis of O_3 , ozonolysis
 352 of alkenes, and O_3+HO_2 , altogether contributed 1.11 ppbv h^{-1} of the total daytime O_3 sink rate.
 353 Also, the daytime mean $\text{L}(\text{O}_3)$ was 3.87 ppbv h^{-1} , which was ~22% of $\text{P}(\text{O}_3)$, suggesting that
 354 O_3 could efficiently accumulate during daytime. The net production of O_3 ($\text{P}(\text{O}_3)-\text{L}(\text{O}_3)$) is also
 355 shown in Figure 7. Our results reveal a maximum O_3 concentration at around 16:00 LST, which
 356 was also observed in other suburban sites (Zong et al., 2018; Zhang et al., 2019).

357
 358 **Figure 7. Simulated average diurnal profiles of O_3 formation and sink rates (ppbv h^{-1}) in S0 (A) and S1
 359 (B).**

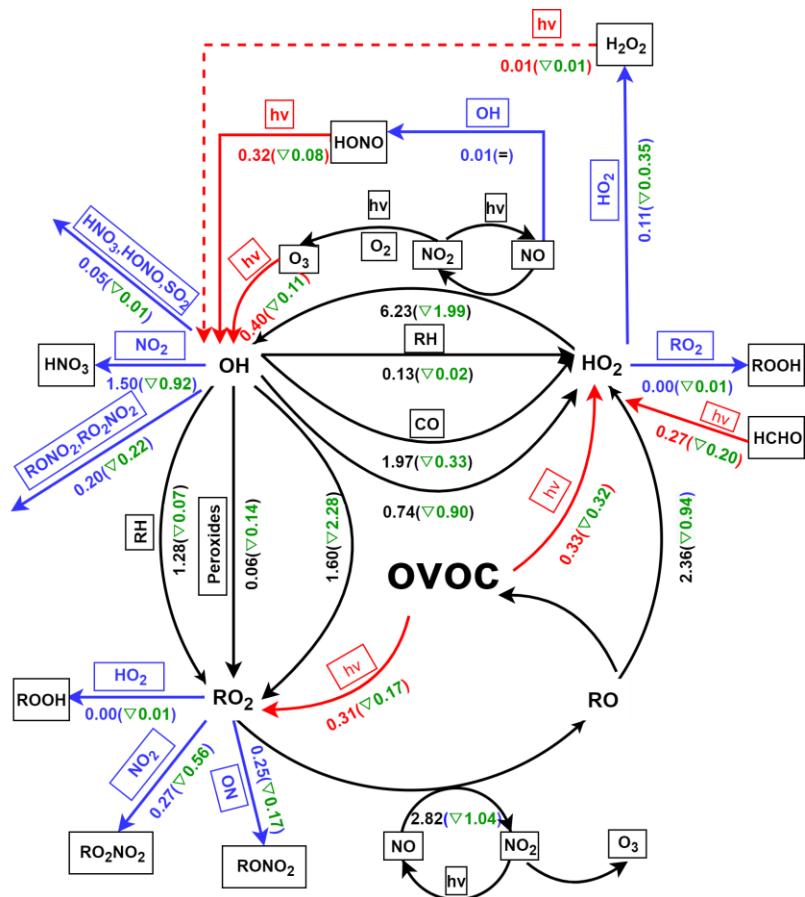

360 **3.5 Formation and sink of HCHO**

361 As aforementioned, high levels of HCHO was observed at DSL. Figure 8 (A) shows the
362 production and sink pathways of HCHO in S0. In this study, the local HCHO formation was
363 dominated by the reaction of RO+O₂, accounting for ~90% of the total production rate. Further
364 classification of RO+O₂ pathway suggested that the oxidation of CH₃O made a significant
365 contribution of ~47%, followed by RO (from isoprene) + O₂ reaction (12%) and RO (from
366 aromatics) + O₂ reaction (~11%). This result is comparable to the study of Yang et al. (2020;
367 2018). During the day, isoprene is the most important VOC species in the production of HCHO
368 with a mean rate of 0.48 ppbv h⁻¹. As stated earlier, the study site is surrounded by dense
369 vegetation, which provides abundant biogenic isoprene. As a result, over 90% of the daytime
370 isoprene was oxidized by OH radicals (Figure S5). Based on the MCMv3.3.1, several RO₂
371 species (e.g. ISOP34O₂, ISOPDO₂, ISOPCO₂, CISOPAO₂, ISOPAO₂) can be generated
372 during the OH-initiated degradation process of isoprene (Jenkin et al., 2015). For instance, with
373 the presence of NO, isoprene-originated RO₂ can transfer into RO (e.g. ISOPDO, ISOP34O,
374 ISOPAO). The subsequent degradation processes of isoprene-related RO, especially ISOP34O,
375 ISOPDO, ISOPAO and ISOPBO, are closely related to the formation of HCHO (Jenkin et al.,
376 2015). In other sources of HCHO, such as the reaction between VOC and O₃, photolysis of
377 OVOC and the reaction of OVOC+OH only contributed small amount of the total production
378 rate during whole day.

379 In this study, it is noteworthy that the two dominant pathways for HCHO depletion were
380 the photolysis of HCHO (~52%) and the reaction of HCHO+OH (~48%). On the other hand,
381 the net HCHO production rate (equals to P(HCHO) + L(HCHO)) as shown in Figure 8. It is
382 evident that after sunrise, the net production rate of HCHO rose gradually to a peak of ~1.6
383 ppbv h⁻¹ at 8:00 (similar to the results by Yang et al. (2018)). Thereafter, at around 12:00 LST,
384 net(HCHO) dropped to ~0 ppbv h⁻¹, which was roughly consistent with our observation,

385 showing the HCHO peak occurs at around 12:00. In addition, a negative net(HCHO) was
 386 exhibited between 13:00 and 14:00. Although the reaction of RO+O₂ quickly produced HCHO
 387 in the afternoon, the depletion pathways, especially the photolysis of HCHO, became more
 388 competitive, leading to the net reduction of HCHO. This also indicates that strong
 389 photochemical reactions do not monotonously profit the accumulation of HCHO, it can also
 390 constrain high HCHO levels in certain situations. After 14:00, the photolysis of HCHO dropped
 391 rapidly and the net depletion of HCHO back to ~0 ppbv h⁻¹ at around 15:00. The daytime net
 392 HCHO production rate was 0.70 ppbv h⁻¹, which was comparable to result of Yang et al. (2018).

393 The above analysis indicates that the photolysis of OVOC, HCHO, O₃ and HONO was
 394 the primary source of ROx, which offers high oxidizing environment for the degradation of
 395 VOCs. As a typical by-product in the degradation of several VOCs, HCHO can be quickly
 396 formatted during the day. The insight into the detailed photochemical processes shows the
 397 important role of isoprene in the formation of HCHO.


398
 399 **Figure 8. Simulated average daytime profiles of net rate (net (HCHO)), breakdown HCHO production**
 400 **rate and sink rate (ppbv h⁻¹) in S0 (A) and S1 (B).**

401 **3.6 Impacts of isoprene chemistry on photochemistry**

402 **3.6.1 Impact on RO_x budget**

403 To compare the importance of isoprene and other abundant VOCs in local chemistry at
404 DSL site, sensitivity analysis was conducted for the modelled O₃, HCHO, and OH
405 concentrations without the input of active VOCs (toluene, ethylene, ethylbenzene, ethane,
406 acetylene, xylene, propene, and isoprene). Results suggested that, although the average
407 isoprene concentration was only 0.37 ± 0.36 ppbv, cutting isoprene input can lead to obvious
408 drop in simulated O₃, HCHO, and OH, which was comparable to that of cutting EXT and
409 alkenes, indicating the significant role of isoprene in local photochemical processes (Figure
410 S6). In addition, the degradation of isoprene is closely linked to the cycling of RO_x. To roughly
411 explain the impact of isoprene chemistry on RO_x budget, we carried out a parallel simulation
412 (S1) where isoprene chemistry is disabled (Figure 9). The diurnal variation of OH, HO₂, RO₂
413 and NO₃ in S1 is also shown in Figure 4 (B) which clearly suggests the decline in RO_x and
414 NO₃ without isoprene input. To investigate the underlying causes, we calculated the production
415 rate of RO_x (P(RO_x)) and loss rate of RO_x (L(RO_x)) in S1, respectively (Figure 5 (B)).
416 Comparative analysis revealed a decreasing trend for most of the reaction rates in P(RO_x) and
417 L(RO_x) in S1. This strongly indicates that the absence of isoprene slows down the RO_x
418 recycling. Generally, considering that the photolysis of OVOC (0.67 ppbv h⁻¹) was still the
419 predominant primary source of RO_x, but without isoprene, the photolysis rate of OVOC
420 decreased by 0.49 ppbv h⁻¹. Moreover, the total production and depletion rate of OH dropped
421 to 6.96 and 7.51 ppbv h⁻¹, respectively. Although the absence of isoprene could reduce the
422 consumption of OH, the OH concentration would be reduced by ~16% compared to S0,
423 suggesting that the amount of OH produced via isoprene chemistry is large enough to
424 compensate for the shift from OH to peroxy radicals in the RO_x family. As for RO₂, the daytime
425 production and sink rate falls to 3.25 and 3.34 ppbv h⁻¹, respectively. This means the

426 concentration of RO_2 would be in a stage of gradual decrease. In addition, the absence of
 427 isoprene could also reduce RO_2 concentration by ~20%, suggesting that isoprene was an
 428 important source of RO_2 at DSL site. As for HO_2 , drastic decrease of ~53% was found in S1.
 429 The above-mentioned decrease in RO_x obviously could not be explained solely by the **removal**
 430 of isoprene-related radicals. **Sensitivity assessment** of the model results shows that OVOC
 431 concentrations decreased drastically (~41%) after cutting isoprene (e.g. ~37% decrease in
 432 formaldehyde, ~65% decrease in methylglyoxal, ~51% decrease in glyoxal, ~100% decrease
 433 in methacrolein (MACR), and ~100% decrease in methyl vinyl ketone (MVK)). The decrease
 434 in OVOC can further **pull-down** substantial amount of primary RO_2 and HO_2 (Figure 6 and
 435 Figure 9). It is interesting to note that, **taking away** isoprene also **causes a drop** of NO_3 (~23%).
 436 This result can be **attributed** to the decrease of secondary production of O_3 (~35%), which can
 437 further reduce the formation of NO_3 especially **at night**.

438

439 **Figure 9. Summary of daytime (06:00-18:00) average budgets of ROx radicals (in ppbv h⁻¹) in S1.**
440 Primary ROx sources and sinks are in red and blue, respectively, and the black lines represent the
441 processes in ROx and NOx recycling. Values in the brackets represent the difference between S1 and S0.

442 **3.6.2 Impact on O₃ formation**

443 To investigate the detailed impact of isoprene on O₃ formation, the production and sink
444 pathways of O₃ in S1 was also quantified (see Figure 7 (B)). Notably, the simulated maximum
445 and daily average O₃ dropped to 84.95 and 41.23 ppbv, respectively, which is ~35% and ~34%
446 lower than that in S0. By comparing S1 and S0, the absence of isoprene can reduce all the
447 production and sink pathways of O₃. For example, the rate of the two major production
448 pathways of O₃ (HO₂+NO and RO₂+NO) decreased by ~37% and ~45%, respectively. This can
449 be attributed to the drop in the concentration of HO₂ and RO₂ radical in S1. Similarly, the
450 absence of isoprene in O₃ depletion caused a decrease of 0.31 ppbv h⁻¹ in the reaction rate of
451 alkene+O₃/NO₃, followed by RO₂+NO₂ (0.22 ppbv h⁻¹) and NO₂+OH (0.265 ppbv h⁻¹).
452 Apparently, the absence of isoprene will reduce the total concentrations of alkenes and can
453 further lead to the decrease of RO₂ and OH level, which ultimately slows down the depletion
454 pathways of O₃. Eventually, the absence of isoprene caused a decrease of 5.78 ppbv h⁻¹ in the
455 daytime mean net production rate of O₃. Hence, isoprene chemistry plays an important role in
456 the local O₃ formation at DSL site.

457 **3.6.3 Impact on HCHO formation**

458 The analysis of S0 revealed the important role of isoprene, aromatics, and alkenes in the
459 production of HCHO. To investigate the chain effect of isoprene chemistry on HCHO
460 production, the major reactions that dominate the formation and depletion of HCHO in S1 were
461 also analyzed by OBM model (Figure 8 (B)). Comparisons between S0 and S1 shows that the
462 daily average HCHO decreased by 2.90 ppbv (~39%) when isoprene chemistry is cut off.
463 Obviously, the drop in HCHO concentration cannot be solely illustrated by the absence of RO
464 (from isoprene). As aforementioned, the absence of isoprene slows down the recycling of ROx

465 and can further lead to decrease in RO_x concentration. Based on the OBM analysis, the
466 concentration of CH₃O, RO (from aromatics), RO (from alkanes), and RO (from alkenes)
467 decreased by 2.70×10^2 molecule cm⁻³, 1.59×10^5 molecule cm⁻³, 3.35×10^1 molecule cm⁻³, and
468 3.44 molecule cm⁻³, respectively. The drop in the HCHO precursor concentrations ultimately
469 led to decrease in the daytime reaction rate of CH₃O + O₂, RO (from alkenes) + O₂, and RO
470 (from aromatics) + O₂ by 0.66 ppbv h⁻¹ (~36%), 0.06 ppbv h⁻¹ (~16%), and 0.06 ppbv h⁻¹
471 (~40%), respectively. The total daytime formation rate of HCHO dropped to 1.71 ppbv h⁻¹ from
472 1.66 ppbv h⁻¹ (~49%) lower than that in S0. As a result of the lower HCHO and OH
473 concentration in S1, the daily mean depletion rate of HCHO decreased by 1.25 ppbv h⁻¹ (~49%).
474 Ultimately, the absence of isoprene pulled down the daily average HCHO level by 1.61 ppbv
475 (~36%).

476 **3.7 Uncertainty analysis**

477 Due to limitations in the observations, several issues should be noted in the application of
478 the OBM model to evaluate the local chemistry in the present study. Firstly, methane
479 concentration, which was set to 1850 ppbv based on previous observations, could be an
480 overestimation or underestimation. Thus, we conducted sensitivity analysis of modelled O₃,
481 OH, and HCHO with different methane values (from 1600 ppbv to 1900 ppbv) (Figure. S7).
482 The model predicted O₃, HCHO, and OH concentration with negligible change under different
483 CH₄ values. Secondly, the photolysis rates directly influence the key photochemical processes
484 during the day. Since the photolysis rates were not measured during the sampling period, we
485 also conducted sensitivity analysis by increasing or decreasing the photolysis rates by 20% and
486 40%. Results showed that the O₃, HCHO and OH concentration could increase by 51.14%,
487 34.52%, and 50.38%, respectively, when photolysis rates were increased by 40% (Figure S8).
488 On the contrary, when photolysis rates were decreased by 40%, O₃, HCHO and OH
489 concentration decreased by 50.59%, 30.84%, and 47.24%, respectively (Figure. S6). According

490 to the study by Xu et al. (2013), NO₂ concentration measured by the molybdenum oxide
491 converter technique can be significantly overestimated in areas far away from fresh NO_x
492 emission sources. Therefore, OBM simulations with reduced NO₂ concentrations were
493 conducted. The results suggest that decreasing NO₂ could increase or decrease of O₃, HCHO
494 and OH concentrations under different scenarios (Figure S9). Overall, decreasing NO₂ by 40%
495 could cause 6.94%, 12.07%, and 6.29% increase in O₃, HCHO, and OH concentrations,
496 respectively. Finally, the total surface area of aerosols was obtained from the study of Wang et
497 al. (2014) and the uncertainty of this value could directly influence the heterogeneous reactions
498 in this model. Therefore, we conducted sensitive analysis by using increasing or decreasing SA
499 value by 40% (Figure S10). The results show that O₃, HCHO, and OH concentrations did not
500 exhibit obvious changes when SA changed. Hence, accurate measurement data of photolysis
501 rate and NO₂ concentration is strongly recommended in further OBM analyses.

502 4. Conclusions

503 Our observations at a suburban site of the YRD region from April to June in 2018 captured
504 5 typical local O₃ formation episodes. The detailed atmospheric photochemistry during these
505 episodes were analyzed by a typical 0-D box model on a local scale. Under stagnant conditions,
506 the photolysis of OVOC served as the predominant primary RO_x sources. RO_x achieves
507 efficient recycling with the participation of NO_x. Influenced by the fast RO_x recycling, local
508 O₃ was efficiently produced and accumulated under stagnant conditions. The reactions of RO
509 radicals with O₂ dominate the photochemical formation of HCHO. The higher atmospheric
510 oxidative capacity lead to fast degradation of VOCs, which can further lead to high levels of
511 HCHO at the DSL site. Specifically, the degradation of RO radicals (e.g. ISOP34O, ISOPDO,
512 ISOPAO and ISOPBO) from isoprene oxidation play an important role in the photochemical
513 production of HCHO. To investigate the role of isoprene in RO_x recycle and the formation of
514 secondary pollutant, a sensitivity scenario without isoprene (S1) input was simulated by OBM

515 model. By comparing S1 to the standard simulation (S0), we find that isoprene chemistry is
516 important **in** local RO_x recycling. The absence of isoprene can obviously decrease the
517 concentrations of OVOC and the reaction rates in RO_x propagations, and further reduce the
518 concentrations of radicals (e.g. OH, HO₂, RO₂). Our results indicate that isoprene chemistry
519 can strongly influence the formation of O₃ and HCHO **in the presence of NO_x.** Therefore,
520 removing isoprene can slow down the reaction of HO₂+NO and RO₂+NO by ~37% and ~45%,
521 respectively, and eventually cause ~34% decrease of O₃. As a result of **the** lower O₃
522 concentration, average concentration of NO₃ dropped by 23% in S1. The absence of isoprene
523 can **also** lead to **the** decrease of RO (from isoprene) and RO_x concentration and cause an
524 obvious drop of HCHO formation (~49%). **Furthermore, other biogenic VOCs (BVOCs, such**
525 **as terpene and sesquiterpene) can also affect local chemistry via photochemical processes, but**
526 **those BVOCs were not able to be synchronously observed. Therefore, future studies should**
527 **take into account those BVOCs. Additionally, the uncertainty analysis conducted in this study**
528 **indicates the significance of synchronous and accurate observation of photolysis rates and NO₂**
529 **concentration when using the OBM. Generally, this study underlines the significant role of**
530 **isoprene chemistry in radical chemistry, photochemical reactions, and secondary pollutant**
531 **formation in the atmosphere of the YRD region and provides insights into secondary pollution**
532 **and its formation mechanisms.**

533
534 *Data availability.* The data that support the results are available from the corresponding author
535 upon request.

536

537 *Authorship contribution.* Kun Zhang: Formal analysis, Methodology, Writing-original draft.
538 Ling Huang: Writing-review. Qing Li: Formal analysis. Juntao Huo: Formal analysis, Data
539 curation. Yusen Duan: Formal analysis, Data curation. Yuhang Wang: Writing-review. **Elly**
540 **Yaluk: Formal analysis.** Yangjun Wang: Formal analysis. Qingyan Fu: Formal analysis. Li Li:
541 Conceptualization, Methodology, Writing-review & editing.

542
543 *Competing interest.* The authors declare that they have no known competing financial interests
544 or personal relationships that could have appeared to influence the word reported in this paper.

545
546 *Acknowledgements.* This study is supported by the National Natural Science Foundation of
547 China (**No. 42075144**; No.41875161), Shanghai International Science and Technology
548 Cooperation Fund (No. 19230742500), Shanghai Science and Technology Fund (No.
549 19DZ1205007), **Shanghai Sail Program (NO.19YF1415600)**, and the **National Key Research**
550 **and Development Program of China (NO.2018YFC0213600)**. Y. Wang was supported by the
551 National Science Foundation. We thank Shanghai Environmental Monitoring Center (SEMC)
552 for conducting the measurement and sharing the data.

553
554
555 *Financial support.* This study was financially supported by the National Natural Science
556 Foundation of China (NO. 41875161; NO.42075144), Shanghai International Science and
557 Technology Cooperation Fund (NO. 19230742500), Shanghai Science and Technology Fund
558 (No. 19DZ1205007), Shanghai Sail Program (NO.19YF1415600), and the National Key
559 Research and Development Program of China (NO.2018YFC0213600). Y. Wang was
560 supported by the National Science Foundation.

561

562 **References**

563 Atkinson, R., and Arey, J.: Atmospheric degradation of volatile organic compounds, Chemical
564 reviews, 103, 4605-4638, 2003.

565 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin,
566 M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric
567 chemistry: Volume II - Gas phase reactions of organic species, Atmospheric Chemistry and
568 Physics, 6, 3625-4055, 10.5194/acp-6-3625-2006, 2006.

569 Chan, K. L., Wang, S. S., Liu, C., Zhou, B., Wenig, M. O., and Saiz-Lopez, A.: On the
570 summertime air quality and related photochemical processes in the megacity Shanghai,
571 China, Science of the Total Environment, 580, 974-983, 2017.

572 D'Ambro, E. L., Møller, K. H., Lopez-Hilfiker, F. D., Schobesberger, S., Liu, J., Shilling, J.
573 E., Lee, B. H., Kjaergaard, H. G., and Thornton, J. A.: Isomerization of second-generation
574 isoprene peroxy radicals: Epoxide formation and implications for secondary organic aerosol
575 yields, Environmental science & technology, 51, 4978-4987, 2017.

576 Gong, D., Wang, H., Zhang, S., Wang, Y., Liu, S. C., Guo, H., Shao, M., He, C., Chen, D., He,
577 L., Zhou, L., Morawska, L., Zhang, Y., and Wang, B.: Low-level summertime isoprene
578 observed at a forested mountaintop site in southern China: implications for strong regional
579 atmospheric oxidative capacity, Atmospheric Chemistry and Physics, 18, 14417-14432,
580 10.5194/acp-18-14417-2018, 2018.

581 He, Z. R., Wang, X. M., Ling, Z. H., Zhao, J., Guo, H., Shao, M., and Wang, Z.: Contributions
582 of different anthropogenic volatile organic compound sources to ozone formation at a
583 receptor site in the Pearl River Delta region and its policy implications, Atmospheric
584 Chemistry and Physics, 19, 8801-8816, 2019.

585 Jenkin, M. E., Young, J. C., and Rickard, A. R.: The MCM v3.3.1 degradation scheme for
586 isoprene, *Atmospheric Chemistry and Physics*, 15, 11433-11459, 10.5194/acp-15-11433-
587 2015, 2015.

588 Li, X., Rohrer, F., Brauers, T., Hofzumahaus, A., Lu, K., Shao, M., Zhang, Y. H., and Wahner,
589 A.: Modeling of HCHO and CHOCHO at a semi-rural site in southern China during the
590 PRIDE-PRD2006 campaign, *Atmospheric Chemistry and Physics*, 14, 12291-12305,
591 10.5194/acp-14-12291-2014, 2014.

592 **Li, Y., Shao, M., Lu, S., Chang, C. C., and Dasgupta, P. K.: Variations and sources of ambient**
593 **formaldehyde for the 2008 Beijing Olympic games, *Atmospheric Environment*, 44, 2632-**
594 **2639, 10.1016/j.atmosenv.2010.03.045, 2010.**

595 **Li, L., An, J. Y., Yan, R. S., Huang, C., Wang, H. L., Lou, S. R., Huang, L., Yarwood, G.**
596 **Ozone source apportionment over the Yangtze River Delta region, China: Investigation of**
597 **regional transport, sectoral contributions and seasonal differences. *Atmospheric***
598 ***Environment*, 202, 269-280, 2019.**

599 **Li, L., An, J. Y., Shi, Y. Y., Zhou, M., Yan, R. S., Huang, C., Wang, H. L., Lou, S. R., Wang,**
600 **Q., Lu, Q., Wu, J. Source apportionment of surface ozone in the Yangtze River Delta, China**
601 **in the summer of 2013. *Atmospheric Environment*, 144, 194-207, 2016.**

602 Lin, H., Wang, M., Duan, Y., Fu, Q., Ji, W., Cui, H., Jin, D., Lin, Y., and Hu, K.: O₃ sensitivity
603 and contributions of different nmhc sources in O₃ formation at urban and suburban sites in
604 Shanghai, *Atmosphere*, 11, 1-18, 10.3390/atmos11030295, 2020.

605 Liu, X., Lyu, X., Wang, Y., Jiang, F., and Guo, H.: Intercomparison of O₃ formation and radical
606 chemistry in the past decade at a suburban site in Hong Kong, *Atmospheric Chemistry and*
607 *Physics*, 19, 5127-5145, 10.5194/acp-19-5127-2019, 2019.

608 Liu, Y. J., Herdlinger-Blatt, I., McKinney, K. A., and Martin, S. T.: Production of methyl vinyl
609 ketone and methacrolein via the hydroperoxyl pathway of isoprene oxidation, *Atmospheric*
610 *Chemistry and Physics*, 13, 5715-5730, 10.5194/acp-13-5715-2013, 2013.

611 Liu, Z., Wang, Y., Gu, D., Zhao, C., Huey, L. G., Stickel, R., Liao, J., Shao, M., Zhu, T., Zeng,
612 L., Amoroso, A., Costabile, F., Chang, C. C., and Liu, S. C.: Summertime photochemistry
613 during CAREBeijing-2007: RO_x budgets and O₃ formation, *Atmospheric Chemistry and*
614 *Physics*, 12, 7737-7752, 2012.

615 Riedel, T. P., Wolfe, G. M., Danas, K. T., Gilman, J. B., Kuster, W. C., Bon, D. M., Vlasenko,
616 A., Li, S.-M., Williams, E. J., Lerner, B. M., Veres, P. R., Roberts, J. M., Holloway, J. S.,
617 Lefer, B., Brown, S. S., and Thornton, J. A. (2014). An MCM modeling study of nitryl
618 chloride (ClNO₂) impacts on oxidation, ozone production and nitrogen oxide partitioning in
619 polluted continental outflow, *Atmos. Chem. Phys.*, 14, 3789–3800,
620 <https://doi.org/10.5194/acp-14-3789-2014>.

621 Tan, Z. F., Lu, K. D., Jiang, M. Q., Su, R., Wang, H. L., Lou, S. R., Fu, Q. Y., Zhai, C. Z., Tan,
622 Q. W., Yue, D. L., Chen, D. H., Wang, Z. S., Xie, S. D., Zeng, L. M., and Zhang, Y. H.:
623 Daytime atmospheric oxidation capacity in four Chinese megacities during the
624 photochemically polluted season: a case study based on box model simulation, *Atmospheric*
625 *Chemistry and Physics*, 19, 3493-3513, 2019.

626 Wennberg, P. O., Bates, K. H., Crounse, J. D., Dodson, L. G., McVay, R. C., Mertens, L. A.,
627 Nguyen, T. B., Praske, E., Schwantes, R. H., Smarte, M. D., St Clair, J. M., Teng, A. P.,
628 Zhang, X., and Seinfeld, J. H.: Gas-phase reactions of isoprene and its major oxidation
629 products, *Chemical Reviews*, 118, 3337-3390, 2018.

630 Wolfe, G. M., Kaiser, J., Hanisco, T. F., Keutsch, F. N., de Gouw, J. A., Gilman, J. B., Graus,
631 M., Hatch, C. D., Holloway, J., Horowitz, L. W., Lee, B. H., Lerner, B. M., Lopez-Hilfiker,
632 F., Mao, J., Marvin, M. R., Peischl, J., Pollack, I. B., Roberts, J. M., Ryerson, T. B.,

633 Thornton, J. A., Veres, P. R., and Warneke, C.: Formaldehyde production from isoprene
634 oxidation across NO_x regimes, *Atmospheric Chemistry and Physics*, 16, 2597-2610,
635 10.5194/acp-16-2597-2016, 2016a.

636 Wolfe, G. M., Marvin, M. R., Roberts, S. J., Travis, K. R., and Liao, J.: The Framework for 0-
637 D Atmospheric Modeling (F0AM) v3.1, *Geoscientific Model Development*, 9, 3309-3319,
638 10.5194/gmd-9-3309-2016, 2016b.

639 [Xu, Z., Wang, T., Xue, L. K., Louie, P. K. K., Luk, C. W. Y., Gao, J., Wang, S. L., Chai, F. H.,](#)
640 [and Wang, W. X.: Evaluating the uncertainties of thermal catalytic conversion in measuring](#)
641 [atmospheric nitrogen dioxide at four differently polluted sites in China, *Atmos. Environ.*,](#)
642 [76, 221–226, 2013.](#)

643 Xue, L., Wang, T., Gao, J., Ding, A., Zhou, X., Blake, D. R., Fang, X., Saunders, S. M., Fan,
644 S., Zuo, H., Zhang, Q., Wang, W. Ground-level ozone in four Chinese cities: precursors,
645 regional transport and heterogeneous processes. *Atmospheric chemistry and physics*, 14(23),
646 13175-13188, 2014.

647 Xue, L., Gu, R., Wang, T., Wang, X., Saunders, S., Blake, D., Louie, P. K. K., Luk, C. W. Y.,
648 Simpson, I., Xu, Z., Wang, Z., Gao, Y., Lee, S., Mellouki, A., and Wang, W.: Oxidative
649 capacity and radical chemistry in the polluted atmosphere of Hong Kong and Pearl River
650 Delta region: Analysis of a severe photochemical smog episode, *Atmospheric Chemistry*
651 and *Physics*, 16, 9891-9903, 10.5194/acp-16-9891-2016, 2016.

652 Yang, X., Xue, L. K., Wang, T., Wang, X. F., Gao, J., Lee, S. C., Blake, D. R., Chai, F. H., and
653 Wang, W. X.: Observations and explicit modeling of summertime carbonyl formation in
654 Beijing: identification of key precursor species and their impact on atmospheric oxidation
655 chemistry, *Journal of Geophysical Research: Atmosphere*, 123, 1426-1440, 2018.

656 Yang, X., Zhang, G. Q., Sun, Y. M., Zhu, L., Wei, X. F., Li, Z., and Zhong, X. L.: Explicit
657 modeling of background HCHO formation in southern China, *Atmospheric Research*, 240,
658 UNSP 10494110.1016/j.atmosres.2020.104941, 2020.

659 Zeng, P., Lyu, X. P., Guo, H., Cheng, H. R., Wang, Z. W., Liu, X. F., and Zhang, W. H.: Spatial
660 variation of sources and photochemistry of formaldehyde in Wuhan, Central China,
661 *Atmospheric Environment*, 214, 2019.

662 Zhang, K., Zhou, L., Fu, Q., Yan, L., Bian, Q., Wang, D., and Xiu, G.: Vertical distribution of
663 ozone over Shanghai during late spring: A balloon-borne observation, *Atmospheric*
664 *environment*, 208, 48-60, 2019.

665 Zhang, K., Li, L., Huang, L., Wang, Y., Huo, J., Duan, Y., Wang, Y., and Fu, Q.: The impact
666 of volatile organic compounds on ozone formation in the suburban area of Shanghai,
667 *Atmospheric Environment*, 232, 10.1016/j.atmosenv.2020.117511, 2020a.

668 Zhang, K., Xu, J., Huang, Q., Zhou, L., Fu, Q., Duan, Y., and Xiu, G.: Precursors and potential
669 sources of ground-level ozone in suburban Shanghai, *Frontiers of Environmental Science*
670 and *Engineering*, 14, 10.1007/s11783-020-1271-8, 2020b.

671 Zhu, J., Cheng, H., Peng, J., Zeng, P., Wang, Z., Lyu, X., and Guo, H.: O₃ photochemistry on
672 O₃ episode days and non-O₃ episode days in Wuhan, Central China, *Atmospheric*
673 *Environment*, 223, 10.1016/j.atmosenv.2019.117236, 2020a.

674 Zhu, J., Wang, S. S., Wang, H. L., Jing, S. G., Lou, S. R., Saiz-Lopez, A., and Zhou, B.:
675 Observationally constrained modeling of atmospheric oxidation capacity and
676 photochemical reactivity in Shanghai, China, *Atmospheric Chemistry and Physics*, 20,
677 1217-1232, 2020b.

678 Zong, R. H., Yang, X., Wen, L., Xu, C. H., Zhu, Y. H., Chen, T. S., Yao, L., Wang, L. W.,
679 Zhang, J. M., Yang, L. X., Wang, X. F., Shao, M., Zhu, T., Xue, L. K., and Wang, W. X.:
680 Strong ozone production at a rural site in the North China Plain: Mixed effects of urban

681 plumes and biogenic emissions, Journal of Environmental Sciences, 71, 261-270,

682 10.1016/j.jes.2018.05.003, 2018.

683