

1 **Measurement report: PM_{2.5}-bound nitrated aromatic compounds in Xi'an,**
2 **Northwest China: Seasonal variations and contributions to optical properties of**
3 **brown carbon**

4

5 Wei Yuan^{1,6}, Ru-Jin Huang^{1,2}, Lu Yang¹, Ting Wang^{1,6}, Jing Duan^{1,6}, Jie Guo¹, Haiyan Ni^{1,7},
6 Yang Chen³, Qi Chen⁴, Yongjie Li⁵, Ulrike Dusek⁷, Colin O'Dowd⁸, Thorsten Hoffmann⁹

7

8 ¹State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary
9 Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of
10 Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China

11 ²Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China

12 ³Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences,
13 Chongqing 400714, China

14 ⁴State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of
15 Environmental Sciences and Engineering, Peking University, Beijing 100871, China

16 ⁵Department of Civil and Environmental Engineering, Faculty of Science and Technology,
17 University of Macau, Taipa, Macau SAR 999078, China

18 ⁶University of Chinese Academy of Sciences, Beijing 100049, China

19 ⁷Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen
20 (ESRIG), University of Groningen, 9747 AG, The Netherlands

21 ⁸School of Physics and Centre for Climate and Air Pollution Studies, Ryan Institute, National
22 University of Ireland Galway, University Road, Galway H91CF50, Ireland

23 ⁹Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University Mainz,
24 Duesbergweg 10–14, 55128 Mainz, Germany

25 *Correspondence to:* Ru-Jin Huang (rujin.huang@ieecas.cn)

26

27

28 **Abstract**

29 Nitrated aromatic compounds (NACs) are a group of key chromophores for brown
30 carbon aerosol (light absorbing organic carbon, i.e., BrC), which affects radiative forcing. The
31 chemical composition and sources of NACs and their contributions to BrC absorption,
32 however, are still not well understood. In this study, PM_{2.5}-bound NACs in Xi'an, Northwest
33 China, were investigated for 112 daily PM_{2.5} filter samples from 2015 to 2016. Both the total
34 concentrations and contributions from individual species of NACs show distinct seasonal
35 variations. The seasonally averaged concentrations of NACs are 2.1 (spring), 1.1 (summer),
36 12.9 (fall), and 56.3 ng m⁻³ (winter). Thereinto, 4-nitrophenol is the major NAC component in
37 spring (58%). The concentrations of 5-nitrosalicylic acid and 4-nitrophenol dominate in
38 summer (70%), and the concentrations of 4-nitrocatechol and 4-nitrophenol dominate in fall
39 (58%) and winter (55%). The NAC species show different seasonal patterns in concentrations,
40 indicating differences in emissions and formation pathways. Source apportionment results
41 using positive matrix factorization (PMF) further show large seasonal differences in the
42 sources of NACs. Specifically, in summer, NACs were highly influenced by secondary
43 formation and vehicle emissions (~80%), while in winter, biomass burning and coal
44 combustion contributed the most (~75%). Furthermore, the light absorption contributions of
45 NACs to BrC are wavelength dependent and vary greatly by seasons, with maximum
46 contributions at ~330 nm in winter and fall and ~320 nm in summer and spring. The
47 differences in the contribution to light absorption are associated with the higher mass
48 fractions of 4-nitrocatechol ($\lambda_{\max}=345$ nm) and 4-nitrophenol ($\lambda_{\max}=310$ nm) in fall and winter,
49 4-nitrophenol in spring, and 5-nitrosalicylic acid ($\lambda_{\max}=315$ nm) and 4-nitrophenol in summer.
50 The mean contributions of NACs to BrC light absorption at the wavelength of 365 nm in
51 different seasons are 0.14% (spring), 0.09% (summer), 0.36% (fall) and 0.91% (winter),
52 which are about 6-9 times higher than their mass fractional contributions of carbon in total
53 organic carbon. Our results indicate that the composition and sources of NACs have profound
54 impacts on the BrC light absorption.

56 **1 Introduction**

57 Brown carbon (BrC) aerosol has received growing attention over the past years, because
58 it can affect the atmospheric radiation balance and air quality through absorption of solar
59 radiation in the near ultraviolet and visible range (Feng et al., 2013; Laskin et al., 2015;
60 Zhang et al., 2017; Ma et al., 2018; Ma et al., 2019). Nitrated aromatic compounds (NACs)
61 belong to a major group of BrC chromophores. They are ubiquitous in the atmosphere and
62 have been detected in cloud water (Desyaterik et al., 2013), rainwater (Schummer et al., 2009),
63 fog water (Richartz et al., 1990), snow water (Vanni et al., 2001), as well as in gas and
64 particle phases (Cecinato et al., 2005; Zhang et al., 2013; Chow et al., 2015; Al-Naiema and
65 Stone, 2017). Field studies have shown that ~4% of BrC light absorption at 370 nm is
66 contributed by ~~the~~ these measured NACs (Zhang et al., 2013; Mohr et al., 2013; Teich et al.,
67 2017; X. Li et al., 2020). For example, Zhang et al. (2013) estimated the contribution of
68 NACs to BrC light absorption of ~4% in the Los Angeles Basin. Mohr et al. (2013) calculated
69 the contribution of NACs to BrC light absorption of about 4% in Detling, United Kingdom.
70 Teich et al. (2017) investigated the contribution of NACs to BrC light absorption during six
71 campaigns of 0.02-4.41% for acidic conditions and 0.02-9.86% for alkaline conditions. X. Li
72 et al. (2020) estimated the contribution of NACs to BrC light absorption in Beijing of
73 0.28-3.44% in fall and 1.03-6.49% in winter. In addition, with molecular structures commonly
74 containing nitro (-NO₂) and hydroxyl (-OH) functional groups on the aromatic ring, NACs are
75 harmful to human health (Taneda et al., 2004). For example, NACs can interact with DNA
76 and cause mutagenesis (Purohit and Basu, 2000; Ju and Parales, 2010). NACs can also
77 damage cells, resulting in cell degeneration and canceration (Kovacic and Somanathan, 2014).
78 There is also evidence that NACs affect plant growth and contributed to forest decline (Hinkel
79 et al., 1989; Natangelo et al., 1999). The significant role of NACs in the atmosphere and their
80 adverse effects on ecosystems call for studies to investigate their sources and characteristics.

81 NACs in atmospheric aerosol can be derived from primary emissions, including biomass
82 burning (Wang et al., 2017; Teich et al., 2017; Lin et al., 2018), coal combustion (Olson et al.,
83 2015; Lu et al., 2019a), and vehicle exhausts (Taneda et al., 2004; Inomata et al., 2013;
84 Perrone et al., 2014; Lu et al., 2019b). The emission factors of NACs from biomass burning
85 can be over 10 mg kg⁻¹ (Wang et al., 2017), which makes them good tracers of biomass

86 burning organic aerosol (BBOA) (Hoffmann et al., 2007; Iinuma et al., 2010). Lu et al.
87 (2019a) determined that the emission factors of fine particulate NACs for residential coal
88 combustion ~~were~~ was 0.2-10.1 mg kg⁻¹ and the total NAC emission from residential coal
89 burning was nearly 200 Mg in China in 2016. NACs from vehicle exhaust also have been
90 detected, with emission factors of up to 26.7 µg km⁻¹ (Lu et al., 2019b). Secondary formation
91 from various atmospheric reactions is also an important source of NACs. For example,
92 photochemical oxidation of benzene, toluene (Wang et al., 2019), and *m*-cresol (Iinuma et al.,
93 2010) can form certain NACs. NACs can also form in aerosol or cloud water through
94 aqueous-phase reactions (Vione et al., 2001, 2005), for example, photonitration of guaiacol in
95 the aqueous phase (Kitanovski et al., 2014). However, little is known about the importance of
96 primary versus secondary sources for particle-bound NACs because speciation of NACs and
97 quantification of their sources are still very limited so far.

98 Speciation of particle-bound NACs was mostly performed in Europe (Cecinato et al.,
99 2005; Iinuma et al., 2010; Delhomme et al., 2010; Mohr et al., 2013; Kahnt et al., 2013), and
100 ~~is~~ still very scarce in Asia (Chow et al., 2015; Wang et al., 2018; Ikemori et al., 2019). In
101 general, the average concentrations of measured NACs vary from less than one to dozens of
102 ng m⁻³ in different seasons and regions. As far as we know, only one study has quantified the
103 sources of NACs with a positive matrix factorization (PMF) receptor model (Wang et al.,
104 2018). Here, we carried out chemical analyses together with light absorption for PM_{2.5}
105 samples collected in Xi'an to: 1) investigate the seasonal variations in the concentration of
106 NACs and contributions of individual species; 2) quantify the sources of NACs in different
107 seasons based on ~~the~~ PMF model; and 3) evaluate the optical properties of NACs and their
108 contributions to BrC light absorption.

109 **2 Experiments and methods**

110 **2.1 Aerosol sampling**

111 24 h-integrated PM_{2.5} samples were collected in four seasons from November 2015 to
112 November 2016 (i.e., from 30 November to 31 December 2015 for winter; 19 April to 19 May
113 2016 for spring; 1 to 31 July 2016 for summer; and 9 October to 15 November 2016 for fall)

114 in the campus of the Institute of Earth Environment, Chinese Academy of Sciences (IEECAS,
115 34.22°N, 109.01°E) in Xi'an, China. The sampling site is an urban background site
116 surrounded by residential areas and has no obvious industrial activities. A total of 112 samples
117 were collected on pre-baked (780 °C, 3 h) quartz-fiber filters (20.3 × 25.4 cm, Whatman,
118 QM-A, Clifton, NJ, USA) by a Hi-Vol PM_{2.5} sampler (Tisch, Cleveland, OH) operating at
119 1.05 m³ min⁻¹. The filter samples were stored at -20 °C until laboratory analysis.

120 **2.2 Chemical analysis**

121 The concentration of organic carbon (OC) was measured by a Thermal/Optical Carbon
122 Analyzer (DRI, Model 2001, Atmoslytic Inc., Calabasas, CA, USA) with the IMPROVE-A
123 protocol (Chow et al., 2011). Ten NACs and 19 organic markers (see Table S1) were
124 quantified by a gas chromatograph-mass spectrometer (GC-MS) using a well-established
125 approach (e.g., Wang et al., 2006; Al-Naiema and Stone, 2017) and the details are described in
126 Yuan et al., (2020). At least one blank filter sample was analyzed~~measured~~ for every ten
127 ambient samples. Baseline separation with symmetrical peak shapes was achieved for the
128 measured NACs (Fig. 1). The linear ranges, instrument detection limit (IDL), instrument
129 quantitation limit (IQL), extraction efficiency, and regression coefficients for the measured
130 NACs are shown in Table S2. The response of calibration curves for the NACs was linear (R^2
131 ≥ 0.995) from 10 to 5000 $\mu\text{g L}^{-1}$. The IDL ranged from 2 $\mu\text{g L}^{-1}$ to 20 $\mu\text{g L}^{-1}$ except for
132 5-nitrosalicylic acid (5352.6 $\mu\text{g L}^{-1}$). The IQL ranged from below 10 $\mu\text{g L}^{-1}$ to 70 $\mu\text{g L}^{-1}$
133 except for 5-nitrosalicylic acid ($> 100 \mu\text{g L}^{-1}$). The IDL and IQL are comparable to those in
134 Al-Naiema and Stone (2017) (2.7-14.9 $\mu\text{g L}^{-1}$ for IDL and 8.8-5049.5 $\mu\text{g L}^{-1}$ for IQL) and are
135 sufficient for the quantification of our samples.

136 **2.3 Light absorption of NACs**

137 AThe UV-Vis spectrophotometer equipped with a Liquid Waveguide Capillary Cell
138 (LWCC-3100, World Precision Instrument, Sarasota, FL, USA) was used to measure the light
139 absorption of methanol-soluble BrC and NAC standards, following the method established by
140 Hecobian et al. (2010). The absorption coefficient (Abs_{λ} : M m^{-1}) can be obtained from the
141 measured absorption data by equation (1):

142
$$Abs_{\lambda} = (A_{\lambda} - A_{700}) \frac{V_l}{V_a \times L} \ln(10) \quad (1)$$

143 where A_{700} is the absorption at 700 nm used to correct for baseline drift, V_l is the volume of
 144 methanol used for extracting the filter, V_a is the volume of sampled air, L is 0.94 m for the
 145 optical path length used in the LWCC, and $\ln(10)$ is used to convert the absorption coefficient
 146 from log base-10 to natural logarithm.

147 The mass absorption efficiency (MAE: $\text{m}^2 \text{ g}^{-1}$) of NAC standards in the methanol solvent
 148 at wavelength of λ can be calculated as Laskin et al. (2015):

149
$$MAE_{NAC,\lambda} = \frac{A_{\lambda} - A_{700}}{L \times C} \ln(10) \quad (2)$$

150 where C ($\mu\text{g mL}^{-1}$) is the concentration of the NAC standards in the methanol solvent.

151 The light absorption contribution of NACs to BrC at wavelength of λ ($Cont_{NAC/BrC,\lambda}$) can
 152 be obtained using equation (3).

153
$$Cont_{NAC/BrC,\lambda} = \frac{MAE_{NAC,\lambda} \times C_{NAC}}{Abs_{BrC,\lambda}} \quad (3)$$

154 where the C_{NAC} ($\mu\text{g m}^{-3}$) is the atmospheric concentration of NACs and the $Abs_{BrC,\lambda}$ is the Abs
 155 of BrC at wavelength of λ .

156 **2.4 Source apportionment**

157 The sources of the NACs ~~were~~ was resolved by the PMF receptor model, which was
 158 performed by the multilinear engine (ME-2; Paatero, 1997) through the Source Finder (SoFi)
 159 interface encoded in Igor Wavemetrics (Canonaco et al., 2013). The input species include five
 160 to ten NACs (as the number of NACs detected varies among seasons) and nineteen additional
 161 organic tracer species (see Table S1), with uncertainties (RSD) < 10%. These include phthalic
 162 acid for secondary formation, picene for coal combustion, hopanes for vehicle emission,
 163 fluoranthene, pyrene, chrysene, benzo(a)pyrene, benzo(a)anthracene, benzo(k)fluoranthene,
 164 benzo(b)fluoranthene, benzo(ghi)perylene, and indeno[1,2,3-cd]pyrene for combustion
 165 emission, and vanillin, vanillic acid, syringyl acetone, and levoglucosan for biomass burning.
 166 To separate the source profiles clearly, the contribution of those markers unrelated to a certain
 167 source was set to 0 in the respective source profile (see Table S3).

168 To better understand the source origins of the NACs, air mass origins during the
 169 sampling period were derived from backward-trajectory analysis. This method was used in

170 trajectory clustering based on the GIS-based software-TrajStat (Wang et al., 2009). The
171 archived meteorological data was obtained from the National Center for Environmental
172 Prediction's Global Data Assimilation System (GDAS). According to the lifetimes of [the](#)
173 different secondary species (Wojcik and Chang, 1997; Chow et al., 2015), in this study, 72-h
174 backward trajectories terminated at a height of 500 m above ground level were calculated
175 during the study period. The trajectories were calculated every 12 h with [start](#)ing times at
176 09:00 and 21:00 local time.

177 **3 Results and discussion**

178 **3.1 Seasonal variations of NAC composition**

179 The concentrations of [the](#) NACs show clear seasonal differences, with the highest mean
180 values in winter, followed by fall, spring, and summer (see Fig. 2). The concentration ranges
181 of total NACs were 1.4-3.4 ng m⁻³ (spring), 0.1-3.8 ng m⁻³ (summer), 1.6-44.2 ng m⁻³ (fall),
182 and 20.2-127.4 ng m⁻³ (winter). The average concentrations were 2.1 ± 0.6 ng m⁻³, 1.1 ± 0.8
183 ng m⁻³, 12.9 ± 11.6 ng m⁻³ and 56.3 ± 23.2 ng m⁻³, respectively (see Table S4). Nitrophenols
184 (4-nitrophenol, 2-methyl-4-nitrophenol, 3-methyl-4-nitrophenol, 2,6-dimethyl-4-nitrophenol)
185 and nitrocatechols (4-nitrocatechol, 3-methyl-5-nitrocatechol, 4-methyl-5-nitrocatechol) show
186 the highest concentrations in winter and the lowest in summer, while nitrosalicylic acids
187 (3-nitrosalicylic acid, 5-nitrosalicylic acid) show the highest concentrations in winter and the
188 lowest in spring. The average ratios between wintertime and summertime concentrations are a
189 factor of about 40 for nitrophenols, 175 for nitrocatechols, and 21 for nitrosalicylic acids. The
190 large seasonal differences in NAC concentrations might be due to the differences in sources,
191 emission strength and atmospheric formation processes, as discussed below. Table 1
192 summarizes the NAC concentrations measured in this study together with those measured in
193 Europe, the USA and other places in Asia. In general, the NAC concentrations in winter are
194 higher than those in summer, and the observed concentrations of different species are higher
195 in Asia than in Europe and the USA. The only exception is a study in Ljubljana, Slovenia,
196 which shows that in winter nitrocatechol concentrations are higher than those in Asia, likely
197 due to strong biomass burning activities (Kitanovski et al., 2012). The elevated concentrations

198 of NACs in Asia suggest that NACs may have a significant impact on regional climate and air
199 quality in Asia due to ~~theirs~~ optical and chemical characteristics, as discussed below.

200 Among all measured NACs, 4-nitrophenol, 2-methyl-4-nitrophenol,
201 3-methyl-4-nitrophenol, 4-nitrocatechol and 5-nitrosalicylic acid were detected in four
202 seasons, 3-methyl-5-nitrocatechol and 4-methyl-5-nitrocatechol in fall and winter,
203 2,6-dimethyl-4-nitrophenol, 3-nitrosalicylic acid and 4-nitro-1-naphthol only in winter, as
204 shown in Fig. 3a. In general, 4-nitrophenol and 4-nitrocatechol had elevated concentrations in
205 all seasons, which is consistent with other observations (Chow et al., 2015; Ikemori et al.,
206 2019) and might be related to their larger emissions or formation and longer atmospheric
207 lifetime than other NACs (Harrison et al., 2005; Chow et al., 2015; Finewax et al., 2018;
208 Wang et al., 2019; Lu et al., 2019a). For example, Lu et al. (2019a) measured the emission of
209 NACs from coal combustion and found~~ed~~ that the emission factors of 4-nitrocatechol
210 ~~were~~was about 1.5-6 times higher than ~~those of~~ other NAC~~s~~. Wang et al. (2019) quantified the
211 concentrations~~s~~ of 4-nitrophenol and 4-nitrocatechol formed under high NO_x and
212 anthropogenic VOC conditions, and found that they are~~which is~~ about 3-7 times higher than
213 ~~those of~~ other NAC~~s~~. The concentration of 2-methyl-4-nitrophenol was higher than that of
214 3-methyl-4-nitrophenol in all seasons, which is similar to previous studies (Kitanovski et al.,
215 2012; Chow et al., 2015; Teich et al., 2017; Ikemori et al., 2019) and likely due to the efficient
216 formation of 2-methyl-4-nitrophenol from photochemical oxidation of volatile organic
217 compounds (VOCs) in the presence of NO₂ (Lin et al., 2015; Wang et al., 2019). It should be
218 noted that the contribution of 5-nitrosalicylic acid (27%) to total NAC mass in summer is
219 much higher than ~~that~~ in other seasons (4%-13%), suggesting that 5-nitrosalicylic acid is
220 mainly produced by secondary formation, for example, through nitration of salicylic acid (M.
221 Li et al., 2020) and, photochemical oxidation of toluene in the presence of NO_x (Jang and
222 Kamens, 2001; Wang et al., 2018).

223 **3.2 Sources of NACs**

224 Correlation analysis was conducted among ~~the~~ NACs measured in this study (Table S5).
225 The four nitrophenols were positively correlated with each other ($r^2 = 0.52-0.98$) and the three
226 nitrocatechols were also highly correlated with each other ($r^2 = 0.94-0.96$), indicating that ~~the~~

227 different nitrophenols and nitrocatechols might have similar sources or origins. Previous
228 studies showed that 4-nitrophenol was mainly from primary emission of biomass burning
229 (Wang et al., 2017), and 3-methyl-5-nitrocatechol and 4-methyl-5-nitrocatechol were
230 identified as secondary products from biomass burning (Inuma et al., 2010). Positive
231 correlations were also observed between nitrophenols and nitrocatechols ($r^2 = 0.59-0.90$),
232 suggesting that they were partly of similar sources or formation processes. For example, both
233 nitrophenols and nitrocatechols can be emitted through biomass burning (Wang et al., 2017)
234 and coal combustion (Lu et al., 2019a) and can be formed by photochemical oxidation of
235 VOCs in the presence of NO_2 (Wang et al., 2019). However, for nitrosalicylic acids, the
236 correlation between 3-nitrosalicylic acid and 5-nitrosalicylic acid was weak ($r^2 = 0.29$). This
237 is because 5-nitrosalicylic acid is mainly from secondary formation by nitration of salicylic
238 acids, while 3-nitrosalicylic acid is mainly from combustion emission (Wang et al., 2017; M.
239 Li et al., 2020). The correlations ~~of between~~ nitrosalicylic acids with nitrophenols ($r^2 =$
240 $0.01-0.13$) and with nitrocatechols ($r^2 = 0.04-0.25$) were also weak, suggesting that they may
241 have different sources or formation processes. Nitrosalicylic acids were dominated by
242 5-nitrosalicylic acids, which ~~are is~~ mainly from secondary formation (Andreozzi et al., 2006;
243 Wang et al., 2018). On the other hand, nitrophenols and nitrocatechols were dominated by
244 4-nitrophenol and 4-nitrocatechol, respectively, which are mainly from primary emissions
245 (Wang et al., 2017; Lu et al., 2019a).

246 To identify and quantify the sources of ~~the~~ NACs observed in Xi'an, the PMF model was
247 employed and four major factors were resolved with uncertainties $< 15\%$. The factor profiles
248 are shown in Fig. S1. The first factor, vehicle emission, characterized by high levels of
249 hopanes, shows large relative contributions to NACs in spring and summer. Direct traffic
250 emissions of NACs have also been verified in laboratory studies (Tremp et al., 1993; Perrone
251 et al., 2014). The second factor is considered to be coal combustion for residential heating and
252 cooking, which is characterized ~~by with~~ the higher loadings of picene, benzo(a)pyrene,
253 benzo(b)fluoranthene, benzo(k)fluoranthene, indeno[1,2,3-cd]pyrene, and
254 benzo(ghi)perylene. This factor accounted for $\sim 40\%$ of the NACs in winter. The emission of
255 NACs from coal combustion for residential usage was reported by Lu et al. (2019a), which

256 showed emission factors of 0.2 to 10.1 mg kg⁻¹. It is worth noting that with the emission
257 control of residential coal burning after 2017, the contribution feature of coal burning to
258 NACs could be different. The third source is identified as secondary formation because of the
259 highest level of phthalic acid and its highest contribution in summer. The formation of
260 secondary NACs is also supported by both field and modeling studies (Harrison et al., 2005;
261 Iinuma et al., 2010; Yuan et al., 2016). The last source factor, with high loadings of
262 levoglucosan, vanillic acid, vanillin and syringyl acetone, was identified as biomass burning,
263 which has higher contributions in fall and winter. The emission of NACs from biomass
264 burning was reported by field studies, and was considered to be an important source of NACs
265 (Mohr et al., 2013; Lin et al., 2016; Teich et al., 2017).

266 The sources contributions for NACs in Xi'an are shown in Fig. 4, which shows obvious
267 seasonal differences. In spring, vehicular emission (41%) was the main contributor to NACs.
268 Secondary formation (26%) and biomass burning (20%) also contributed significantly. In
269 summer, secondary formation had the highest contribution (45%), which was likely due to
270 enhanced photochemical oxidation leading to the formation of NACs. Besides, vehicular
271 emission also contributed significantly (34%) in summer. In fall, biomass burning (45%)
272 contributed the most, while secondary formation (30%) and vehicular emission (23%) also
273 had significant contributions. In winter, coal burning (39%) and biomass burning (36%) were
274 the main contributors, which can be attributed to emissions from residential heating activities.
275 It is worth noting that the absolute concentrations of NACs attributed by vehicle emission
276 (see Table S6) were higher in winter than those in spring and summer, yet these differences of
277 less than 20 times are not as significant as the differences (spring and summer vs. winter) for
278 NACs attributed by other primary emissions (> 80 times for coal burning and > 40 for
279 biomass burning). These results indicate that anthropogenic primary sources are the main
280 contributors to NACs in Xi'an, suggesting that control of anthropogenic emissions (biomass
281 burning and coal burning) is important for mitigating pollution of NACs in this region.
282 Secondary formation also contributes significantly to NACs, especially in summer. Further
283 comprehensive field studies are necessary for understanding the formation mechanisms of
284 NACs under different atmospheric conditions.

285 **3.3 Backward trajectory analysis of NACs**

286 To reveal the source origins of the NACs, the concentrations of [the](#) NACs were grouped
287 according to their trajectory clusters that represent different air mass origins, as shown in Fig.
288 5. In general, the air masses from local emissions (Cluster 1 in spring and fall and Cluster 2 in
289 summer and winter), which showed the features of small-scale and short-distance air transport,
290 caused significant increases in NAC concentrations. As for regional transport, the air masses
291 from the neighboring Gansu province across Baoji city before arriving at Xi'an presented
292 higher concentrations of NACs in fall and winter (Cluster 2 and Cluster 3, respectively). In
293 addition, air masses from Xinjiang across Gansu caused increased concentrations of NACs in
294 spring and summer (Cluster 2 and Cluster 1, respectively). A small proportion of air masses
295 from the northwest (Cluster 3 in spring and Cluster 1 in winter), the south (Cluster 3 in
296 summer) and the west (Cluster 3 in fall), which showed long or moderate transport patterns,
297 are related to the lowest concentrations of NACs. This may be due to the long-distance
298 transport or relatively clean air from those regions. In the same season, the source origins of
299 air masses were different between clusters, thus causing the difference in concentrations of
300 NACs. However, the composition of NACs was similar between clusters, which is
301 comparable to the results of Chow et al. (2015).

302 **3.4 Light absorption of NACs**

303 The correlations between NAC concentration and $\text{Abs}_{\text{BrC},365}$ for each season are shown in
304 Fig. S2. The correlations are stronger in fall ($r^2 = 0.68$) and winter ($r^2 = 0.63$) compared to
305 those in spring ($r^2 = 0.15$) and summer ($r^2 = 0.40$). These results indicate that NACs are
306 important components of BrC chromophores in fall and winter.

307 Fig. 6 shows the contributions of NACs to BrC light absorption at wavelength from 300
308 to 500 nm ($\text{Abs}_{\text{BrC},300-500}$) as well as the carbon mass contributions of NACs to OC. The
309 contributions of NACs to $\text{Abs}_{\text{BrC},300-500}$ are wavelength dependent and vary largely in different
310 seasons. High contributions at wavelengths of 350-400 nm were observed in fall and winter,
311 but the contributions in spring and summer were mainly at wavelengths shorter than 350 nm.
312 These results may be due to the high proportion of nitrocatechols in fall and winter (see

313 discussion above), which have strong light absorption at wavelength above 350 nm (see Fig.
314 S3). The seasonal average contributions of NACs to $\text{Abs}_{\text{BrC},365}$ were highest in winter ($0.91 \pm$
315 0.30%), followed by fall ($0.36 \pm 0.22\%$), spring ($0.14 \pm 0.04\%$), and summer ($0.09 \pm 0.06\%$)
316 (see Table S4). These contributions ~~are~~were comparable to a previous study where eight
317 NACs were measured (Teich et al., 2017). The contributions of NACs to $\text{Abs}_{\text{BrC},365}$ in winter
318 were about 10 times higher compared to those in summer, which could be due to the high
319 emissions of NACs in winter. Alternatively, enhanced atmospheric oxidizing capacity in the
320 summer can lead to enhanced formation of secondary NACs or the degradation/bleaching of
321 certain NACs (Barsotti et al., 2017; Hems and Abbatt, 2018; Wang et al., 2019) which might
322 eventually reduce the contributions in summer. The fractions of NACs to total OC also show
323 obvious seasonal variation, with average contributions higher in winter ($0.14 \pm 0.05\%$) and
324 fall ($0.05 \pm 0.02\%$) and lower in spring ($0.02 \pm 0.01\%$) and summer ($0.01 \pm 0.01\%$). The
325 contributions of NACs to BrC light absorption at 365 nm are, however, 6-9 times larger than
326 their carbon mass contributions to total OC. Our results echo previous studies that even small
327 amounts of chromophores can have a non-negligible impact on the optical characteristics of
328 BrC due to their disproportional absorption contributions (Mohr et al., 2013; Zhang et al.,
329 2013; Teich et al., 2017; Xie et al., 2017).

330 The daily contributions of the individual NACs to light absorption of total NACs at
331 wavelength of 300-500 nm are shown in Fig. 7. Similar to the concentration fractions in
332 NACs, nitrocatechols were the main contributors in winter and fall with contributions of
333 38-65% and 18-62%, respectively. On the other hand, nitrophenols dominated in spring and
334 summer with contributions of 61-96% and 27-100%, respectively. As for nitrophenols,
335 4-nitrophenol was the most important chromophore, followed by 2-methyl-4-nitrophenol,
336 3-methyl-4-nitrophenol, and 2,6-dimethyl-4-nitrophenol (only observed in winter). As for
337 nitrocatechols, 4-nitrocatechol was the main contributor in all four seasons, while
338 3-methyl-5-nitrocatechol and 4-methyl-5-nitrocatechol also contributed significantly in fall
339 and winter. For nitrosalicylic acids, 5-nitrosalicylic acid contributed in all four seasons but
340 contributed the most in summer, while 3-nitrosalicylic acid was only observed in winter,
341 which could be attributed to their different sources, as discussed above.

342 The seasonal contributions of individual NACs to total light absorption of NACs at
343 wavelength of 365 nm are shown in Fig. 3b. The relative contribution trends of
344 4-nitrophenol > 4-nitrocatechol > 2-methyl-4-nitrophenol > 5-nitrosalicylic acid >
345 3-methyl-4-nitrophenol, 4-nitrophenol > 4-nitrocatechol > 5-nitrosalicylic acid >
346 2-methyl-4-nitrophenol > 3-methyl-4-nitrophenol, 4-nitrocatechol > 4-nitrophenol >
347 4-methyl-5-nitrocatechol > 3-methyl-5-nitrocatechol > 5-nitrosalicylic acid >
348 2-methyl-4-nitrophenol > 3-methyl-4-nitrophenol, and 4-nitrocatechol >
349 4-methyl-5-nitrocatechol > 4-nitrophenol > 3-methyl-5-nitrocatechol >
350 2-methyl-4-nitrophenol > 4-nitro-1-naphthol > 5-nitrosalicylic acid >
351 3-methyl-4-nitrophenol > 3-nitrosalicylic acid > 2,6-dimethyl-4-nitrophenol were observed in
352 spring, summer, fall and winter, respectively. These trends are were different from their
353 concentration fractions in OC, which may be mainly due to the differences in light absorption
354 ability (see Fig. S3). For example, 4-nitrocatechol has lower mass concentration, but higher
355 light absorption contribution, compared to 4-nitrophenol. These results suggest that mere
356 compositional information of NACs might not be directly translated into impacts on optical
357 property, because they have startlingly different absorption properties.

358 **4 Conclusions**

359 In this study, ten individual NAC species were quantified, together with 19 organic
360 markers, in PM_{2.5} in Xi'an, Northwest China. The average concentrations of the NACs were
361 2.1, 1.1, 12.9, and 56.3 ng m⁻³ in spring, summer, fall, and winter, respectively. Higher
362 concentrations of NACs in winter than in summer were also observed in previous studies in
363 Asia, Europe and the USA. Four major sources of NACs were identified in Xi'an based on
364 PMF analysis, including vehicle emission, coal combustion, secondary formation and biomass
365 burning. On average, in spring, vehicular emission (41%) was the main contributor of NACs,
366 and secondary formation (26%) and biomass burning (20%) also had relatively large
367 contributions. In summer, secondary formation contributed the most (45%), which was likely
368 due to the enhanced photochemical formation of secondary NACs that outweighs
369 photo-degradation/bleaching. Besides, vehicular emission (34%) also had a significantly
370 contribution in summer. In fall, biomass burning (45%) contributed the most, and secondary

371 formation (30%) and vehicular emission (23%) also made significant contributions. In winter,
372 coal burning (39%) and biomass burning (36%) contributed the most, which can be attributed
373 to emissions from residential heating activities. Backward trajectory cluster analyses indicate
374 that both regional and local contributions for NACs were significant in Xi'an. Local
375 contributions were 53, 47, 66 and 44% in the four seasons, and regional transport was mainly
376 through the northwest transport channel. The light absorption contributions of NACs to BrC
377 were quantified and also showed large seasonal variations. The seasonal average contributions
378 of total NACs to BrC light absorption at wavelength of 365 nm ranged from 0.1% to 0.9%,
379 which were 6-9 times higher than their carbon mass fractions in total OC. Our results suggest
380 that even a small amount of chromophores can have significant impacts on the optical
381 characteristics of BrC. ~~and more~~ More studies are needed to better understand the seasonal
382 differences in chemical composition and formation processes of NACs and the link with their
383 optical properties.

384

385 *Data availability.* Raw data used in this study are archived at the Institute of Earth
386 Environment, Chinese Academy of Sciences, and are available on request by contacting the
387 corresponding author.

388 *Supplement.* The Supplement related to this article is available online at

389 *Author contributions.* RJH designed the study. Data analysis was done by WY, LY, and RJH.
390 WY, LY and RJH interpreted data, prepared the display items and wrote the manuscript. All
391 authors commented on and discussed the manuscript.

392 *Competing interests.* The authors declare that they have no conflict of interest.

393

394 *Acknowledgements.* This work was supported by the National Natural Science Foundation
395 of China (NSFC) under Grant No. 41877408, 41925015, 91644219, and 41675120, the
396 Chinese Academy of Sciences (no. ZDBS-LY-DQC001, XDB40030202), the National Key
397 Research and Development Program of China (No. 2017YFC0212701), and the Cross

398 Innovative Team fund from the State Key Laboratory of Loess and Quaternary Geology (No.
399 SKLLQGTD1801). Yongjie Li would like to acknowledge financial support from the
400 Multi-Year Research grant (MYRG2017-00044-FST and MYRG2018-00006-FST) from the
401 University of Macau.

402

403 **References**

404 Al-Naiema, I. M. and Stone, E. A.: Evaluation of anthropogenic secondary organic aerosol
405 tracers from aromatic hydrocarbons, *Atmos. Chem. Phys.*, 17, 2053–2065, 2017.

406 Andreozzi, R., Canterino, M., Caprio, V., Di Somma, I., and Sanchirico, R.: Salicylic acid
407 nitration by means of nitric acid/acetic acid system: chemical and kinetic
408 characterization, *Org. Process. Res. Dev.*, 10, 1199–1204, 2006.

409 Barsotti, F., Bartels-Rausch, T., De Laurentiis, E., Ammann, M., Brigante, M., Mailhot, G.,
410 Maurino, V., Minero, C., and Vione, D.: Photochemical formation of nitrite and nitrous
411 acid (HONO) upon irradiation of nitrophenols in aqueous solution and in viscous
412 secondary organic aerosol proxy, *Environ. Sci. Technol.*, 51, 7486–7495, 2017.

413 Canonaco, F., Crippa, M., Slowik, J. G., Baltensperger, U., and Prévôt, A. S. H.: SoFi, an
414 IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2)
415 for the source apportionment: ME-2 application to aerosol mass spectrometer data,
416 *Atmos. Meas. Tech.*, 6, 3649–3661, 2013.

417 Cecinato, A., Di Palo, V., Pomata, D., Tomasi Sciano, M. C., and Possanzini, M.:
418 Measurement of phase-distributed nitrophenols in Rome ambient air, *Chemosphere*, 59,
419 679–683, doi:10.1016/j.chemosphere.2004.10.045, 2005.

420 Chow, J. C., Watson, J. G., Robles, J., Wang, X. L., Chen, L. W. A., Trimble, D. L., Kohl, S.
421 D., Tropp, R. J., and Fung, K. K.: Quality assurance and quality control for
422 thermal/optical analysis of aerosol samples for organic and elemental carbon, *Anal.
423 Bioanal. Chem.*, 401, 3141–3152, 2011.

424 Chow, K. S., Huang, X. H. H., and Yu, J. Z.: Quantification of nitroaromatic compounds in
425 atmospheric fine particulate matter in Hong Kong over 3 years: field measurement

426 evidence for secondary formation derived from biomass burning emissions, Environ.
427 Chem., 13, 665–673, doi:10.1071/EN15174, 2015.

428 Delhomme, O., Morville, S., and Millet, M.: Seasonal and diurnal variations of atmospheric
429 concentrations of phenols and nitrophenols measured in the Strasbourg area, France,
430 Atmos. ~~phere~~ Pollut. ~~ion~~ Res. ~~earch~~, 1, 16–22, doi:10.5094/APR.2010.003, 2010.

431 Desyaterik, Y., Sun, Y., Shen, X., Lee, T., Wang, X., Wang, T., and Collett, J. L.: Speciation of
432 “brown” carbon in cloud water impacted by agricultural biomass burning in eastern
433 China, J. Geophys. Res.-Atmos., 118, 7389–7399, <https://doi.org/10.1002/jgrd.50561>,
434 2013.

435 Feng, Y., Ramanathan, V., and Kotamarthi, V. R.: Brown carbon: a significant atmospheric
436 absorber of solar radiation?, Atmos. Chem. Phys., 13, 8607–8621, 2013.

437 Finewax, Z., de Gouw, J. A., and Ziemann, P. J.: Identification and quantification of
438 4-nitrocatechol formed from OH and NO₃ radical-initiated reactions of catechol in air in
439 the presence of NO_x: implications for secondary organic aerosol formation from biomass
440 burning, Environ. Sci. Technol., 52, 1981–1989, 2018.

441 Harrison, M. A. J., Barra, S., Borghesi, D., Vione, D., Arsene, C., and Olariu, R. I.: Nitrated
442 phenols in the atmosphere: a review, Atmos. Environ., 39, 231–248, 2005.

443 Hecobian, A., Zhang, X., Zheng, M., Frank, N. H., Edgerton, E. S., and Weber, R. J.:
444 Water-soluble organic aerosol material and the light absorption characteristics of
445 aqueous extracts measured over the Southeastern United States, Atmos. Chem. Phys., 10,
446 5965–5977, 2010.

447 Hems, R. F. and Abbatt, J. P. D.: Aqueous phase photo-oxidation of brown carbon
448 nitrophenols: reaction kinetics, mechanism, and evolution of light absorption, ACS Earth
449 Space Chem., 2, 225-234, 2018.

450 Hinkel, M., Reischl, A., Schramm, K.-W., Trautner, F., Reissinger, M., and Hutzinger, O.:
451 Concentration levels of nitrated phenols in conifer needles, Chemosphere, 18,
452 2433–2439, 1989.

453 Hoffmann, D., Iinuma, Y., and Herrmann, H.: Development of a method for fast analysis of
454 phenolic molecular markers in biomass burning particles using high performance liquid

455 chromatography/atmospheric pressure chemical ionisation mass spectrometry, J.
456 Chromatogr. A, 1143, 168–175, doi:10.1016/j.chroma.2007.01.035, 2007.

457 Iinuma, Y., Böge, O., Gräfe, R., and Herrmann, H.: Methyl-nitrocatechols: atmospheric tracer
458 compounds for biomass burning secondary organic aerosols, Environ. Sci. Technol., 44,
459 8453–8459, doi:10.1021/Es102938a, 2010.

460 Ikemori, F., Nakayama, T., and Hasegawa, H.: Characterization and possible sources of
461 nitrated mono- and di-aromatic hydrocarbons containing hydroxyl and/or carboxyl
462 functional groups in ambient particles in Nagoya, Japan, Atmos. Environ., 211, 91–102,
463 2019.

464 Inomata, S., Tanimoto, H., Fujitani, Y., Sekimoto, K., Sato, K., Fushimi, A., Yamada, H., Hori,
465 S., Kumazawa, Y., Shimono, A., and Hikida, T.: On-line measurements of gaseous
466 nitro-organic compounds in diesel vehicle exhaust by proton-transfer-reaction mass
467 spectrometry, Atmos. Environ., 73, 195–203, doi:10.1016/j.atmosenv.2013.03.035, 2013.

468 Jang, M. and Kamens, R. M.: Characterization of secondary aerosol from the photooxidation
469 of toluene in the presence of NO_x and 1-propene, Environ. Sci. Technol., 35, 3626–3639,
470 2001.

471 Ju, K.-S. and Parales, R. E.: Nitroaromatic compounds, from synthesis to biodegradation,
472 Microbiol. Mol. Biol. Rev., 74, 250–272, 2010.

473 Kahnt, A., Behrouzi, S., Vermeylen, R., Safi Shalamzari, M., Vercauteren, J., Roekens, E.,
474 Claeys, M., and Maenhaut, W.: One-year study of nitro-organic compounds and their
475 relation to wood burning in PM₁₀ aerosol from a rural site in Belgium, Atmos. Environ.,
476 81, 561–568, <https://doi.org/10.1016/j.atmosenv.2013.09.041>, 2013.

477 Kitanovski, Z., Grgic, I., Vermeylen, R., Claeys, M., and Maenhaut, W.: Liquid
478 chromatography tandem mass spectrometry method for characterization of
479 monoaromatic nitro-compounds in atmospheric particulate matter, J. Chromatogr. A,
480 1268, 35–43, doi:10.1016/j.chroma.2012.10.021, 2012.

481 Kitanovski, Z., Cusak, A., Grgic', I., and Claeys, M.: Chemical characterization of the main
482 products formed through aqueous-phase photonitration of guaiacol, Atmos. Meas. Tech.,
483 7, 2457–2470, <https://doi.org/10.5194/amt-7-2457-2014>, 2014.

484 Kovacic, P. and Somanathan, R.: Nitroaromatic compounds: environmental toxicity,
485 carcinogenicity, mutagenicity, therapy and mechanism, *J. Appl. Toxicol.*, 34, 810-824,
486 2014.

487 Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of atmospheric brown carbon, *Chem.*
488 *Rev.*, 115, 4335–4382, 2015.

489 Li, M., Wang, X., Lu, C., Li, R., Zhang, J., Dong, S., Yang, L., Xue, L., Chen, J., and Wang,
490 W.: Nitrated phenols and the phenolic precursors in the atmosphere in urban Jinan, China,
491 *Sci. Total Environ.*, 714, 136760, 2020.

492 Li, X., Yang, Y., Liu, S., Zhao, Q., Wang, G., and Wang, Y.: Light absorption properties of
493 brown carbon (BrC) in autumn and winter in Beijing: composition, formation and
494 contribution of nitrated aromatic compounds, *Atmos. Environ.*, 223, 117289, 2020.

495 Lin, P., Liu, J. M., Shilling, J. E., Kathmann, S. M., Laskin, J., and Laskin, A.: Molecular
496 characterization of brown carbon (BrC) chromophores in secondary organic aerosol
497 generated from photo-oxidation of toluene, *Phys. Chem. Chem. Phys.*, 17, 23312–23325,
498 doi:10.1039/C5CP02563J, 2015.

499 Lin, P., Aiona, P. K., Li, Y., Shiraiwa, M., Laskin, J., Nizkorodov, S. A., and Laskin, A.:
500 Molecular characterization of brown carbon in biomass burning aerosol particles,
501 *Environ. Sci. Technol.*, 50, 11815-11824, 2016.

502 Lin, P., Fleming, L. T., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Comprehensive
503 molecular characterization of atmospheric brown carbon by high resolution mass
504 spectrometry with electrospray and atmospheric pressure photoionization, *Anal. Chem.*,
505 90, 12493–12502, 2018.

506 Lu, C., Wang, X., Li, R., Gu, R., Zhang, Y., Li, W., Gao, R., Chen, B., Xue, L., and Wang, W.:
507 Emissions of fine particulate nitrated phenols from residential coal combustion in China,
508 *Atmos. Environ.*, 203, 10–17, <https://doi.org/10.1016/j.atmosenv.2019.01.047>, 2019a.

509 Lu, C., Wang, X., Dong, S., Zhang, J., Li, J., Zhao, Y., Liang, Y., Xue, L., Xie, H., Zhang, Q.,
510 and Wang, W.: Emissions of fine particulate nitrated phenols from various on-road
511 vehicles in China, *Environ.mental Res.earch*, 179, 108709, |
512 <https://doi.org/10.1016/j.envres.2019.108709>, 2019b.

513 Ma, Y., Cheng, Y., Qiu, X., Cao, G., Fang, Y., Wang, J., Zhu, T., and Hu, D.: Sources and
514 oxidative potential of water-soluble humic-like substances (HULIS_{WS}) in fine particulate
515 matter (PM_{2.5}) in Beijing, *Atmos. Chem. Phys.*, 18, 5607–5617, 2018.

516 Ma, Y., Cheng, Y., Qiu, X., Cao, G., Kuang, B., Yu, J. Z., and Hu, D.: Optical properties,
517 source apportionment and redox activity of humic-like substances (HULIS) in airborne
518 fine particulates in Hong Kong, *Environ. Pollut.*, 255, 113087, 2019.

519 Mohr, C., Lopez-Hilfiker, F. D., Zotter, P., Prévôt, A. S., Xu, L., Ng, N. L., Herndon, S. C.,
520 Williams, L. R., Franklin, J. P., Zahniser, M. S., Worsnop, D. R., Knighton, W. B., Aiken,
521 A. C., Gorkowski, K. J., Dubey, M. K., Allan, J. D., and Thornton, J. A.: Contribution of
522 nitrated phenols to wood burning brown carbon light absorption in Detling, United
523 Kingdom during winter time, *Environ. Sci. Technol.*, 47, 6316–6324,
524 <https://doi.org/10.1021/es400683v>, 2013.

525 Natangelo, M., Mangiapan, S., Bagnati, R., Benfenati, E., and Fanelli, R.: Increased
526 concentrations of nitrophenols in leaves from a damaged forestal site, *Chemosphere*, 38,
527 1495–1503, doi:10.1016/S0045-6535(98)00370-1, 1999.

528 Olson, M. R., Garcia, M. V., Robinson, M. A., Van Rooy, P., Dietenberger, M. A., Bergin, M.,
529 and Schauer, J. J.: Investigation of black and brown carbon multiple-wavelength
530 dependent light absorption from biomass and fossil fuel combustion source emissions, *J.*
531 *Geophys. Res.*, 120, 6682–6697, doi:10.1002/2014JD022970, 2015.

532 Paatero, P.: Least squares formulation of robust non-negative factor analysis, *Chemometr.*
533 *Intell. Lab.*, 37, 23–35, 1997.

534 Perrone, M. G., Carbone, C., Faedo, D., Ferrero, L., Maggioni, A., Sangiorgi, G., and
535 Bolzacchini, E.: Exhaust emissions of polycyclic aromatic hydrocarbons, n-alkanes and
536 phenols from vehicles coming within different European classes, *Atmos. Environ.*, 82,
537 391–400, 2014.

538 Purohit, V. and Basu, A. K.: Mutagenicity of nitroaromatic compounds, *Chem. Res. Toxicol.*,
539 13, 673–692, 2000.

540 Richartz, H., Reischl, A., Trautner, F., and Hutzinger, O.: Nitrated phenols in fog, *Atmos.*
541 *Environ.*, 24A, 3067–3071, [https://doi.org/10.1016/0960-1686\(90\)90485-6](https://doi.org/10.1016/0960-1686(90)90485-6), 1990.

542 Schummer, C., Groff, C., Chami, J. A., Jaber, F., and Millet, M.: Analysis of phenols and
543 nitrophenols in rainwater collected simultaneously on an urban and rural site in east of
544 France, *Sci. Total Environ.*, 407, 5637-5643, |
545 <https://doi.org/10.1016/j.scitotenv.2009.06.051>, 2009.

546 Taneda, S., Mori, Y., Kamata, K., Hayashi, H., Furuta, C., Li, C., Seki, K., Sakushima, A.,
547 Yoshino, S., Yamaki, K., Watanabe, G., Taya, K., and Suzuki, A. K.: Estrogenic and
548 anti-androgenic activity of nitrophenols in diesel exhaust particles (DEP), *Biol. Pharm.*
549 *Bull.*, 27, 835–837, 2004.

550 Teich, M., van Pinxteren, D., Wang, M., Kecorius, S., Wang, Z., Müller, T., Mocnik, G., and
551 Herrmann, H.: Contributions of nitrated aromatic compounds to the light absorption of
552 water-soluble and particulate brown carbon in different atmospheric environments in
553 Germany and China, *Atmos. Chem. Phys.*, 17, 1653–1672,
554 <https://doi.org/10.5194/acp-17-1653-2017>, 2017.

555 Tremp, J., Mattrel, P., Fingler, S., and Giger, W.: Phenols and nitrophenols as tropospheric
556 pollutants: emissions from automobile exhausts and phase transfer in the atmosphere,
557 *Water Air Soil Poll.*, 68, 113–123, <https://doi.org/10.1007/bf00479396>, 1993.

558 Vanni, A., Pellegrino, V., Gamberini, R., and Calabria, A.: An evidence for nitrophenol
559 contamination in Antarctic fresh-water and snow. Simultaneous determination of
560 nitrophenols and nitroarenes at ng/L levels, *Int. J. Environ. Anal. Chem.*, 79, 349-365,
561 <http://doi.org/10.1080/03067310108044394>, 2001.

562 Vione, D., Maurino, V., Minero, C., and Pelizzetti, E.: Phenol photonitration upon UV
563 irradiation of nitrite in aqueous solution I: effects of oxygen and 2-propanol,
564 *Chemosphere*, 45, 893–902, [https://doi.org/10.1016/s0045-6535\(01\)00035-2](https://doi.org/10.1016/s0045-6535(01)00035-2), 2001.

565 Vione, D., Maurino, V., Minero, C., and Pelizzetti, E.: Aqueous atmospheric chemistry:
566 formation of 2,4-dinitrophenol upon nitration of 2-nitrophenol and 4-nitrophenol in
567 solution, *Environ. Sci. Technol.*, 39, 7921–7931, doi:10.1021/es050824m, 2005.

568 Wang, G. H., Kawamura, K., Lee, S., Ho, K. F., and Cao, J. J.: Molecular, seasonal, and
569 spatial distributions of organic aerosols from fourteen Chinese cities, *Environ. Sci.*
570 *Technol.*, 40, 4619-4625, <https://doi.org/10.1021/es060291x>, 2006.

571 Wang, L. W., Wang, X. F., Gu, R. R., Wang, H., Yao, L., Wen, L., Zhu, F. P., Wang, W. H.,
572 Xue, L. K., Yang, L. X., Lu, K. D., Chen, J. M., Wang, T., Zhang, Y. H., and Wang, W. X.:
573 Observations of fine particulate nitrated phenols in four sites in northern China:
574 concentrations, source apportionment, and secondary formation, *Atmos. Chem. Phys.*, 18,
575 4349–4359, 2018.

576 Wang, X., Gu, R., Wang, L., Xu, W., Zhang, Y., Chen, B., Li, W., Xue, L., Chen, J., and Wang,
577 W.: Emissions of fine particulate nitrated phenols from the burning of five common
578 types of biomass, *Environ. Pollut.*, 230, 405–412,
579 <https://doi.org/10.1016/j.envpol.2017.06.072>, 2017.

580 Wang, Y., Hu, M., Wang, Y., Zheng, J., Shang, D., Yang, Y., Liu, Y., Li, X., Tang, R., and Zhu,
581 W.: The formation of nitro-aromatic compounds under high NO_x and anthropogenic
582 VOC conditions in urban Beijing, China, *Atmos. Chem. Phys.*, 19, 7649–7665,
583 <https://doi.org/10.5194/acp-19-7649-2019>, 2019.

584 Wang, Y. Q., Zhang, X. Y., and Draxler, R.: TrajStat: GIS-based software that uses various
585 trajectory statistical analysis methods to identify potential sources from long-term air
586 pollution measurement data, *Environ. Modell. Softw.*, 24, 938–939, 2009.

587 Wojcik, G. S. and Chang, J. S.: A re-evaluation of sulfur budgets, lifetimes, and scavenging
588 ratios for eastern north America, *J. Atmos. Chem.*, 26, 109–145, 1997.

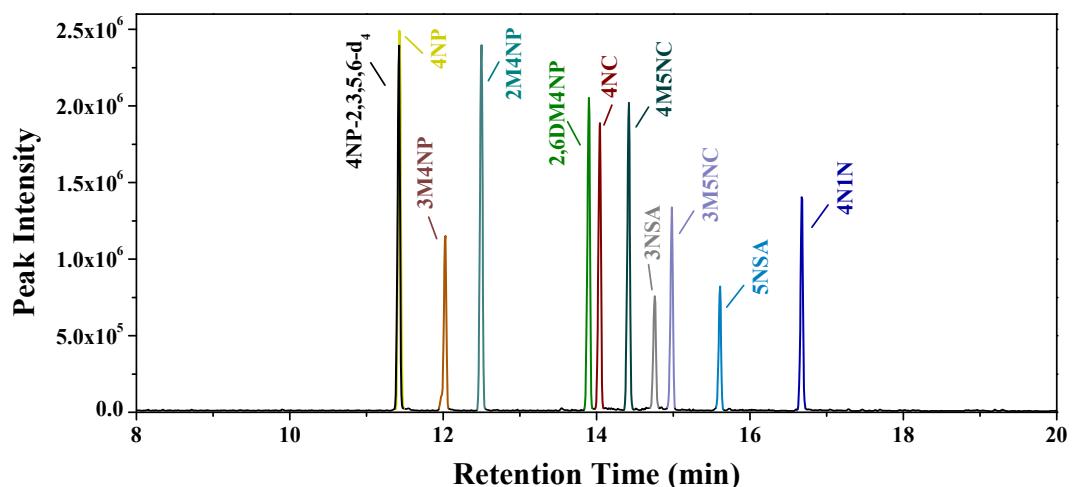
589 Xie, M. J., Chen, X., Hays, M. D., Lewandowski, M., Offenberg, J., Kleindienst, T. E., and
590 Holder, A. L.: Light absorption of secondary organic aerosol: composition and
591 contribution of nitroaromatic compounds, *Environ. Sci. Technol.*, 51, 11607–11616,
592 2017.

593 Xie, M. J., Chen, X., Holder, A. L., Hays, M. D., Lewandowski, M., Offenberg, J. H.,
594 Kleindienst, T. E., Jaoui, M., and Hannigan, M. P.: Light absorption of organic carbon
595 and its sources at a southeastern U.S. location in summer, *Environ. Pollut.*, 244, 38–46,
596 <https://doi.org/10.1016/j.envpol.2018.09.125>, 2019.

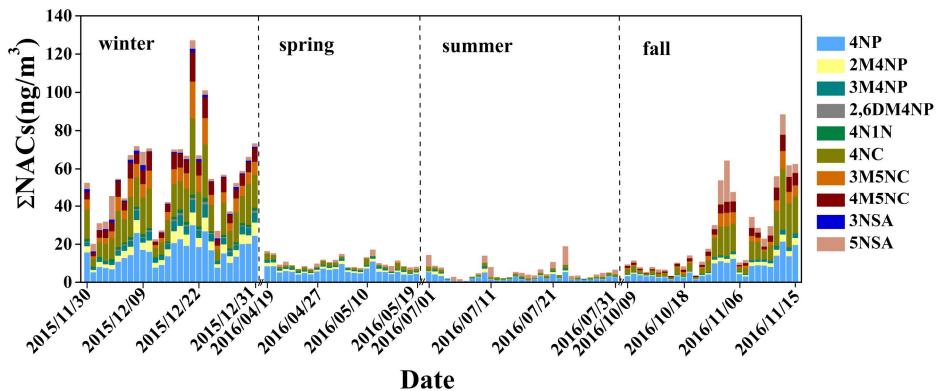
597 Yuan, B., Liggio, J., Wentzell, J., Li, S.-M., Stark, H., Roberts, J. M., Gilman, J., Lerner, B.,
598 Warneke, C., Li, R., Leithead, A., Osthoff, H. D., Wild, R., Brown, S. S., and de Gouw, J.
599 A.: Secondary formation of nitrated phenols: insights from observations during the

600 Uintah Basin Winter Ozone Study (UBWOS) 2014, *Atmos. Chem. Phys.*, 16, 2139–2153,
601 <https://doi.org/10.5194/acp-16-2139-2016>, 2016.

602 Yuan, W., Huang, R. J., Yang, L., Guo, J., Chen, Z. Y., Duan, J., Wang, T., Ni, H. Y., Han, Y.
603 M., Li, Y. J., Chen, Q., Chen, Y., Hoffmann, T., and O'Dowd, C.: Characterization of the
604 light-absorbing properties, chromophore composition and sources of brown carbon
605 aerosol in Xi'an, northwestern China, *Atmos. Chem. Phys.*, 20, 5129–5144, 2020.

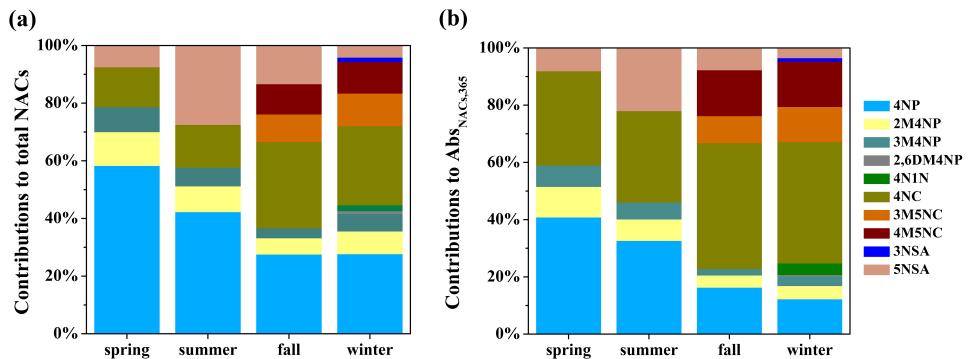

606 Zhang, X. L., Lin, Y. H., Surratt, J. D., and Weber, R. J.: Sources, composition and absorption
607 angstrom exponent of light-absorbing organic components in aerosol extracts from the
608 Los Angeles Basin, *Environ. Sci. Technol.*, 47, 3685–3693, doi:10.1021/es305047b,
609 2013.

610 Zhang, Y., Forrister, H., Liu, J., Dibb, J., Anderson, B., Schwarz, J. P., Perring, A. E., Jimenez,
611 J. L., Campuzano-Jost, P., Wang, Y., Nenes, A., and Weber, R. J.: Top-of-atmosphere
612 radiative forcing affected by brown carbon in the upper troposphere, *Nat. Geosci.*, 10,
613 486–489, <https://doi.org/10.1038/ngeo2960>, 2017.

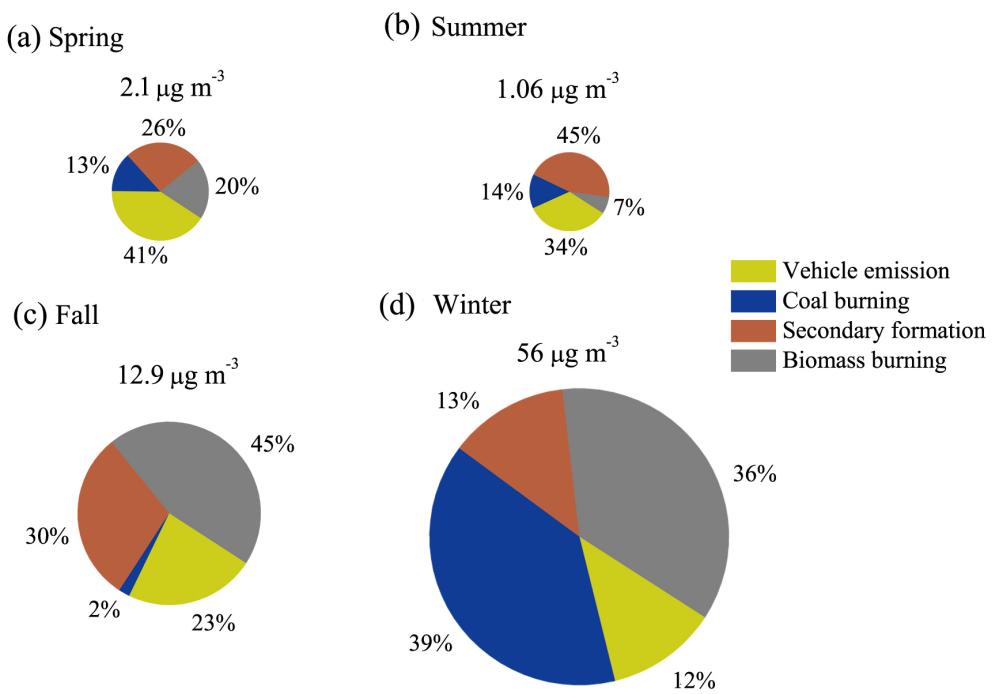

614

615 **Table 1.** Mean and standard deviation (if applicable) of the measured mass concentrations of
 616 individual NACs in Xi'an in comparison to those in other studies.

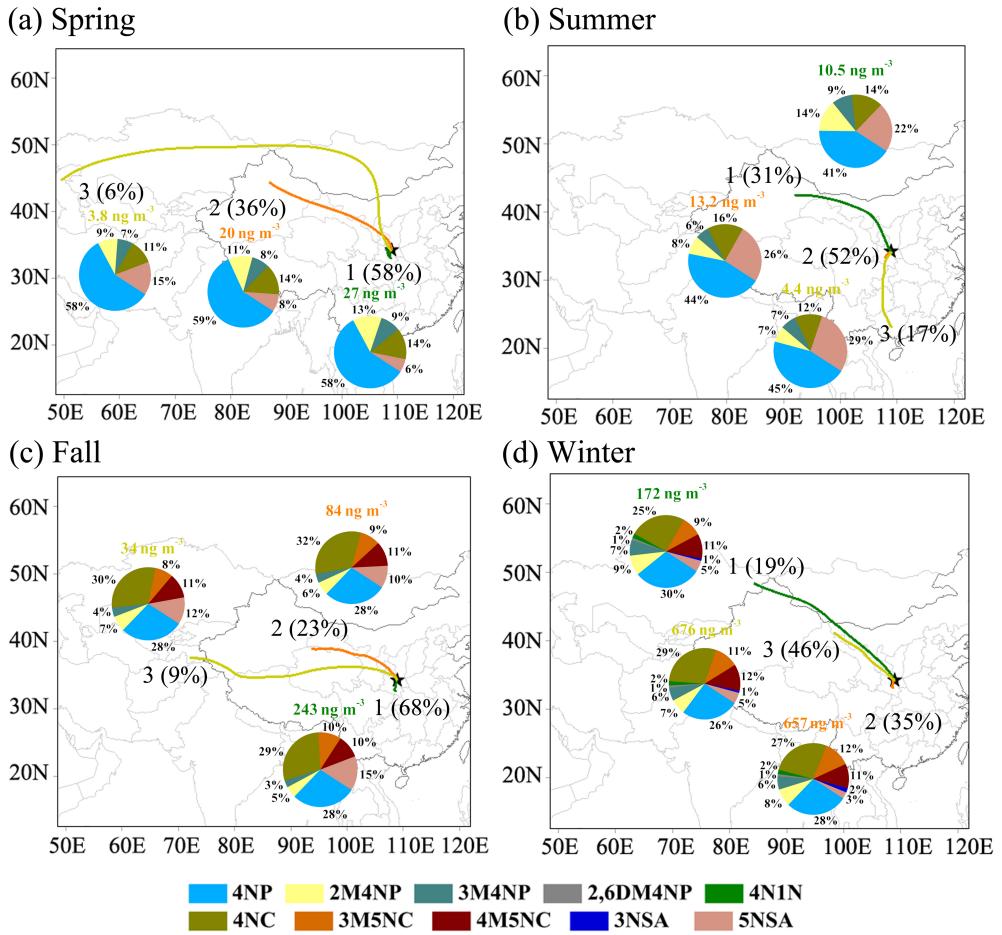
Locations	Concentrations (ng m ⁻³)									Reference
	4NP	2M4NP	3M4NP	2,6DM4NP	4N1N	4NC	3M5NC	4M5NC	3NSA	
Europe										
TROPOS, Germany, winter 2014	7.09 (7.08)	3.64 (3.05)	2.60 (2.22)	0.65 (0.58)					1.36 (1.02)	0.94 (0.75)
Melpitz, Germany, summer 2014	0.06 (0.03)	0.04 (0.00)	0.03 (0.00)						0.17 (0.15)	0.09 (0.09)
Melpitz, Germany, winter 2014	4.09 (3.27)	3.64 (3.06)	2.44 (2.20)	0.91 (0.90)					0.66 (0.69)	0.32 (0.24)
Ljubljana, Slovenia, summer 2010	0.15	0.05	<0.03		0.24	0.1	0.06	0.09	0.18	Kitanovski et al., 2012
Ljubljana, Slovenia, winter 2010	1.8	0.75	0.61		75	34	29	1.3	1.4	Kitanovski et al., 2012
Villa Ada park, Rome, spring 2003	17.8 (5.6)		7.8 (2.6)	5.9 (2.9)						Cecinato et al., 2005
Waldstein, Germany, summer 2014								0.17 (0.11)	0.23 (0.12)	Teich et al., 2017
USA										
Research Triangle Park, USA, summer 2013	0.018 (0.027)	0.005 (0.009)			0.057 (0.042)					Xie et al., 2019
Lowa City, USA, fall 2015	0.63 (0.48)	0.08 (0.05)			1.60 (2.88)	1.61 (1.77)		0.14 (0.08)	0.14 (0.08)	Al-Naiema and Stone, 2017
Asia										
Hong Kong, China, spring 2012	0.36	0.18	0.03	0.01	0.25	0.05	0.05			Chow et al., 2015
Hong Kong, China, summer 2012	0.54	0.3	0.02	0.01	1.48	0.63	0.25			Chow et al., 2015
Hong Kong, China, fall 2012	0.92	0.39	0.04	0.01	2.45	0.94	0.44			Chow et al., 2015
Hong Kong, China, winter 2012	1.13	0.65	0.07	0.01	2.39	1.35	0.53			Chow et al., 2015
Xianghe, China, summer 2013	0.98 (0.78)	0.32 (0.21)	0.09 (0.07)	0.06 (0.05)				1.21 (1.45)	0.88 (0.64)	Teich et al., 2017
Wangdu, China, summer 2014	2.63 (2.66)	0.68 (0.78)	0.21 (0.35)	0.06 (0.09)				3.14 (3.05)	1.63 (0.78)	Teich et al., 2017
Xi'an, China, spring 2016	1.19 (0.36)	0.24 (0.08)	0.18 (0.05)		0.28 (0.18)				0.15 (0.15)	This study
Xi'an, China, summer 2016	0.45 (0.28)	0.10 (0.10)	0.07 (0.06)		0.16 (0.11)				0.29 (0.41)	This study
Xi'an, China, fall 2016	3.6 (2.6)	0.73 (0.54)	0.44 (0.35)		3.9 (4.0)	1.23 (1.34)	1.35 (1.24)		1.72 (2.3)	This study
Xi'an, China, winter 2015	15.6 (6.6)	4.5 (1.72)	3.4 (1.52)	0.55 (0.39)	1.16 (0.53)	15.5 (7.4)	6.4 (3.7)	6.2 (2.9)	0.84 (0.56)	2.3 (2.4)
Nagoya, summer 2013	1.1 (0.54)	0.49 (0.48)	0.17 (0.13)		0.98 (1.5)	0.74 (0.72)		0.081 (0.077)	0.33 (0.38)	0.75 (0.84)
Nagoya, Japan, fall 2013	7.0 (3.9)	3.2 (2.7)	1.1 (0.76)		0.76 (0.64)	6.8 (10.8)		1.6 (2.9)	0.27 (0.20)	0.67 (0.41)



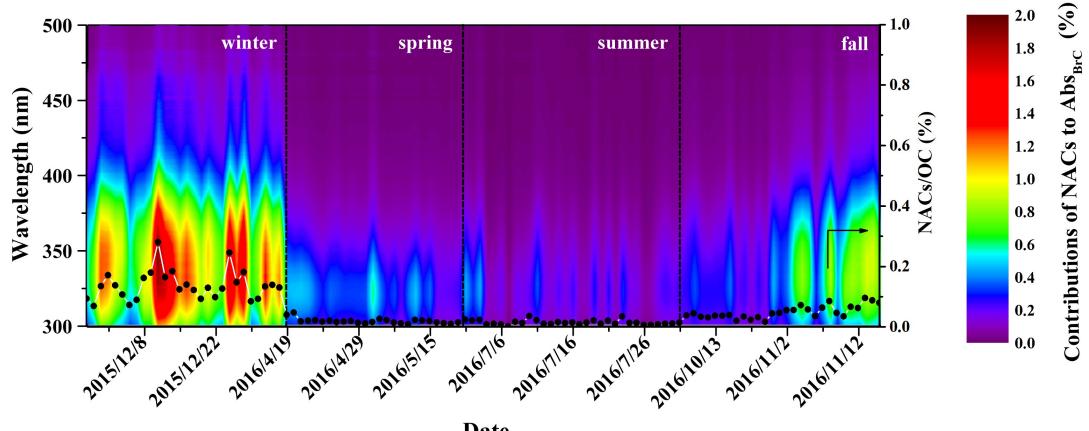
617
618 **Figure 1.** Selected ion monitoring chromatograms for the nitrated aromatic compound
619 standards (2 ug mL^{-1}). (4NP-2,3,5,6-d₄: 4-nitrophenol-2,3,5,6-d₄, 4NP: 4-nitrophenol, 3M4NP:
620 3-methyl-4-nitrophenol, 2M4NP: 2-methyl-4-nitrophenol, 2,6DM4NP:
621 2,6-dimethyl-4-nitrophenol, 4NC: 4-nitrocatechol, 4M5NC: 4-methyl-5-nitrocatechol, 3NSA:
622 3-nitrosalicylic acid, 3M5NC: 3-methyl-5-nitrocatechol, 5NSA: 5-nitrosalicylic acid, 4N1N:
623 4-nitro-1-naphthol).


624

625 **Figure 2.** Time series of the concentrations of nitrated aromatic compounds in the aerosol
 626 sample (spring and summer $\times 5$, fall $\times 2$). The full names of [these](#) compounds are
 627 [given](#) [shown](#) in Table S1.

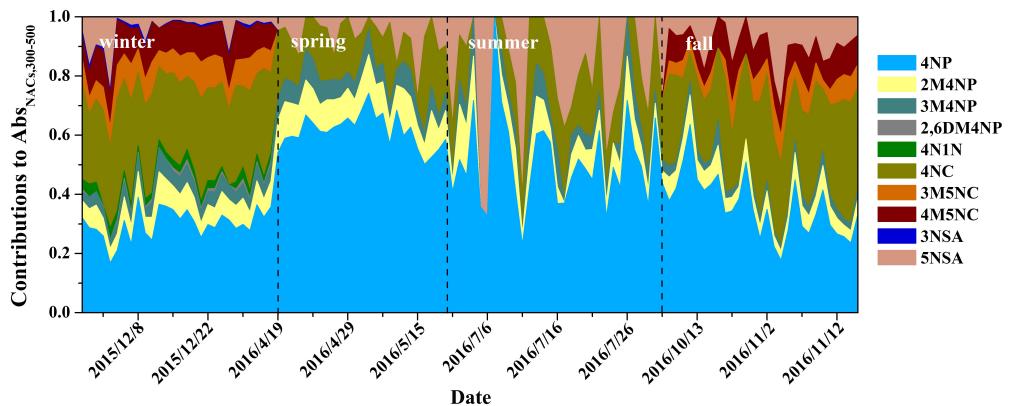

628

629 **Figure 3.** The average contributions of individual nitrated aromatic compounds to (a) the
 630 total concentration and (b) the total light absorption at wavelength 365 nm of particulate
 631 nitrated aromatic compounds in four seasons. The full names of these compounds are
 632 given shown in Table S1.



633

Figure 4. Contributions of source factors to the concentrations of NACs in four seasons.



634 **Figure 5.** NACs at each 72-h backward trajectory cluster during (a) spring, (b) summer, (c)
 635 fall and (d) winter. The full names of [these](#) compounds are [given](#) [shown](#) in Table S1.

636

Figure 6. Time series of the light absorption contributions of total NACs to Abs of brown carbon over the wavelength from 300 to 500 nm (color scale and left axis), and the ratio of concentration of NACs to organic carbon (dots and right axis).

637

638 **Figure 7.** Daily contributions of individual NACs to light absorption of total NACs at
 639 wavelength of 300-500 nm. The full names of [thethese](#) compounds are [givenshown](#) in Table
 640 S1.