
Reply to Reviewer #1:  

General comments: The authors simulate the decline in PM2.5 concentration that 

resulted from emissions reductions during the COVID-19 pandemic using GEOS-chem. 

They use 1985 and 2010 emissions to simulate the 2015-20 period. They obtain 

reasonably good correlations between simulated and observed daily mean PM2.5 and 

show that COVID-19 led to a significant decline. The study is interesting, in the sense 

that knowing how much PM2.5 declined due to COVID-19 after other factors are 

accounted for is useful, and well-timed. The physical and chemical processes 

responsible for PM2.5 concentrations during COVID are discussed to some extent. In 

response to my comments during the access review, the authors added two new 

subfigures elucidating the role of meteorology in generating PM2.5, and they added a 

literature review of chemical mechanisms for the formation of the remaining pollution. 

These additions are valuable, but in my opinion further major revisions are still 

needed before the paper can be published, as follows: 

1. Abstract and introduction.  

The abstract and introduction should be refocused towards atmospheric processes. 

While atmospheric processes are discussed (lines 30-37 and 42-49), for 

Atmospheric Chemistry and Physics they should be the main topic of the 

introduction. The main topic of the introduction is currently Chinese air quality 

and COVID, but the paper is about the disentangling effects of meteorology from 

the effects of the COVID lockdown, and so there needs to be more detail on 

meteorology in China. This is done very well in the introduction to Yin and Zhang 

(2020); perhaps some more detail specifically on how 2020 meteorology differs 

from the climatology would distinguish the two studies? You say that variations in 

the surface wind, boundary layer height and moisture conditions affect air quality, 

which is not wrong, but specifically what do they typically do in China, when, and 

where? The literature review also lacks detail; care should be taken to point out 

explicitly how this paper differs from the large number of other works on the topic. 

I appreciate this is difficult because of the very large number of very recent 

publications, but it is definitely possible to do more here.  

Reply: 

Appreciate for your detailed and valuable suggestions, which helped us to improve 

the main thread of this manuscript.  

(1) The main differences between our submission and other publications (with 



topic about the impacts of COVID-19 on PM2.5) are whether disentangled effects of 

meteorology. Adopting your suggestions, we enhanced related presentations in the 

Abstract and Introduction.  

For example, in the introduction, we added a detailed analysis of meteorological 

conditions about typical haze pollution events in the Beijing-Tianjin-Hebei region 

in December 2016, and explained how the variations of surface wind, boundary layer 

height and moisture conditions influenced these severe haze events.  

(2) More specific analysis about the changes in meteorological conditions in 

February 2020 has also been added. Furthermore, their relationships and regressions 

against PM2.5 were also discussed in lines 175-186, which were also closely connected 

with comment 5.3.  

Revision: 

Lines 12-14: Relative to both of February 2017 and climate mean, anomalous 

southerlies and moister air occurred in the east of China in February 2020, which caused 

considerable PM2.5 anomalies. Thus, it is a must to disentangle the contributions of 

stable meteorology from the effects of the COVID-19 lockdown. 

Lines 41-44: Climate variability notably influences the formation and intensity of haze 

pollution in China……During December 16th-21st 2016, although most aggressive 

control measures for anthropogenic emissions were implemented, severe haze pollution 

with PM2.5 concentrations ≈ 1100µg m−3 still occurred and covered 710,000km2. The 

continuous low surface wind speed of less than 2ms−1, high humidity above 80% and 

strong temperature inversion lasting for 132h caused the rebound of wintertime PM2.5 

in 2016 (Yin and Wang, 2017). 

Lines 48-52: From February 8 to 13 2020, North China suffered severe pollutions, with 

maximum daily PM2.5 exceeding 200µg m-3. During this period, weak southerly surface 

winds lasted for nearly 5 days, relative humidity was close to 100%, and atmospheric 

inversion reached more than 10℃. Although pollution emissions from basic social 

activities have been reduced, heavy pollution still occurred when adverse 

meteorological conditions characterized by stable air masses appeared (Wang et al., 



2020).  

2. Data description  

What technology is usually used to measure PM2.5 for this dataset? When I tried 

the URL it didn’t work. Please reference the dataset more thoroughly. 

Reply:  

The old URL is past-due, and we have updated the new URL as 

https://quotsoft.net/air/. We give a more detailed introduction to the cited dataset and 

explain the measurement technology of PM2.5 in this dataset. The PM2.5 data were 

monitored every 5 min using two methods: a tapered element oscillating microbalance 

(TEOM) and β-rays which were operated under the China National Quality Control 

(HJ/T 193-2005) and (GB3095-2012).  

HJ/T 193-2005: Automated methods for ambient air quality monitoring 

GB3095-2012: Ambient air quality standards 

Revision:  

Lines 70-73: PM2.5 concentration data from 2015 to 2020 were acquired from the China 

National Environmental Monitoring Centre (https://quotsoft.net/air/). The monitoring 

network expanded from 1500 sites in 2015 to 1640 sites in 2020, covering 

approximately 370 cities nationwide. The PM2.5 data were monitored every 5 min using 

two methods: a tapered element oscillating microbalance and β-rays which were 

operated under the China National Quality Control.  

3.Model description  

This section needs a description of how the model represents aerosol microphysics. 

The model evaluation presented at the end of this section deserves considerably 

more detailed study in its own section what are the biases in the model and how 

might they affect the subsequent analysis? Unless you can reference other studies 

evaluating an identical model configuration?  

Reply: 

The description of how the model represents aerosol microphysics were 

illustrated in lines 80-85, according to the official website of GEOS-Chem. The 

model configurations were default and similar with many previous studies and the 

https://quotsoft.net/air/


evaluations of model performances were considerably improved in the following two 

ways and were documented in a separated paragraph (i.e., Lines 86-101). 

(1) With the configuration we used, comparisons between the observed and 

simulated PM2.5 concentrations in Feb 2017 were added as new Figure S1a and 

associated analysis were in lines 89-96. Obviously, mean values of simulated PM2.5 

were consistent with the observations (Figure S1a). The percentage of standard error 

/ mean equals 5.8% (4.6/79.6) in NC, 7.0% (3.9/55.6) in YRD and 5.4% (3.7/70.8) 

in HB, indicating the good performance of reproducing the polluted conditions. The 

biases possibly affected the subsequent results and brought uncertainties to some extent. 

We also admitted the simulated biases were larger in the south of China, which was 

consistent with other studies and might explained the little positive values in Figure 

3c (closely connected with comment 7.2).  

 

Figure S1a. Spatial distribution of observed (dots) and GEOS-Chem simulated (shading) PM2.5 in 

February 2017. 

 Furthermore, the simulated spatial distribution was also similar to that of 

observations in Feb 2017 with spatial correlation coefficient = 0.78. The ability of 

GEOS-Chem to reproduce the daily variations of PM2.5 in Feb 2020 was also introduced 

in the old version as below.  



 

 (2) The default configuration of GEOS-Chem were adopted by many previous 

publications and we also introduced related evaluations in the revised manuscript. Dang 

and Liao directly evaluated the capacity of models in PM2.5 simulations by calculating 

the normalized mean bias. The simulated spatial patterns of 2013-2017 winter PM2.5 

were agreed well with the measurements, which was similar to our evaluations in 

Figure S1a. The scatterplot of simulated versus observed seasonal mean PM2.5 

concentrations showed overestimated PM2.5 concentrations with a normalized mean 

bias (NMB) of +8.8 % for all grids and an NMB of +4.3 % for BTH (Figure R1a). They 

also compared the simulated and observed daily mean PM2.5 concentrations at the 

Beijing, Shanghai, and Chengdu grids, which represent the three most polluted regions 

of BTH, YRD, and the Sichuan Basin, respectively. The model has a low bias in 

Beijing with an NMB of −9.2 % and is unable to predict the maximum PM2.5 

concentration in some cases. For Shanghai and Chengdu, the model has high biases 

with NMBs of 18.6 % and 28.7 %, respectively (Figure R1b). This evaluation also 

showed a bigger simulated bias in the south of China. The model, however, can capture 

the spatial distributions and seasonal variations of each aerosol species despite of the 

biases in simulated concentrations. 

 

Figure R1. Key Figures in Dang and Liao (2019). 

Related references: 

Dang, R., and Liao, H.: Severe winter haze days in the Beijing-Tianjin-Hebei region 

(a) (b) 



from 1985 to 2017 and the roles of anthropogenic emissions and meteorology, Atmos. 

Chem. Phys., 19, 10801–10816, 2019. 

Revision:  

Line 74: 2.2 GEOS-Chem description, evaluation and experimental design 

Lines 80-85: Aerosol thermodynamic equilibrium is computed by the ISORROPIA 

package, which calculates the gas–aerosol partitioning of the sulfate–nitrate– 

ammonium system (Fountoukis and Nenes, 2007). Heterogeneous reactions of aerosols 

include the uptake of HO2 by aerosols (Thornton et al., 2008), irreversible absorption 

of NO2 and NO3 on wet aerosols (Jacob, 2000), and hydrolysis of N2O5 (Evans and 

Jacob, 2005). Two alternate simulations of aerosol microphysics are implemented in 

GEOS-Chem: the TOMAS simulation (Kodros and Pierce, 2017) and the APM 

simulation (Yu and Luo, 2009).  

Lines 86-96: GEOS-Chem model has been widely used to examine the historical 

changes in air quality in China and quantitatively separate the impacts of physical-

chemical processes. Here, we simulated the PM2.5 concentrations in February 2017 and 

evaluated the performance of GEOS-Chem (Figure S1a). The values of mean square 

error / mean equals were 5.8%, 7.0% and 5.4% in North China (NC), Yangtze River 

Delta (YRD) and Hubei Province (HB), respectively, indicating the good performance 

of reproducing the haze-polluted conditions. The absolute biases were larger in the 

south of China, which was consistent with Dang and Liao (2019). They also compared 

the simulated and observed daily mean PM2.5 concentrations at the Beijing, Shanghai, 

and Chengdu grids, which had a low bias in Beijing and high biases in Shanghai and 

Chengdu, respectively. The simulated biases possibly affected the subsequent results 

and brought uncertainties to some extent. The simulated spatial distribution of PM2.5 

was also similar to that of observations with spatial correlation coefficient = 0.78. We 

further verified whether the simulations could capture the roles of meteorological 

changes in February 2020 under a substantial reduction in emissions because of 

COVID-19 quarantines……. 

 



4.Method to quantify influence of quarantine  

4.1 Running GEOS-chem for two different emissions scenarios seems like a good 

idea, and it’s good to see that the changes due to meteorology are consistent 

between years. However, did you consider the physical justification for a linear 

decomposition? If we consider, crudely, the Chinese airshed as a simple chemical 

reactor in steady state, then the linear decomposition would not be obviously 

appropriate (though it may be a reasonable approximation) since the steady-state 

concentration is the product of the emissions and the loss lifetime.  

Reply: 

The linear decomposition is definitely a reasonable and feasible approximation 

and must have differences with the reality due to complex atmospheric chemical 

processes (also involving meteorology-emission interactions). The reasons for selecting 

the linear hypothesis were as follows.  

(1) From 2013 to 2019, the impacts of emission reduction were approximatively 

linear, which might related to the enhanced and reinforced control measures in 

China. Because the signal of emissions reduction in China had been particularly 

strong since 2013, it could be easily detected and the assumption of a linear reduction 

in pollution caused by emission reduction was applicable in China in the past few 

years. This linear approximation was employed by many previous studies (Geng et al. 

2017; Zheng et al. 2018) and even by national assessments aimed to evaluate the 

effects of Action Plan of Air Pollution Prevention and Control from 2013 to 2017 

(Geng et al. 2020; Wang et al. 2020). We have introduced the evaluated results in lines 

137-142.  

(2) After disentangling the effects of meteorology, the variations in PM2.5 

concentrations also showed linear change (Figure 5 in our manuscript), which laterally 

verified the rationality of linear approximation.  

(3) Because of the significantly linear reduction of PM2.5 due to changing 

emissions, the linear decomposition or approximation became reasonable in China in 

recent years to some extent.  

Certainly, related presentations are lack of physical explanations. We have checked 

many publications, and all of them have this common problem. We also cannot show 

you a clear physical justification and only speculated that the obvious linear change due 



to emission reductions might be that the control measures in China were particularly 

enhanced and reinforced. In the revised versions, we illustrated the linear 

decompositions were an estimated approach and must brought some uncertainties 

due to ignoring the meteorology-emission interactions, the product of emissions and 

their loss lifetime (Lines 263-267).  

Related references: 

Geng, G., Zhang, Q., Tong, D., Li, M., Zheng, Y., Wang, S., and He, K.: Chemical 

composition of ambient PM2. 5 over China and relationship to precursor emissions 

during 2005–2012, Atmos. Chem. Phys., 17, 9187–9203, https://doi.org/10.5194/acp-

17-9187-2017, 2017. 

Geng, G., Xiao, Q., Zheng, Y., Tong, D., Zhang, Y., Zhang, X., Zhang, Q., He, H., and 

Liu, Y.: Impact of China’s Air Pollution Prevention and Control Action Plan on PM2.5 

chemical composition over eastern China, Sci. China Ser. D., 62, 1872–1884, 

https://doi.org/10.1007/s11430-018-9353-x, 2020. 

Wang, P., Chen, K., Zhu, S., Wang, P., and Zhang, H.: Severe air pollution events not 

avoided by reduced anthropogenic activities during COVID-19 outbreak, Resour. 

Conserv. Recy., 158, http://doi:10.1016/j.resconrec.2020.104814, 2020. 

Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., 

Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's 

anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. 

Chem. Phys., 18, 14095-14111, 2018 

Revision: 

Lines 110-112: As mentioned above, we aimed to examine the impact of the COVID-

19 quarantines on PM2.5 over the February 2017 level basing on an observational-

numerical hybrid method. The observed PM2.5 difference in February 2020 (PMdOBS) 

was linearly decomposed into three parts: the impacts of changing meteorology (PMdM), 

expected routine emissions reductions (PMdR) and COVID-19 quarantines (PMdC), 

which was a reasonable approximation……  

Lines 263-267: Furthermore, during the calculation process, the observed PM2.5 

https://doi.org/10.1007/s11430-018-9353-x
http://doi.cnki.net/doi/Resolution/Handler?doi=%2010.1016/j.resconrec.2020.104814


difference in February 2020 was linearly decomposed into three parts. Although this 

linear decomposition was reasonable in china in the past few years, we must note that 

this approximation was lack of considering the meteorology-emission interactions, the 

product of the emission, the loss lifetime and particularly the sulfate-nitrate-ammonia 

thermodynamics (Cai et al., 2017), which brought some uncertainties. 

4.2 Line 99 (minor comment) – I don’t fully understand the “the PM2.5 percentage 

due to changing meteorology”. Do you mean “the change in the percentage of 

PM2.5 due to changing meteorology” here and later in the paragraph? 

Reply:   

What we mean here is that the percentage of changed PM2.5 due to the 

differences in meteorology is constant regardless of the emission level. This 

percentage is the difference of simulated PM2.5 between each year and 2017 under 

the same emission scenario divided by the simulated PM2.5 in 2017. We have 

changed the expression to be clearer. 

Revision: 

Line 119: Depending on the GEOS-Chem simulations, we found that the percentage of 

changed PM2.5 due to the differences in meteorology remained nearly constant 

regardless of the emission level (Fig. S2) …… 

4.3 Line 107 – “the change in emissions resulted in a linear change in air pollution”. 

I don’t think this is the message of the very nice Cai et al paper that you cite here. 

In fact, it is well established that emissions changes often do not lead to linear 

changes in air pollution, even though I do accept, from the evidence you present, 

that this is case in China from around 2013 to 2019. The most obvious reason is 

the sulfate-nitrate-ammonia thermodynamics discussed by Cai et al. Naively, 

reducing sulfate emissions should reduce concentrations linearly, but reducing 

nitrate and/or ammonium emissions may not change concentrations at all, or may 

result in very large decreases in concentrations, depending on the regime (whether 

saturated by, or limited by, ammonia, for example). Similarly, reducing primary 

emissions may lead to more new particle formation, as discussed by others, and 

more secondary aerosol formation, which would also mean the decrease in number 

concentration is likely sub-linear. Line197of the manuscript points this out 

explicitly. New particle formation wouldn’t directly affect changes in mass 

concentration, but it could have important indirect effects through the size 

dependence of aerosol dry and wet deposition rates. So while decreases in 



concentration may be linear with emissions in specific cases, and does seem to be 

true in China, this will not be true in general, and should be clarified. Also linearity 

in previous years, e.g. from 2013 to 2017, does not imply linearity in subsequent 

years. The linear extrapolation method used therefore brings with it a large 

uncertainty which should be studied in detail.  

Reply: 

Sorry for the inappropriate citation. Cai et al. paper did not show that emission 

reduction would lead to linear reduction of air pollution. Just as you said, from 2013 to 

2019, the impacts of emission reduction in China were approximatively linear. This 

linear approximation was employed even by national assessments aimed to evaluate 

the effects of Action Plan of Air Pollution Prevention and Control from 2013 to 2017 

(Geng et al. 2020; Wang et al. 2020). 

(1) Due to the implementation of clean air action, control measures have been 

enhanced and reinforced in China, showing a strong emission reduction signal. 

Therefore, the pollutant reduction caused by emission reduction in China from 

2013 to 2019 was linear, which might be related to the huge emission reduction. But 

we didn’t check for other areas, maybe not linear reduction. The link has a lot to do 

with the intensity of emissions reduction. Because the signal of emissions reduction in 

China had been particularly strong since 2013, it could be easily detected and showed 

a linear reduction.  

(2) The effect of emission reduction in February 2020 was calculated as the change 

of PM2.5 caused by expected routine emission reduction, which did not actually 

happen, but merely gave an assessment of the change of PM2.5 caused by emission 

reduction in the case of “if no COVID-19”. Under this hypothetical assessment, the 

linear change was still tenable.  

(3) Furthermore, what we emphasize more was the effect of total emission 

reduction (PMdR + PMdC), that was, the common utility of expected routine emissions 

reductions and COVID-19 quarantines. This quantity was obtained after excluding the 

effect of meteorological conditions, which was completely unaffected by linear 

extrapolation of emission reduction.  

(4) The information revealed by Cai et al. (2017) was valuable and we discussed 



the possible impacts of sulfate-nitrate-ammonia thermodynamics on our approach 

in line 267.  

Revision: 

Lines 130-137: According to many previous studies, the change in emissions resulted 

in a linear change in air pollution in China from 2013-2019 (Wang et al., 2020; Geng 

et al., 2020) which might be related to the huge emission reduction due to the 

implementation of clean air action. Because the signal of emissions reduction in China 

had been particularly strong since 2013, it could be easily detected and the assumption 

of a linear reduction in pollution caused by emission reduction was applicable in China 

in the past few years. Based on this approximation, we used the method of extrapolation 

to speculate the impact of routine emission reduction on PM2.5. We performed linear 

extrapolation based on known PMdR values from 2015 to 2019 to obtain PMdR in 2020 

(STEP 2, Fig. S3). This PMdR in 2020 was calculated as the change of PM2.5 caused by 

expected routine emission reduction, which did not actually happen, but merely gave 

an assessment in the case of “if no COVID-19”.  

Lines 265-267: Although this linear decomposition was reasonable in china in the past 

few years, we must note that this approximation was lack of considering the 

meteorology-emission interactions, the product of the emission, the loss lifetime and 

particularly the sulfate-nitrate-ammonia thermodynamics (Cai et al., 2017), which 

brought some uncertainties. 

5.Results  

5.1 Line 146: the description is good but some more introductory detail and 

referencing would be useful. For example, what is the East Asia deep trough? 

Please supply reference, e.g. Song et al, J. Climate 2016.  

Reply: 

We have added the description of the East Asia deep trough and relevant 

references. 

Revision: 

Line 170: ……the East Asia deep trough, one of the most significant time-mean zonally 



asymmetric circulation features in the wintertime Northern Hemisphere (Song et al., 

2016), shifted eastwards and northwards than climate mean…… 

5.2 Line 149: This is potentially a useful result, but what is the importance of the 

hygroscopic growth? Its importance surely depends on whether the PM2.5 

measurements are of dry or of hydrated particles. If dry particles are measured, 

hydration might still be important if it affects deposition rates. So what is the 

difference in humidity and what difference to the size of typical particles would 

that lead to? 

Reply: 

Fine aerosols, such as PM2.5 particles, will be hygroscopic growth under the 

environment where the relative humidity is more than 60%, so the measured value 

without the monitoring instrument to control the relative humidity will be virtual high. 

When the air is relatively dry, gaseous precursor pollutants could not obviously affect 

visibility. But in the presence of water molecules, polyphase chemical reactions occurs, 

and gaseous precursors are oxidized in water droplets or in water carried by particulate 

matters, accelerating the formation of particulate matter. The conversion rate of SO2 

and NO2 into sulfate, nitrate and other particles increases exponentially with the 

increase of relative humidity. Therefore, higher humidity provides a favorable 

environment for the hygroscopic growth of aerosol particles, which is conducive to the 

formation of haze pollution and decreasing of visibility. 

What we simply mean to say is the hygroscopic growth of aerosol particles 

highly reduced the visibility and enhanced the intensity of haze pollution, rather 

than impacting the concentration of PM2.5. In the revised version, we corrected the 

sentence to avoid confusions.  

Revision: 

Lines 173-175: Physically, the weakening surface winds and strong thermal inversion 

corresponded to weaker dispersion conditions, and the higher humidity indicated a 

favorable environment for the hygroscopic growth of aerosol particles to evidently 

decrease the visibility. 

 



5.3 Can you calculate approximate ventilation rates for the boundary layer in the 

different meteorological conditions, or otherwise increase the level of quantitative 

detail in lines 140-150, which are currently very qualitative? Can this be used to 

back up the conclusions about PM2.5? For example, the regression of PM2.5 

against “BLH, wind speed, SAT and humidity” done in Yin and Zhang (2020) 

looks like a nice technique to understand the relationship of air pollution and 

meteorology, could you do the same thing here for 2020 data? Or at least provide 

similar numerical detail for what is the BL height and how it varies in the years 

studied? Is there a role for sea surface temperature here also?  

Reply: 

Thank you for this nice comment. Following it, we not only show more 

quantitative results, but also statistically (with observations and regressions) verified 

the percentage of changed PM2.5 due to the difference in meteorology between 2017 

and 2020. We have added more quantitative analysis in the revised presentations. 

(1) In February 2020, the correlation coefficients of daily PM2.5 and BLH, relative 

humidity, wind speed and SAT in North China were -0.63, 0.44, -0.45 and 0.46 

respectively, all of which passed the 95% significance test. Compared with the climate 

mean status (February 2017), in February 2020 BLH decreased by 19.5m (34.5m), 

relative humidity increased by 5% (10.6%), and SAT rose by 1.6°C (0.9°C) after 

detrending, which are conductive to the increase of PM2.5 concentration.  

(2) We used the meteorological data of boundary layer height, relative humidity, 

surface temperature and wind speed in February 2017 to establish a multiple linear 

regression equation to fit PM2.5. The correlation coefficients between the fitting results 

and the actual PM2.5 concentration in North China, Yangtze River Delta and Hubei 

reached 0.84, 0.64 and 0.65, all of which passed the 99% significance test. Then, we 

put the observed meteorological data in February 2020 into the established multiple 

regression equation to get the predicted PM2.5 concentration. Using the regress-

predicted value, the percentage of changed PM2.5 due to the difference between in 

meteorology between 2017 and 2020 were re calculated and is 20.7%, -3.2% and 9.5% 

in NC, YRD and HB, respectively (the hollow column in Figure S2), which is 

consistent with and enhanced the robustness of the results obtained by our 

previous model simulation.  



 

Figure S2. The percentage of changed PM2.5 due to the difference in meteorology between 2020 

and 2017 by simulated PM2.5 with 2010 (red) and 1985 (blue) emission, and regress-fitted PM2.5 

(hollow). The GEOS-Chem simulations were driven by meteorological conditions in 2017 and 2020 

under fixed emissions in 1985 and 2010. The regress-fitted PM2.5 was calculated by putting the 

observed meteorological data in February 2020 into the multiple regression equation fitting PM2.5 

established by meteorological data in February 2017. 

Revision: 

Lines 175-186: Compared with the climate (February 2017) monthly mean, boundary 

layer height (BLH) decreased by 19.5m (34.5m), surface relative humidity (rhum) 

increased by 5% (10.6%) and surface air temperature (SAT) rose by 1.6°C (0.9°C) after 

detrending, which were conductive to the increase of PM2.5 concentration in February 

2020. Furthermore, the correlation coefficients of daily PM2.5 and BLH, rhum, wind 

speed and SAT in North China were -0.63, 0.44, -0.45 and 0.46, respectively, all of 

which passed the 95% significance test and indicated importance of meteorology. We 

used the meteorological data in February 2017 to establish a multiple linear regression 

equation to fit PM2.5. The correlation coefficients between the fitting results and the 

observed PM2.5 concentration in NC, YRD and HB reached 0.84, 0.64 and 0.65, 

exceeding the 99% significance test. Then, we put the observed meteorological data in 

February 2020 into this established multiple regression equation to get the predicted 



PM2.5 concentration. Using the regress-predicted value, the percentage of changed 

PM2.5 due to the differences in Meteorology between 2017 and 2020 were re-calculated 

and is 20.7%, -3.2% and 9.5% in NC, YRD and HB, respectively (Figure S2), which is 

consistent with and enhanced the robustness of the results obtained by our previous 

model simulation. 

5.4 Line 160-165 can you estimate, with quantitative justification, uncertainty 

ranges for these numbers?  

Reply: 

We analyzed and discussed the source of uncertainties, and also give the range 

of bias of GEOS-Chem model simulation, but the specific range of final uncertainties 

of is difficult to estimate. Instead, we can take a step back to give a more 

comprehensive source of uncertainty in the discussion section (Lines 258-274). 

(1) There is a certain bias in the simulation by GEOS-Chem model, and the 

biases also showed regional differences, which requires further numerical experiments 

when the emission inventory is updated. 

(2) During the calculation process, the observed PM2.5 difference in February 2020 

was linearly decomposed into three parts. Although this linear decomposition was 

reasonable in China in the past few years, but this approximation was lack of 

considering the meteorology-emission interactions, the product of the emission, the loss 

lifetime and particularly the sulfate-nitrate-ammonia thermodynamics (Cai et al., 2017), 

which brought some uncertainties 

(3) The calculation result of the impact of meteorology is obtained by numerical 

simulations, with certain uncertainty. When calculating the expected routine emission 

reduction in 2020, we use the method of extrapolation. Although the result is consistent 

with others observational and numerical studies, it is still conjectures rather than true 

values. 

To restrict the possible uncertainties, we set up some constraints: 1. The pivotal 

contribution ratio of changing meteorology were calculated under two emission levels 

and recalculated by statistical regressed model; 2. The values of PMdM and PMdR 

were widely compared to previous studies. 



Revision: 

Lines 258-274: Because of the common update delay of the emission inventory, we 

employed a combined analysis consisting of observational and numerical methods. We 

strictly demonstrated the rationality of this method and the results, mainly based on the 

relatively constant contribution ratio of changing meteorology from GEOS-Chem 

simulations under the different emissions (Yin and Zhang, 2020). However, there was 

a certain bias in the simulations by GEOS-Chem model, and the biases also showed 

regional differences (Dang and Liao, 2019). Therefore, gaps between the assessed 

results and reality still exist, which requires further numerical experiments when the 

emission inventory is updated. Furthermore, during the calculation process, the 

observed PM2.5 difference in February 2020 was linearly decomposed into three parts. 

Although this linear decomposition was reasonable in China in the past few years, we 

must note that this approximation was lack of considering the meteorology-emission 

interactions, the product of the emission, the loss lifetime and particularly the sulfate-

nitrate-ammonia thermodynamics (Cai et al., 2017), which brought some uncertainties. 

The actual emission reduction effect is considerable (Fig. 3d), in line with the 

increasingly strengthened emission reduction policies in recent years. When calculating 

the PMdR in 2020, we use the method of extrapolation. Although the result is consistent 

with others observational and numerical studies (Geng et al., 2019; Zhang et al., 2020; 

Zhou et al., 2019), it is still conjectures rather than true values. These issues need to be 

examined in the future studies to unlock respective effects of emissions and 

meteorological conditions on PM2.5 over eastern China. To restrict the possible 

uncertainties, we set up some constraints: 1. The pivotal contribution ratio of changing 

meteorology were calculated under two emission levels and recalculated by statistical 

regressed model; 2. The values of PMdM and PMdR were widely compared to previous 

studies.  

5.5 Line 169 – the impacts of COVID-19 quarantines on air quality was weaker 

south of 30N. This is an interesting conclusion. Could it be related to 

meteorological differences? Is this consistent with the later statement that in north 

China, secondary aerosol concentrations increase when primary aerosols decrease? 



Is that true in south China?  

5.6 Line 176 what are the reasons for the regional differences? 

Reply: 

The south of 30N is less polluted than the north region, therefore the background 

of basic PM2.5 concentration is relatively low (Figure S4a). In addition, 

meteorological conditions in the south in February 2020 had no positive contribution 

relative to that in February 2017, which would not lead to the increase of PM2.5 

concentration. Both of the above two reasons resulted in a smaller space for PM2.5 

decrease. So the PM2.5 concentration that can be reduced by COVID-19 in the south is 

not as large as that in North China, and had regional differences.  

 

Figure S4a. Observed PM2.5 concentrations (unit: μg/m3) in February 2017.  

Revision: 

Lines 209-212: Generally, the south region was less polluted than the north, therefore 

the baseline of PM2.5 concentration was relatively lower (Fig. S4a). In addition, 

meteorological conditions in the south in February 2020 had no positive contribution 

(Fig. 3a), which would not lead to the increase of PM2.5 concentration. These two 

possible reasons resulted in a smaller space for PM2.5 decrease due to COVID-19 

quarantines in the south and accompanying regional differences.  



6.Conclusions  

6.1 Line 227-240 It is valuable to point out these shortcomings and qualifications 

for your study. Can you take this further by estimating uncertainties as I suggest 

above, and speculate what the effect of the interactions between emissions and 

meteorology would be?  

Reply: 

We can discuss and make a comprehensive summary of the source of 

uncertainty in lines 258-274, but the specific range of uncertainty is difficult to 

calculate (closely connected with comment 5.4). 

About the interaction between emissions and meteorology, it is far away from the 

topic of this manuscript and we clearly pointed out this is a new question in the Section 

Discussion. Possibly, we solve this question in the near future. 

Revisions: 

Lines 278-280: Although the PM2.5 dropped much, marked air pollutions also occurred 

during this unique experiments that the human emissions were sharply closed. This 

raised new scientific questions, such as changes of atmospheric heterogeneous 

reactions and oxidability under extreme emission control, quantitative meteorology-

emission interactions, and so on. 

6.2 What are the implications of the study for the practice of atmospheric 

chemistry and physics, beyond those of Yin and Zhang (2020)? Please spell these 

out in the conclusion. 

Reply: 

(1) If the COVID-19 epidemic did not occur, the concentrations of PM2.5 would 

increase up to 1.3–1.7 times the observations in February 2020. Therefore, the 

pollution abatement must continue. Because of the huge population base in the east 

of China, the anthropogenic emissions exceeded the atmospheric environmental 

capacity even during COVID-19 quarantines.  

(2) Although the PM2.5 dropped much, marked air pollutions also occurred during 

this unique experiments that the human emissions were sharply closed. This raised new 

scientific questions, such as changes of atmospheric heterogeneous reactions and 



oxidability under extreme emission control, quantitative meteorology-emission 

interactions, and so on. We have added these implications in the Section Conclusion. 

Revision: 

Lines 275-280: If the COVID-19 epidemic did not occurred, the concentrations of 

PM2.5 would increase up to 1.3–1.7 times the observations in February 2020 (Figure 6). 

Therefore, the pollution abatement must continue. Because of the huge population base 

in the east of China, the anthropogenic emissions exceeded the atmospheric 

environmental capacity even during COVID-19 quarantines. Although the PM2.5 

dropped much, marked air pollutions also occurred during this unique experiments that 

the human emissions were sharply closed. This raised new scientific questions, such as 

changes of atmospheric heterogeneous reactions and oxidability under extreme 

emission control, quantitative meteorology-emission interactions, and so on.  

7.1 Figure 1: what is the significance of the red color on the left side of subfigure 

a)?  

Reply: 

The red bars indicate an increase in existing confirmed cases, and the blue bars 

indicate a decrease. We make this significance clear in the caption of Figure 1 (a). 

Revision: 

Line 414: Figure 1. (a) Variation in existing confirmed cases (bar; red: increase, blue: 

decrease) and the ratio of accumulated confirmed cases to total confirmed cases (black 

line) in China……. 

7.2 Figure 3: state that these figures show simulated data. What is responsible for 

the increases on the far left of Figure 3c?  

Reply: 

These figures are calculated from observation data combined with model 

simulated data, which mainly depends on the observation data. To avoid confusions, 

some revisions were included: (1) we have also changed these figures to be 

represented as sites, which are closer to the meaning of the calculation method; (2) In 

Sec. 2.3, we clearly illustrated the calculations were based on an observational-



numerical hybrid method. 

In the Method and Discussion, we discussed some possible uncertainties. These 

increases on the far left were a sort of uncertainties. These increases were tiny and 

insignificant, and definitely do not affected the main results of our study.  

Revision: 

Lines 109-110: As mentioned above, we aimed to examine the impact of the COVID-

19 quarantines on PM2.5 over the February 2017 level basing on an observational-

numerical hybrid method. 

Figure 3. 

 

Figure 3. PM2.5 difference (unit: μg/m3) in February between 2020 and 2017 due to (a) changing 

meteorology (PMdM), (b) expected routine emission reductions (PMdR), (c) the COVID-19 quarantines 

(PMdC), and (d) due to the total emission reduction (PMdE = PMdR+ PMdC). 



 

7.3 Figure 4 please label color bars with units 

Reply: 

We have added the units to the color bar. 

Revision: 

 

Figure 4. Differences in the observed atmospheric circulation in February between 2020 and 2017, 

including (a) geopotential potential height at 500 hPa (unit: gpm), (b) wind at 850 hPa (arrows; unit: m/s), 

surface relative humidity (shading; unit: %). The atmospheric circulations in the stagnant days (e.g., from 

8–13 and 19–25 February 2020) were also showed, including (c) geopotential potential height at 500 hPa 

(shading) and its climate mean in February (contour), and (d) wind at 850 hPa (black arrows), its climate 

mean (blue arrows) and the increased surface relative humidity (shading, stagnant days minus climate 

mean).  

 

 

 



Reply to Reviewer #2:  

General comments: This paper attempted to quantify the effect COVID-19 on the 

evident PM2.5 decline after removing the influences of climate anomalies and expected 

routine emissions reductions. Combined with GEOS-Chem model experiments, they 

used both high and low emission scenarios to simulated the percentages of PM2.5 

changes due to meteorological conditions which tended to increase PM2.5 in February 

2020, particular in North China. And they further extrapolated the PM2.5 change due 

to expected routine emission reductions to isolate the decline in PM2.5 concentration 

due to COVID-19 quarantines in the East of China quantitatively. This study presents 

some interesting results and could help us better understand the response of air quality 

to the COVID-19. However, I think the author needs to add some more detailed and 

rigorous exposition to present their results. Before it can be publishable, I would 

like the authors to address my following comments.  

Major comments  

Line 65-75 This section requires a more detailed description of the model 

evaluation. At the end of this section, the author just showed the model could 

capture the change of meteorological conditions, with high similarly between 

simulated and observed PM2.5 data. But it is essential that the performance of this 

model could reproduced the observed true value of PM2.5 concentration. Please 

evaluate against observation.  

Reply: 

The evaluations of model performances were considerably improved in the 

following two ways and were documented in a separated paragraph (i.e., Lines 86-101). 

(1) With the configuration we used, evaluations between the observed and 

simulated PM2.5 concentrations in Feb 2017 were added as new Figure S1a and 

associated analysis were in lines 89-96. Obviously, mean values of simulated PM2.5 

were consistent with the observations (Figure S1a). The percentage of standard error 

/ mean equals 5.8% (4.6/79.6) in NC, 7.0% (3.9/55.6) in YRD and 5.4% (3.7/70.8) 

in HB, indicating good performance of reproducing the polluted conditions. The 

absolute biases were larger in the south of China. The simulated spatial distribution 

was also similar to that of observations in Feb 2017 with spatial correlation coefficient 

= 0.78.  



 

Figure S1a. Spatial distribution of observed (dots) and GEOS-Chem simulated (shading) PM2.5 in 

February 2017. 

Furthermore, the ability of GEOS-Chem to reproduce the daily variations of PM2.5 

in Feb 2020 was also introduced in the old version as below. 

 

 (2) The model configurations were default and similar with many previous 

studies, which were adopted by many previous publications and we also introduced 

related evaluations in the revised manuscript. Dang and Liao directly evaluated the 

capacity of models in PM2.5 simulations by calculating the normalized mean bias. The 

simulated spatial patterns of 2013-2017 winter PM2.5 were agreed well with the 

measurements, which was similar to our evaluations in Figure S1a. The scatterplot 

of simulated versus observed seasonal mean PM2.5 concentrations showed 

overestimated PM2.5 concentrations with a normalized mean bias (NMB) of +8.8 % 

for all grids and an NMB of +4.3 % for BTH (Figure R1a). They also compared the 

simulated and observed daily mean PM2.5 concentrations at the Beijing, Shanghai, 

and Chengdu grids, which represent the three most polluted regions of BTH, YRD, and 

the Sichuan Basin, respectively. The model has a low bias in Beijing with an NMB of 



−9.2 % and is unable to predict the maximum PM2.5 concentration in some cases. For 

Shanghai and Chengdu, the model has high biases with NMBs of 18.6 % and 28.7 %, 

respectively (Figure R1b). This evaluation also showed a bigger simulated bias in the 

south of China. The model, however, can capture the spatial distributions and seasonal 

variations of each aerosol species despite of the biases in simulated concentrations. 

 

Figure R1. Key Figures in Dang and Liao (2019). 

Related references: 

Dang, R., and Liao, H.: Severe winter haze days in the Beijing-Tianjin-Hebei region 

from 1985 to 2017 and the roles of anthropogenic emissions and meteorology, Atmos. 

Chem. Phys., 19, 10801–10816, 2019. 

Revision: 

Lines 86-96: GEOS-Chem model has been widely used to examine the historical 

changes in air quality in China and quantitatively separate the impacts of physical-

chemical processes. Here, we simulated the PM2.5 concentrations in February 2017 and 

evaluated the performance of GEOS-Chem (Figure S1a). The values of mean square 

error / mean equals were 5.8%, 7.0% and 5.4% in North China (NC), Yangtze River 

Delta (YRD) and Hubei Province (HB), respectively, indicating the good performance 

of reproducing the haze-polluted conditions. The absolute biases were larger in the 

south of China, which was consistent with Dang and Liao (2019). They also compared 

the simulated and observed daily mean PM2.5 concentrations at the Beijing, Shanghai, 

and Chengdu grids, which had a low bias in Beijing and high biases in Shanghai and 

Chengdu, respectively. The simulated biases possibly affected the subsequent results 

and brought uncertainties to some extent. The simulated spatial distribution of PM2.5 

was also similar to that of observations with spatial correlation coefficient = 0.78. We 

(a) (b) 



further verified whether the simulations could capture the roles of meteorological 

changes in February 2020 under a substantial reduction in emissions because of 

COVID-19 quarantines……. 

Line 93 The difference of PM2.5 was linearly decomposed into three parts. I think 

this is a reasonable approximation, but the author should give more explanation 

on the rationality of such decomposition.  

Reply: 

The linear decomposition is definitely a reasonable and feasible approximation 

and must have differences with the reality due to complex atmospheric chemical 

processes. The reasons for selecting the linear hypothesis were as follows.  

(1) From 2013 to 2019, the impacts of emission reduction were approximatively 

linear, which might related to the enhanced and reinforced control measures in 

China. Because the signal of emissions reduction in China had been particularly 

strong since 2013, it could be easily detected and the assumption of a linear reduction 

in pollution caused by emission reduction was applicable in China in the past few 

years. This linear approximation was employed by many previous studies (Geng et al. 

2017; Zheng et al. 2018) and even by national assessments aimed to evaluate the 

effects of Action Plan of Air Pollution Prevention and Control from 2013 to 2017 

(Geng et al. 2020; Wang et al. 2020). We have introduced the evaluated results in lines 

137-142.  

(2) After disentangling the effects of meteorology, the variations in PM2.5 

concentrations also showed linear change (Figure 5 in our manuscript), which laterally 

verified the rationality of linear approximation.  

(3) Because of the significantly linear reduction of PM2.5 due to changing 

emissions, the linear decomposition or approximation became reasonable in China in 

recent years to some extent.  

In the revised versions, we illustrated the linear decompositions were an 

reasonable estimated approach and must brought some uncertainties due to ignoring 

the meteorology-emission interactions, the product of emissions and their loss lifetime 

(Lines 263-267).  



Related references: 

Geng, G., Zhang, Q., Tong, D., Li, M., Zheng, Y., Wang, S., and He, K.: Chemical 

composition of ambient PM2. 5 over China and relationship to precursor emissions 

during 2005–2012, Atmos. Chem. Phys., 17, 9187–9203, https://doi.org/10.5194/acp-

17-9187-2017, 2017. 

Geng, G., Xiao, Q., Zheng, Y., Tong, D., Zhang, Y., Zhang, X., Zhang, Q., He, H., and 

Liu, Y.: Impact of China’s Air Pollution Prevention and Control Action Plan on PM2.5 

chemical composition over eastern China, Sci. China Ser. D., 62, 1872–1884, 

https://doi.org/10.1007/s11430-018-9353-x, 2020. 

Wang, P., Chen, K., Zhu, S., Wang, P., and Zhang, H.: Severe air pollution events not 

avoided by reduced anthropogenic activities during COVID-19 outbreak, Resour. 

Conserv. Recy., 158, http://doi:10.1016/j.resconrec.2020.104814, 2020. 

Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., 

Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's 

anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. 

Chem. Phys., 18, 14095-14111, 2018 

Revision: 

Lines 110-112: As mentioned above, we aimed to examine the impact of the COVID-

19 quarantines on PM2.5 over the February 2017 level basing on an observational-

numerical hybrid method. The observed PM2.5 difference in February 2020 (PMdOBS) 

was linearly decomposed into three parts: the impacts of changing meteorology (PMdM), 

expected routine emissions reductions (PMdR) and COVID-19 quarantines (PMdC), 

which was a reasonable approximation……  

Lines 263-267: Furthermore, during the calculation process, the observed PM2.5 

difference in February 2020 was linearly decomposed into three parts. Although this 

linear decomposition was reasonable in china in the past few years, we must note that 

this approximation was lack of considering the meteorology-emission interactions, the 

product of the emission, the loss lifetime and particularly the sulfate-nitrate-ammonia 

thermodynamics (Cai et al., 2017), which brought some uncertainties. 

https://doi.org/10.1007/s11430-018-9353-x
http://doi.cnki.net/doi/Resolution/Handler?doi=%2010.1016/j.resconrec.2020.104814


Line 98-99 Please give a detailed calculation method of calculating the percentages 

of PM2.5 changes due to meteorological conditions.  

Reply: 

We use the simulated PM2.5 data driven by changing meteorology with two fixed-

emissions (1985 and 2010). This percentage is the difference of simulated PM2.5 

between each year and 2017 under the same emission scenario divided by the 

simulated PM2.5 in 2017. We have added this detailed description in the text. 

Revision: 

Lines 120-121: This percentage was the difference of simulated PM2.5 between each 

year and 2017 under the same emission scenario divided by the simulated PM2.5 in 2017. 

Line 110 The author performed linear extrapolation to obtain PMdR in 2020. The 

reason to use linear extrapolation here is that the emission reduction caused by 

the policy is linear, or that the PM2.5 decline caused by emission reduction is 

approximate linear based on the calculated value of PMdR from 2015 to 2019? 

The calculated extrapolation results in 2020 are compared with others studies in 

the latter part of the paper, but please analyze the uncertainty of using this method 

itself.  

Reply: 

From 2013 to 2019, the impacts of emission reduction on PM2.5 in China were 

approximatively linear, which might due to the control measures in China were 

particularly enhanced and reinforced. This linear approximation was employed even 

by national assessments aimed to evaluate the effects of Action Plan of Air Pollution 

Prevention and Control from 2013 to 2017 (Geng et al. 2020; Wang et al. 2020). 

(1) Due to the implementation of clean air action, control measures have been 

enhanced and reinforced in China, showing a strong emission reduction signal. 

Therefore, the pollutant reduction caused by emission reduction in China from 2013 

to 2019 was linear, which might be related to the huge emission reduction. The link 

has a lot to do with the intensity of emissions reduction. Because the signal of emissions 

reduction in China had been particularly strong since 2013, it could be easily detected 

and showed a linear reduction.  

(2) The effect of emission reduction on PM2.5 in February 2020 was calculated 

as the change of PM2.5 caused by expected routine emission reduction, which did not 



actually happen, but merely gave an assessment of the change of PM2.5 caused by 

emission reduction in the case of “if no COVID-19”. Under this hypothetical 

assessment, the linear change was still tenable.  

(3) Furthermore, what we emphasize more was the effect of total emission 

reduction (PMdR + PMdC), that was, the common utility of expected routine emissions 

reductions and COVID-19 quarantines. This quantity was obtained after excluding the 

effect of meteorological conditions, which was completely unaffected by linear 

extrapolation of emission reduction.  

(4) The calculated extrapolation results in 2020 is consistent with others 

observational and numerical studies, but we must note that it is still conjectures rather 

than true values, which was lack of considering the meteorology-emission interactions 

and the sulfate-nitrate-ammonia thermodynamics, which brought some uncertainties. 

We have added the analyze of this uncertainty in line 267. 

Revision: 

Lines 130-137: According to many previous studies, the change in emissions resulted 

in a linear change in air pollution in China from 2013-2019 (Wang et al., 2020; Geng 

et al., 2020) which might be related to the huge emission reduction due to the 

implementation of clean air action. Because the signal of emissions reduction in China 

had been particularly strong since 2013, it could be easily detected and the assumption 

of a linear reduction in pollution caused by emission reduction was applicable in China 

in the past few years. Based on this approximation, we used the method of extrapolation 

to speculate the impact of routine emission reduction on PM2.5. We performed linear 

extrapolation based on known PMdR values from 2015 to 2019 to obtain PMdR in 2020 

(STEP 2, Fig. S3). This PMdR in 2020 was calculated as the change of PM2.5 caused by 

expected routine emission reduction, which did not actually happen, but merely gave 

an assessment in the case of “if no COVID-19”. Under this hypothetical assessment, 

the linear change was still tenable.  

Lines 265-267: ……we must note that this approximation was lack of considering the 

meteorology-emission interactions, the product of the emission, the loss lifetime and 



particularly the sulfate-nitrate-ammonia thermodynamics (Cai et al., 2017), which 

brought some uncertainties. 

Line 145 The changes of circulation field, humidity and wind under stagnant 

weather are analyzed here. Could you give more details about the specific changes 

in the weather conditions under these stagnant days? Such as boundary layer 

height and wind speed?  

Reply: 

Appreciate for your valuable suggestion. We not only show more quantitative 

results, but also statistically (with observations and regressions) verified the 

percentage of changed PM2.5 due to the difference in meteorology between 2017 and 

2020. We have added more quantitative analysis in the revised presentations. 

(1) In February 2020, the correlation coefficients of daily PM2.5 and BLH, relative 

humidity, wind speed and SAT in North China were -0.63, 0.44, -0.45 and 0.46 

respectively, all of which passed the 95% significance test. Compared with the climate 

mean status (February 2017), in February 2020 BLH decreased by 19.5m (34.5m), 

relative humidity increased by 5% (10.6%), and SAT rose by 1.6°C (0.9°C) after 

detrending, which are conductive to the increase of PM2.5 concentration.  

(2) We used the meteorological data of boundary layer height, relative humidity, 

surface temperature and wind speed in February 2017 to establish a multiple linear 

regression equation to fit PM2.5. The correlation coefficients between the fitting results 

and the actual PM2.5 concentration in North China, Yangtze River Delta and Hubei 

reached 0.84, 0.64 and 0.65, all of which passed the 99% significance test. Then, we 

put the observed meteorological data in February 2020 into the established multiple 

regression equation to get the predicted PM2.5 concentration. Using the regress-

predicted value, the percentage of changed PM2.5 due to the difference between in 

meteorology between 2017 and 2020 were re calculated and is 20.7%, -3.2% and 9.5% 

in NC, YRD and HB, respectively (the hollow column in Figure S2), which is 

consistent with and enhanced the robustness of the results obtained by our 

previous model simulation.  



 

Figure S2. The percentage of changed PM2.5 due to the difference in meteorology between 2020 

and 2017 by simulated PM2.5 with 2010 (red) and 1985 (blue) emission, and regress-fitted PM2.5 

(hollow). The GEOS-Chem simulations were driven by meteorological conditions in 2017 and 2020 

under fixed emissions in 1985 and 2010. The regress-fitted PM2.5 was calculated by putting the 

observed meteorological data in February 2020 into the multiple regression equation fitting PM2.5 

established by meteorological data in February 2017. 

Revision: 

Lines 175-186: Compared with the climate (February 2017) monthly mean, boundary 

layer height (BLH) decreased by 19.5m (34.5m), surface relative humidity (rhum) 

increased by 5% (10.6%) and surface air temperature (SAT) rose by 1.6°C (0.9°C) after 

detrending, which were conductive to the increase of PM2.5 concentration in February 

2020. Furthermore, the correlation coefficients of daily PM2.5 and BLH, rhum, wind 

speed and SAT in North China were -0.63, 0.44, -0.45 and 0.46, respectively, all of 

which passed the 95% significance test and indicated importance of meteorology. We 

used the meteorological data in February 2017 to establish a multiple linear regression 

equation to fit PM2.5. The correlation coefficients between the fitting results and the 

observed PM2.5 concentration in NC, YRD and HB reached 0.84, 0.64 and 0.65, 

exceeding the 99% significance test. Then, we put the observed meteorological data in 

February 2020 into this established multiple regression equation to get the predicted 



PM2.5 concentration. Using the regress-predicted value, the percentage of changed 

PM2.5 due to the differences in Meteorology between 2017 and 2020 were re-calculated 

and is 20.7%, -3.2% and 9.5% in NC, YRD and HB, respectively (Figure S2), which is 

consistent with and enhanced the robustness of the results obtained by our previous 

model simulation. 

Line 167-170 The results of PMdC showed great differences in the north and south 

regions. What do you think is the cause of this regional difference? Can you give 

some explanation?  

Reply: 

The south of 30N is less polluted than the north region, therefore the background 

of basic PM2.5 concentration is relatively low (Figure S4a). In addition, 

meteorological conditions in the south in February 2020 had no positive contribution 

relative to that in February 2017, which would not lead to the increase of PM2.5 

concentration. Both of the above two reasons resulted in a smaller space for PM2.5 

decrease. So the PM2.5 concentration that can be reduced by COVID-19 in the south is 

not as large as that in North China, and had regional differences.  

 

Figure S4a. Observed PM2.5 concentrations (unit: μg/m3) in February 2017.  

Revision: 

Lines 209-212: Generally, the south region was less polluted than the north, therefore 

the baseline of PM2.5 concentration was relatively lower (Fig. S4a). In addition, 



meteorological conditions in the south in February 2020 had no positive contribution 

(Fig. 3a), which would not lead to the increase of PM2.5 concentration. These two 

possible reasons resulted in a smaller space for PM2.5 decrease due to COVID-19 

quarantines in the south and accompanying regional differences.  

Specific comments 

Line 98 Please explain “the ratio of PMdM of each year/PMdOBS in 2017” more 

clearly. Are you sure this is divided by “PMdOBS in 2017” here? Or by observed 

PM2.5 in 2017?  

Reply: 

Sorry for this expression error. What we mean here is that to determine the ratio 

of PMdM of each year/ observed PM2.5 in 2017, which mean the percentage of changed 

PM2.5 due to the differences in meteorology compared with 2017. This percentage is the 

difference of simulated PM2.5 between each year and 2017 under the same emission 

scenario divided by the simulated PM2.5 in 2017. We have changed the expression to be 

clearer. 

Revision: 

Lines 117-120: Simulated PM2.5 data driven by changing meteorology with two fixed-

emissions (1985 and 2010) were employed to determine the ratio of PMdM of each year/ 

observed PM2.5 in 2017. Depending on the GEOS-Chem simulations, we found that the 

percentage of changed PM2.5 due to the differences in meteorology remained nearly 

constant regardless of the emission level (Fig. S2) 

Line 101 Keep the same one decimal place.  

Reply: 

We have made the corresponding modifications and have retained a decimal 

place. 

Revision: 

Line 122: For example, the percentages due to different meteorology between 2020 

and 2017 were 22.1% (21.4%), –1.2% (–0.7%) and 9.0% (8.2%) in NC, YRD and HB 

under the low (high) emissions (Fig. S2). 

 



Line 103 Please specify which value is multiplied by this percentage.  

Reply: 

Here we multiply the 2017 observation by this percentage, and we have changed 

the expression to be clearer. 

Revision: 

Lines 125-126: Then, through multiplying the 2017 observation by this percentage, 

PMdM can be quantified in each simulation grid with respect to 2017 

Line 112 The citation format of this reference is incorrect.  

Reply: 

We have corrected the citation format of this reference. 

Revision: 

Line 139: Zhang et al. (2020) also showed that…… 

Line113 I think it makes more reasonable to write the abbreviation for Beijing-

Tian-Hebei here instead of on line 132.  

Reply: 

We have marked here the abbreviation BTH of Beijing-Tianan-Hebei and have 

quoted the abbreviation directly later in the paper. 

Revision: 

Line 139: Zhang et al. (2020) also showed that the emission controls in Beijing-Tianjin-

Hebei (BTH) region…… 

Line 158: Furthermore, Zhang et al. (2020) reported that meteorology contributes 50% 

and 78% of the wintertime PM2.5 reduction between 2017 and 2013 in the BTH and 

YRD, respectively. 

Line 124 The abbreviations for North China here and line 122 are repeated.  

Reply: 

We have deleted the second repeated abbreviation and referred to the abbreviation 

directly. 

Revision: 

Line 151: Relative to the observations in February 2017, negative PM2.5 anomalies 



were centered in NC…… 

Line 195 Please write NOx here and line 68 in the same way.  

Reply: 

We have changed NOx into the same way as before. 

Revision: 

Line 226: Because of break-off transportations, reduced nitrogen oxide (NOx) 

increased the concentrations of ozone and nighttime nitrate (NO3) radical formations. 

Figure 1a Clarify what the red and blue bars mean so that the reader can 

understand this information.  

Reply: 

The red bars indicate an increase in existing confirmed cases, and the blue bars 

indicate a decrease. We make this significance clear in the caption of Figure 1 (a). 

Revision: 

Line 414: Figure 1. (a) Variation in existing confirmed cases (bar; red: increase, blue: 

decrease) and the ratio of accumulated confirmed cases to total confirmed cases (black 

line) in China……. 

Figure 2 Please give the latitude and longitude range of NC, YRD and HB in the 

figure caption. 

Reply: 

We select the latitude and longitude range of NC is 32.5-42°N,110-120°E, the 

range of YRD is 28-32.5°N,118-122°E, and the range of HB is 30-32.5°N,109.5-116°

E. We have added the information in the figure caption. 

Revision: 

Lines 418-419: Figure 2. Differences in the observed PM2.5 (unit: μg/m3) in February 

between 2020 and 2017. The black boxes indicate the locations of North China (NC, 

32.5-42°N,110-120°E), the Yangtze River Delta (YRD, 28-32.5°N,118-122°E) and 

Hubei Province (HB, 30-32.5°N,109.5-116°E). 

 



Figure 3 The “due to” after each subheading is repeated, leaving out the last three.  

Reply: 

We have deleted the repeated “due to”. 

Revision: 

Lines 420-421: Figure 3. PM2.5 difference (unit: μg/m3) in February between 2020 and 

2017 due to (a) changing meteorology (PMdM), (b) expected routine emission 

reductions (PMdR), (c) the COVID-19 quarantines (PMdC), and (d) due to the total 

emission reduction (PMdE = PMdR+ PMdC).  

Figure 4 Add the units of climate elements in the caption (c) and (d).  

Reply: 

We have added the units of geopotential potential height at 500 hPa, wind and 

surface relative humidity in the caption. 

Revision: 

Lines 426-427: ……including (c) geopotential potential height at 500 hPa (shading; 

unit: gpm) and its climate mean in February (contour), and (d) wind at 850 hPa (black 

arrows; unit: m/s), its climate mean (blue arrows) and the increased surface relative 

humidity (shading; unit: %, stagnant days minus climate mean).  

Figure 5 The y-coordinate name is inconsistent with the figure caption.  

Reply: 

We have corrected the y-coordinate name. 

Revision: 

 



Figure 5. Variation in PMdR (unit: μg/m3) with respect to the February 2017 level in Beijing, 

Shanghai and Wuhan from 2015 to 2019. PMdR in 2020 was linearly extrapolated from that in the 

2015–2019 period. The dotted line is the linear trend. 

Figure 6 Add the y-coordinate variable name and unit, just like Figure 5.  

Reply: 

We have added the y-coordinate variable name and unit in the figure. 

Revision: 

 

Figure 6. Contributions of PMdM (orange bars with hatching), PMdR (purple bars with hatching) 

and PMdC (blue bars with hatching) to the change in PM2.5 concentration (unit: μg/m3) between 

2020 and 2017 in the three regions. The observed PM2.5 concentration in February 2017 (black) and 

2020 (gray) was also plotted, and the expected PM2.5 concentration without the COVID-19 

quarantine is indicated by black hollow bars. The contribution ratios of the three factors (relative to 

the PM2.5 observations in 2020) are also indicated on the corresponding bars. 

Figure 7a Change the subtitle “PMd” to “PMdOBS” to maintain consistency of 

expression.  

Reply: 

We have changed in the figure. 

 

 

 

 

 



Revision: 

 

Figure 7. (a) Differences in the observed PM2.5 (unit: μg/m3) in March between 2020 and 2017. (b) 

Contributions of PMdC to the change in PM2.5 concentration (unit: μg/m3) between 2020 and 2017 

and (c) the contribution ratios of PMdC (relative to the PM2.5 observations in 2020) in March (blue) 

and February (red) in the three regions.  
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Abstract. The top-level emergency response to the COVID-19 pandemic involved an exhaustive quarantine in China. The 10 

impacts of COVID-19 quarantine on the decline in fine particulate matter (PM2.5) were quantitatively assessed based on 11 

numerical simulations and observations in February. Relative to both of February 2017 and climate mean, anomalous 12 

southerlies and moister air occurred in the east of China in February 2020, which caused considerable PM2.5 anomalies. Thus, 13 

it is a must to disentangle the contributions of stable meteorology from the effects of the COVID-19 lockdown. The stable 14 

meteorological conditions in February 2020 caused considerable PM2.5 anomalies that were eliminated in advance. The 15 

contributions of routine emission reductions were also quantitatively extrapolated. The top-level emergency response 16 

substantially alleviated the level of haze pollution in the east of China. Although climate variability elevated the PM2.5 by 29% 17 

(relative to 2020 observations), 59% decline related to COVID-19 pandemic and 20% decline from the expected pollution 18 

regulation dramatically exceeded the former in North China. The COVID-19 quarantine measures decreased the PM2.5 in 19 

Yangtze River Delta by 72%. In Hubei Province where most pneumonia cases were confirmed, the impact of total emission 20 

reduction (72%) evidently exceeded the rising percentage of PM2.5 driven by meteorology (13%). 21 

Keywords: COVID-19, PM2.5, Emission Reduction, Climate Variability, Haze 22 

1 Introduction 23 

The COVID-19 pandemic devastatingly blew China in the beginning of 2020 (Luo, 2020; Xia et al., 2020; Cao et al., 24 

2020). By April 2020, more than 84 thousand confirmed cases were reported by the National Health Commission of China, 25 

approximately 75% of which were confirmed in February (Fig. 1a). To effectively control the large spread of COVID-19 26 

pneumonia, stringent quarantine measures were implemented by the Chinese government and people themselves, including 27 

prohibiting social activities, shuttering industries, stopping transportation, etc. (Chen S. et al., 2020). The abovementioned 28 

emergency response measures were first carried out in Wuhan on 23 January, which resulted in the delayed arrival of COVID-29 

19 in other cities by 2.91 days, and these response measures were in effect in all cities across China, thus limiting the spread 30 

mailto:yinzhc@163.com
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of the COVID-19 epidemic in China (Tian et al., 2020). Since March 7, the number of newly confirmed cases in China has 31 

been nearly below 100. On the other hand, the COVID-19 quarantine measures greatly reduced anthropogenic emissions, and 32 

therefore, the air quality in China was considerably improved (Wang et al., 2020). Chen K. et al. (2020) simply compared 33 

observations of atmospheric components before and during the quarantine and found that the concentration of fine particulate 34 

matter (PM2.5) in Wuhan decreased 1.4 μg/m3, but it decreased 18.9 μg/m3 in 367 cities across China. Shi et al. (2020) quantified 35 

a 35% reduction of PM2.5 on average during the COVID-19 outbreak compared to the pre-COVID-19 period. Huang et al. 36 

(2020) used comprehensive measurements and modeling to show that the haze during COVID-19 lockdown was driven by 37 

enhancements of secondary pollution, which offset reduction of primary emissions during this period in China. However, the 38 

impacts of meteorology on the air quality were neglected in many previous studies.  39 

After the severe haze events of 2013, routine emission reductions resulted in an approximately 42% decrease in the annual 40 

mean PM2.5 concentration between 2013 and 2018 in China (Cleaner air for China, 2019). In November 2019, the Ministry of 41 

Environmental Protection of China issued a series of Autumn-Winter Air Pollution Prevention and Management Plans 42 

indicating that the routine emission reductions would be conventionally implemented in the following winter (Ministry of 43 

Environmental Protection of China, 2019). Climate variability notably influences the formation and intensity of haze pollution 44 

in China (Yin and Wang 2016; Xiao et al., 2015; Zou et al., 2017), and the impacts are embodied by variations in surface wind, 45 

boundary layer height and moisture conditions (Shi et al., 2019; Niu et al., 2010; Ding et al., 2014). During December 16th-46 

21st 2016, although most aggressive control measures for anthropogenic emissions were implemented, severe haze pollution 47 

with PM2.5 concentrations ≈ 1100µg m−3 still occurred and covered 710,000km2. The continuous low surface wind speed of 48 

less than 2ms−1, high humidity above 80% and strong temperature inversion lasting for 132h caused the rebound of wintertime 49 

PM2.5 in 2016 (Yin and Wang, 2017). In winter 2017, the air quality in North China largely improved; however, the stagnant 50 

atmosphere in 2018 resulted in a major PM2.5 rebound by weakening transport dispersion and enhancing the chemical 51 

production of secondary aerosols (Yin and Zhang 2020). Wang et al. (2020) applied the Community Multiscale Air Quality 52 

model to emphasize that the role of adverse meteorological conditions cannot be neglected even during the COVID-19 53 

outbreak. Thus, high PM2.5 concentrations were also observed in February 2020, which were mainly attributive to limited 54 

ventilation conditions and a high humidity (Ministry of Ecology and Environment of China, 2020). From February 8 to 13 55 

2020, North China suffered severe pollutions, with maximum daily PM2.5 exceeding 200µg m−3. During this period, weak 56 

southerly surface winds lasted for nearly 5 days, relative humidity was close to 100%, and atmospheric inversion reached more 57 

than 10℃. Although pollution emissions from basic social activities have been reduced, heavy pollution still occurred when 58 

adverse meteorological conditions characterized by stable air masses appeared (Wang et al., 2020).  59 

After the severe haze events of 2013, routine emission reductions resulted in an approximately 42% decrease in the annual 60 

mean PM2.5 concentration between 2013 and 2018 in China (Cleaner air for China, 2019). In November 2019, the Ministry of 61 

Environmental Protection of China issued a series of Autumn-Winter Air Pollution Prevention and Management Plans 62 
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indicating that the routine emission reductions would be conventionally implemented in the following winter (Ministry of 63 

Environmental Protection of China, 2019). As reported by the government, the mean ratio of work resumption in large 64 

industrial enterprises was approximately 90% in the east of China until the end of February (Fig. 1b). In this study, we attempted 65 

to quantify the impacts of the COVID-19 pandemic on the observed PM2.5 concentration in February 2020 when the quarantine 66 

measures were the strictest. The official 7-day Chinese New Year holiday occurs in January and February and commonly 67 

accounts for approximately 25% of a month. From 2013–2020, there were only two years (2017 and 2020) when the official 68 

7-day holiday occurred in January (Fig. 1c). Thus, to avoid the impacts of the Spring Festival, the observed PM2.5 concentration 69 

in February 2017 (Fig. 1a) was adopted to calculate the PM2.5 difference, which was decomposed into the results due to 70 

expected routine emission reductions, changing meteorology climate variability, and COVID-19 quarantines.  71 

2 Datasets and methods  72 

2.1 Data description 73 

Monthly mean meteorological data from 2015 to 2020 were obtained from NCEP/NCAR reanalysis datasets, with a 74 

horizontal resolution of 2.5°×2.5°, including the geopotential height at 500 hPa (H500), zonal and meridional winds at 850 75 

hPa, vertical wind from the surface to 150 hPa, and relative humidity at the surface (Kalnay et al., 1996). PM2.5 concentration 76 

data from 2015 to 2020 were acquired from the China National Environmental Monitoring Centre (https://quotsoft.net/air/ 77 

http://beijingair.sinaapp.com/). The monitoring network expanded from 1500 sites in 2015 to 1640 sites in 2020, covering 78 

approximately 370 cities nationwide. The PM2.5 data were monitored every 5 min using two methods: a tapered element 79 

oscillating microbalance and β-rays, which were operated under the China National Quality Control.  80 

2.2 GEOS-Chem description, evaluation and experimental design.  81 

We used the GEOS-Chem model (http://acmg.seas.harvard.edu/geos/) to simulate the PM2.5 concentration, driven by 82 

MERRA-2 assimilated meteorological data (Gelaro et al., 2017). The nested grid over China (15° N–55° N, 75–135° E) had a 83 

horizontal resolution of 0.5° latitude by 0.625° longitude and consisted of 47 vertical layers up to 0.01 hPa. The GEOS-Chem 84 

model included the fully coupled O3–NOx–hydrocarbon and aerosol chemistry module with more than 80 species and 300 85 

reactions (Bey et al., 2001; Park et al., 2004). The PM2.5 components simulated in the GEOS-Chem model included sulfate, 86 

nitrate, ammonium, black carbon and primary organic carbon, mineral dust, and sea salt. Aerosol thermodynamic equilibrium 87 

is computed by the ISORROPIA package, which calculates the gas–aerosol partitioning of the sulfate–nitrate– ammonium 88 

system (Fountoukis and Nenes, 2007). Heterogeneous reactions of aerosols include the uptake of HO2 by aerosols (Thornton 89 

et al., 2008), irreversible absorption of NO2 and NO3 on wet aerosols (Jacob, 2000), and hydrolysis of N2O5 (Evans and Jacob, 90 

2005). Two alternate simulations of aerosol microphysics are implemented in GEOS-Chem: the TOMAS simulation (Kodros 91 

https://quotsoft.net/air/
http://acmg.seas.harvard.edu/geos/
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and Pierce, 2017) and the APM simulation (Yu and Luo, 2009).  92 

At present, GEOS-Chem model has been widely used to examine, and the historical changes in air quality in China were 93 

also examined through modeling studies and quantitatively separate the impacts of physical-chemical processes. Using the 94 

GEOS‐Chem model, Yang et al. (2016) found an increasing trend of winter PM2.5 concentrations during 1985–2005, 80% of 95 

which due to anthropogenic emissions and 20% due to meteorological conditions. Dang et al. (2019) showed that this model 96 

could capture the spatial and temporal variations in severe winter haze in China and obtained increasing trends in the frequency 97 

and intensity of severe winter haze days in Beijing-Tianjin-Hebei from 1985-2017.Here, we simulated the PM2.5 concentrations 98 

in February 2017 and evaluated the performance of GEOS-Chem (Fig. S1a). The values of mean square error / mean equals 99 

were 5.8%, 7.0% and 5.4% in North China (NC), Yangtze River Delta (YRD) and Hubei Province (HB), respectively, 100 

indicating the good performance of reproducing the haze-polluted conditions. The absolute biases were larger in the south of 101 

China, which was consistent with Dang and Liao (2019). They also compared the simulated and observed daily mean PM2.5 102 

concentrations at the Beijing, Shanghai, and Chengdu grids, which had a low bias in Beijing and high biases in Shanghai and 103 

Chengdu, respectively. The simulated biases possibly affected the subsequent results and brought uncertainties to some extent. 104 

The simulated spatial distribution of PM2.5 was also similar to that of observations with spatial correlation coefficient = 0.78. 105 

To further identify the reliability of the GEOS-Chem simulation, we focused on We further verified whether the simulations 106 

could capture the roles of meteorological changes in February 2020 under a substantial reduction in emissions because of 107 

COVID-19 quarantines. In North China  (NC), Yangtze River Delta (YRD) and Hubei Province (HB), the correlation 108 

coefficients between daily PM2.5 observations and simulated data under 2010 (1985) emission scenario reached 0.83 (0.82), 109 

0.67 (0.63), and 0.79 (0.73), respectively. For example, in NC, the simulation could well simulate severe haze events (e.g., 110 

from 8–134 and 198–252 February) and good air quality events (e.g., from 145–189 February), reflecting that it has ability to 111 

accurately capture the change of meteorological conditions (Fig. S1b). 112 

 113 

The PM2.5 concentration in February from 2015 to 2020 was simulated in this study. Due to delayed updates of the 114 

emission inventory, we used the emissions data of 2010 115 

(http://geoschemdata.computecanada.ca/ExtData/HEMCO/AnnualScalar) and 1985 (M. Li et al., 2017) for the simulations, 116 

which represented high- and low-emission scenarios, respectively. In total, we conducted two sets of numerical experiments 117 

to drive the GEOS-Chem simulations, one combining the meteorological conditions from 2015 to 2020 with fixed emissions 118 

in 1985 and the other with fixed emissions in 2010, which could determine the stability of simulated results.  119 

To further identify the reliability of the GEOS-Chem simulation, we focused on whether the simulations could capture 120 

the roles of meteorological changes in February 2020 under a substantial reduction in emissions because of COVID-19 121 

quarantines. In North China (NC), Yangtze River Delta (YRD) and Hubei Province (HB), the correlation coefficients between 122 

daily PM2.5 observations and simulated data under 2010 (1985) emission scenario reached 0.83 (0.82), 0.67 (0.63), and 0.79 123 

http://geoschemdata.computecanada.ca/ExtData/HEMCO/AnnualScalar
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(0.73), respectively. For example, in NC, the simulation could well simulate severe haze events (e.g., from 8–14 and 18–22 124 

February) and good air quality events (e.g., from 15–19 February), reflecting that it has ability to accurately capture the 125 

change of meteorological conditions (Fig. S1). 126 

2.3 The method to quantify the influence of the COVID-19 quarantine.  127 

As mentioned above, we aimed to examine the impact of the COVID-19 quarantines on PM2.5 over the February 2017 128 

level basing on. an observational-numerical hybrid method. The observed PM2.5 difference in February 2020 (PMdOBS) was 129 

linearly decomposed into three parts: the impacts of changing meteorology (PMdM), expected routine emissions reductions 130 

(PMdR) and COVID-19 quarantines (PMdC), which was a reasonable approximation, and the decomposition equation was 131 

PMdOBS = PMdM + PMdR + PMdC. That is, PMdC = PMdOBS – PMdM – PMdR. It should be noted that PMdC is the impact of 132 

the COVID-19 quarantines over the situation whereby the pandemic did not occur and routine emission reductions 133 

conventionally were in effect. The value of PMdE (i.e., PMdR + PMdC) was the total impact of the emission reductions in 134 

February 2020 over the 2017 level. 135 

Simulated PM2.5 data driven by changing meteorology with two fixed-emissions (1985 and 2010) were employed to 136 

determine the ratio of PMdM of each year/PMdOBS observed PM2.5 in 2017. Depending on the GEOS-Chem simulations, we 137 

found that the PM2.5 percentage of changed PM2.5 due to changing the differences in meteorology remained nearly constant 138 

regardless of the emission level (Fig. S2), which was consistent with the results of Yin and Zhang (2020). This percentage was 139 

the difference of simulated PM2.5 between each year and 2017 under the same emission scenario divided by the simulated 140 

PM2.5 in 2017. For example, the percentages due to different meteorology between 2020 and 2017 were 22.1% (21.4%), –1.2% 141 

(–0.7%) and 9.0% (8.2%) in NC, YRD and HB under the low (high) emissions (Fig. S2). The percentage under 2010 emission 142 

scenario was selected as the final percentage because the emissions from each sector in 2010 were more similar to recent years, 143 

and thus was more reasonable. Then, through multiplying the 2017 observationication by this percentage , PMdM, with respect 144 

to the 2017 observations, PMdM can be quantified in each simulation grid with respect to 2017 (STEP 1).  145 

From 2015 to 2019, PMdC = 0; thus, PMdR = PMdOBS – PMdM. Here, we repeated STEP 1 to determine PMdM in each year 146 

from 2015 to 2019 relative to 2017 (i.e., PMdM = 0 in 2017). After removing the effect of meteorological conditions in PM2.5 147 

differences, PMdR in all years except 2020 can also be calculated. According to many previous studies, the change in emissions 148 

resulted in a linear change in air pollution in China from 2013-2019 (Wang et al., 2020; Geng et al., 2020) which might be 149 

related to the huge emission reduction due to the implementation of clean air action. (Cai et al., 2017; Wang et al., 2019), 150 

Because the signal of emissions reduction in China had been particularly strong since 2013, it could be easily detected and the 151 

assumption of a linear reduction in pollution caused by emission reduction was applicable in China in the past few years. Based 152 

on this approximation,therefore, we used the method of extrapolation to speculate the impact of routine emission reduction on 153 

PM2.5. We performed linear extrapolation based on known PMdR values from 2015 to 2019 to obtain PMdR in 2020 (STEP 2, 154 
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Fig. S3). This PMdR in 2020was calculated as the change of PM2.5 caused by expected routine emission reduction, which did 155 

not actually happen, but merely gave an assessment in the case of “if no COVID-19”. In Beijing and Shanghai, for example, 156 

PM2.5 fell by 23.1% and 26.6% due to routine emission reduction in 2019, respectively, compared with 2015. Zhou et al. (2020) 157 

indicated that emission reductions caused 20–26% decreases in winter in Beijing which has been translated into 5 years. Zhang 158 

et al. (2020)22 also showed that the emission controls in Beijing-Tianjin-Hebei (BTH) region have led to significant reductions 159 

in PM2.5 from 2013 to 2017 of approximately 20 % after excluding the impacts of meteorology. Geng et al. (2020) found a 20% 160 

drop in the main component of PM2.5 in the Yangtze River Delta from 2013 to 2017. These results are consistent with our 161 

extrapolated resultsions. Therefore, it is reasonable to obtain PMdR by extrapolation after disentangling removing the effects 162 

of meteorological conditions.  163 

Through STEP 1 and STEP 2, PMdC and PMdR, respectively, in 2020 can be determined. PMdOBS can be directly 164 

calculated from the observed data. After removing the influences of climate anomalies and routine emission reductions, the 165 

impact of COVID-19 quarantines on PM2.5 (PMdC) was extracted as PMdOBS – PMdM – PMdR (STEP 3). 166 

3 Results 167 

The mean PM2.5 concentration in February 2020 was nearly below 80 μg/m3 at the vast majority of sites in the east of 168 

China, which was much lower than before (Fig. S4). North China (NC) was still the most polluted region (>40 μg/m3), but the 169 

PM2.5 concentrations in the Pearl River Delta (PRD) and Yangtze River Delta (YRD) were < 20 μg/m3 and < 40 μg/m3, 170 

respectively. Relative to the observations in February 2017, negative PM2.5 anomalies were centered in North China (NC), 171 

with values of approximately –60 to –40 μg/m3 in southern Hebei Province and northern Henan Province (Fig. 2). In Hubei 172 

Province (HB), where the COVID-19 pneumonia cases were the most severe in February, the PM2.5 concentration was 20~40 173 

μg/m3 lower than that in 2017. The PM2.5 differences were also negative in YRD and PRD. Therefore, how much did air 174 

pollution decrease due to the COVID-19 quarantines in February in east of China? 175 

Climate variability notably influences the interannual-decadal variations in haze pollution as verified by both 176 

observational analysis (Yin et al., 2015) and GEOS-Chem simulations (Dang and Liao, 2019). Furthermore, Zhang et al. (2020) 177 

reported that meteorology contributes 50% and 78% of the wintertime PM2.5 reduction between 2017 and 2013 in the Beijing-178 

Tianjin-Hebei (BTH ) region and YRD, respectively. Therefore, it is necessary to removedisentangle the influences of climate 179 

anomalies before quantifying the contributions of the COVID-19 quarantines on the air quality. Based on the GEOS-Chem 180 

simulations, PMdM (i.e., the PM2.5 difference due to changing meteorology) was calculated between February 2020 and 2017 181 

(see Methods). To the south of 30°N, most PMdM values were negative with small absolute values, at < 10 μg/m3. To the north 182 

of 30°N, the PMdM values were mostly positive, ranging from 30~60 μg/m3 in BTH (Fig. 3a). The highest observed PM2.5 183 

concentrations were 274, 223, and 303 μg/m3 in Beijing, Tianjin and Shijiazhuang, respectively. Although human activities 184 
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had sharply decreased, severe haze pollution (e.g., 8–13 and 19–25 February 2020) was not avoided, which was attributed to 185 

the stagnant atmosphere (Wang et al., 2020), and these severe haze events were also reproduced by the GEOS-Chem simulation 186 

(see Section 2.2 and Fig. S1b).  187 

As shown in Figure 4a-b, the meteorological conditions in February 2020 were more favorable for the occurrence of haze 188 

pollution in NC. In the mid-troposphere, an anomalous anticyclone was located over NC and the Sea of Japan (Fig. 4a). These 189 

anticyclonic anomalies clearly stimulated anomalous southerlies over eastern China, which not only transported sufficient 190 

water vapor to NC but also overwhelmed the climatic northerlies in winter (Fig. 4b). In addition, the anomalous upward motion 191 

associated with anomalous anticyclones prevented the downward transportation of westerly momentum and preserved the 192 

thermal inversion layer over NC (Fig. S5). Particularly, in the stagnant days (i.e., 8–13 and 19–25 February), the East Asia 193 

deep trough, one of the most significant zonally asymmetric circulations in the wintertime Northern Hemisphere (Song et al., 194 

2016), shifted eastwards and northwards than climate mean, which steered the cold air to North Pacific instead of North China 195 

(Fig. 4c). The climatic northerlies in February, related to East Asia winter monsoon, also turned to be south winds in the east 196 

of China (Fig. 4d). Physically, the weakening surface winds and strong thermal inversion corresponded to weaker dispersion 197 

conditions, and the higher humidity indicated a favorable environment for the hygroscopic growth of aerosol particles to 198 

evidently decrease the visibility. Compared with the climate (February 2017) monthly mean, boundary layer height (BLH) 199 

decreased by 19.5m (34.5m), surface relative humidity (rhum) increased by 5% (10.6%) and surface air temperature (SAT) 200 

rose by 1.6°C (0.9°C) after detrending, which were conductive to the increase of PM2.5 concentration in February 2020. 201 

Furthermore, the correlation coefficients of daily PM2.5 and BLH, rhum, wind speed and SAT in North China were -0.63, 0.44, 202 

-0.45 and 0.46, respectively, all of which passed the 95% significance test and indicated importance of meteorology. We used 203 

the meteorological data in February 2017 to establish a multiple linear regression equation to fit PM2.5. The correlation 204 

coefficients between the fitting results and the observed PM2.5 concentration in NC, YRD and HB reached 0.84, 0.64 and 0.65, 205 

exceeding the 99% significance test. Then, we put the observed meteorological data in February 2020 into this established 206 

multiple regression equation to get the predicted PM2.5 concentration. Using the regress-predicted value, the percentage of 207 

changed PM2.5 due to the differences in meteorology between 2017 and 2020 were re-calculated and is 20.7%, -3.2% and 9.5% 208 

in NC, YRD and HB, respectively (Fig. S2), which is consistent with and enhanced the robustness of the results obtained by 209 

our previous model simulation. Based on the GEOS-Chem simulations, PMdM (i.e., the PM2.5 difference due to changing 210 

meteorology) was calculated between February 2020 and 2017 (see Methods). To the south of 30°N, most PMdM values were 211 

negative with small absolute values, at < 10 μg/m3. To the north of 30°N, the PMdM values were mostly positive, ranging from 212 

30~60 μg/m3 in BTH (Fig. 3a). The weakening surface winds and strong thermal inversion corresponded to weaker dispersion 213 

conditions, and the higher humidity indicated a favorable environment for the hygroscopic growth of aerosol particles. 214 

Since 2013, the Chinese government has legislated and implemented stringent air pollution prevention and management 215 

policies that have clearly contributed to air quality improvement (Wang et al., 2019). As mentioned above, without the COVID-216 
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19 pandemic, these emission reduction policies would certainly remain in effect in February 2020. Thus, we extrapolated PMdR 217 

(i.e., the PM2.5 difference due to expected routine emission reductions) between February 2020 and 2017 to isolate the impacts 218 

of the COVID-19 quarantines (i.e., PMdC). PMdR was mostly negative in the east of China (Fig. 3b). Because the impacts of 219 

meteorology were proactively removed, these negative values illustrated that routine emission reductions substantially reduced 220 

the wintertime PM2.5 concentration. The contributions of the emission reduction policies were the greatest in the south of BTH 221 

and were also remarkable in Hubei Province (Fig. 3b). Although the PMdR of Beijing in 2016 did not strictly comply with the 222 

pattern of monotonous decrease, which might be caused by the fluctuation of policy and its implementation, the value of PMdR 223 

in 2020 relative to 2017 was –8.4 μg/m3 and was comparable to the 11.5 μg/m3 reductions due to policy during 2013–2017 224 

(Zhang et al., 2020). In Shanghai, PMdR was –12.0 μg/m3 (Fig. 5), whose magnitude was proportional with assessments by 225 

Zhang et al. (2020), and the trend was nearly linear. The rationality of the extrapolations of PMdR was also proved in Section 226 

2.3. The trend of PMdR in Wuhan was –9.6 μg/m3 per year from 2015–2019, which indicated high efficiency of the emission 227 

reduction policies and resulted in large PMdR values in 2020 (i.e., –21.8 μg/m3).  228 

By disentangling removing the impacts of meteorology and routine emission reduction policies, the change in PM2.5 due 229 

to the COVID-19 quarantines was quantitatively extracted. As expected, this severe pandemic caused dramatic slumps in the 230 

PM2.5 concentration across China (Fig. 3c). Large PMdC values (approximately –60 to –30 μg/m3) were located in the high-231 

polluted NC regions where intensive heavy industries were stopped and the traditional massive social activities and 232 

transportations around Chinese New Year were cancelled as part of the COVID-19 quarantine measures. To the south of 30°N, 233 

the impacts of the COVID-19 quarantines on the air quality were relatively weaker (–30 ~ 0 μg/m3) than those in the north, 234 

which was possibly related to the background conditions of air quality improvement. Generally, the south region was less 235 

polluted than the north, therefore the baseline of PM2.5 concentration was relatively lower (Fig. S4a). In addition, 236 

meteorological conditions in the south in February 2020 had no positive contribution (Fig. 3a), which would not lead to the 237 

increase of PM2.5 concentration. These two possible reasons resulted in a smaller space for PM2.5 decrease due to COVID-19 238 

quarantines in the south and accompanying regional differences. To reduce the assessment uncertainties, the percentage of 239 

changed PM2.5 due to the differences in meteorology were PMdC was also recalculated based on the GEOS-Chem simulations 240 

with fixed emission in 1985, which represented a low emission scenario. As described in the Methods section, the recalculated 241 

PMdC results in Figure S6 are consistent with those in Figure 3c, showing a high robustness. Furthermore, the mean PM2.5 242 

concentration decreases due to the COVID-19 quarantines in NC, HB and YRD were analyzed, which accounted for 59%, 26% 243 

and 72% of the observed February PM2.5 concentration in 2020, revealing clear regional differences (Fig. 6).  244 

It should be noted that the sum of PMdR and PMdC (i.e., PMdE) is the total contribution of the emission reduction in 245 

February 2020 with respect to 2017 (Fig. 3d). In NC, YRD and HB, the COVID-19 quarantines and routine emission reductions 246 

drove PM2.5 in the same direction. The mean PM2.5 decrease in NC, due to the total emission reduction, was –43.3 μg/m3, 247 

accounting for 79% of the observed February PM2.5 concentration in 2020 (Fig. 6). Although the absolute values of both PMdR 248 
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and PMdC in YRD were smaller than those in NC, the change percentage (92%) was larger because of the lower base PM2.5 249 

concentration. In HB, where more than 80% of the confirmed COVID-19 cases in China occurred and the cities were in 250 

emergency lockdown, the total anthropogenic emissions were clearly limited, which resulted in a 72% decline in PM2.5 in the 251 

atmosphere (Fig. 6). In particular, if the anthropogenic emissions did not decline, the PM2.5 concentration in NC, YRD and HB 252 

would increase to nearly twice the current observation (Fig. 6), indicating significant contributions of human activities to the 253 

air pollution in China. 254 

The declines of PM2.5 seemed not to be directly proportional to the almost complete shutoff of vehicle traffics and 255 

industries, that is, the reduction ratio of PM2.5 concentrations were smaller than that of precursor emissions (Wang et al., 2020). 256 

The unexpected air pollutions during the marked emission reductions were closely related to the stagnant air flow, enhanced 257 

productions of secondary aerosols, and uninterrupted residential heating, power plants and petrochemical facilities (Le et al., 258 

2020). The partial impacts of stagnant meteorological conditions have been explained earlier (Fig. 4). In Wuhan, the PM2.5 259 

remained the main pollutant during the city lockdown and the high level of sulphur dioxide (SO2) may be related to the 260 

increased domestic heating and cooking (Lian et al., 2020). In North China, large reductions of primary aerosols were observed, 261 

but the decreases in secondary aerosols were much smaller (Sun et al., 2020; Shi et al., 2020). Because of break-off 262 

transportations, reduced nitrogen oxide (NOxNOx) increased the concentrations of ozone and nighttime nitrate (NO3) radical 263 

formations. The increased oxidizing capacity in the atmosphere enhanced the formation of secondary particulate matters 264 

(Huang et al., 2020). Thus, the non-linear relationship of emission reduction and secondary aerosols also partially contributed 265 

to the haze occurrence during the COVID-19 lockdown. Although the PM2.5 dropped much, marked air pollutions also occurred 266 

during this unique experiments that the human emissions were sharply closed. This implied reconsiderations of policy for 267 

pollution controls and necessity to cut off secondary productions of particulate matters (Le et al., 2020; Huang et al., 2020). 268 

4 Conclusions and discussion 269 

In the beginning of 2020, the Chinese government implemented top-level emergency response measures to contain the 270 

spread of COVID-19. The traditional social activities surrounding Chinese New Year, industrial and transportation activities, 271 

etc. were prohibited, which effectively reduced the number of confirmed cases in China. Concomitantly, anthropogenic 272 

emissions, which are the fundamental reason for haze pollution, were dramatically reduced by the COVID-19 quarantine 273 

measures. In this study, we employed observations and GEOS-Chem simulations to quantify the impacts of the COVID-19 274 

quarantines on the air quality improvement in February 2020 after decomposing removing the contributions of expected routine 275 

emission reductions and climate variability. Although the specific influences varied by the region, the COVID-19 quarantines 276 

substantially decreased the level of haze pollution level in the east of China (Fig. 6). In North China, the meteorological 277 

conditions were stagnant that enhanced the PM2.5 concentration by 30% (relative to the observations in 2020). In contrast, the 278 
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expected routine emissions reductions and emergency COVID-19 quarantine measures resulted in an 80% decline. In YRD, 279 

the impacts of meteorology were negligible but the COVID-19 quarantines decreased PM2.5 by 72%. In Hubei Province, the 280 

impact of the total emission reduction (72%) evidently exceeded the PM2.5 increase due to meteorological conditions (13%). 281 

In March, due to the continued control of the COVID-19, the quarantines measures still contributed to the negative anomalies 282 

of the observed PM2.5 between 2020 and 2017 (Figure 7a). Because the activities in production and life have been gradually 283 

resumed in March, the PM2.5 drops caused by the COVID-19 quarantines became weaker compared with February (Fig. 7b, 284 

c). The contributions of PMdC to the change of PM2.5 concentration in NC, YRD and HB declined from 32.2, 21.0 and 12.1 285 

μg/m3 in February to 7.0, 2.4 and 6.7 μg/m3 in March respectively. 286 

Because of the common update delay of the emission inventory, we employed a combined analysis consisting of statistical 287 

observational and numerical methods. We strictly demonstrated the rationality of this method and the results, mainly based on 288 

the relatively constant contribution ratio of changing meteorology from GEOS-Chem simulations under the different emissions 289 

(Yin and Zhang 2020)., and the PM2.5 drops due to COVID-19 quarantines which calculated based on the GEOS-Chem 290 

simulations with fixed emissions of 1985 were also relatively stable. However, there was a certain bias in the simulations by 291 

GEOS-Chem model, and the biases also showed regional differences (Dang and Liao, 2019). Therefore, gGaps between the 292 

assessed results and reality still exist, which requires further numerical experiments when the emission inventory is updated. 293 

Furthermore, Dduring the calculation process, the observed PM2.5 difference in February 2020 was linearly decomposed into 294 

three parts. Although this linear decomposition was reasonable in Cchina in the past few years, we must note that this 295 

approximation was lack of considering the meteorology-emission interactions, the product of the emission, the loss lifetime 296 

and particularly the sulfate-nitrate-ammonia thermodynamics (Cai et al., 2017), which brought some uncertainties. The PMdM 297 

is based on 2010 emissions, which are more representative of the emissions of each sector in recent years. The calculated PM2.5 298 

percentages due to changing meteorology are relatively stable regardless of the emission level, but the result is obtained by 299 

numerical simulations, with certain uncertainty. In fact, tThe actual emission reduction effect is still considerable (Fig. 3d), in 300 

line with the increasingly strengthened emission reduction policies in recent years. When calculating the PMdR in 2020, we 301 

use the method of extrapolation. Although the result is consistent with others observational and numerical studies (Geng et al., 302 

2020; Zhang et al., 2020; Zhou et al., 2019), it is still conjectures rather than true values. In fact, the actual emission reduction 303 

effect is still considerable (Fig. 3d), in line with the increasingly strengthened emission reduction policies in recent years. 304 

Furthermore, we separated the effects of meteorology and emission reduction on PM2.5, not taking into account the possible 305 

interaction between these two factors. These issues need to be examined in the future studies to unlock of the respective effects 306 

of emissions and meteorological conditions on PM2.5 over eastern China. To restrict the possible uncertainties, we set up some 307 

constraints: 1. The pivotal contribution ratio of changing meteorology were calculated under two emission levels and 308 

recalculated by statistical regressed model; 2. The values of PMdM and PMdR were widely compared to previous studies.  309 

If the COVID-19 epidemic did not occurred, the concentrations of PM2.5 would increase up to 1.3–1.7 times the 310 
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observations in February 2020 (Fig. 6). Therefore, the pollution abatement must continue. Because of the huge population base 311 

in the east of China, the anthropogenic emissions exceeded the atmospheric environmental capacity even during COVID-19 312 

quarantines. Although the PM2.5 dropped much, marked air pollutions also occurred during this unique experiments that the 313 

human emissions were sharply closed. This raised new scientific questions, such as changes of atmospheric heterogeneous 314 

reactions and oxidability under extreme emission control, quantitative meteorology-emission interactions, and so on.  315 

Although the PM2.5 dropped much, marked air pollutions also occurred during this unique experiments that the human 316 

emissions were sharply closed. This also implied reconsiderations of policy for pollution controls and necessity to cut off 317 

secondary productions of particulate matters basing on sufficient scientific research (Le et al., 2020; Huang et al., 2020). Some 318 

Sstudies estimated that thousands of deaths were prevented during the quarantine because of the air pollution decrease (Chen 319 

K. et al., 2020). However, medical systems were still overstressed, and transportation to hospitals also decreased. Furthermore, 320 

the deaths related to air pollution were almost all due to respiratory diseases (Wang et al., 2001), and their corresponding 321 

medical resources were also further stressed by COVID-19. Therefore, the mortality impacted by the air pollution reduction 322 

during the COVID-19 outbreak should be comprehensively assessed in future work. 323 
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Figure Captions 448 

Figure 1. (a) Variation in existing confirmed cases (bar; red: increase, blue: decrease) and the ratio of accumulated confirmed 449 

cases to total confirmed cases (black line) in China. (b) The ratio of work resumption in large industrial enterprises in the east 450 

of China. (c) Time of the official 7-days holiday of Chinese New Year from 2013 to 2020.  451 

Figure 2. Differences in the observed PM2.5 (unit: μg/m3) in February between 2020 and 2017. The black boxes indicate the 452 

locations of North China (NC, 32.5-42°N,110-120°E), the Yangtze River Delta (YRD, 28-32.5°N,118-122°E) and Hubei 453 

Province (HB, 30-32.5°N,109.5-116°E).  454 

Figure 3. PM2.5 difference (unit: μg/m3) in February between 2020 and 2017 (a) due to (a) changing meteorology (PMdM), (b) 455 

due to expected routine emission reductions (PMdR), (c) due to the COVID-19 quarantines (PMdC), and (d) due to the total 456 

emission reduction (PMdE = PMdR+ PMdC).  457 

Figure 4. Differences in the observed atmospheric circulation in February between 2020 and 2017, including (a) geopotential 458 

potential height at 500 hPa (unit: gpm), (b) wind at 850 hPa (arrows; unit: m/s), surface relative humidity (shading; unit: %). 459 

The atmospheric circulations in the stagnant days (e.g., from 8–13 and 19–25 February 2020) were also showed, including (c) 460 

geopotential potential height at 500 hPa (shading; unit: gpm) and its climate mean in February (contour), and (d) wind at 850 461 

https://doi.org/10.1016/j.scitotenv.2020.138514
https://doi.org/10.1007/s11430-019-9343-3
https://doi.org/10.1007/s11430-019-9343-3
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hPa (black arrows; unit: m/s), its climate mean (blue arrows) and the increased surface relative humidity (shading; unit: %, 462 

stagnant days minus climate mean).  463 

Figure 5. Variation in PMdR (unit: μg/m3) with respect to the February 2017 level in Beijing, Shanghai and Wuhan from 2015 464 

to 2019. PMdR in 2020 was linearly extrapolated from that in the 2015–2019 period. The dotted line is the linear trend.  465 

Figure 6. Contributions of PMdM (orange bars with hatching), PMdR (purple bars with hatching) and PMdC (blue bars with 466 

hatching) to the change in PM2.5 concentration (unit: μg/m3) between 2020 and 2017 in the three regions. The observed PM2.5 467 

concentration in February 2017 (black) and 2020 (gray) was also plotted, and the expected PM2.5 concentration without the 468 

COVID-19 quarantine is indicated by black hollow bars. The contribution ratios of the three factors (relative to the PM2.5 469 

observations in 2020) are also indicated on the corresponding bars. 470 

Figure 7. (a) Differences in the observed PM2.5 (unit: μg/m3) in March between 2020 and 2017. (b) Contributions of PMdC to 471 

the change in PM2.5 concentration (unit: μg/m3) between 2020 and 2017 and (c) the contribution ratios of PMdC (relative to the 472 

PM2.5 observations in 2020) in March (blue) and February (red) in the three regions.  473 

Figures 474 

 475 

Figure 1. (a) Variation in existing confirmed cases (bar; red: increase, blue: decrease) and the ratio of accumulated confirmed 476 

cases to total confirmed cases (black line) in China. (b) The ratio of work resumption in large industrial enterprises in the east 477 

of China. (c) Time of the official 7-days holiday of Chinese New Year from 2013 to 2020.  478 
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Figure 2. Differences in the observed PM2.5 (unit: μg/m3) in February between 2020 and 2017. The black boxes indicate the 480 

locations of North China (NC, 32.5-42°N,110-120°E), the Yangtze River Delta (YRD, 28-32.5°N,118-122°E) and Hubei 481 

Province (HB, 30-32.5°N,109.5-116°E). 482 

 483 



 18 / 23 

 

 484 

Figure 3. PM2.5 difference (unit: μg/m3) in February between 2020 and 2017 (a) due to (a) changing meteorology (PMdM), (b) 485 

due to expected routine emission reductions (PMdR), (c) due to the COVID-19 quarantines (PMdC), and (d) due to the total 486 

emission reduction (PMdE = PMdR+ PMdC). 487 
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 489 

Figure 4. Differences in the observed atmospheric circulation in February between 2020 and 2017, including (a) geopotential 490 

potential height at 500 hPa (unit: gpm), (b) wind at 850 hPa (arrows; unit: m/s), surface relative humidity (shading; unit: %). 491 

The atmospheric circulations in the stagnant days (e.g., from 8–13 and 19–25 February 2020) were also showed, including (c) 492 

geopotential potential height at 500 hPa (shading; unit: gpm) and its climate mean in February (contour), and (d) wind at 850 493 

hPa (black arrows; unit: m/s), its climate mean (blue arrows) and the increased surface relative humidity (shading; unit: %, 494 

stagnant days minus climate mean).  495 
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 497 

Figure 5. Variation in PMdR (unit: μg/m3) with respect to the February 2017 level in Beijing, Shanghai and Wuhan from 2015 498 

to 2019. PMdR in 2020 was linearly extrapolated from that in the 2015–2019 period. The dotted line is the linear trend. 499 
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 501 

Figure 6. Contributions of PMdM (orange bars with hatching), PMdR (purple bars with hatching) and PMdC (blue bars with 502 

hatching) to the change in PM2.5 concentration (unit: μg/m3) between 2020 and 2017 in the three regions. The observed PM2.5 503 

concentration in February 2017 (black) and 2020 (gray) was also plotted, and the expected PM2.5 concentration without the 504 

COVID-19 quarantine is indicated by black hollow bars. The contribution ratios of the three factors (relative to the PM2.5 505 

observations in 2020) are also indicated on the corresponding bars. 506 
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Figure 7. (a) Differences in the observed PM2.5 (unit: μg/m3) in March between 2020 and 2017. (b) Contributions of PMdC to 509 

the change in PM2.5 concentration (unit: μg/m3) between 2020 and 2017 and (c) the contribution ratios of PMdC (relative to the 510 

PM2.5 observations in 2020) in March (blue) and February (red) in the three regions.  511 
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