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Abstract. Stratospheric sulfate-aerosol geoengineering is a proposed method to temporarily intervene in the climate system to
increase reflectance of shortwave radiation and reduce mean global temperature. In previous climate modeling studies,
choosing injection locations for geoengineering aerosols has thus far only utilized average dynamics of stratospheric wind
fields instead of accounting for the essential role of time-varying material transport barriers in turbulent atmospheric flows.
Here we conduct the first analysis of sulfate aerosol dispersion in the stratosphere comparing a now-standard fixed-injection

scheme with time-varying injection locations that harness short-term stratospheric diffusion barriers. We show how diffusive

transport barriers can quickly be identified and yve provide an automated injection Jocation selection algorithm using short - Cl‘ leted: inform optimal

forecast and reanalysis data. Within the first seven days of transport, the dynamics-based approach is able to produce particle (Deleted: locations
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distributions with greater global coverage than fixed-site methods with fewer injections. Additionally, this enhanced dispersion

slows acrosol microphysical growth, yeducing the effective radii ofaerosols at monthly fimescales. This has long term impacts - (l‘ leted: increasing lifespan

on radiative forcing. beyond the lifespan of the original influential transport barriers. We conclude that previous feasibility ™. CDeIeted: sulfate

studies of geoengineering likely underestimate the potential cooling efficiency of sulfate aerosol geoengineering by not (Deleted: and yearly
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strategically injecting at optimized dispersion locations.

1 Introduction

Stratospheric sulfate-acrosol geoengineering relies on triggering an atmospheric perturbation through deliberate injections of
sulfate aerosol precursors (often SO2) into the lower stratosphere to mimic the cooling effects seen after large volcanic
eruptions [The Royal Society, 2009]. Over the last several decades, this has been suggested as a possible means of reducing
some of the impacts of climate change [e.g., Crutzen, 2006]. There are, however, many open questions about the effects of

radiative forcing from sulfate injections [Kravitz and MacMartin, 2020]. The importance of choosing the altitude and latitudes

of injection, and distribution of injection rates across those, has been clearly demonstrated, as well as adjusting jnjection - (Deleted: the seasons of

30 Jocations based on the season [Visioni et al., 2020]. Additionally, even for sulfate acrosols, the method of dispersal will affect - (l‘ leted: [cite].

aerosol size distribution, and hence the amount of material that needs to be injected. To date, many of these uncertainties are (Deleted: aerosol
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based on a climate response from fixed-injection locations [e.g. Robock et al., 2008; Heckendorn et al., 2009; Tilmes et al.,

2017], a significant limitation for predicting dispersion infully turbulent fluid flows. In fact, none of these studies consider the

short-term variations of stratospheric winds or the organizing role of turbulent coherent structures in these time-varying flows.

Driscoll et al. [2012], showed that it is impossible to correctly capture the impact of abrupt atmospheric perturbations on

surface climate without a well-resolved stratospheric model. With the great significance of stratospheric dynamics for
teleconnections and the state of the atmosphere [e.g. Jaiser et al., 2013, Domeisen et al., 2018], how can we optimize where to
put aerosols or precursors so that we have greater influence on the mean climate, and with better efficiency?

While benchmark studies have been quite successful at understanding the mean climatic response of geoengineering in

sophisticated Earth System Models [e.g. Kashimura et al., 2017; Kravitz et al., 2017], the injection protocols have all neglected
presently-available short-term predictive information useful for optimizing particle dispersion. An efficient dispersion of
aerosol precursors is of crucial importance for aerosol coagulation [Kravitz and MacMartin, 2020]: the particle size
distribution is a critical and sensitive parameter for accurately determining surface cooling, stratospheric warming, and changes
in stratospheric dynamics [e.g., Rasch et al., 2008; Heckendorn et al., 2009; Tilmes et al., 2008; Niemeier et al., 2011]. By

only considering average flow behavior, one limits geoengineering evaluations to simple injection protocols that do not fully

exploit turbulence, coherence, and mixing in the stratosphere. This increases the likelihood of a heterogeneous spatial coverage

and localized high concentrations of aerosols, leading to enhanced coagulation and sedimentation rates [e.g., Pierce et al.,
2010]. Without a more precise optimization of injection locations, we limit our ability to accurately model the full potential

impacts of geoengineering.

M(ty)

M(to)

Figure 1: Example of fluid particle advection for an unsteady geophysical 2D fluid flow from time t, to time ¢,. For
any arbitrary line of initial fluid particle positions, such as M(t,), that line will be a barrier to advective transport and
mixing. This is seen in the second panel as no dark grey fluid has crossed M(t,) to mix with the light grey fluid.
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Instead of standard fixed-locations, we propose a time-varying injection location protocol based on identification and
prediction of short-term Lagrangian stratospheric transport barriers. This method harnesses the theory of Lagrangian coherent
structures (LCSs), a tool for highlighting the most influential material surfaces solely from fluid velocity fields without any
further modeling of scalar transport [Haller, 2015]. For a given unsteady fluid flow, any arbitrary surface of fluid particles, M,
will block advective transport across that surface over time as the surface deforms with the flow. This is shown in a_real 2D
velocity field of geostrophic ocean surface currents in Figure 1. Here, the blue line M separates regions of light and dark grey
fluid particles. As the fluid flows from time t,, to t;, M is an advective transport barrier in that no dark grey fluid crosses M to
mix with the light grey fluid. This result follows immediately from the continuity of the equations defining fluid motion.
Instead of looking for material barriers to advective transport, of which there are infinitely many, LCS theory identifies only
exceptional distinguished material surfaces, such as those that are mathematically defined to be rotationally coherent, undergo
minimal stretching over time, or locally attract or repel nearby fluid particles at a significant rate. One example of the latter
two structures, termed hyperbolic LCS, and their time evolution in the same unsteady ocean flow are shown in Figure 2. Over
the time period t to t,, M, is the structure that is mathematically-defined to most effectively attract nearby particles, and My
repels nearby particles. By identifying exceptional material barriers, such as the saddle feature in Figure 2, LCS theory allows
organization of turbulent fluid flows into coherent patterns in a mathematically-rigorous (non-empirical), physical and frame-
independent manner [Haller, 2015].

v

M,y (tr) M(ts)
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Figure 2: Example of time evolution of fluid particles surrounding hyperbolic LCS in a geophysical fluid flow from
time ¢, to t,. M, is an attracting LCS (unstable-manifold) and My, is a repelling LCS (stable-manifold).

Though using the mathematical definition of LCS to define atmospheric flow structures s quite restrictive, LCS have actually

been identified throughout the atmosphere [Tang et al., 2010; Tallapragada et al., 2011; Rutherford et al, 2012;
BozorgMagham and Ross, 2015; Knutson et al., 2015; Wang et al., 2017]. Of particular relevance to the present research is
the LCS work of Beron-Vera et al. [2012] who demonstrated how zonal jets behave as meridional transport barriers at high

latitudes. Olascoaga et al. [2012] analyzed LCS in stratospheric winds to provide a rigorous definition of the transport barriers
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contributing to the loss of ozone from the Arctic ozone layer, and there was recent success in delineating LCS along
atmospheric rivers [Garaboa-Paz et al., 2015]. Jupiter’s Great Red Spot and zonal jets were identified as material transport
barriers through video analysis and LCS theory [Hadjighasem and Haller 2016]. Using a null-geodesic identification scheme,
the northern polar vortex, a significant structure in high-latitude atmospheric mixing, was accurately identified as a transport-
blocking LCS [Serra et al., 2017]. Lastly, Wang et al. [2017] were able to use a related diagnostic strain-tensor field to predict
the location of space shuttle contaminant plumes in the thermosphere after 48 hours of transport. These previous results indicate
the potential for the most influential LCS to be harnessed for geoengineering purposes. Specifically, hyperbolic LCS that
maximize or minimize dispersion may be used as time-varying injection locations that reduce coagulation of aerosols and
increase their lifespan and utility.

Recently, Haller et al. [2018, 2020] derived an additional objective criterion that specifically identifies the strongest barriers

and enhancers of diffusive particle transport. That is, one can identify the time-varying locations of material barriers in a fluid

flow that maximize or minimize the diffusive contribution in the advection-diffusion equations over a given timeframe. They
have obtained a diffusion barrier strength (DBS) field whose ridges highlight the strongest diffusive transport barriers in

forward-time fluid flow analysis and strongest diffusive transport enhancers py running a backward-time fluid flow analysis,
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Neither of these simulations actually require modeling the evolution of a diffusive scalar field, but still rigorously define the
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structures that are most influential to diffusive transport. For atmospheric science, this significantly reduces the computational
burden for predicting how scalar fields will evolve as it provides quantitative information about future attraction and dispersion
patterns without needing complex numerical machinery to model the advection-diffusion equations, or making assumptions
about their unknown initial- and boundary conditions. In comparison, the effective-diffusivity approach of Nakamura [2008]

provides an agposteriori visualization of Eulerian barriers, but only after scalar transport simulations have been performed.

DBS fields, however, give an a priori (predictive) characterization of material barriers to diffusion without ever running
diffusive simulations. This new technique increases the rigor of Lagrangian atmospheric analysis and removes ambiguity
arising from the lack of a universal definition of coherence in atmospheric LCS work. As such, the DBS field is perfectly

suited for optimizing aerosol dispersion and is computable solely from available wind field forecasts and hindcasts or

reanalysis.

In this manuscript, we evaluate simulated stratospheric flows with the aim of identifying diffusive transport barriers and
informing injection site selection for enhanced stratospheric geoengineering via aerosols. In doing so, we provide an initial
demonstration of the benefits of incorporating short-term atmospheric dynamics into geoengineering analyses and provide
suggestions to better assess its potential impacts. Our choice of dynamics-informed injections is evaluated against fixed-

injection protocols via long-term metrics of pure advective transport, and for geoengineering scenarios simulated in a fully

coupled climate-model. We find significant improvement in the ability of injected aerosols topoth quickly surround the earth,

and to be able to achieve similar coverage with fewer injection sites. We then introduce further practical and logistical

restrictions on the DBS-based protocol, and maintain our method’s improved performance.
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2 Methods
2.1 Climate Model Data

We use CESM2 (WACCM6) [Gettelman et al., 2019] under an SSP5-8.5 scenario to generate global wind fields at 72 levels
for 18.75 years of simulation,(Table 1). These fields were computed at a spatial resolution of 0.94° latitude and 1.25° longitude,

140  with instantaneous output at 6-hour frequency. As vertical motion is minimized over short timescales along isentropic surfaces,

and similar analysis has reliably identified transport barriers along these surfaces [Serra et al., 2017], we extracted wind fields

s (Deleted: on

on isentropes ranging from T=280 K to 1000 K with 20 K resolution. This is expected to provide a computationally efficient

= CDeIeted: along

2D analysis of material barriers to aerosol and tracer transport. We primarily focus on the T=540 K isentrope in the lower

- (Deleted: particle

stratosphere (approximately 20-25 km ASL in the tropics) as these elevations are at the upper limit of currently practical

145  aerosol injection heights. The DBS-injection protocols described herein rely only on 14-day windows of wind velocity and

can be applied to wind data at any height. It is reasonable to assume that applying these methods elsewhere and optimizing

injection locations to maximize dispersion at other heights would be beneficial for acrosol global coverage and similar results

may be possible.

Pseudo forecast and CESM2 Run #1 Wind Fields
reanalysis wind data (18.75 Years)

Identify InjectiOh 7-Day Forecast and Reanalysis from 7-Day Forecast and Reanalysis from
Locations from DBSgy CESM2 Run #1 CESM2 Run #1
and DBSg, fields (1/mo. for 18 yr) (1/seas. for 1 yr)

Follow neutral tracer "pseudo- Model active aerosol injection
Aerosol Experiments aerosols" from injection sites in (10 Tg of SO,) in new CESM2
CESM2 (Run #1) wind fields simulation (Run #2)

50 weeks of advection for each of the 1 year of advection for injections in
Data and Results 216 injection days four seasons
Section 3.1 Section 3.2

150 Figure 3: Flow chart for geoengineering experiments
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injection and fixed-injection protocols are, however, relevant for any
height

- EDeleted: The fundamental differences we find between the DBS- J

A preliminary dispersion analysis was first conducted by approximating aerosol concentration evolution from the behavior of .- (Deleted: modeling acrosols as non-reactive fluid-particles. )
neutral tracers that perfectly follow the wind fields (Figure 3, left column). At the beginning of each month for the full 18.75
years of CESM2 (WACCM6) model simulation, injection locations were jdentified using a short temporal neighborhood of .. (Deleted: defined )
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the wind-field output from CESM2 (WACCMG) Run #1. The advection of parcels of jeutral tracers from neighborhoods - (l‘ leted: ).

surrounding those injection points was then computed for the following 50 months in the Run #1 wind fields. This - (Deleted:dense

approximation of aerosol transport by perfectly fluid-following particles inherently assumes that there are negligible inertial (Deleted: fluid particles

(Deleted: next week

effects and the aerosol vertical motion is not influenced by radiative heating or cooling of the particle. While these assumptions

limit any study of climate impacts, these calculations provide a longitudinal comparison of dispersion from dynamics-informed .- CDeIeted: study
Jnjections and fraditional injection protocols that spans multiple modes of interannual climate variability. ) [ leted: injection dispersion spanning numerous natural climate
i cycles

We complement our yieutral tracer trajectory analysis with four comprehensive CESM2 (WACCM6) simulations spanning - h
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one-year after sulfate precursor injection (Figure 3. right column). Each simulation corresponds with injections during a ‘(Deleted' basic fluid-particle

particular season. These simulations incorporate the advection of aerosols with full microphysics, atmospheric chemistry and (Deleted: a
radiative forcing components, as well as all other earth system model components. Again, the performance of DBS-informed . . ‘(Deleted: simulation suite of one-year

and fixed-location sites are compared. As the inclusion of microphysics and atmospheric chemistry makes these simulations \ (Deleted: with
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computationally more expensive, 1o further improvements to injection site selection methods were evaluated, though several ( oceurring
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suggestions for future work are discussed in the discussion and conclusions.
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Diffusion Barrier Strength (DBS) is an objective (i.e. observer-independent) diagnostic field whose ridges highlight diffusive
or stochastic transport extremizers from velocity data [Haller et al., 2018]. For a given time-varying velocity field v(x, t), and
tracer ¢ (X, t) we can describe the evolution of this tracer with the classic advection-diffusion equation:
dc
at

where D(x, t) is the symmetric, positive definite diffusion-structure tensor. The left-hand-side of this differential equation

+ V- (cv) =vV-(DVc), c(x,ty) = co(X),

contains the advection of this scalar field whereas the right-hand-side describes transport due to diffusive processes.
Furthermore, we define the path of a fluid particle in the velocity field v(x, t) as a solution to the ordinary differential equation
X = v(X,t), described by the flow map:

F{, (x0) = X(t, to,Xo)-
From here, we define the DBS at a point x,, over the time interval [t,t;] as

DBS(xo) = trace T;} (Xq),

where overbar denotes the time-average of the transport tensor, i [Deleted:
o

TS (x0) = [VFL, ] D(VFL, 0)[VFE ]

-1 -1
T, (x0) = [VE{,] D(VFE, ) [VEE,] ™, over [t

for t € [to, t;].
The diffusion-structure tensor D is capable of representing parameterizations of many complex diffusion-like processes, but

our research focuses on molecular (i.e. homogeneous, isotropic and steady) diffusion, in which case D(X, t) is constantly the
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identity matrix. In this situation, the transport tensor T/ reduces to the inverse of the Cauchy-Green strain tensor, Cf =

1, a t
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[VF{O]TVFfO, that also arises in the computation of the Finite-Time Lyapunov Exponent (FTLE) used in previous atmospheric

transport barrier studies [see, e.g., Beron-Vera et al., 2012; Olascoaga et al., 2012; Garaboa-Paz et al., 2015; Serra et al., 2017;

Wang et al., 2017]. DBS values are, therefore, pointwise equal to the trace of the time-averaged [Cf | = [Van]_l [Van]_T
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tensor. One notable difference between DBS and FTLE is the inclusion of diffusive or stochastic transport in the definition of
transport barriers or enhancers for DBS, a process essential to predicting aerosol dispersion in the stratosphere. The inclusion

of diffusion in the transport functional allows for a systematic search for extremizing surfaces to transport [Haller et al., 2018],

thereby eliminating the ambiguity inherent in various available coherent structure definitions [see Haller, 2015, or a lack of

precisions from simple heuristics. Accounting for diffusive and stochastic transport necessarily leads to the inclusion of Cf,

tensors for all t € [ty,t;] in the definition of the DBS. In contrast, computing the FTLE only includes the single tensor C;;

Find attracting structures (DBSgw)

Figure 4: Example of DBS-informed injection scheme at 540K that selects the injection sites. The global view shows
seven-day DBSgw fields with two sections of disconnected strongly attracting structures highlighted in the green box.
For the larger structure, we then identify all points closer to that attracting structure and select the unique point that
will result in the most significant dispersion of aerosols. This is injection site is shown as the red dot on the DBSrw ridge

in_the inset. Injecting aerosols at these points will cause them to both spread quickly and converge to a large and
complex attractor. Units for both forward and backward DBS fields are day™.
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Using a limited time-window of the modelled wind flow for DBS calculations, we were able to effectively simulate a real-time

geoengineering scenario. For each jnjection time, t,, in our 18.75 years of simulation, (Run #1), we analyzed one week of

(l‘ leted: At the beginning of

future flow data and one week of previous flow data as proxies for forecast and reanalysis, respectively, to determine optimal

locations for sulfate injection. The one-week DBSrw field was calculated from ¢, to t, + 7, and under reversal of the direction

of the flow in the reanalysis data, the DBSpw field was calculated from t, to t, — 7. As is described by Haller et al. [2018],
the ridges of DBSkw highlight locations of strongest dispersion (i.e. diffusive transport limiters) on the globe at t,, while the
ridges of DBSgw indicate the locations of the strongest accumulation (i.e. diffusive transport enhancers) at t,,. These diffusive

transport barriers are analogous to the structures M, and My from Figure 2, but account for diffusive as well as advective

transport in the flow. To identify DBS ridges, we advected fluid particles along isentropic surfaces to simplify galculations

and ignored vertical motions.

We identified strongly attracting flow features as connected components of the DBSsw field with values above a simple fixed

threshold. This threshold was chosen empirically from the range of DBS values in these calculations and was constant for all

structure identification at all t,. As also seen, for other objective coherent structures identified from short-term calculations

[e.g., Serra and Haller, 2016], these seven-day attracting features persist for much longer than their domain of computation in :

the flow and continue to attract many nearby fluid particles. Near each strongly attracting feature, the location with the largest
DBSrw value signals a potential injection site for geoengineering as it indicates the strongest local dispersion over the next

seven days. We balance strong dispersion and nearby strong attractors to both maximize the spread of aerosols and to prevent

multiple injections being attracted to the same gections of the same attractor. When possible, this methodology prevented

acrosols injected at initially distant sites from traveling great distances only to be attracted to the same portion of the flow. A

flow chart detailing the injection-location selection process is shown in Figure 4.
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While we prioritize injecting near unique attractors, this was not always possible given that single DBSg,, ridges could also

span much of the globe, and in rare instances strong attractors were not present in all regions, If seven yinique attractors are
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Deleted: Figure 3: Example flow chart of DBS-informed
injection scheme from 360K to highlight the selection process for
a more complex flow. Clockwise from top left: Calculate seven-
day DBSgw field and identify strongly attracting connected flow-
structures above a certain threshold; Identify the points closest
to each attracting structure and choose a unique strongest seven-
day DBSrw (repelling) point for each attracting structure;
injecting aerosols at these points will cause them to spread
quickly and converge to dominant attracting structures.

(Deleted: also

- (Deleted: regions

N>

w

CDe leted:

= C" leted: . Thus, we also allowed seeding near separate

not available at a given time, we simplify the process and choose the maximal DBSpy,, site near an attractor for each of seven
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latitude bands: [-7.5°, 7.5°], [+7.5°, £22.5°], [£22.5°, +£37.5°], [+ 37.5°, #62.5°].,This dynamics-based injection approach, .

referred to as DI in the text, adapts to any isentrope or future climate scenario as the injection location choice always depends

on the state of the stratosphere at the time of injection, This automated search algorithm is summarized in Table 1.
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DBS-Enhanced Aerosol Injection Location Search Algorithm
Input: Wind fields surrounding injection day (to) from to-7 to to+7 days.

1) Calculate reanalysis DBSgw from to_to to-7, and forecast DBSrw to to to+7.

2) Extract attracting ridges as connected components of DBSgw field above a fixed threshold
via flood-fill algorithms.

3) Find seven largest ridges. and identify all points that are closer to each ridge than any other
ridge.
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a.  If we cannot find seven unique ridges, use as many unique ridges as we can, and
separate ridges into intersections with latitude bands. Find points closest to our

subdivided ridges.
4) If specified, restrict neighbourhood of ridges to that which intersects with neighbourhood

of airports.
5) _Identify the points with the highest DBSgw value for each neighbourhood and select the
highest seven.

Output: Seven aerosol injection locations optimized for the wind flow on day to
290 Table 1: Summary of the method of identifying injection locations for DBS-informed injections.
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Figure5: Global coverage of potential injection locations for an airport-bound scenario including a map of 9300 airport . —(Deleted: 4
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locations (red dots) and the distance to the nearest airport up to 1000 km.

WAs a control study, we ran a baseline scheme that injected sulfate aerosols at seven fixed-injection locations, referred to in the .- (Deleted: We compared our DBS injection scheme to

295 text as FL (0,%15,430 and £50° latitude at 260° longitude) similar to those explored by others [e.g. Robock et al., 2008;
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Heckendorn et al, 2009; Tilmes et al., 2017]. Lastly, we ran a scenario where DBSsinjections were restricted to within 1000 .

km of an airport (scenario ADI in the text) [Global Airport Database, 2020] as a logistical handicap more similar to real world - (Deleted: injection site had

possibilities (Figure,5). For both the unrestricted DBS and the airport protocols, we limited the selection of injection locations ) ‘ ’(Deleted: be
to latitudes between +62.5° to avoid trapping by meridional barriers near the poles [Beron-Vera et al., 2012] while maximizing _Ez::::::z :nd p—

300 global coverage. Despite this restriction, the stratospheric flow sufficiently mixed aerosols across the globe, as with the FI [ leted: is stll able o mix particles to higher fatitades (Figures 3
experiments. and 5).
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2.3 Geoengineering performance metrics (Deleted: p—
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even with the airport restrictions, but at yearly timescales, the average improvement was minimal. It should be noted that the
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3.2 Full atmospheric chemistry and microphysics simulations

Beyond improved advective transport of aerosols, we also wish to investigate the role that diffusion transport barriers may
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atmosphere radiative forcing was measured on a lat-long grid over isentropes from 360 to 720 K. The seasonal experiment
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names referred to in this section correspond with the boreal season.
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3.2.1 Aerosol Burden

As DBS ridges and this particular coherent structure view of stratospheric dynamics are mathematical tools to address

dispersion and transport, we initially focus on enhancements in SO4 dispersion and global coverage when using DBS-informed

site selections. To account for the natural variability of SO4 burden in our control runs, effective coverage was quantified from

the cells whose total column SOs burden exceeds five times the average global burden for the one week prior to sulfate

injection. The amount of global coverage is then the percent of the surface area of the earth with SO4 exceeding this threshold.

Around 1% of the surface area of the earth exceeds this threshold prior to injection.
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Figure 9: Analysis of CESM2 (WACCMG6) output showing the increase in percent of the Earth’s surface surrounded
by an SO4 burden greater than five times the global mean from the week prior to injection as compared to fixed
injection protocols. Large subplots show the first 90 days after injection and the smaller subplots show the first full
year.

Figure 9 shows the difference in global coverage between the DBS-schemes and the FI protocol. A consistent short-time

pattern was evident in these time series for all four seasons” injection. There is an immediate positive difference with the DBS

approaches as a greater percent of the Earth is efficiently covered by an above-average SO4 burden. This initial improvement
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Figure 8: Calculation of H:SO4 mass evolution in CESM2
(WACCMB6) simulations for sulfate precursor injections during
four seasons. Vertical dashed lines indicate the first day at which
the total mass of H2SO4 returned to within 10% pre-injection
values for the three injection protocols.”
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‘We also analyzed the effective global coverage of each injection
protocol (Figure 8). This was calculated by projecting the
concentration of H>SO4 on each isentrope onto the earth’s surface,
and finding the fraction of the earth’s surface area for which the
mass of H>SO4 was greater than the global pre-injection mean.
While the short-term improvements in coverage and distribution has
been thoroughly discussed in Section 3.2, it is important to note that
at yearly timescales, coverage by the DBS-informed and airport-
restricted methods was better than the fixed protocol up to 75% of
the time. To put it another way, while we identified the most
important diffusive transport barriers for one week of idealized
isentrope-restricted transport with no guarantees on longer behavior,
the lasting presence and influence of these coherent structures is
evident up to a year later. Figure 10 confirms the advantages of a
variable seeding method, showing that stratospheric sulfate aerosol
size is generally smaller for the DBS seeding schemes than the fixed
schemes.
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in coverage peaks between one week and two weeks after injection and is attributed to high DBSrw values at injection locations

and an enhanced ability to strategically spread along nearby jets and eddies that were present in the DBSpw_fields. These

dispersion patterns and their correlation with DBSgw ridges can be seen in the SO4 burden plots of Figure 10. This immediate

improvement can be as high as 5% more global coverage, equating to a change in net radiation over an additional 32 million

km?, or more than the equivalent surface area of North America.

Airport DBS (AD) DBSzy
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Figure 10: Analysis of CESM2 (WACCMG6) output showing the SO4 burden after seven days of transport for the three
injection protocols in each season. The percent of the earth’s surface covered by an SO4 burden greater than the global
mean from the week prior to injection is noted in the top left of each panel. Original injection locations for each
experiment are shown as red dots. Units for the colormap are kg m2,

After the initial peak improvement in global coverage, there is often a rebound in Figure 9, at which point the FI aerosols can

cover up to 12% more of the globe. Surprisingly, after this local minimum, there is always a secondary peak, sometimes larger

than the first, showing a response in global coverage using the DBS methods well past the computational limitations of the

original DBS ridges. This second peak in performance occurs between six and ten weeks after injection, and enhanced coverage

by the DBS methods can extend until all three experiments achieve total global coverage.
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Notably, the spring and summer season injections had much smaller relative improvements in their initial peaks in Figure 9.

A closer investigation of the dispersion patterns in Figure 10 begins to explain why. The left three columns of Figure 10 show

the SO4 burden with the two inset percentages in each plot detailing the proportion of the respective hemisphere’s (North or

South) surface area covered by five times pre-injection burden means. The right column shows the DBSpw field calculated

for the 540K isentrope wind fields from the injection time t, to t, + 7_days so that the location of attracting structures
coincides with the concurrent dispersion patterns. The winter injections occurred in the presence of strong attracting features

in most latitude bands, and the DBS-informed methods were able to exploit these, especially in the northern hemisphere.
Dispersion along these attracting features continued to enhance coverage for DI and ADI injections well after the snapshot in

Figure 10. During spring, the DBS-informed injections exploited the similar attracting features in the northern hemisphere

(13% vs. 12% coverage) but in the southern hemisphere, attracting ridges around -50° blocked aerosols from migrating further

south in all three experiments.

The summer injections occurred during an absence of strong attracting or repelling structures, except a dominant circumpolar

feature in the southern hemisphere. The DBSrw values for sites chosen north of -37.5° for the summer DI and ADI experiments
were the lowest of all the experiments. In the northern hemisphere, aerosols spread by way of these locally maximal DBSrw

injection sites, but no strong anticyclonic structures, such as those found in the other seasons, were present. This prevented

northern hemisphere aerosol clouds from deforming along space-filling spiral features such as in the south and in other seasons.

The autumn injection occurred during a time with stronger DBSrw and DBSgw ridges than the summer injection, and allowed

for an enhanced dispersion in the south, especially for the DI experiment. The true strength of the DBS approach can be seen

in the autumn experiment as only minor modifications in the southern hemisphere were necessary to achieve considerable

enhancement in coverage. After seven days, DI SO4 burden was above our threshold for 21% of the globe, versus only 16%

from FI. This advantage comes solely from enhanced performance in the southern hemisphere where DI coverage was 13.4%

and FI lagged at 6.8%. This significant advantage came from only a minimal change of injection point. The southernmost DI
site was 0.25 degrees latitude further south than the FI site, and less than 650 km away, but the presence of strong DBSpw

ridges, and complementary high DBSrw values allowed for a beneficial optimization.

Figure 11 details the SO4 burden after eight weeks of transport. At this point, during the last oscillation of Figure 9 prior to

total coverage, the three injection techniques begin to converge. Notable exceptions to this are the enhanced polar coverage in

the winter DI injection in the autumn ADI experiment.
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665 Figure 11: Analysis of CESM2 (WACCMG6) output showing the SO4 burden after eight weeks of transport for the three
injection protocols in each season. The percent of the earth’s surface covered by an SO4 burden greater than the global
mean from the week prior to injection is noted in the top left of each panel. Units for the colormap are kg m?2,

670 3.2.2 Effects on Radiative Forcing
The dispersion patterns caused by the hyperbolic coherent structures in the stratosphere discussed in the previous section

impacted the top-of-atmosphere radiative forcing (RF) in a complex way. The net shortwave and longwave fluxes were

calculated for each grid cell on each day, as were the radiative fluxes for a control run over the same period without

geoengineering. The control fluxes were then subtracted from net fluxes to give a spatial and temporal distribution of the

675 relative influence of each injection scheme. This change in RF is directly correlated with a change in temperature and is a

strong indicator of the climatic influence of geoengineering [Hansen et al., 1997; Gregory et al., 2004].
Comparing the global effect of the FI protocol with DI and ADI, we find the cumulative impact of the DI and ADI injection

was stronger in many cases. Table 2 shows the mean global change in RF for each injection protocol, during each experiment,

after three periods of time (10 days, 30 days, 365 days). calculated as the average difference in net radiation at the respective
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time after injection. The three values in each column correspond to the global average FI (black), DI (orange), and ADI (green)

difference from the control run in W m™. Gray shaded cells indicate times at which FI resulted in stronger radiative forcing

than DI and ADI. Bold DI and ADI values indicate a statistically significant difference (at 95%) in RF from the FI protocol

using a two-sided t test.

10 Days 30 Days 365 Days
Winter | -1.4/-2.0/-1.7 | -6.9/-5.0/-6.2 -7.6/-3.6/+0.4
Spring | -1.1/-1.3/-2.0 | -7.6/-6.7/-6.1 -11.1/-11.2/-9.6
Summer | -1.5/-1.2/-0.8 | -4.0/-6.1/-6.6 -3.4/-3.0/-2.0
Autumn | -1.5/-2.0/-2.0 | -10.1/-10.4/-11.2 -9.9/-11.1/-4.6

Table 2: Global average improvement in RF (W m?) at specified intervals after injection as compared to

CESM2(WACCMG6) control runs for FI (black), DI (orange), and ADI (green) injection schemes. Bold values indicate
a statistically significant difference in mean RF between FI and the corresponding DBS-informed injection on that day.
Gray shaded cells indicate times at which FI resulted in stronger RF than both DI and ADI.

Over the first ten days of transport, the range of time for which our DBS methods can be mathematically supported, both global

coverage and RF was often improved with DBS-informed injection. As could be expected from Section 3.2.1. there was a

reduction RF for summer DI and ADI experiments. This corresponds with a lack of attracting and repelling structures, and

questionable conditions for which to apply our injection site selection algorithm. After 30 days, only winter and spring RF for

FI outperformed DI or ADL. This is during the rebound period detailed in Figure 9. At this point, well beyond the time horizon
of our DBS calculations, summer and autumn DI and ADI had stronger RF than FI. After 365 of transport, FI outperformed

the DBS protocols for the winter and summer injections. At these time scales it can be safely assumed that the chaotic nature

of stratospheric winds prevents any intelligible dependence on initial conditions for these injection experiments. There exists

a_complex nonlinear relationship between global coverage and RF, however, during the forecast windows we have

investigated, there is a strong correlation between the enhanced dispersion from DBS-informed injections and RF. For longer

term trends, one likely needs to be couple short time dispersion with other influential climatic variables, such as season of

injection (e.g. Visioni et al., 2020).

3.2.3 Aecrosol Effective Radii

The last metric from the geoengineered CESM?2 simulations we analyzed is the effective radius of aerosols (Figure 12). The

time evolution of the mass-averaged SO4 aerosols was calculated on the 540 K isentrope, at the height where injection occurred.

To prevent contributions of naturally occurring aerosols, the averages were calculated only using grid cells where the SO4

burden exceed five times the pre-injection mean. During the winter season, the most dramatic change in radii occurred, with

peak values for the simple injection protocol clearly exceeding the DI and ADI methods. Differences in other seasons were

more minor, but the injection protocol peaked at higher values for both the spring and autumn experiments as well. During
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summer, there was reduced performance with the DBS-informed injections, as was also indicated in the RF and SO4 burden

analysis.
The improvement that was possible during the winter injection is notable as it suggests a better understanding of the connection

between stratosphere dynamics and chemistry can clearly be beneficial for aerosol geoengineering. This is important because

larger aerosols backscatter less (meaning more aerosol is required to achieve a given level of radiative forcing), heat the

stratosphere more (resulting in greater side effects on stratospheric circulation and surface climate), and have increased

sedimentation velocities (also meaning more aerosol is required) [Pierce et al., 2010; Tilmes et al., 2017; Simpson etal., 2019]. . (Deleted: <object>
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coagulation, for each individual injection, and likely influenced lower peak effective radii present in DI and ADI experiments

(Figure 12, e.g. Mills et al.. 2017). With reduced coagulation, there will be slower descent of sulfates from the stratosphere

(and out of action), as well as increased scattering. Second, increased dispersion uniformity, as quantified by pormalized

entropy in Figs 4 & 5, will reduce local stratospheric heating,and result in more uniform radiative forcing. This is because heat
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window for interference in chaotic flows.

The results here indicate a predictable enhancement of dispersion for geoengineering if influential hyperbolic structures are

present in the stratosphere. When there are strong short-term DBSrw_and DBSpew_ridges, such as in the winter, spring and

autumn CESM2 Run #2 experiments, we show that we can exploit these ridges to optimize the immediate dispersion of

acrosols. As well, the fine scale behavior of aerosol dispersion can be explained by the presence of influential structures, such

as the attraction and blocking that occurs in the southern hemisphere Run #2 spring experiment. These fine scale structures

have not been actively considered in geoengineering research, but may be exploited as is clear in the northern hemisphere for

the winter and spring experiments (Figure 10). In our fully-coupled microphysics and atmospheric chemistry climate

simulations, we also verified that jnitial improvements in particle dispersion from simplified flow calculations can result in
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long-term gainsjn SO burden and radiative forcing, and reduced effective aerosol radii. The enhanced global distribution of

= (Deleted: resulted in
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placement of aerosols near hyperbolic structures, as do long term radiative forcing improvements (Table 2), and correlated

yet complex, relationships with reducing average effective radii.

The extent of this jnfluencejs dramatically portrayed in the autumn CESM Run #2. At this time, a minimal modification of

injection site in the southern hemisphere near strong hyperbolic structures, a change of less than 650 km, resulted in aerosols

spreading over an additional 7.5% of that hemisphere after 7 days. After eight weeks, this immediate DI dispersion benefit
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was not as noticeable, but the ADI scheme still contributed to improved coverage over the FI aerosols. The enhanced coverage
in the autumn experiment is furthermore coincident with a considerable improvement in RF for the DI experiments at 10, 30

and 365 days. Additionally, there was a minor but statistically significant reduction in average aerosol radii (p < 1 x 1075)

one year after SO4 acrosol injection. At longer time scales for several of the other CESM2 Run #2 geoengineering experiments,

the relationship between immediate enhanced dispersion, radiative forcing, and aerosol radii was less clear. For example, in

spring, the ability to achieve global coverage and reduce radiative forcing at long timescales was best for the DI protocol, but

there was not a similar improvement in average aerosol effective radius. In the winter DI simulation, there was a significant

reduction in aerosol radius and improved coverage compared to FI, but there was a weaker effect on radiative forcing one year
after injection.
This research has shown that adapting aerosol geoengineering injections methods by considering 2D Lagrangian coherent

structures provides an obvious advantage for dispersion of aerosols by enhancing longer term dispersion dynamics from only
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short forecast data. All results in section 3.1 suggest DBS-informed sites reliably outperform fixed locations when considering

acrosol dispersion along isentropes as is rigorously guaranteed in the DBS metric derivation. The site-selection algorithm

developed herein, however, does not consider the full three-dimensionality of stratospheric flows, or any knowledge about

common meteorological and climatic features. Thus, the user-independent injection protocol does not always result in

enhanced radiative forcing or global coverage when strong attracting and repelling features are not present in all regions, such

as the summer experiments in CESM2 Run #2. With this is mind, we suggest that future injection experiments use DBS fields

and diffusive transport barriers o constrain their choice of injection site, but allow for user intervention in the absence of such

L= (" leted: in the improved global coverage of H2SO4

strong dispersive ridges, and to consider other influential variables such as seasonality of injection (e.g. Visioni et al, 2020)

o (Formatted: English (UK)

NN

and acrosol microphysics, such as temperature and humidity.

In one injection season (winter), there is an appreciable reduction in effective radius, and a more negligible effect in the others.

This indicates that there is both potential for dynamic injection to result in smaller aerosols, and it suggests there is room for

improving our understanding of the role dispersive stratospheric dynamics play in aerosol coagulation. Future work along

these lines may further improve upon the findings indicated here as well as help to understand the limits of what improvement

in reducing aerosol size is still possible by considering time-varying small-scale turbulent features.

Related to this study is the proposed idea of direct injection of H.SO4 droplets, instead of SO gas, which would ostensibly
create a more monodisperse particle distribution and thus delay coagulation [Pierce et al., 2010]. The long-term advection-
only analysis in Section 3.1 applies more directly to H2SO4 injection, in that this proposed method already injects particles,
albeit with non-obvious consequences for the resulting size distribution. Further investigation is warranted to understand the
relative effects of this method vs the SO: injection simulated in our CESM2 (WACCMG6) simulations, particularly if injection
locations are chosen dynamically. This is especially important given the stratospheric chemistry involved in SO: injection,

including the approximately one-month timescale of conversion from SOz to sulfate aerosols,

The results presented here are for a single model; different models will indicate different stratospheric features and thus
different transport barrier locations and strengths. Of key importance is that the long-term dispersion analysis and structure
identification methodology relied on two-dimensional transport along isentropes. This method has proven to be successful for
advancing the goals of optimizing sulfate precursor injections; a full three-dimensional computation of DBS fields would

further improve the results. Upon review of the results, it appears there was an over emphasis on the ability to separate “unique”

attracting structures from the 2D isentrope data. With the automated algorithm defined in Table 1, pairs of injection sites were

sometimes chosen to be close together as it appeared their injected acrosols would end up on separate structures. In fact, these

features may have actually been connected along the third dimension. Additionally, long-term trends of SO4 burden present in

the stratosphere were mixed, suggesting further considerations of seasonality (e.g. Visioni et al., 2020) and consideration of

what structure is likely being represented by a DBSpw ridge (e.g. a jet stream, polar vortex, something much less substantial).

Though not investigated in the present research, with the introduction of stratospheric heating, cross-isentropic flow is likely

to occur (e.g., vertical uplift from the heating), potentially justifying a three-dimensional analysis for the flows used here.

Vertical transport of aerosol is likely inevitable, but a 3D DBS analysis would exponentially increase the complexity and the
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computational costs of finding injection locations, The currently proposed isentrope method is found to be satisfactory as a

benchmark improvement in injection protocols at little to no increased operational cost as there are clear advantages in the

short-time dynamics using the DBS forecasts. One alternative improvement to 3D DBS fields would be simultancous 2D

analysis of structures on a range of isentropes.

Several studies have found that the injection rate of SO: is the limiting factor in geoengineering efficiency by increasing
coagulation [Heckendorn et al., 2009; Niemeier et al., 2011; Niemeier and Timmreck, 2015]. These studies, however, have
neglected to optimize the dispersion of SO2 during the first days following injection. This oversight has inhibited the potential
of sulfate injections and prevented optimal radiative forcing in model simulations. We conclude that the exploitation of readily

available short-range wind forecasts and reanalysis is a catalyst that will allow better understanding of what can be achieved

with climate geoengineering. Jt is possible that one of the reasons the improvements seen here are not more drastic is the acute

focus on the response to large individual injections, a method not commonly used. We ran simulations that included a single

day of injection in an effort to demonstrate dispersion capabilities. As the ability DBS ridges to predict dispersion dynamics

has now been shown, a logical next step is to pursue more climate focused studies, such as injecting less mass over many

successive injections using concurrent predictions. While the use of DBS-informed injections does not address many of the

potential hazards of geoengineering [e.g. Robock et al., 2008; Heckendorn et al., 2009], it is a significant step forward towards

assessing the feasibility of geoengineering to prevent the climate from crossing a critical tipping point.
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