
Reply to Reviewer #2: 

Comments to the Author: This paper documents the PM2.5 changes as a result of 

COVID-19 in China. Following my previous comments the authors have made many 

useful revisions and the paper is much improved. I recommend it be accepted subject 

to the following mainly minor comments being addressed. Overall I think my 

revisions are minor, but they are important: 

1. Figure S1 is very helpful and should be added to the main text. With reference 

to Figure S1a, the authors should comment on the substantial underestimate of the 

PM2.5 in northern China (not just in Beijing) and in the westernmost parts of your 

figure at 35N, and calculate a normalized mean bias from their figure and add it 

to the text with a comparison to the number obtained by Dang and Liao (2019).  

 

They should also discuss Figure S1b in detail in the text, rather than mentioning 

it in passing. It shows that on average the 2010 emissions substantially 

overestimate PM2.5 everywhere and the 1985 emissions still overestimate PM2.5, 

especially in the south, but agree better with the measurements. This is a good 

justification for using the 1985 inventory, which the authors should explain at line 

119, and then add a substantial new paragraph to the text detailing their 

evaluation. 

Reply: 

Appreciate for your detailed and valuable comments. In terms of the evaluation of 

GEOS-Chem model, we have made a more complete description based on your 

comments and added Figure S1 to the main text as Figure 2. 

(1) Dang and Liao (2019) compared the simulated and observed daily mean PM2.5 

concentrations at the Beijing with a normalized mean bias (NMB) of -9.2%. The 

simulations in February 2017 in this study substantially underestimated the PM2.5 in 

northern China with a normalized mean bias (NMB)  of -3.0%. Among them, the 

NMB in The Beijing-Tianjin-Hebei region was -3.3%. However, in the Fenwei plain 

(the westernmost parts of the figure at 35N), the underestimation was even more 

pronounced, with NMB reaching -16.3%. 

(2) In North China, Yangtze River Delta and Hubei Province, the correlation 

coefficients between daily PM2.5 observations and simulated data under 2010 (1985) 

emission scenario reached 0.83 (0.82), 0.67 (0.63), and 0.79 (0.73), respectively. The 

correlation coefficients under 2010 emission scenario were all higher than that under 



1985 emission scenario maybe due to the emissions from each sector in 2010 were 

more similar to recent years, which was more reasonable. Therefore, we selected the 

percentages due to different meteorology between 2020 and 2017 calculated under the 

2010 emission scenario, instead of making the selection based on the simulation results 

of the real PM2.5 value, which was also mentioned in the following text as below. 

 

The evaluation of the simulated PM2.5 concentration under 2010 emission and 

1985 emission in February 2020 was also introduced in the old version as below. In the 

revised version, we present this section as a new and separate paragraph and give a 

more detailed evaluation and explanation. 

Revision: 

Lines 92-98: The absolute biases were larger in the south of China, which was 

consistent with Dang and Liao (2019). They also compared the simulated and observed 

daily mean PM2.5 concentrations at the Beijing, Shanghai, and Chengdu grids, which 

had a low bias in Beijing with a normalized mean bias (NMB) of -9.2% and high biases 

with NMBs of 18.6% and 28.7% in Shanghai and Chengdu, respectively. The 

simulations in February 2017 in this study substantially underestimated the PM2.5 in 

NC with an NMB of -3.0% (Fig. 1a). Among them, the NMB in The Beijing-Tianjin-

Hebei region was -3.3%. However, in the Fenwei plain, the underestimation was even 

more pronounced, with NMB reaching -16.3%. 

Lines 102-109: In NC, YRD and HB, the correlation coefficients between daily PM2.5 

observations and simulated data under 2010 (1985) emission scenario reached 0.83 

(0.82), 0.67 (0.63), and 0.79 (0.73), respectively (Fig.1b), and could capture the 

maximum and minimum PM2.5 concentrations……. The correlation coefficients under 

2010 emission scenario were all higher than that under 1985 emission scenario maybe 

due to the emissions from each sector in 2010 were more similar to recent years, which 

was more reasonable.  



2. Rephrase first sentence: “blew China” is not conventional English. “swept 

through China” would be OK. In general, the quality of the written English could 

still be improved significantly in several other places not mentioned below, I 

recommend the authors seek advice from colleagues if at all possible, or assistance 

from the copy-editors. 

Reply: 

Thank you for this detailed suggestions. We have rephrased “blew China” to 

“swept through China” and checked the quality of the written English of the whole text. 

Revisions: 

Line 23: The COVID-19 pandemic devastatingly swept through China in the beginning 

of 2020…… 

3. Line 50-52 are you referring to the same rebound. Rephrase to avoid repetition. 

Reply: 

These were two different rebound. One was the severe haze events occurring in 

2016 December, indicating a rebound of PM2.5 comparing to 2014-2015, and the other 

was the rebound of PM2.5 in winter 2018 comparing to 2017 under the same intensified 

regional air pollution preventions. We have rephrased the explanation to make it clearer. 

Revision: 

Lines 43-47: The continuous low surface wind speed of less than 2ms−1, high humidity 

above 80% and strong temperature inversion lasting for 132h caused the serious haze 

event in 2016 (Yin and Wang, 2017). In winter 2017, the air quality in North China 

largely improved; however, the stagnant atmosphere in 2018 resulted in a major PM2.5 

rebound comparing to 2017 by weakening transport dispersion and enhancing the 

chemical production of secondary aerosols (Yin and Zhang 2020). 

4. Line 92 which aerosol microphysics is used here? 

Reply: 

According to the official website of GEOS-Chem, in the mechanism we run, these 

two alternate simulations of aerosol microphysics were both simulated. We have 

explained in the text. 

Revision: 

Lines 85-86: Two alternate simulations of aerosol microphysics are implemented in 



GEOS-Chem: the TOMAS simulation (Kodros and Pierce, 2017) and the APM 

simulation (Yu and Luo, 2009), which were both simulated in the experiments.  

5. Line 103 please be quantitative, add the magnitude of the biases to the text. 

Reply: 

Dang and Liao (2019) compared the simulated and observed daily mean PM2.5 

concentrations at the Beijing, Shanghai, and Chengdu grids, which had a low bias in 

Beijing with a normalized mean bias (NMB) of -9.2% and high biases with NMBs of 

18.6% and 28.7% in Shanghai and Chengdu, respectively. We have added the specific 

biases to the text. 

Revisions: 

Lines 94-96: They also compared the simulated and observed daily mean PM2.5 

concentrations at the Beijing, Shanghai, and Chengdu grids, which had a low bias in 

Beijing with a normalized mean bias (NMB) of -9.2% and high biases with NMBs of 

18.6% and 28.7% in Shanghai and Chengdu, respectively. 

6. Line 203 and 206 need to explain how the significance testing was carried out. 

Reply: 

We use t test which depends on t distribution. According to querying the critical 

value table of correlation coefficient by reliability and degree of freedom, the critical 

correlation coefficient that passes the t test is obtained. If the calculated correlation 

coefficient is greater than the critical correlation coefficient, it means passing the 

significance t test of the corresponding reliability. We have explained in the text that we 

used t test to test the significance of correlation coefficients. 

Revision: 

Line 188: …… all of which passed the 95% significance test using t test method …… 

Line 191: …… exceeding the 99% significance test using t test method …… 

7. Line 262 “break-off transportation” needs rephrasing.  

Reply: 

We have rephrased the “break-off transportation” to “the disruption of 

transportations”. 

 



Revision: 

Line 245: Because of the disruption of transportations…… 

8. Line 296 “approximation was lack of considering”-> “approximation did not 

consider” 

Reply: 

We have changed “approximation was lack of considering” to “approximation did 

not consider”. 

Revisions 

Line 275: ……we must note that this approximation did not consider the meteorology-

emission interactions…… 

9. The word ‘conjecture’ is inappropriate, I would comment that the technique 

introduces uncertainty. 

Reply: 

We have changed “conjecture” to “estimated value”, which could show our 

meaning appropriately. 

Revision: 

Line 280: ……it is still estimated value rather than true value…… 

10. Figure 1b caption: specify time period for ratios 

Reply: 

The time period for ratios is until the end February. We have specified it in the 

caption. 

Revisions: 

Line 450: ……(b) The ratio of work resumption in large industrial enterprises in the 

east of China until the end February…… 
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Abstract. The top-level emergency response to the COVID-19 pandemic involved an exhaustive quarantine in China. The 10 

impacts of COVID-19 quarantine on the decline in fine particulate matter (PM2.5) were quantitatively assessed based on 11 

numerical simulations and observations in February. Relative to both of February 2017 and climate mean, anomalous 12 

southerlies and moister air occurred in the east of China in February 2020, which caused considerable PM2.5 anomalies. Thus, 13 

it is a must to disentangle the contributions of stable meteorology from the effects of the COVID-19 lockdown. The 14 

contributions of routine emission reductions were also quantitatively extrapolated. The top-level emergency response 15 

substantially alleviated the level of haze pollution in the east of China. Although climate variability elevated the PM2.5 by 29% 16 

(relative to 2020 observations), 59% decline related to COVID-19 pandemic and 20% decline from the expected pollution 17 

regulation dramatically exceeded the former in North China. The COVID-19 quarantine measures decreased the PM2.5 in 18 

Yangtze River Delta by 72%. In Hubei Province where most pneumonia cases were confirmed, the impact of total emission 19 

reduction (72%) evidently exceeded the rising percentage of PM2.5 driven by meteorology (13%). 20 

Keywords: COVID-19, PM2.5, Emission Reduction, Climate Variability, Haze 21 

1 Introduction 22 

The COVID-19 pandemic devastatingly blewswept through China in the beginning of 2020 (Luo, 2020; Xia et al., 2020; 23 

Cao et al., 2020). By April 2020, more than 84 thousand confirmed cases were reported by the National Health Commission 24 

of China, approximately 75% of which were confirmed in February (Fig. 1a). To effectively control the large spread of COVID-25 

19 pneumonia, stringent quarantine measures were implemented by the Chinese government and people themselves, including 26 

prohibiting social activities, shuttering industries, stopping transportation, etc. (Chen S. et al., 2020). The abovementioned 27 

emergency response measures were first carried out in Wuhan on 23 January, which resulted in the delayed arrival of COVID-28 

19 in other cities by 2.91 days, and these response measures were in effect in all cities across China, thus limiting the spread 29 

of the COVID-19 epidemic in China (Tian et al., 2020). Since March 7, the number of newly confirmed cases in China has 30 
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been nearly below 100. On the other hand, the COVID-19 quarantine measures greatly reduced anthropogenic emissions, and 31 

therefore, the air quality in China was considerably improved (Wang et al., 2020). Chen K. et al. (2020) simply compared 32 

observations of atmospheric components before and during the quarantine and found that the concentration of fine particulate 33 

matter (PM2.5) in Wuhan decreased 1.4 μg/m3, but it decreased 18.9 μg/m3 in 367 cities across China. Shi et al. (2020) quantified 34 

a 35% reduction of PM2.5 on average during the COVID-19 outbreak compared to the pre-COVID-19 period. Huang et al. 35 

(2020) used comprehensive measurements and modeling to show that the haze during COVID-19 lockdown was driven by 36 

enhancements of secondary pollution, which offset reduction of primary emissions during this period in China. However, the 37 

impacts of meteorology on the air quality were neglected in many previous studies.  38 

Climate variability notably influences the formation and intensity of haze pollution in China (Yin and Wang 2016; Xiao 39 

et al., 2015; Zou et al., 2017), and the impacts are embodied by variations in surface wind, boundary layer height and moisture 40 

conditions (Shi et al., 2019; Niu et al., 2010; Ding et al., 2014). During December 16th-21st 2016, although most aggressive 41 

control measures for anthropogenic emissions were implemented, severe haze pollution with PM2.5 concentrations ≈ 1100µg 42 

m−3 still occurred and covered 710,000km2. The continuous low surface wind speed of less than 2ms−1, high humidity above 43 

80% and strong temperature inversion lasting for 132h caused the rebound of serious haze event wintertime PM2.5 in 2016 44 

(Yin and Wang, 2017). In winter 2017, the air quality in North China largely improved; however, the stagnant atmosphere in 45 

2018 resulted in a major PM2.5 rebound comparing to 2017 by weakening transport dispersion and enhancing the chemical 46 

production of secondary aerosols (Yin and Zhang 2020). Wang et al. (2020) applied the Community Multiscale Air Quality 47 

model to emphasize that the role of adverse meteorological conditions cannot be neglected even during the COVID-19 48 

outbreak. From February 8 to 13 2020, North China suffered severe pollutions, with maximum daily PM2.5 exceeding 200µg 49 

m−3. During this period, weak southerly surface winds lasted for nearly 5 days, relative humidity was close to 100%, and 50 

atmospheric inversion reached more than 10℃. Although pollution emissions from basic social activities have been reduced, 51 

heavy pollution still occurred when adverse meteorological conditions characterized by stable air masses appeared (Wang et 52 

al., 2020).  53 

After the severe haze events of 2013, routine emission reductions resulted in an approximately 42% decrease in the annual 54 

mean PM2.5 concentration between 2013 and 2018 in China (Cleaner air for China, 2019). In November 2019, the Ministry of 55 

Environmental Protection of China issued a series of Autumn-Winter Air Pollution Prevention and Management Plans 56 

indicating that the routine emission reductions would be conventionally implemented in the following winter (Ministry of 57 

Environmental Protection of China, 2019). As reported by the government, the mean ratio of work resumption in large 58 

industrial enterprises was approximately 90% in the east of China until the end of February (Fig. 1b). In this study, we attempted 59 

to quantify the impacts of the COVID-19 pandemic on the observed PM2.5 concentration in February 2020 when the quarantine 60 

measures were the strictest. The official 7-day Chinese New Year holiday occurs in January and February and commonly 61 

accounts for approximately 25% of a month. From 2013–2020, there were only two years (2017 and 2020) when the official 62 
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7-day holiday occurred in January (Fig. 1c). Thus, to avoid the impacts of the Spring Festival, the observed PM2.5 concentration 63 

in February 2017 (Fig. 1a) was adopted to calculate the PM2.5 difference, which was decomposed into the results due to 64 

expected routine emission reductions, changing meteorology climate variability, and COVID-19 quarantines.  65 

2 Datasets and methods  66 

2.1 Data description 67 

Monthly mean meteorological data from 2015 to 2020 were obtained from NCEP/NCAR reanalysis datasets, with a 68 

horizontal resolution of 2.5°×2.5°, including the geopotential height at 500 hPa (H500), zonal and meridional winds at 850 69 

hPa, vertical wind from the surface to 150 hPa, and relative humidity at the surface (Kalnay et al., 1996). PM2.5 concentration 70 

data from 2015 to 2020 were acquired from the China National Environmental Monitoring Centre (https://quotsoft.net/air/ ). 71 

The monitoring network expanded from 1500 sites in 2015 to 1640 sites in 2020, covering approximately 370 cities nationwide. 72 

The PM2.5 data were monitored every 5 min using two methods: a tapered element oscillating microbalance and β-rays, which 73 

were operated under the China National Quality Control.  74 

2.2 GEOS-Chem description, evaluation and experimental design.  75 

We used the GEOS-Chem model (http://acmg.seas.harvard.edu/geos/) to simulate the PM2.5 concentration, driven by 76 

MERRA-2 assimilated meteorological data (Gelaro et al., 2017). The nested grid over China (15° N–55° N, 75–135° E) had a 77 

horizontal resolution of 0.5° latitude by 0.625° longitude and consisted of 47 vertical layers up to 0.01 hPa. The GEOS-Chem 78 

model included the fully coupled O3–NOx–hydrocarbon and aerosol chemistry module with more than 80 species and 300 79 

reactions (Bey et al., 2001; Park et al., 2004). The PM2.5 components simulated in the GEOS-Chem model included sulfate, 80 

nitrate, ammonium, black carbon and primary organic carbon, mineral dust, and sea salt. Aerosol thermodynamic equilibrium 81 

is computed by the ISORROPIA package, which calculates the gas–aerosol partitioning of the sulfate–nitrate–ammonium 82 

system (Fountoukis and Nenes, 2007). Heterogeneous reactions of aerosols include the uptake of HO2 by aerosols (Thornton 83 

et al., 2008), irreversible absorption of NO2 and NO3 on wet aerosols (Jacob, 2000), and hydrolysis of N2O5 (Evans and Jacob, 84 

2005). Two alternate simulations of aerosol microphysics are implemented in GEOS-Chem: the TOMAS simulation (Kodros 85 

and Pierce, 2017) and the APM simulation (Yu and Luo, 2009), which were both simulated in the experiments.  86 

GEOS-Chem model has been widely used to examine the historical changes in air quality in China and quantitatively 87 

separate the impacts of physical-chemical processes. Using the GEOS‐Chem model, Yang et al. (2016) found an increasing 88 

trend of winter PM2.5 concentrations during 1985–2005, 80% of which due to anthropogenic emissions and 20% due to 89 

meteorological conditions. Here, we simulated the PM2.5 concentrations in February 2017 and evaluated the performance of 90 

GEOS-Chem (Fig. S12a). The values of mean square error / mean equals were 5.8%, 7.0% and 5.4% in North China (NC), 91 

https://quotsoft.net/air/
http://acmg.seas.harvard.edu/geos/
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Yangtze River Delta (YRD) and Hubei Province (HB), respectively, indicating the good performance of reproducing the haze-92 

polluted conditions. The absolute biases were larger in the south of China, which was consistent with Dang and Liao (2019). 93 

They also compared the simulated and observed daily mean PM2.5 concentrations at the Beijing, Shanghai, and Chengdu grids, 94 

which had a low bias in Beijing with a normalized mean bias (NMB) of -9.2% and high biases with NMBs of 18.6% and 28.7% 95 

in Shanghai and Chengdu, respectively. The simulations in February 2017 in this study substantially underestimated the PM2.5 96 

in NC with an NMB of -3.0% (Fig. 2a). Among them, the NMB in The Beijing-Tianjin-Hebei region was -3.3%. However, in 97 

the Fenwei plain, the underestimation was even more pronounced, with NMB reaching -16.3%. The simulated biases possibly 98 

affected the subsequent results and brought uncertainties to some extent. The simulated spatial distribution of PM2.5 was also 99 

similar to that of observations with spatial correlation coefficient = 0.78.  100 

We further verified whether the simulations could capture the roles of meteorological changes in February 2020 under a 101 

substantial reduction in emissions because of COVID-19 quarantines. In NC, YRD and HB, the correlation coefficients 102 

between daily PM2.5 observations and simulated data under 2010 (1985) emission scenario reached 0.83 (0.82), 0.67 (0.63), 103 

and 0.79 (0.73), respectively (Fig. 2b-d), and could capture the maximum and minimum PM2.5 concentrations. For example, 104 

in NC, the simulation could well simulate severe haze events (e.g., from 8–13 and 19–25 February) and good air quality events 105 

(e.g., from 14–18 February), reflecting that it has ability to accurately capture the change of meteorological conditions (Fig. 106 

S1b). The correlation coefficients under 2010 emission scenario were all higher than that under 1985 emission scenario maybe 107 

due to the emissions from each sector in 2010 were more similar to recent years, which was more reasonable.  108 

The PM2.5 concentration in February from 2015 to 2020 was simulated in this study. Due to delayed updates of the 109 

emission inventory, we used the emissions data of 2010 110 

(http://geoschemdata.computecanada.ca/ExtData/HEMCO/AnnualScalar) and 1985 (M. Li et al., 2017) for the simulations, 111 

which represented high- and low-emission scenarios, respectively. In total, we conducted two sets of numerical experiments 112 

to drive the GEOS-Chem simulations, one combining the meteorological conditions from 2015 to 2020 with fixed emissions 113 

in 1985 and the other with fixed emissions in 2010, which could determine the stability of simulated results.  114 

2.3 The method to quantify the influence of the COVID-19 quarantine.  115 

As mentioned above, we aimed to examine the impact of the COVID-19 quarantines on PM2.5 over the February 2017 116 

level basing on an observational-numerical hybrid method. The observed PM2.5 difference in February 2020 (PMdOBS) was 117 

linearly decomposed into three parts: the impacts of changing meteorology (PMdM), expected routine emissions reductions 118 

(PMdR) and COVID-19 quarantines (PMdC), which was a reasonable approximation, and the decomposition equation was 119 

PMdOBS = PMdM + PMdR + PMdC. That is, PMdC = PMdOBS – PMdM – PMdR. It should be noted that PMdC is the impact of 120 

the COVID-19 quarantines over the situation whereby the pandemic did not occur and routine emission reductions 121 

conventionally were in effect. The value of PMdE (i.e., PMdR + PMdC) was the total impact of the emission reductions in 122 

http://geoschemdata.computecanada.ca/ExtData/HEMCO/AnnualScalar


 5 / 21 

 

February 2020 over the 2017 level. 123 

Simulated PM2.5 data driven by changing meteorology with two fixed-emissions (1985 and 2010) were employed to 124 

determine the ratio of PMdM of each year/ observed PM2.5 in 2017. Depending on the GEOS-Chem simulations, we found that 125 

the percentage of changed PM2.5 due to the differences in meteorology remained nearly constant regardless of the emission 126 

level (Fig. S12), which was consistent with the results of Yin and Zhang (2020). This percentage was the difference of simulated 127 

PM2.5 between each year and 2017 under the same emission scenario divided by the simulated PM2.5 in 2017. For example, the 128 

percentages due to different meteorology between 2020 and 2017 were 22.1% (21.4%), –1.2% (–0.7%) and 9.0% (8.2%) in 129 

NC, YRD and HB under the low (high) emissions (Fig. S12). The percentage under 2010 emission scenario was selected as 130 

the final percentage because the emissions from each sector in 2010 were more similar to recent years, and thus was more 131 

reasonable. Then, through multiplying the 2017 observation by this percentage, PMdM can be quantified in each simulation 132 

grid with respect to 2017 (STEP 1).  133 

From 2015 to 2019, PMdC = 0; thus, PMdR = PMdOBS – PMdM. Here, we repeated STEP 1 to determine PMdM in each year 134 

from 2015 to 2019 relative to 2017 (i.e., PMdM = 0 in 2017). After removing the effect of meteorological conditions in PM2.5 135 

differences, PMdR in all years except 2020 can also be calculated. According to many previous studies, the change in emissions 136 

resulted in a linear change in air pollution in China from 2013-2019 (Wang et al., 2020; Geng et al., 2020) which might be 137 

related to the huge emission reduction due to the implementation of clean air action. Because the signal of emissions reduction 138 

in China had been particularly strong since 2013, it could be easily detected and the assumption of a linear reduction in 139 

pollution caused by emission reduction was applicable in China in the past few years. Based on this approximation, we used 140 

the method of extrapolation to speculate the impact of routine emission reduction on PM2.5. We performed linear extrapolation 141 

based on known PMdR values from 2015 to 2019 to obtain PMdR in 2020 (STEP 2, Fig. S23). This PMdR in 2020was calculated 142 

as the change of PM2.5 caused by expected routine emission reduction, which did not actually happen, but merely gave an 143 

assessment in the case of “if no COVID-19”. In Beijing and Shanghai, for example, PM2.5 fell by 23.1% and 26.6% due to 144 

routine emission reduction in 2019, respectively, compared with 2015. Zhou et al. (2020) indicated that emission reductions 145 

caused 20–26% decreases in winter in Beijing which has been translated into 5 years. Zhang et al. (2020) also showed that the 146 

emission controls in Beijing-Tianjin-Hebei (BTH) region have led to significant reductions in PM2.5 from 2013 to 2017 of 147 

approximately 20 % after excluding the impacts of meteorology. Geng et al. (2020) found a 20% drop in the main component 148 

of PM2.5 in the Yangtze River Delta from 2013 to 2017. These results are consistent with our extrapolated results. Therefore, 149 

it is reasonable to obtain PMdR by extrapolation after disentangling the effects of meteorological conditions.  150 

Through STEP 1 and STEP 2, PMdC and PMdR, respectively, in 2020 can be determined. PMdOBS can be directly 151 

calculated from the observed data. After removing the influences of climate anomalies and routine emission reductions, the 152 

impact of COVID-19 quarantines on PM2.5 (PMdC) was extracted as PMdOBS – PMdM – PMdR (STEP 3). 153 
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3 Results 154 

The mean PM2.5 concentration in February 2020 was nearly below 80 μg/m3 at the vast majority of sites in the east of 155 

China, which was much lower than before (Fig. S34). North China (NC) was still the most polluted region (>40 μg/m3), but 156 

the PM2.5 concentrations in the Pearl River Delta (PRD) and Yangtze River Delta (YRD) were < 20 μg/m3 and < 40 μg/m3, 157 

respectively. Relative to the observations in February 2017, negative PM2.5 anomalies were centered in NC, with values of 158 

approximately –60 to –40 μg/m3 in southern Hebei Province and northern Henan Province (Fig. 32). In Hubei Province (HB), 159 

where the COVID-19 pneumonia cases were the most severe in February, the PM2.5 concentration was 20~40 μg/m3 lower 160 

than that in 2017. The PM2.5 differences were also negative in YRD and PRD. Therefore, how much did air pollution decrease 161 

due to the COVID-19 quarantines in February in east of China? 162 

Climate variability notably influences the interannual-decadal variations in haze pollution as verified by both 163 

observational analysis (Yin et al., 2015) and GEOS-Chem simulations (Dang and Liao, 2019). Furthermore, Zhang et al. (2020) 164 

reported that meteorology contributes 50% and 78% of the wintertime PM2.5 reduction between 2017 and 2013 in the BTH 165 

and YRD, respectively. Therefore, it is necessary to disentangle the influences of climate anomalies before quantifying the 166 

contributions of the COVID-19 quarantines on the air quality. The highest observed PM2.5 concentrations were 274, 223, and 167 

303 μg/m3 in Beijing, Tianjin and Shijiazhuang, respectively. Although human activities had sharply decreased, severe haze 168 

pollution (e.g., 8–13 and 19–25 February 2020) was not avoided, which was attributed to the stagnant atmosphere (Wang et 169 

al., 2020), and these severe haze events were also reproduced by the GEOS-Chem simulation (see Section 2.2 and Fig. S12b).  170 

As shown in Figure 4a-b, the meteorological conditions in February 2020 were more favorable for the occurrence of haze 171 

pollution in NC. In the mid-troposphere, an anomalous anticyclone was located over NC and the Sea of Japan (Fig. 4a). These 172 

anticyclonic anomalies clearly stimulated anomalous southerlies over eastern China, which not only transported sufficient 173 

water vapor to NC but also overwhelmed the climatic northerlies in winter (Fig. 4b). In addition, the anomalous upward motion 174 

associated with anomalous anticyclones prevented the downward transportation of westerly momentum and preserved the 175 

thermal inversion layer over NC (Fig. S45). Particularly, in the stagnant days (i.e., 8–13 and 19–25 February), the East Asia 176 

deep trough, one of the most significant zonally asymmetric circulations in the wintertime Northern Hemisphere (Song et al., 177 

2016), shifted eastwards and northwards than climate mean, which steered the cold air to North Pacific instead of North China 178 

(Fig. 4c). The climatic northerlies in February, related to East Asia winter monsoon, also turned to be south winds in the east 179 

of China (Fig. 4d). Physically, the weakening surface winds and strong thermal inversion corresponded to weaker dispersion 180 

conditions, and the higher humidity indicated a favorable environment for the hygroscopic growth of aerosol particles to 181 

evidently decrease the visibility. Compared with the climate (February 2017) monthly mean, boundary layer height (BLH) 182 

decreased by 19.5m (34.5m), surface relative humidity (rhum) increased by 5% (10.6%) and surface air temperature (SAT) 183 

rose by 1.6°C (0.9°C) after detrending, which were conductive to the increase of PM2.5 concentration in February 2020. 184 



 7 / 21 

 

Furthermore, the correlation coefficients of daily PM2.5 and BLH, rhum, wind speed and SAT in North China were -0.63, 0.44, 185 

-0.45 and 0.46, respectively, all of which passed the 95% significance test using t test method and indicated importance of 186 

meteorology. We used the meteorological data in February 2017 to establish a multiple linear regression equation to fit PM2.5. 187 

The correlation coefficients between the fitting results and the observed PM2.5 concentration in NC, YRD and HB reached 0.84, 188 

0.64 and 0.65, exceeding the 99% significance test using t test method. Then, we put the observed meteorological data in 189 

February 2020 into this established multiple regression equation to get the predicted PM2.5 concentration. Using the regress-190 

predicted value, the percentage of changed PM2.5 due to the differences in meteorology between 2017 and 2020 were re-191 

calculated and is 20.7%, -3.2% and 9.5% in NC, YRD and HB, respectively (Fig. S12), which is consistent with and enhanced 192 

the robustness of the results obtained by our previous model simulation. Based on the GEOS-Chem simulations, PMdM was 193 

calculated between February 2020 and 2017 (see Methods). To the south of 30°N, most PMdM values were negative with small 194 

absolute values, at < 10 μg/m3. To the north of 30°N, the PMdM values were mostly positive, ranging from 30~60 μg/m3 in 195 

BTH (Fig. 53a). 196 

Since 2013, the Chinese government has legislated and implemented stringent air pollution prevention and management 197 

policies that have clearly contributed to air quality improvement (Wang et al., 2019). As mentioned above, without the COVID-198 

19 pandemic, these emission reduction policies would certainly remain in effect in February 2020. Thus, we extrapolated PMdR 199 

(i.e., the PM2.5 difference due to expected routine emission reductions) between February 2020 and 2017 to isolate the impacts 200 

of the COVID-19 quarantines (i.e., PMdC). PMdR was mostly negative in the east of China (Fig. 53b). Because the impacts of 201 

meteorology were proactively removed, these negative values illustrated that routine emission reductions substantially reduced 202 

the wintertime PM2.5 concentration. The contributions of the emission reduction policies were the greatest in the south of BTH 203 

and were also remarkable in Hubei Province (Fig. 35b). Although the PMdR of Beijing in 2016 did not strictly comply with 204 

the pattern of monotonous decrease, which might be caused by the fluctuation of policy and its implementation, the value of 205 

PMdR in 2020 relative to 2017 was –8.4 μg/m3 and was comparable to the 11.5 μg/m3 reductions due to policy during 2013–206 

2017 (Zhang et al., 2020). In Shanghai, PMdR was –12.0 μg/m3 (Fig. 65), whose magnitude was proportional with assessments 207 

by Zhang et al. (2020), and the trend was nearly linear. The rationality of the extrapolations of PMdR was also proved in Section 208 

2.3. The trend of PMdR in Wuhan was –9.6 μg/m3 per year from 2015–2019, which indicated high efficiency of the emission 209 

reduction policies and resulted in large PMdR values in 2020 (i.e., –21.8 μg/m3).  210 

By disentangling the impacts of meteorology and routine emission reduction policies, the change in PM2.5 due to the 211 

COVID-19 quarantines was quantitatively extracted. As expected, this severe pandemic caused dramatic slumps in the PM2.5 212 

concentration across China (Fig. 53c). Large PMdC values (approximately –60 to –30 μg/m3) were located in the high-polluted 213 

NC regions where intensive heavy industries were stopped and the traditional massive social activities and transportations 214 

around Chinese New Year were cancelled as part of the COVID-19 quarantine measures. To the south of 30°N, the impacts of 215 

the COVID-19 quarantines on the air quality were relatively weaker (–30 ~ 0 μg/m3) than those in the north. Generally, the 216 
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south region was less polluted than the north, therefore the baseline of PM2.5 concentration was relatively lower (Fig. S34a). 217 

In addition, meteorological conditions in the south in February 2020 had no positive contribution (Fig. 53a), which would not 218 

lead to the increase of PM2.5 concentration. These two possible reasons resulted in a smaller space for PM2.5 decrease due to 219 

COVID-19 quarantines in the south and accompanying regional differences. To reduce the assessment uncertainties, the 220 

percentage of changed PM2.5 due to the differences in meteorology were recalculated based on the GEOS-Chem simulations 221 

with fixed emission in 1985. As described in the Methods section, the recalculated PMdC in Figure S56 were consistent with 222 

those in Figure 53c, showing a high robustness. Furthermore, the mean PM2.5 concentration decreases due to the COVID-19 223 

quarantines in NC, HB and YRD were analyzed, which accounted for 59%, 26% and 72% of the observed February PM2.5 224 

concentration in 2020 (Fig. 76).  225 

It should be noted that the sum of PMdR and PMdC (i.e., PMdE) is the total contribution of the emission reduction in 226 

February 2020 with respect to 2017 (Fig. 53d). In NC, YRD and HB, the COVID-19 quarantines and routine emission 227 

reductions drove PM2.5 in the same direction. The mean PM2.5 decrease in NC, due to the total emission reduction, was –43.3 228 

μg/m3, accounting for 79% of the observed February PM2.5 concentration in 2020 (Fig. 76). Although the absolute values of 229 

both PMdR and PMdC in YRD were smaller than those in NC, the change percentage (92%) was larger because of the lower 230 

base PM2.5 concentration. In HB, where more than 80% of the confirmed COVID-19 cases in China occurred and the cities 231 

were in emergency lockdown, the total anthropogenic emissions were clearly limited, which resulted in a 72% decline in PM2.5 232 

in the atmosphere (Fig. 76). In particular, if the anthropogenic emissions did not decline, the PM2.5 concentration in NC, YRD 233 

and HB would increase to nearly twice the current observation (Fig. 76), indicating significant contributions of human activities 234 

to the air pollution in China. 235 

The declines of PM2.5 seemed not to be directly proportional to the almost complete shutoff of vehicle traffics and 236 

industries, that is, the reduction ratio of PM2.5 concentrations were smaller than that of precursor emissions (Wang et al., 2020). 237 

The unexpected air pollutions during the marked emission reductions were closely related to the stagnant air flow, enhanced 238 

productions of secondary aerosols, and uninterrupted residential heating, power plants and petrochemical facilities (Le et al., 239 

2020). The partial impacts of stagnant meteorological conditions have been explained earlier (Fig. 4). In Wuhan, the PM2.5 240 

remained the main pollutant during the city lockdown and the high level of sulphur dioxide (SO2) may be related to the 241 

increased domestic heating and cooking (Lian et al., 2020). In North China, large reductions of primary aerosols were observed, 242 

but the decreases in secondary aerosols were much smaller (Sun et al., 2020; Shi et al., 2020). Because of the disruption of 243 

break-off transportations, reduced nitrogen oxide (NOx) increased the concentrations of ozone and nighttime nitrate (NO3) 244 

radical formations. The increased oxidizing capacity in the atmosphere enhanced the formation of secondary particulate matters 245 

(Huang et al., 2020). Thus, the non-linear relationship of emission reduction and secondary aerosols also partially contributed 246 

to the haze occurrence during the COVID-19 lockdown.  247 



 9 / 21 

 

4 Conclusions and discussion 248 

In the beginning of 2020, the Chinese government implemented top-level emergency response measures to contain the 249 

spread of COVID-19. The traditional social activities surrounding Chinese New Year, industrial and transportation activities, 250 

etc. were prohibited, which effectively reduced the number of confirmed cases in China. Concomitantly, anthropogenic 251 

emissions, which are the fundamental reason for haze pollution, were dramatically reduced by the COVID-19 quarantine 252 

measures. In this study, we employed observations and GEOS-Chem simulations to quantify the impacts of the COVID-19 253 

quarantines on the air quality improvement in February 2020 after decomposing the contributions of expected routine emission 254 

reductions and climate variability. Although the specific influences varied by the region, the COVID-19 quarantines 255 

substantially decreased the level of haze pollution in the east of China (Fig. 76). In North China, the meteorological conditions 256 

were stagnant that enhanced the PM2.5 concentration by 30% (relative to the observations in 2020). In contrast, the expected 257 

routine emissions reductions and emergency COVID-19 quarantine measures resulted in an 80% decline. In YRD, the impacts 258 

of meteorology were negligible but the COVID-19 quarantines decreased PM2.5 by 72%. In Hubei Province, the impact of the 259 

total emission reduction (72%) evidently exceeded the PM2.5 increase due to meteorological conditions (13%). In March, due 260 

to the continued control of the COVID-19, the quarantines measures still contributed to the negative anomalies of the observed 261 

PM2.5 between 2020 and 2017 (Fig. 87a). Because the activities in production and life have been gradually resumed in March, 262 

the PM2.5 drops caused by the COVID-19 quarantines became weaker compared with February (Fig. 87b, c). The contributions 263 

of PMdC to the change of PM2.5 concentration in NC, YRD and HB declined from 32.2, 21.0 and 12.1 μg/m3 in February to 264 

7.0, 2.4 and 6.7 μg/m3 in March respectively. 265 

Because of the common update delay of the emission inventory, we employed a combined analysis consisting of 266 

observational and numerical methods. We strictly demonstrated the rationality of this method and the results, mainly based on 267 

the relatively constant contribution ratio of changing meteorology from GEOS-Chem simulations under the different emissions 268 

(Yin and Zhang 2020). However, there was a certain bias in the simulations by GEOS-Chem model, and the biases also showed 269 

regional differences (Dang and Liao, 2019). Therefore, gaps between the assessed results and reality still exist, which requires 270 

further numerical experiments when the emission inventory is updated. Furthermore, during the calculation process, the 271 

observed PM2.5 difference in February 2020 was linearly decomposed into three parts. Although this linear decomposition was 272 

reasonable in China in the past few years, we must note that this approximation did not consider was lack of considering the 273 

meteorology-emission interactions, the product of the emission, the loss lifetime and particularly the sulfate-nitrate-ammonia 274 

thermodynamics (Cai et al., 2017), which brought some uncertainties. The actual emission reduction effect is considerable 275 

(Fig. 3d), in line with the increasingly strengthened emission reduction policies in recent years. When calculating the PMdR in 276 

2020, we use the method of extrapolation. Although the result is consistent with others observational and numerical studies 277 

(Geng et al., 2020; Zhang et al., 2020; Zhou et al., 2019), it is still conjectures estimated value rather than true values. These 278 
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issues need to be examined in the future studies to unlock respective effects of emissions and meteorological conditions on 279 

PM2.5 over eastern China. To restrict the possible uncertainties, we set up some constraints: 1. The pivotal contribution ratio of 280 

changing meteorology were calculated under two emission levels and recalculated by statistical regressed model; 2. The values 281 

of PMdM and PMdR were widely compared to previous studies.  282 

If the COVID-19 epidemic did not occurred, the concentrations of PM2.5 would increase up to 1.3–1.7 times the 283 

observations in February 2020 (Fig. 76). Therefore, the pollution abatement must continue. Because of the huge population 284 

base in the east of China, the anthropogenic emissions exceeded the atmospheric environmental capacity even during COVID-285 

19 quarantines. Although the PM2.5 dropped much, marked air pollutions also occurred during this unique experiments that the 286 

human emissions were sharply closed. This raised new scientific questions, such as changes of atmospheric heterogeneous 287 

reactions and oxidability under extreme emission control, quantitative meteorology-emission interactions, and so on. This also 288 

implied reconsiderations of policy for pollution controls and necessity to cut off secondary productions of particulate matters 289 

basing on sufficient scientific research (Le et al., 2020; Huang et al., 2020). Some studies estimated that thousands of deaths 290 

were prevented during the quarantine because of the air pollution decrease (Chen K. et al., 2020). However, medical systems 291 

were still overstressed, and transportation to hospitals also decreased. Furthermore, the deaths related to air pollution were 292 

almost all due to respiratory diseases (Wang et al., 2001), and their corresponding medical resources were also further stressed 293 

by COVID-19. Therefore, the mortality impacted by the air pollution reduction during the COVID-19 outbreak should be 294 

comprehensively assessed in future work. 295 

Data availability. Monthly mean meteorological data are obtained from ERA5 reanalysis data archive: 296 

https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset. PM2.5 concentration data are acquired from the China 297 

National Environmental Monitoring Centre: http://beijingair.sinaapp.com/. The emissions data of 1985 can be downloaded 298 

from http://geoschemdata.computecanada.ca/ExtData/HEMCO/AnnualScalar/, and that of 2010 can be obtained from MIX: 299 
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Figure Captions 417 

Figure 1. (a) Variation in existing confirmed cases (bar; red: increase, blue: decrease) and the ratio of accumulated confirmed 418 

cases to total confirmed cases (black line) in China. (b) The ratio of work resumption in large industrial enterprises in the east 419 

of China. (c) Time of the official 7-days holiday of Chinese New Year from 2013 to 2020.  420 

Figure 2. (a) Spatial distribution of observed (dots) and GEOS-Chem simulated (shading) PM2.5 (unit: μg/m3) in February 421 

2017. Observed PM2.5 concentrations (black, unit: μg/m3) and simulated PM2.5 concentrations under 2010 emission (red) and 422 

1985 emission (blue) in February 2020 in (b) North China (NC), (c)Yangtze River Delta (YRD) and (d) Hubei Province (HB).  423 

Figure 32. Differences in the observed PM2.5 (unit: μg/m3) in February between 2020 and 2017. The black boxes indicate the 424 

locations of North China (NC, 32.5-42°N,110-120°E), the Yangtze River Delta (YRD, 28-32.5°N,118-122°E) and Hubei 425 

Province (HB, 30-32.5°N,109.5-116°E). Figure 3. PM2.5 difference (unit: μg/m3) in February between 2020 and 2017 due to 426 

(a) changing meteorology (PMdM), (b) expected routine emission reductions (PMdR), (c) the COVID-19 quarantines (PMdC), 427 

and (d) due to the total emission reduction (PMdE = PMdR+ PMdC).  428 

Figure 4. Differences in the observed atmospheric circulation in February between 2020 and 2017, including (a) geopotential 429 

https://doi.org/10.1016/j.scitotenv.2020.138514
https://doi.org/10.1007/s11430-019-9343-3
https://doi.org/10.1007/s11430-019-9343-3
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potential height at 500 hPa (unit: gpm), (b) wind at 850 hPa (arrows; unit: m/s), surface relative humidity (shading; unit: %). 430 

The atmospheric circulations in the stagnant days (e.g., from 8–13 and 19–25 February 2020) were also showed, including (c) 431 

geopotential potential height at 500 hPa (shading; unit: gpm) and its climate mean in February (contour), and (d) wind at 850 432 

hPa (black arrows; unit: m/s), its climate mean (blue arrows) and the increased surface relative humidity (shading; unit: %, 433 

stagnant days minus climate mean).  434 

Figure 53. PM2.5 difference (unit: μg/m3) in February between 2020 and 2017 due to (a) changing meteorology (PMdM), (b) 435 

expected routine emission reductions (PMdR), (c) the COVID-19 quarantines (PMdC), and (d) due to the total emission 436 

reduction (PMdE = PMdR+ PMdC). 437 

Figure 65. Variation in PMdR (unit: μg/m3) with respect to the February 2017 level in Beijing, Shanghai and Wuhan from 2015 438 

to 2019. PMdR in 2020 was linearly extrapolated from that in the 2015–2019 period. The dotted line is the linear trend.  439 

Figure 76. Contributions of PMdM (orange bars with hatching), PMdR (purple bars with hatching) and PMdC (blue bars with 440 

hatching) to the change in PM2.5 concentration (unit: μg/m3) between 2020 and 2017 in the three regions. The observed PM2.5 441 

concentration in February 2017 (black) and 2020 (gray) was also plotted, and the expected PM2.5 concentration without the 442 

COVID-19 quarantine is indicated by black hollow bars. The contribution ratios of the three factors (relative to the PM2.5 443 

observations in 2020) are also indicated on the corresponding bars. 444 

Figure 87. (a) Differences in the observed PM2.5 (unit: μg/m3) in March between 2020 and 2017. (b) Contributions of PMdC 445 

to the change in PM2.5 concentration (unit: μg/m3) between 2020 and 2017 and (c) the contribution ratios of PMdC (relative to 446 

the PM2.5 observations in 2020) in March (blue) and February (red) in the three regions.  447 

 448 
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 455 

Figures 456 

 457 

Figure 1. (a) Variation in existing confirmed cases (bar; red: increase, blue: decrease) and the ratio of accumulated confirmed 458 

cases to total confirmed cases (black line) in China. (b) The ratio of work resumption in large industrial enterprises in the east 459 

of China until the end February. (c) Time of the official 7-days holiday of Chinese New Year from 2013 to 2020.  460 

 461 

Figure 2. (a) Spatial distribution of observed (dots) and GEOS-Chem simulated (shading) PM2.5 (unit: μg/m3) in February 462 
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2017. Observed PM2.5 concentrations (black, unit: μg/m3) and simulated PM2.5 concentrations under 2010 emission (red) and 463 

1985 emission (blue) in February 2020 in (b) North China (NC), (c)Yangtze River Delta (YRD) and (d) Hubei Province (HB). 464 

 465 

Figure 32. Differences in the observed PM2.5 (unit: μg/m3) in February between 2020 and 2017. The black boxes indicate the 466 

locations of North China (NC, 32.5-42°N,110-120°E), the Yangtze River Delta (YRD, 28-32.5°N,118-122°E) and Hubei 467 

Province (HB, 30-32.5°N,109.5-116°E). 468 

 469 
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Figure 3. PM2.5 difference (unit: μg/m3) in February between 2020 and 2017 due to (a) changing meteorology (PMdM), (b) 470 

expected routine emission reductions (PMdR), (c) the COVID-19 quarantines (PMdC), and (d) due to the total emission 471 

reduction (PMdE = PMdR+ PMdC). 472 

 473 

 474 

Figure 4. Differences in the observed atmospheric circulation in February between 2020 and 2017, including (a) geopotential 475 

potential height at 500 hPa (unit: gpm), (b) wind at 850 hPa (arrows; unit: m/s), surface relative humidity (shading; unit: %). 476 

The atmospheric circulations in the stagnant days (e.g., from 8–13 and 19–25 February 2020) were also showed, including (c) 477 

geopotential potential height at 500 hPa (shading; unit: gpm) and its climate mean in February (contour), and (d) wind at 850 478 

hPa (black arrows; unit: m/s), its climate mean (blue arrows) and the increased surface relative humidity (shading; unit: %, 479 

stagnant days minus climate mean).  480 
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 481 

Figure 53. PM2.5 difference (unit: μg/m3) in February between 2020 and 2017 due to (a) changing meteorology (PMdM), (b) 482 

expected routine emission reductions (PMdR), (c) the COVID-19 quarantines (PMdC), and (d) due to the total emission 483 

reduction (PMdE = PMdR+ PMdC). 484 

 485 
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 486 

Figure 56. Variation in PMdR (unit: μg/m3) with respect to the February 2017 level in Beijing, Shanghai and Wuhan from 2015 487 

to 2019. PMdR in 2020 was linearly extrapolated from that in the 2015–2019 period. The dotted line is the linear trend. 488 

  489 

Figure 76. Contributions of PMdM (orange bars with hatching), PMdR (purple bars with hatching) and PMdC (blue bars with 490 

hatching) to the change in PM2.5 concentration (unit: μg/m3) between 2020 and 2017 in the three regions. The observed PM2.5 491 

concentration in February 2017 (black) and 2020 (gray) was also plotted, and the expected PM2.5 concentration without the 492 

COVID-19 quarantine is indicated by black hollow bars. The contribution ratios of the three factors (relative to the PM2.5 493 

observations in 2020) are also indicated on the corresponding bars. 494 

 495 
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 496 

Figure 87. (a) Differences in the observed PM2.5 (unit: μg/m3) in March between 2020 and 2017. (b) Contributions of PMdC 497 

to the change in PM2.5 concentration (unit: μg/m3) between 2020 and 2017 and (c) the contribution ratios of PMdC (relative to 498 

the PM2.5 observations in 2020) in March (blue) and February (red) in the three regions.  499 

 500 
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