
1 
 

Dear Editors and Reviewers, 

Thank you very much for your careful review and helpful comments on our 

manuscript acp-2020-708. We appreciate very much your constructive comments and 

suggestions on our manuscript. We have accordingly made the careful and substantial 

revisions. The revised portions are highlighted in the revised manuscript. Please find 

our point to point responses to the reviewer’s comments as follows:  

 

Responses to the reviewer 2 

[The authors have carried out MV-EOF and EEOF analysis to select and understand the peak 

pollution episodes and corresponding pollution pathways and meteorological conditions during 

these events using data from 2015 to 2019 over the middle Yangtze River area in China. In addition, 

they have also carried our chemistry-climate model simulations to understand the same issue but 

for a typical event for corroboration. 

Though I would like to appreciate the overall effort and the intention of the authors, I found it hard 

to follow the manuscript due to the following reasons.] 

Response 1: Thank the referee very much for the careful review and encouraging 

comments on our manuscript. We have accordingly made the careful revisions. The 

revised portions are highlighted in the revised manuscript. In the following we quoted 

each review question in the square brackets and added our response after each 

paragraph. 

[The weakest part of the paper is the data and methodology section where scant information is 

provided with regard to the data, its curation and analysis including the details about numerical 

simulations. 

The whole paper depends on the analysis of PM2.5 pollution based on data from the China’s National 

Ambient Air Quality Monitoring Network. Even basic information about this dataset is missing in 

the manuscript. For example, it is not clear whether this is a gridded data or station data? What is 

the temporal resolution? What is the spatial resolution of the chemistry-climate model simulations? ] 
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Response 2: In response to the referee’s comments, we have reorganized and modified 

the data and methodology section as follows： 

2 Data and methods 

2.1 Observational data 

In this study, the daily average PM2.5 concentrations in January over 2015-2019 are 

obtained from more than 1600 air quality monitoring stations in China 

(http://datacenter.mee.gov.cn/) to display the spatial distribution of PM2.5 in central and 

eastern China. The air quality observation data are through quality control based on 

China’s national standard of air quality observation. The PM2.5 concentrations observed 

at 31 major cities in Hubei and Hunan provinces are selected to represent the air 

pollution levels in the Twain-Hu Basin (Fig. 1c) to construct the joint observation 

matrix of MV-EOF decomposition in the THB.   

The meteorological observation data in January 2015-2019 are downloaded from 

the hourly surface data from the China Meteorological Science Data Center 

(http://data.cma.cn/). In this study, meteorological observations including sea level 

pressure (SLP), 2-m air temperature, 10-m wind speed and wind direction, are also used 

to construct the joint observation matrix of the MV-EOF decomposition of the THB,  

The radiosonde observations of air temperature and wind speed from Wuhan and 

Changsha meteorological stations (Fig. 1c) are adopted as well to analyze the 

atmospheric thermodynamic vertical structures during wintertime and regional PM2.5 

transport cases in the THB in the recent 5 years.  

In addition, in order to analyze the synoptic circulation pattern and atmospheric 

thermodynamic vertical structure during the wintertime air pollution in the THB with 

regional PM2.5 transport, we use the ERA-interim daily reanalysis data with 0.25°×0.25° 

resolution (https://apps.ecmwf.int/datasets/data/interim-full-daily/), which consists the 

atmospheric boundary layer height, SLP, 2-m temperature, 10-m wind vector 

components u and v, as well as the geopotential height, air temperature, vertical speed, 

and wind vector components u and v at different vertical layers in January 2015-2019. 

 

http://datacenter.mee.gov.cn/
http://data.cma.cn/


3 
 

2.2 Decomposition of multivariable empirical orthogonal function (MV-EOF) 

The empirical orthogonal function (EOF) analysis is a method used to identify 

patterns of simultaneous variation (Schepanski et al., 2016). The EOF can concentrate 

the information of original field into several main modes to describe the changes of the 

complex element field through the dimensionality reduction. The principle is to 

decompose the spatio-temporal matrix of observation data into a linear combination of 

the spatial eigenvector matrix and the corresponding time coefficient matrix.  

The observation data of a certain variable field is given in the form of mnX  matrix: 
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where m  is the space point (it can be the number of stations or grid points), n  

is the length of time series. Through EOF expansion, Formula (1) is decomposed into 

the product of the space function V  and the time function T , and the matrix form is  

 VTX                                              (2) 

where: 
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V  is called the spatial function matrix (space mode), which represents a typical 

field that does not change with time; T   is called the time coefficient matrix, 

representing the weight coefficient of the spatial mode. 

We process mnX  as an anomaly, get the eigenroot m  and eigenvector m  of 

the real symmetric matrix, and then calculate the variance contribution rate i  of the 

i -th eigenvector and the cumulative variance contribution rate iP  of the first p  

eigenvectors： 
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The eigenvector represents the variation structure of a variable field, and its spatial 

distribution form the main distribution structure of variable field. The corresponding 

time coefficient is positive, indicating that the variable at that time has the same 

variation trend as this type of distribution. On the contrary, a negative coefficient 

denotes that the changing trend of variable at the corresponding time is opposite to this 

kind of distribution, and larger value means a more significant corresponding spatial 

distribution.  

The multivariate empirical orthogonal function (MV-EOF) decomposition is an 

extended variant of EOF (Wang et al., 1992; 2008). In this method, two or more 

variables with the same time length and space points are standardized, and a new 

variable field is constructed, and then EOF decomposition is performed on the new 

variables. MV-EOF has advantages in simultaneously representing the spatial 

distributions of multiple elements and the spatial connections among various elements, 

and can be used to explore the coupling process of interactions in complex systems 

(Sparnocchia et al., 2003). 

To obtain the synergistic variation of PM2.5 concentration and meteorological 

elements in atmospheric circulations of heavy pollution events in the THB, we choose 

the daily average PM2.5 concentrations, 10-m wind speed (including meridional and 

zonal components) and SLP from 31 urban observation sites in the THB in January of 

2015-2019 for MV-EOF decomposition. Since the magnitude of different elements 

varies greatly, all elements have been standardized before the MV-EOF decomposition. 

The data matrix mnX constructed by using the four elements is as follows: 

 nmnmnmnmmn XXXXX
4321

,,,

                  

      (6)

 
where nmX 1

, nmX 2
, nmX 3

 and nmX 4
 represent PM2.5, SLP, 10-m meridional wind 

and zonal wind, respectively; 1m = 2m = 3m = 4m =31 is the number of urban observation 

sites in the THB, n =155 is the length of the daily time series in January of 2015-2019; 
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mnX  is the extended new variable fields. Then, the new variable matrix is introduced 

into Formula (2) to do the EOF decomposition. 

 

[Since the objective of the paper is to study the peak pollution episodes during the five 

year period during the winter/January, which mode of the EOF was used finally used 

to create the several figures in the results section? 

Was the climatology of the five-year period removed during the analysis? If not, the 

first mode will show up the climatological mean as the dominant feature. 

Line 184 to 186 states about some synthetic and correlation analysis including 

anomalies. Was this the base database used for further EOF analysis?] 

Response 3: First three modes of the MV-EOF were used finally used to create the 

several figures in the results section, and the climatology of the five-year period was 

removed during the analysis with MV-EOF. In response to the referee’s comments, we 

have reorganized and modified Section 3 as follows： 

3. Results of MV-EOF decomposition and selection of typical air pollution events 

with regional transport 

3.1 Analysis of MV-EOF decomposition 

Figure 2 shows the first three modes and their time series obtained by MV-EOF 

decomposition based on PM2.5 concentration, 10-m wind speed (including meridional 

wind and zonal wind) and SLP at 31 observation sites in the THB in January of 2015-

2019. The variance contribution rates of the three modes are 28.2%, 16.0%, and 12.0%, 

respectively, and the cumulative variance reaches 56.2%, all of which have passed the 

North test, indicating that the first three modes are independent of each other and can 

be clearly distinguished from other modes.  

The spatial distributions of first three modes decomposed by MV-EOF could 

characterize the synergistic change of PM2.5 concentrations with near-surface wind and 
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air pressure fields over the THB (Fig. 2). The first mode of positive PM2.5 loads 

distribution corresponded to the negative air pressure loads and weak wind loads (Fig. 

2a), and the second and third modes of positive PM2.5 loads were distributed with the 

positive air pressure loads but with strong southerly and northerly wind loads (Figs. 2b-

2c), reflecting the connections of regional PM2.5 pollution over the THB with low air 

pressure and weak winds (Fig. 2a), with high air pressure centered over the THB and 

strong southerly winds (Fig. 2b), and with high air pressure in northern THB strong 

northerly winds driving the transport of air pollutants from North China to the THB 

(Fig. 2c). The significantly larger PM2.5 loads in third mode comparing to the first and 

second modes (Figs. 2a, 2b and 2c) could imply an importance of regional PM2.5 

transport in air pollution in the THB.  

 

 

 

 

Figure 2. (a) The first mode, (b) the second mode and (c) the third mode decomposed 

by MV-EOF with PM2.5 loads (color contours), the SLP loads (black contour lines) and 

10-m wind loads (vectors) as well as (d) the time coefficients PC1, PC2, and PC3 of 

the first three modes in January over 2015-2019.  
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The positive and negative time coefficients in the daily time series (Fig. 2d) showed the 

abnormally high and low PM2.5 concentrations over the THB with meteorological 

influences on poor and good air quality. By , the third-mode time coefficients explained 

48% of the total variance of the average PM2.5 time variation in the THB (Fig. 3), which 

reflected an important role of regional PM2.5 transport in increasing PM2.5 in the THB. 

 

 

Figure 3. Scatter plots of (a) The first mode, (b) the second mode and (c) the third mode 

time coefficients PC1, PC2, and PC3 respectively with the daily PM2.5 concentrations 

averaged over the THB in January of 2015-2019.  
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In order to explore the synoptic circulations on heavy air pollution in the THB, we 

correlated the daily changes of the time coefficients of the three modes (Fig. 2d) and 

850hPa geopotential heights, vertical velocity and wind of the ERA-Interim daily data 

over January of 2015-2019 in CEC (Fig. 4). As seen from Figure 4, the correlation 

coefficients between the first-mode time coefficients of THB’ decomposed PM2.5 and 

the 850-hPa heights were negative over the CEC, indicating that the anomalously high 

(low) PM2.5 concentrations corresponded to the abnormally low (high) 850-hPa height 

field (Fig. 4a). The low (high) pressure center in the northwestern region of THB was 

conducive to the accumulation (removal) of surface PM2.5 in the THB (Fig. 4a). The 

southerly winds block the vertical diffusion of pollutants, prone to local air pollutant 

accumulation and chemical transformation, which was similar to the heavy pollution in 

the Sichuan Basin of southwest China induced by the low-value system of the 

Southwest Vortex (Ning et al., 2018).  

The correlation coefficients between the second-mode time coefficients and the 

850-hPa height field were positive (Fig. 4b), suggesting that the heavy pollution in the 

THB was controlled with the high-pressure system with the obvious anticyclonic 

circulation and the significant downdrafts (the correlation coefficient of 850-hPa 

vertical velocity field is positive) at 850-hPa (Fig. 4b), which inhibited the vertical 

spread of air pollutants, strengthening the cumulative air pollution in the near-surface 

layer. This mechanism was also reported as a typical synoptic circulation for heavy 

PM2.5 pollution in central China (Yan et al., 2021).  

 

 

Figure 4. Spatial distribution of correlations of the time coefficients of (a) first mode, 

(b) second mode and (c) third mode respectively with the 850-hPa geopotential height 

(a) (b) (c) 

0.7 
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(black contour lines), vertical velocity (color contours) and winds (vectors) in January 

of 2015-2019. The critical correlation coefficient at the 95% significance test is 0.158. 

 

In the third mode, the heavy pollution in the THB is controlled by the bottom of 

the high pressure over CEC (Fig. 4c and Fig. 5), and the obvious northeasterly airflows 

at 850 hPa (Fig. 4c) as well as the upraised boundary layer, and near-surface anomalous 

northerly winds (Fig. 5), which was a typical pattern of synoptic circulation for regional 

transport of PM2.5 over north to central China (Yu et al. 2020). This circulation condition 

could drive air pollutants from the source areas of North China to the downwind THB. 

The meteorological mechanism of regional transport of air pollutants was studied in the 

following sections. 

 

 

Figure 5. Spatial distribution of correlations of daily changes of the third-mode time 

coefficients respectively with the SLP (black contour lines), atmospheric boundary 

layer height (color contours) and 10-m wind vectors in January of 2015-2019. The 

critical correlation coefficient at the 95% significance test is 0.158, and the THB is 

roughly outlined with green lines. 
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[Though the authors use several datasets and tools from the surface, reanalysis, and 

model simulations, the lack of information above basic aspects does not allow me to be 

positive. As such, in the current form, this manuscript requires substantial revision in 

terms of its readability and usefulness for a wide range of audiences of this journal. 

Hence I recommend rejection of the manuscript.] 

Response 4: Following the referee’s comments, we have made the substantial revisions 

with adding the information of data and methods including description of 

meteorological and environmental data as well as the introduction of decomposition of 

multi-variable empirical orthogonal function (MV-EOF) in terms of its readability and 

usefulness for a wide range of audiences of this journal. 

 

Minor Comments: 

[1. Line 62 to 66, The sentence may be shortened.] 

Response 5: In the revised manuscript, we have shortened the sentence as follows: 

“Regional transport of air pollutants is an important issue in atmospheric environmental 

prevention (Wu et al., 2013b; Owen et al., 2006; Miao et al., 2017; Kozáková et al., 

2019; Lu et al., 2019a).” 

 

[2. Line 73, in in is repeated.] 

Response 6: one “in” has been removed. 

 

[3. Line 76, What is meant by excessive anthropogenic emissions? Is there any specific 

emission relevant only for winter that does not exist during other periods?] 
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Response 7: We have deleted the sentence with “excessive emissions of air pollution” 

to avoid the misleading. 

 

[4. Most sentences are excessively long to understand. An English correction may help 

improve the readability of the manuscript.] 

Response 8: With the help of English Language editing service, the English witting 

errors including incorrect grammar, confusing wording and inappropriate expression 

have been substantially revised to improve the readability of the manuscript. 

 

[5. The authors need to explain where the study region is using a map. The area shown 

in the map is a huge region over China spread over tens of degrees across. It will be 

better to name the regions in a map for the reader’s benefit.] 

Response 9: Thank for the referee’s suggestion. We have accordingly outlined the 

study area: 

 

(a) 
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Figure 1. (a) The distribution of surface PM2.5 concentrations (color contours, unit: μg 

m-3) and 10-m wind field (vectors, unit: m s-1) in CEC averaged during January of 2015-

2019, (b) the geographical regions of China, and (c) the geographical distribution of 31 

observation sites (dots) in the THB outlined with the red line, and the color contours 

representing the terrain height above sea level (unit: m), the red dot for Wuhan Station, 

and the blue dot for Changsha Station. 

 

[6. Somehow, the periods of peak pollution are similar over the years (early and late 

part of January) with a bi/tri-weekly separation between them. Is there any specific 

reason for this?] 

Response 10: Thanks for referee’s suggestion. A a biweekly separation between the 

periods of peak pollution in the THB could be resulted from the oscillation of cold air 

invasion in CEC. The atmospheric quasi-biweekly oscillation provides favorable 

conditions for the persistence of air pollution over the BTH region in winter. During 

the heavy PM2.5 pollution events, the quasi-biweekly southerly anomalies prevail 

persistently over eastern China (Gao et al.,2020). 

 

(b) (c) 
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[7. In section 3, local conditions leading to high pollution are mentioned. Are these not 

meteorological conditions? Perhaps, it may be mentioned as local and regional or 

large-scale meteorology.] 

Response 11: In the revised manuscript, it has been corrected with “Under stagnant 

meteorological conditions with local weak winds, strong and thick temperature 

inversion layers, sinking motion and low mixing layer heights are unfavourable for the 

diffusion of air pollutants for the formation of heavy air pollution.” 

 

[8. In line 215, there is a mention of the use of data from 31 urban monitoring stations. 

It will be better if a table is provided with all datasets used in the study with their source, 

frequency, and time periods.] 

Response 12: In the revised manuscript, we have provided all datasets used in the study 

with their source, frequency, and time periods.  

 

[9. In Figure 2b, how much of the variance is explained by the mode shown?] 

Response 13: In the revised section 3.1 Analysis of modal results of MV-EOF 

decomposition, we have estimated the variance contribution rates of the first three 

modes 28.2%, 16.0%, and 12.0%, respectively, and the cumulative variance reaches 

56.2%, all of which have passed the North test, indicating that the first three modes are 

independent of each other and can be clearly distinguished from other modes. 

 

[10. Selection of peak pollution events along with the time coefficient must be shown in 

figure 2 to identify the events.] 
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Response 14: Following the referee’s suggestion, we have added the new Fig. 6 to 

identify the typical events. 

 

Figure 6. Daily changes of the standardized third-mode time coefficients PC3 in the 

THB in January of 2015-2019 with the red triangles representing the 8 peak pollution 

days with regional PM2.5 transport selected based on the standardized PC3 exceeding 

1.7 （black dot line）. 

 

[11. Since the peak episodes are few in number, is it possible to show each of the 

episodes for their PM2.5 spatial patterns along with the circulation patterns (as sub-

panels)? This will allow us to know whether the patterns are similar or dissimilar for 

each episode.] 

Response 15: Following the referee’s suggestion, Figure S1 showed the spatial 

distributions of PM2.5 concentration and 10-m wind field at the 8 peak pollution days  

with regional PM2.5 transport over CEC.  
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Figure S1. Spatial distribution of daily mean PM2.5 concentrations (unit: μg m-3) and 

10m wind vectors (unit: m s-1) in central and eastern China (CEC) at 8 typical regional 

PM2.5 transport days in the THB, which is roughly outlined with the black lines. 

 

[12. Use similar color bars and arrow lengths (Fig.3) so that comparison becomes 

easier.] 

Response 16: In the revised manuscript, we have redrawn the Figures with similar color 

bars and same arrow lengths. 

 

[13. Figure 4 corresponds to nationwide station data or reanalysis?] 
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Response 17: The revised Figure 8 (Figure 4 of the previous version) corresponded to 

nationwide station data. 

 

[14. If showing from reanalysis, anomalies with respect the climatology will show a 

better pattern with slowing winds/lower or higher temperature over the large domain. 

It appears 4a corresponds to actual winds and 4b corresponds to anomalies in temp or 

are both anomalies.] 

Response 18: The Figure 8 (Figure 4 in the previous version) corresponded to 

nationwide station data.  

[ 15. In Fig. 8, it is seen that the topographic features are avoided to a large extent. 

However, will the 1000 Mb level correspond to the surface? If possible, the temperature 

below the surface should be avoided when showing such plots.] 

Response 19: In the revised manuscript, we have accordingly modified the Figure as 

followings: 

 

 

Figure 10. The meridional vertical cross-section (averaged over 112.25°E -113°E) of 

wind streamlines with vertical components multiplied by 10, anomalies of air 
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temperature (color contours, unit:℃) and wind speed (green contour lines, unit: m s-1). 

The wind streamlines are averaged for 8 days of transport-type PM2.5 heavy pollution 

(Table 1) and the anomalies of air temperature and wind speed are calculated with the 

differences between the 8-day averages of transport-type PM2.5 heavy pollution (Table 

1) and the monthly mean in January of 2015-2019 based on the ERA-Interim daily data, 

and the THB topography is marked with the black shadow. 

 

[ 16. Figure 9, sounding profiles could be shown along with climatology or the 

difference with respect to climatology similar to Fig. 10. This will clearly show the 

features during the pollution episodes. This will also validate/provide confidence in the 

reanalysis in case of any bias.] 

Response 20: Following the referee’s suggestion, we have modified the Figure as 

follows: 

 

Figure 11. Vertical profiles of air temperature (dot lines) and anomalies (triangle lines) 

from sounding radiosonde observations at (a) Wuhan Station and (b) Changsha Station. 

All the profiles are averaged for 8 days of transport-type PM2.5 peak pollution (Table 1) 

with the anomalies relative to the monthly mean in January of 2015-2019.  
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Figure S3. Vertical profiles of wind speed (dot lines) and anomalies (triangle lines) 

from sounding radiosonde observations at (a) Wuhan Station and (b) Changsha Station. 

All the profiles are averaged for 8 days of transport-type PM2.5 peak pollution (Table 1) 

with the anomalies relative to the monthly mean in January of 2015-2019. 

 

[ 17. Section 5 appears to me as an avoidable addition to the overall flow of the 

manuscript. Even removing this section may not affect the overall discussion of the 

paper.] 

Response 21: Following the referee’s suggestion, we have removed this section in the 

revised manuscript. 

 

[ 18. Section 5.2 details about WRF-Chem could be included in the data section.] 

Response 22: We have removed this sections about WRF-Chem in the revised 

manuscript. 

 

[ 19. Figures 8 and 13 could have a similar latitudinal spread so that the simulation 

could be compared with reanalysis easily. The simulations don’t compare with 
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reanalysis according to this figure (perhaps, due to the different time periods, but could 

be checked with the exact period)] 

Response 23: In the revised manuscript, we deleted the figures following the referee’s 

comments.  

 

[20. I find that the manuscript is most China-centric with no reference to the many 

important and interesting similar studies carried out elsewhere. This could be included 

in the future for completeness.] 

Response 24: Many thanks for referee’s comments. In the revised manuscript, we have 

accordingly taken other international studies with literature cited in the paper into 

account as follows: 

Regional transport of air pollutants is an important issue in atmospheric 

environment (Mayer, 1999; Jacobson, 2001; Kim et al., 2015; Singh et al., 2017; Crippa 

et al., 2018). Air pollution has become a public concern on atmospheric environment 

(Zhao et al., 2013; Chowdhury et al., 2018, 2019; Kanawade et al., 2019). The synoptic 

circulations exert an important impact on air pollutant transport (Hegarty et al., 2007; 

Demuzere et al., 2009; Russo et al., 2014; Pope et al., 2015; Bei et al., 2016; Yue et al., 

2016). Biomass burning over the source region (i.e., northern Indochina) coincided with 

weak westerly system over the northern South China Sea, and the aerosols were 

transported to downwind regions by a cold front and low-level jet (LLJ) (Huang et al., 

2020b). Exports of air pollutants from the North American boundary were the result of 

eastward advection over the ocean and transport in a weak warm conveyor belt airflow 

(Owen et al., 2006). The transport of air pollutants under the control of cold front 

system has a significant effect on air quality (Fuelberg et al., 2007; Xu et al., 2016b; 

Kang et al., 2019). Good air quality often occurs under cyclonic conditions, while poor 

air quality is frequently associated with anticyclonic conditions (Russo et al., 2014; 

Pope et al., 2015; Santurtún et al., 2015). The long-range transport of polluted air 
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masses from the North China Plain is the main factor for the sharp increases of PM2.5 

concentrations in central China (Lu et al., 2017, 2019b; Li et al., 2019b). Fine 

particulates can be regionally transported over a long distance with obvious trans-

boundary transport, exerting an important effect on air pollution (Kim et al., 2012; 

Khuzestani et al., 2017; Li et al., 2019c; Yuan et al., 2019). 

 

 


