Reply to Reviewer #1:

General comments: The authors simulate the decline in PM2s concentration that
resulted from emissions reductions during the COVID-19 pandemic using GEOS-chem.
They use 1985 and 2010 emissions to simulate the 2015-20 period. They obtain
reasonably good correlations between simulated and observed daily mean PM» s and
show that COVID-19 led to a significant decline. The study is interesting, in the sense
that knowing how much PM:;s declined due to COVID-19 after other factors are
accounted for is useful, and well-timed. The physical and chemical processes
responsible for PMz 5 concentrations during COVID are discussed to some extent. In
response to my comments during the access review, the authors added two new
subfigures elucidating the role of meteorology in generating PM> 5, and they added a
literature review of chemical mechanisms for the formation of the remaining pollution.
These additions are valuable, but in my opinion further major revisions are still

needed before the paper can be published, as follows:

1. Abstract and introduction.

The abstract and introduction should be refocused towards atmospheric processes.
While atmospheric processes are discussed (lines 30-37 and 42-49), for
Atmospheric Chemistry and Physics they should be the main topic of the
introduction. The main topic of the introduction is currently Chinese air quality
and COVID, but the paper is about the disentangling effects of meteorology from
the effects of the COVID lockdown, and so there needs to be more detail on
meteorology in China. This is done very well in the introduction to Yin and Zhang
(2020); perhaps some more detail specifically on how 2020 meteorology differs
from the climatology would distinguish the two studies? You say that variations in
the surface wind, boundary layer height and moisture conditions affect air quality,
which is not wrong, but specifically what do they typically do in China, when, and
where? The literature review also lacks detail; care should be taken to point out
explicitly how this paper differs from the large number of other works on the topic.
I appreciate this is difficult because of the very large number of very recent
publications, but it is definitely possible to do more here.

Reply:
Appreciate for your detailed and valuable suggestions, which helped us to improve
the main thread of this manuscript.

(1) The main differences between our submission and other publications (with



topic about the impacts of COVID-19 on PM;5) are whether disentangled effects of
meteorology. Adopting your suggestions, we enhanced related presentations in the
Abstract and Introduction.

For example, in the introduction, we added a detailed analysis of meteorological
conditions about typical haze pollution events in the Beijing-Tianjin-Hebei region
in December 2016, and explained how the variations of surface wind, boundary layer
height and moisture conditions influenced these severe haze events.

(2) More specific analysis about the changes in meteorological conditions in
February 2020 has also been added. Furthermore, their relationships and regressions
against PM> s were also discussed in lines 175-186, which were also closely connected

with comment 5.3.

Revision:

Lines 12-14: Relative to both of February 2017 and climate mean, anomalous
southerlies and moister air occurred in the east of China in February 2020, which caused
considerable PM» s anomalies. Thus, it is a must to disentangle the contributions of
stable meteorology from the effects of the COVID-19 lockdown.

Lines 41-44: Climate variability notably influences the formation and intensity of haze
pollution in China...... During December 16th-21st 2016, although most aggressive
control measures for anthropogenic emissions were implemented, severe haze pollution
with PM,.s concentrations = 1100ug m still occurred and covered 710,000km?. The
continuous low surface wind speed of less than 2ms™!, high humidity above 80% and
strong temperature inversion lasting for 132h caused the rebound of wintertime PMa s
in 2016 (Yin and Wang, 2017).

Lines 48-52: From February 8 to 13 2020, North China suffered severe pollutions, with
maximum daily PM, s exceeding 200ug m™. During this period, weak southerly surface
winds lasted for nearly 5 days, relative humidity was close to 100%, and atmospheric
inversion reached more than 10°C. Although pollution emissions from basic social
activities have been reduced, heavy pollution still occurred when adverse

meteorological conditions characterized by stable air masses appeared (Wang et al.,



2020).

2. Data description
What technology is usually used to measure PM2.5 for this dataset? When I tried
the URL it didn’t work. Please reference the dataset more thoroughly.

Reply:

The old URL is past-due, and we have updated the new URL as
https://quotsoft.net/air/. We give a more detailed introduction to the cited dataset and
explain the measurement technology of PM> s in this dataset. The PM» 5 data were
monitored every 5 min using two methods: a tapered element oscillating microbalance
(TEOM) and B-rays which were operated under the China National Quality Control
(HJ/T 193-2005) and (GB3095-2012).

HJ/T 193-2005: Automated methods for ambient air quality monitoring

GB3095-2012: Ambient air quality standards

Revision:

Lines 70-73: PM: 5 concentration data from 2015 to 2020 were acquired from the China
National Environmental Monitoring Centre (https://quotsoft.net/air/). The monitoring
network expanded from 1500 sites in 2015 to 1640 sites in 2020, covering
approximately 370 cities nationwide. The PM; 5 data were monitored every 5 min using
two methods: a tapered element oscillating microbalance and B-rays which were

operated under the China National Quality Control.

3.Model description

This section needs a description of how the model represents aerosol microphysics.
The model evaluation presented at the end of this section deserves considerably
more detailed study in its own section what are the biases in the model and how
might they affect the subsequent analysis? Unless you can reference other studies
evaluating an identical model configuration?

Reply:
The description of how the model represents aerosol microphysics were
illustrated in lines 80-85, according to the official website of GEOS-Chem. The

model configurations were default and similar with many previous studies and the


https://quotsoft.net/air/

evaluations of model performances were considerably improved in the following two
ways and were documented in a separated paragraph (i.e., Lines 86-101).

(1) With the configuration we used, comparisons between the observed and
simulated PM> 5 concentrations in Feb 2017 were added as new Figure Sla and
associated analysis were in lines 89-96. Obviously, mean values of simulated PM> s
were consistent with the observations (Figure S1a). The percentage of standard error
/ mean equals 5.8% (4.6/79.6) in NC, 7.0% (3.9/55.6) in YRD and 5.4% (3.7/70.8)
in HB, indicating the good performance of reproducing the polluted conditions. The
biases possibly affected the subsequent results and brought uncertainties to some extent.
We also admitted the simulated biases were larger in the south of China, which was
consistent with other studies and might explained the little positive values in Figure

3¢ (closely connected with comment 7.2).
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Figure Sla. Spatial distribution of observed (dots) and GEOS-Chem simulated (shading) PM> 5 in
February 2017.

Furthermore, the simulated spatial distribution was also similar to that of
observations in Feb 2017 with spatial correlation coefficient = 0.78. The ability of
GEOS-Chem to reproduce the daily variations of PM2.s in Feb 2020 was also introduced

in the old version as below.



83 changes in February 2020 under a substantial reduction in emissions because of COVID-19 quarantines. In North China (NC),
84 Yangtze River Delta (YRD) and Hubei Province (HB). the correlation coefficients between daily PMa s observations and
83 simulated data under 2010 (1985) emission scenario reached 0.83 (0.82). 0.67 (0.63), and 0.79 (0.73), respectively. For example,
86 in NC, the simulation could well simulate severe haze events (e.g., from §—14 and 18—22 Febmary) and good air quality events

87 (e.g.. from 15-19 February). reflecting that it has ability to accurately capture the change of meteorological conditions (Fig.

(2) The default configuration of GEOS-Chem were adopted by many previous
publications and we also introduced related evaluations in the revised manuscript. Dang
and Liao directly evaluated the capacity of models in PM» s simulations by calculating
the normalized mean bias. The simulated spatial patterns of 2013-2017 winter PM3 s
were agreed well with the measurements, which was similar to our evaluations in
Figure Sla. The scatterplot of simulated versus observed seasonal mean PMaz.s
concentrations showed overestimated PM; 5 concentrations with a normalized mean
bias (NMB) of +8.8 % for all grids and an NMB of +4.3 % for BTH (Figure R1a). They
also compared the simulated and observed daily mean PM; s concentrations at the
Beijing, Shanghai, and Chengdu grids, which represent the three most polluted regions
of BTH, YRD, and the Sichuan Basin, respectively. The model has a low bias in
Beijing with an NMB of —9.2 % and is unable to predict the maximum PM;s
concentration in some cases. For Shanghai and Chengdu, the model has high biases
with NMBs of 18.6 % and 28.7 %, respectively (Figure R1b). This evaluation also
showed a bigger simulated bias in the south of China. The model, however, can capture
the spatial distributions and seasonal variations of each aerosol species despite of the
biases in simulated concentrations.
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Figure R1. Key Figures in Dang and Liao (2019).

Related references:

Dang, R., and Liao, H.: Severe winter haze days in the Beijing-Tianjin-Hebei region



from 1985 to 2017 and the roles of anthropogenic emissions and meteorology, Atmos.

Chem. Phys., 19, 10801-10816, 2019.

Revision:

Line 74: 2.2 GEOS-Chem description, evaluation and experimental design

Lines 80-85: Aerosol thermodynamic equilibrium is computed by the ISORROPIA
package, which calculates the gas—aerosol partitioning of the sulfate—nitrate—
ammonium system (Fountoukis and Nenes, 2007). Heterogeneous reactions of acrosols
include the uptake of HO; by aerosols (Thornton et al., 2008), irreversible absorption
of NO; and NO3 on wet aerosols (Jacob, 2000), and hydrolysis of N>Os (Evans and
Jacob, 2005). Two alternate simulations of aerosol microphysics are implemented in
GEOS-Chem: the TOMAS simulation (Kodros and Pierce, 2017) and the APM
simulation (Yu and Luo, 2009).

Lines 86-96: GEOS-Chem model has been widely used to examine the historical
changes in air quality in China and quantitatively separate the impacts of physical-
chemical processes. Here, we simulated the PM2 5 concentrations in February 2017 and
evaluated the performance of GEOS-Chem (Figure S1a). The values of mean square
error / mean equals were 5.8%, 7.0% and 5.4% in North China (NC), Yangtze River
Delta (YRD) and Hubei Province (HB), respectively, indicating the good performance
of reproducing the haze-polluted conditions. The absolute biases were larger in the
south of China, which was consistent with Dang and Liao (2019). They also compared
the simulated and observed daily mean PM».s concentrations at the Beijing, Shanghai,
and Chengdu grids, which had a low bias in Beijing and high biases in Shanghai and
Chengdu, respectively. The simulated biases possibly affected the subsequent results
and brought uncertainties to some extent. The simulated spatial distribution of PM2 s
was also similar to that of observations with spatial correlation coefficient = 0.78. We
further verified whether the simulations could capture the roles of meteorological
changes in February 2020 under a substantial reduction in emissions because of

COVID-19 quarantines.......



4.Method to quantify influence of quarantine

4.1 Running GEOS-chem for two different emissions scenarios seems like a good
idea, and it’s good to see that the changes due to meteorology are consistent
between years. However, did you consider the physical justification for a linear
decomposition? If we consider, crudely, the Chinese airshed as a simple chemical
reactor in steady state, then the linear decomposition would not be obviously
appropriate (though it may be a reasonable approximation) since the steady-state
concentration is the product of the emissions and the loss lifetime.

Reply:

The linear decomposition is definitely a reasonable and feasible approximation
and must have differences with the reality due to complex atmospheric chemical
processes (also involving meteorology-emission interactions). The reasons for selecting
the linear hypothesis were as follows.

(1) From 2013 to 2019, the impacts of emission reduction were approximatively
linear, which might related to the enhanced and reinforced control measures in
China. Because the signal of emissions reduction in China had been particularly
strong since 2013, it could be easily detected and the assumption of a linear reduction
in pollution caused by emission reduction was applicable in China in the past few
years. This linear approximation was employed by many previous studies (Geng et al.
2017; Zheng et al. 2018) and even by national assessments aimed to evaluate the
effects of Action Plan of Air Pollution Prevention and Control from 2013 to 2017
(Geng et al. 2020; Wang et al. 2020). We have introduced the evaluated results in lines
137-142.

(2) After disentangling the effects of meteorology, the variations in PMas
concentrations also showed linear change (Figure 5 in our manuscript), which laterally
verified the rationality of linear approximation.

(3) Because of the significantly linear reduction of PM>s due to changing
emissions, the linear decomposition or approximation became reasonable in China in
recent years to some extent.

Certainly, related presentations are lack of physical explanations. We have checked
many publications, and all of them have this common problem. We also cannot show

you a clear physical justification and only speculated that the obvious linear change due



to emission reductions might be that the control measures in China were particularly
enhanced and reinforced. In the revised versions, we illustrated the linear
decompositions were an estimated approach and must brought some uncertainties
due to ignoring the meteorology-emission interactions, the product of emissions and

their loss lifetime (Lines 263-267).

Related references:

Geng, G., Zhang, Q., Tong, D., Li, M., Zheng, Y., Wang, S., and He, K.: Chemical
composition of ambient PM; s over China and relationship to precursor emissions
during 2005-2012, Atmos. Chem. Phys., 17, 9187-9203, https://doi.org/10.5194/acp-
17-9187-2017, 2017.

Geng, G., Xiao, Q., Zheng, Y., Tong, D., Zhang, Y., Zhang, X., Zhang, Q., He, H., and
Liu, Y.: Impact of China’s Air Pollution Prevention and Control Action Plan on PM2.5
chemical composition over eastern China, Sci. China Ser. D., 62, 1872-1884,
https://doi.org/10.1007/s11430-018-9353-x, 2020.

Wang, P., Chen, K., Zhu, S., Wang, P., and Zhang, H.: Severe air pollution events not
avoided by reduced anthropogenic activities during COVID-19 outbreak, Resour.
Conserv. Recy., 158, http://doi:10.1016/j.resconrec.2020.104814, 2020.

Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Q1, J.,
Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's
anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos.

Chem. Phys., 18, 14095-14111, 2018

Revision:

Lines 110-112: As mentioned above, we aimed to examine the impact of the COVID-
19 quarantines on PM>s over the February 2017 level basing on an observational-
numerical hybrid method. The observed PM; s difference in February 2020 (PMdogs)
was linearly decomposed into three parts: the impacts of changing meteorology (PMdwm),
expected routine emissions reductions (PMdr) and COVID-19 quarantines (PMdc),
which was a reasonable approximation......

Lines 263-267: Furthermore, during the calculation process, the observed PMb> s


https://doi.org/10.1007/s11430-018-9353-x
http://doi.cnki.net/doi/Resolution/Handler?doi=%2010.1016/j.resconrec.2020.104814

difference in February 2020 was linearly decomposed into three parts. Although this
linear decomposition was reasonable in china in the past few years, we must note that
this approximation was lack of considering the meteorology-emission interactions, the
product of the emission, the loss lifetime and particularly the sulfate-nitrate-ammonia
thermodynamics (Cai et al., 2017), which brought some uncertainties.

4.2 Line 99 (minor comment) — I don’t fully understand the “the PM2.5 percentage
due to changing meteorology”. Do you mean “the change in the percentage of

PM2.5 due to changing meteorology” here and later in the paragraph?

Reply:

What we mean here is that the percentage of changed PM>s due to the
differences in meteorology is constant regardless of the emission level. This
percentage is the difference of simulated PM2.5s between each year and 2017 under
the same emission scenario divided by the simulated PM2s in 2017. We have

changed the expression to be clearer.

Revision:
Line 119: Depending on the GEOS-Chem simulations, we found that the percentage of
changed PM2s due to the differences in meteorology remained nearly constant

regardless of the emission level (Fig. S2) ......

4.3 Line 107 — “the change in emissions resulted in a linear change in air pollution™.
I don’t think this is the message of the very nice Cai et al paper that you cite here.
In fact, it is well established that emissions changes often do not lead to linear
changes in air pollution, even though I do accept, from the evidence you present,
that this is case in China from around 2013 to 2019. The most obvious reason is
the sulfate-nitrate-ammonia thermodynamics discussed by Cai et al. Naively,
reducing sulfate emissions should reduce concentrations linearly, but reducing
nitrate and/or ammonium emissions may not change concentrations at all, or may
result in very large decreases in concentrations, depending on the regime (whether
saturated by, or limited by, ammonia, for example). Similarly, reducing primary
emissions may lead to more new particle formation, as discussed by others, and
more secondary aerosol formation, which would also mean the decrease in number
concentration is likely sub-linear. Line1970f the manuscript points this out
explicitly. New particle formation wouldn’t directly affect changes in mass
concentration, but it could have important indirect effects through the size
dependence of aerosol dry and wet deposition rates. So while decreases in



concentration may be linear with emissions in specific cases, and does seem to be
true in China, this will not be true in general, and should be clarified. Also linearity
in previous years, e.g. from 2013 to 2017, does not imply linearity in subsequent
years. The linear extrapolation method used therefore brings with it a large
uncertainty which should be studied in detail.

Reply:

Sorry for the inappropriate citation. Cai et al. paper did not show that emission
reduction would lead to linear reduction of air pollution. Just as you said, from 2013 to
2019, the impacts of emission reduction in China were approximatively linear. This
linear approximation was employed even by national assessments aimed to evaluate
the effects of Action Plan of Air Pollution Prevention and Control from 2013 to 2017
(Geng et al. 2020; Wang et al. 2020).

(1) Due to the implementation of clean air action, control measures have been
enhanced and reinforced in China, showing a strong emission reduction signal.
Therefore, the pollutant reduction caused by emission reduction in China from
2013 to 2019 was linear, which might be related to the huge emission reduction. But
we didn’t check for other areas, maybe not linear reduction. The link has a lot to do
with the intensity of emissions reduction. Because the signal of emissions reduction in
China had been particularly strong since 2013, it could be easily detected and showed
a linear reduction.

(2) The effect of emission reduction in February 2020 was calculated as the change
of PMys caused by expected routine emission reduction, which did not actually
happen, but merely gave an assessment of the change of PM2.s caused by emission
reduction in the case of “if no COVID-19”. Under this hypothetical assessment, the
linear change was still tenable.

(3) Furthermore, what we emphasize more was the effect of total emission
reduction (PMdr + PMdc), that was, the common utility of expected routine emissions
reductions and COVID-19 quarantines. This quantity was obtained after excluding the
effect of meteorological conditions, which was completely unaffected by linear
extrapolation of emission reduction.

(4) The information revealed by Cai et al. (2017) was valuable and we discussed



the possible impacts of sulfate-nitrate-ammonia thermodynamics on our approach

in line 267.

Revision:

Lines 130-137: According to many previous studies, the change in emissions resulted
in a linear change in air pollution in China from 2013-2019 (Wang et al., 2020; Geng
et al., 2020) which might be related to the huge emission reduction due to the
implementation of clean air action. Because the signal of emissions reduction in China
had been particularly strong since 2013, it could be easily detected and the assumption
of a linear reduction in pollution caused by emission reduction was applicable in China
in the past few years. Based on this approximation, we used the method of extrapolation
to speculate the impact of routine emission reduction on PM> 5. We performed linear
extrapolation based on known PMdr values from 2015 to 2019 to obtain PMdr in 2020
(STEP 2, Fig. S3). This PMdr in 2020 was calculated as the change of PM> s caused by
expected routine emission reduction, which did not actually happen, but merely gave

an assessment in the case of “if no COVID-19”.

Lines 265-267: Although this linear decomposition was reasonable in china in the past
few years, we must note that this approximation was lack of considering the
meteorology-emission interactions, the product of the emission, the loss lifetime and
particularly the sulfate-nitrate-ammonia thermodynamics (Cai et al., 2017), which

brought some uncertainties.

5.Results

5.1 Line 146: the description is good but some more introductory detail and
referencing would be useful. For example, what is the East Asia deep trough?
Please supply reference, e.g. Song et al, J. Climate 2016.

Reply:
We have added the description of the East Asia deep trough and relevant

references.

Revision:

Line 170: ...... the East Asia deep trough, one of the most significant time-mean zonally



asymmetric circulation features in the wintertime Northern Hemisphere (Song et al.,

2016), shifted eastwards and northwards than climate mean......

5.2 Line 149: This is potentially a useful result, but what is the importance of the
hygroscopic growth? Its importance surely depends on whether the PM2.5
measurements are of dry or of hydrated particles. If dry particles are measured,
hydration might still be important if it affects deposition rates. So what is the
difference in humidity and what difference to the size of typical particles would
that lead to?

Reply:

Fine aerosols, such as PMys particles, will be hygroscopic growth under the
environment where the relative humidity is more than 60%, so the measured value
without the monitoring instrument to control the relative humidity will be virtual high.
When the air is relatively dry, gaseous precursor pollutants could not obviously affect
visibility. But in the presence of water molecules, polyphase chemical reactions occurs,
and gaseous precursors are oxidized in water droplets or in water carried by particulate
matters, accelerating the formation of particulate matter. The conversion rate of SO
and NO> into sulfate, nitrate and other particles increases exponentially with the
increase of relative humidity. Therefore, higher humidity provides a favorable
environment for the hygroscopic growth of aerosol particles, which is conducive to the
formation of haze pollution and decreasing of visibility.

What we simply mean to say is the hygroscopic growth of aerosol particles
highly reduced the visibility and enhanced the intensity of haze pollution, rather
than impacting the concentration of PMzs. In the revised version, we corrected the

sentence to avoid confusions.

Revision:

Lines 173-175: Physically, the weakening surface winds and strong thermal inversion
corresponded to weaker dispersion conditions, and the higher humidity indicated a
favorable environment for the hygroscopic growth of aerosol particles to evidently

decrease the visibility.



5.3 Can you calculate approximate ventilation rates for the boundary layer in the
different meteorological conditions, or otherwise increase the level of quantitative
detail in lines 140-150, which are currently very qualitative? Can this be used to
back up the conclusions about PM2.5? For example, the regression of PM2.5
against “BLH, wind speed, SAT and humidity” done in Yin and Zhang (2020)
looks like a nice technique to understand the relationship of air pollution and
meteorology, could you do the same thing here for 2020 data? Or at least provide
similar numerical detail for what is the BL height and how it varies in the years
studied? Is there a role for sea surface temperature here also?

Reply:

Thank you for this nice comment. Following it, we not only show more
quantitative results, but also statistically (with observations and regressions) verified
the percentage of changed PM:s due to the difference in meteorology between 2017
and 2020. We have added more quantitative analysis in the revised presentations.

(1) In February 2020, the correlation coefficients of daily PMz s and BLH, relative
humidity, wind speed and SAT in North China were -0.63, 0.44, -0.45 and 0.46
respectively, all of which passed the 95% significance test. Compared with the climate

mean status (February 2017), in February 2020 BLH decreased by 19.5m (34.5m),

relative humidity increased by 5% (10.6%), and SAT rose by 1.6°C (0.9°C) after

detrending, which are conductive to the increase of PM» s concentration.

(2) We used the meteorological data of boundary layer height, relative humidity,
surface temperature and wind speed in February 2017 to establish a multiple linear
regression equation to fit PMas. The correlation coefficients between the fitting results
and the actual PMzs concentration in North China, Yangtze River Delta and Hubei
reached 0.84, 0.64 and 0.65, all of which passed the 99% significance test. Then, we
put the observed meteorological data in February 2020 into the established multiple
regression equation to get the predicted PM»s concentration. Using the regress-
predicted value, the percentage of changed PM>s due to the difference between in
meteorology between 2017 and 2020 were re calculated and is 20.7%, -3.2% and 9.5%
in NC, YRD and HB, respectively (the hollow column in Figure S2), which is
consistent with and enhanced the robustness of the results obtained by our

previous model simulation.
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Figure S2. The percentage of changed PM, s due to the difference in meteorology between 2020
and 2017 by simulated PM» s with 2010 (red) and 1985 (blue) emission, and regress-fitted PM> s
(hollow). The GEOS-Chem simulations were driven by meteorological conditions in 2017 and 2020
under fixed emissions in 1985 and 2010. The regress-fitted PM» s was calculated by putting the
observed meteorological data in February 2020 into the multiple regression equation fitting PM s
established by meteorological data in February 2017.

Revision:

Lines 175-186: Compared with the climate (February 2017) monthly mean, boundary
layer height (BLH) decreased by 19.5m (34.5m), surface relative humidity (rhum)

increased by 5% (10.6%) and surface air temperature (SAT) rose by 1.6°C (0.9°C) after

detrending, which were conductive to the increase of PM2.s concentration in February
2020. Furthermore, the correlation coefficients of daily PM>s and BLH, rhum, wind
speed and SAT in North China were -0.63, 0.44, -0.45 and 0.46, respectively, all of
which passed the 95% significance test and indicated importance of meteorology. We
used the meteorological data in February 2017 to establish a multiple linear regression
equation to fit PMa2s. The correlation coefficients between the fitting results and the
observed PM2 5 concentration in NC, YRD and HB reached 0.84, 0.64 and 0.65,
exceeding the 99% significance test. Then, we put the observed meteorological data in

February 2020 into this established multiple regression equation to get the predicted



PMb> s concentration. Using the regress-predicted value, the percentage of changed
PM3 5 due to the differences in Meteorology between 2017 and 2020 were re-calculated
and is 20.7%, -3.2% and 9.5% in NC, YRD and HB, respectively (Figure S2), which is
consistent with and enhanced the robustness of the results obtained by our previous

model simulation.

5.4 Line 160-165 can you estimate, with quantitative justification, uncertainty
ranges for these numbers?

Reply:

We analyzed and discussed the source of uncertainties, and also give the range
of bias of GEOS-Chem model simulation, but the specific range of final uncertainties
of is difficult to estimate. Instead, we can take a step back to give a more
comprehensive source of uncertainty in the discussion section (Lines 258-274).

(1) There is a certain bias in the simulation by GEOS-Chem model, and the
biases also showed regional differences, which requires further numerical experiments
when the emission inventory is updated.

(2) During the calculation process, the observed PM: s difference in February 2020
was linearly decomposed into three parts. Although this linear decomposition was
reasonable in China in the past few years, but this approximation was lack of
considering the meteorology-emission interactions, the product of the emission, the loss
lifetime and particularly the sulfate-nitrate-ammonia thermodynamics (Cai et al., 2017),
which brought some uncertainties

(3) The calculation result of the impact of meteorology is obtained by numerical
simulations, with certain uncertainty. When calculating the expected routine emission
reduction in 2020, we use the method of extrapolation. Although the result is consistent
with others observational and numerical studies, it is still conjectures rather than true
values.

To restrict the possible uncertainties, we set up some constraints: 1. The pivotal
contribution ratio of changing meteorology were calculated under two emission levels
and recalculated by statistical regressed model; 2. The values of PMdwm and PMdr

were widely compared to previous studies.



Revision:

Lines 258-274: Because of the common update delay of the emission inventory, we
employed a combined analysis consisting of observational and numerical methods. We
strictly demonstrated the rationality of this method and the results, mainly based on the
relatively constant contribution ratio of changing meteorology from GEOS-Chem
simulations under the different emissions (Yin and Zhang, 2020). However, there was
a certain bias in the simulations by GEOS-Chem model, and the biases also showed
regional differences (Dang and Liao, 2019). Therefore, gaps between the assessed
results and reality still exist, which requires further numerical experiments when the
emission inventory is updated. Furthermore, during the calculation process, the
observed PM; 5 difference in February 2020 was linearly decomposed into three parts.
Although this linear decomposition was reasonable in China in the past few years, we
must note that this approximation was lack of considering the meteorology-emission
interactions, the product of the emission, the loss lifetime and particularly the sulfate-
nitrate-ammonia thermodynamics (Cai et al., 2017), which brought some uncertainties.
The actual emission reduction effect is considerable (Fig. 3d), in line with the
increasingly strengthened emission reduction policies in recent years. When calculating
the PMdr in 2020, we use the method of extrapolation. Although the result is consistent
with others observational and numerical studies (Geng et al., 2019; Zhang et al., 2020;
Zhou et al., 2019), it is still conjectures rather than true values. These issues need to be
examined in the future studies to unlock respective effects of emissions and
meteorological conditions on PMzs over eastern China. To restrict the possible
uncertainties, we set up some constraints: 1. The pivotal contribution ratio of changing
meteorology were calculated under two emission levels and recalculated by statistical
regressed model; 2. The values of PMdm and PMdr were widely compared to previous
studies.

5.5 Line 169 — the impacts of COVID-19 quarantines on air quality was weaker
south of 30N. This is an interesting conclusion. Could it be related to
meteorological differences? Is this consistent with the later statement that in north

China, secondary aerosol concentrations increase when primary aerosols decrease?



Is that true in south China?
5.6 Line 176 what are the reasons for the regional differences?
Reply:

The south of 30N is less polluted than the north region, therefore the background
of basic PM>s concentration is relatively low (Figure S4a). In addition,
meteorological conditions in the south in February 2020 had no positive contribution
relative to that in February 2017, which would not lead to the increase of PMays
concentration. Both of the above two reasons resulted in a smaller space for PM; s
decrease. So the PM 5 concentration that can be reduced by COVID-19 in the south is

not as large as that in North China, and had regional differences.
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Figure S4a. Observed PM, s concentrations (unit: pg/m?) in February 2017.
Revision:

Lines 209-212: Generally, the south region was less polluted than the north, therefore
the baseline of PMa2s concentration was relatively lower (Fig. S4a). In addition,
meteorological conditions in the south in February 2020 had no positive contribution
(Fig. 3a), which would not lead to the increase of PM»s concentration. These two
possible reasons resulted in a smaller space for PM»s decrease due to COVID-19

quarantines in the south and accompanying regional differences.



6.Conclusions

6.1 Line 227-240 It is valuable to point out these shortcomings and qualifications
for your study. Can you take this further by estimating uncertainties as I suggest
above, and speculate what the effect of the interactions between emissions and
meteorology would be?

Reply:

We can discuss and make a comprehensive summary of the source of
uncertainty in lines 258-274, but the specific range of uncertainty is difficult to
calculate (closely connected with comment 5.4).

About the interaction between emissions and meteorology, it is far away from the
topic of this manuscript and we clearly pointed out this is a new question in the Section

Discussion. Possibly, we solve this question in the near future.

Revisions:

Lines 278-280: Although the PM; 5 dropped much, marked air pollutions also occurred
during this unique experiments that the human emissions were sharply closed. This
raised new scientific questions, such as changes of atmospheric heterogeneous
reactions and oxidability under extreme emission control, quantitative meteorology-

emission interactions, and so on.

6.2 What are the implications of the study for the practice of atmospheric
chemistry and physics, beyond those of Yin and Zhang (2020)? Please spell these
out in the conclusion.

Reply:

(1) If the COVID-19 epidemic did not occur, the concentrations of PM2.s would
increase up to 1.3-1.7 times the observations in February 2020. Therefore, the
pollution abatement must continue. Because of the huge population base in the east
of China, the anthropogenic emissions exceeded the atmospheric environmental

capacity even during COVID-19 quarantines.

(2) Although the PM2 5 dropped much, marked air pollutions also occurred during
this unique experiments that the human emissions were sharply closed. This raised new

scientific questions, such as changes of atmospheric heterogeneous reactions and



oxidability under extreme emission control, quantitative meteorology-emission

interactions, and so on. We have added these implications in the Section Conclusion.

Revision:

Lines 275-280: If the COVID-19 epidemic did not occurred, the concentrations of
PM; 5 would increase up to 1.3—1.7 times the observations in February 2020 (Figure 6).
Therefore, the pollution abatement must continue. Because of the huge population base
in the east of China, the anthropogenic emissions exceeded the atmospheric
environmental capacity even during COVID-19 quarantines. Although the PMaz3s
dropped much, marked air pollutions also occurred during this unique experiments that
the human emissions were sharply closed. This raised new scientific questions, such as
changes of atmospheric heterogeneous reactions and oxidability under extreme

emission control, quantitative meteorology-emission interactions, and so on.

7.1 Figure 1: what is the significance of the red color on the left side of subfigure
a)?
Reply:

The red bars indicate an increase in existing confirmed cases, and the blue bars

indicate a decrease. We make this significance clear in the caption of Figure 1 (a).

Revision:
Line 414: Figure 1. (a) Variation in existing confirmed cases (bar; red: increase, blue:
decrease) and the ratio of accumulated confirmed cases to total confirmed cases (black

line) in China.......

7.2 Figure 3: state that these figures show simulated data. What is responsible for
the increases on the far left of Figure 3c?

Reply:

These figures are calculated from observation data combined with model
simulated data, which mainly depends on the observation data. To avoid confusions,
some revisions were included: (1) we have also changed these figures to be
represented as sites, which are closer to the meaning of the calculation method; (2) In

Sec. 2.3, we clearly illustrated the calculations were based on an observational-



numerical hybrid method.
In the Method and Discussion, we discussed some possible uncertainties. These
increases on the far left were a sort of uncertainties. These increases were tiny and

insignificant, and definitely do not affected the main results of our study.

Revision:

Lines 109-110: As mentioned above, we aimed to examine the impact of the COVID-
19 quarantines on PM>s over the February 2017 level basing on an observational-
numerical hybrid method.

Figure 3.
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Figure 3. PM,;s difference (unit: pg/m®) in February between 2020 and 2017 due to (a) changing
meteorology (PMdw), (b) expected routine emission reductions (PMdgr), (¢) the COVID-19 quarantines

(PMdc), and (d) due to the total emission reduction (PMdg = PMdr+ PMdc).



7.3 Figure 4 please label color bars with units

Reply:

We have added the units to the color bar.

Revision:
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Figure 4. Differences in the observed atmospheric circulation in February between 2020 and 2017,
including (a) geopotential potential height at 500 hPa (unit: gpm), (b) wind at 850 hPa (arrows; unit: m/s),
surface relative humidity (shading; unit: %). The atmospheric circulations in the stagnant days (e.g., from
8-13 and 19-25 February 2020) were also showed, including (c) geopotential potential height at 500 hPa
(shading) and its climate mean in February (contour), and (d) wind at 850 hPa (black arrows), its climate

mean (blue arrows) and the increased surface relative humidity (shading, stagnant days minus climate

mean).
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Reply to Reviewer #2:

General comments: This paper attempted to quantify the effect COVID-19 on the
evident PM2.5 decline after removing the influences of climate anomalies and expected
routine emissions reductions. Combined with GEOS-Chem model experiments, they
used both high and low emission scenarios to simulated the percentages of PM2.5
changes due to meteorological conditions which tended to increase PM2.5 in February
2020, particular in North China. And they further extrapolated the PM2.5 change due
to expected routine emission reductions to isolate the decline in PM2.5 concentration
due to COVID-19 quarantines in the East of China quantitatively. This study presents
some interesting results and could help us better understand the response of air quality
to the COVID-19. However, | think the author needs to add some more detailed and
rigorous exposition to present their results. Before it can be publishable, 1 would
like the authors to address my following comments.

Major comments

Line 65-75 This section requires a more detailed description of the model
evaluation. At the end of this section, the author just showed the model could
capture the change of meteorological conditions, with high similarly between
simulated and observed PM2.5 data. But it is essential that the performance of this
model could reproduced the observed true value of PM2.5 concentration. Please
evaluate against observation.

Reply:

The evaluations of model performances were considerably improved in the
following two ways and were documented in a separated paragraph (i.e., Lines 86-101).

(1) With the configuration we used, evaluations between the observed and
simulated PM>s concentrations in Feb 2017 were added as new Figure Sla and
associated analysis were in lines 89-96. Obviously, mean values of simulated PM; s
were consistent with the observations (Figure S1a). The percentage of standard error
/ mean equals 5.8% (4.6/79.6) in NC, 7.0% (3.9/55.6) in YRD and 5.4% (3.7/70.8)
in HB, indicating good performance of reproducing the polluted conditions. The
absolute biases were larger in the south of China. The simulated spatial distribution
was also similar to that of observations in Feb 2017 with spatial correlation coefficient

=0.78.



108°E 115°E 125°E

20 40 60 80 100 120

Figure Sla. Spatial distribution of observed (dots) and GEOS-Chem simulated (shading) PM> s in
February 2017.
Furthermore, the ability of GEOS-Chem to reproduce the daily variations of PMa s

in Feb 2020 was also introduced in the old version as below.

83 changes in February 2020 under a substantial reduction in emissions because of COVID-19 quarantines. In North China (NC),
84 Yangtze River Delta (YRD) and Hubei Province (HB). the correlation coefficients between daily PMa s observations and
83 simulated data under 2010 (1985) emission scenario reached 0.83 (0.82). 0.67 (0.63), and 0.79 (0.73), respectively. For example,
86 in NC, the simulation could well simulate severe haze events (e.g., from §—14 and 18—22 Febmary) and good air quality events

87 (e.g.. from 15-19 February). reflecting that it has ability to accurately capture the change of meteorological conditions (Fig.

(2) The model configurations were default and similar with many previous
studies, which were adopted by many previous publications and we also introduced
related evaluations in the revised manuscript. Dang and Liao directly evaluated the
capacity of models in PM; 5 simulations by calculating the normalized mean bias. The
simulated spatial patterns of 2013-2017 winter PM»s were agreed well with the
measurements, which was similar to our evaluations in Figure S1a. The scatterplot
of simulated versus observed seasonal mean PM:s concentrations showed
overestimated PM; 5 concentrations with a normalized mean bias (NMB) of +8.8 %
for all grids and an NMB of +4.3 % for BTH (Figure R1a). They also compared the
simulated and observed daily mean PM>s concentrations at the Beijing, Shanghai,
and Chengdu grids, which represent the three most polluted regions of BTH, YRD, and

the Sichuan Basin, respectively. The model has a low bias in Beijing with an NMB of



—9.2 % and is unable to predict the maximum PM3 5 concentration in some cases. For
Shanghai and Chengdu, the model has high biases with NMBs of 18.6 % and 28.7 %,
respectively (Figure R1b). This evaluation also showed a bigger simulated bias in the
south of China. The model, however, can capture the spatial distributions and seasonal

variations of each aerosol species despite of the biases in simulated concentrations.
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Figure R1. Key Figures in Dang and Liao (2019).

Related references:
Dang, R., and Liao, H.: Severe winter haze days in the Beijing-Tianjin-Hebei region
from 1985 to 2017 and the roles of anthropogenic emissions and meteorology, Atmos.

Chem. Phys., 19, 10801-10816, 2019.

Revision:

Lines 86-96: GEOS-Chem model has been widely used to examine the historical
changes in air quality in China and quantitatively separate the impacts of physical-
chemical processes. Here, we simulated the PM2 5 concentrations in February 2017 and
evaluated the performance of GEOS-Chem (Figure S1a). The values of mean square
error / mean equals were 5.8%, 7.0% and 5.4% in North China (NC), Yangtze River
Delta (YRD) and Hubei Province (HB), respectively, indicating the good performance
of reproducing the haze-polluted conditions. The absolute biases were larger in the
south of China, which was consistent with Dang and Liao (2019). They also compared
the simulated and observed daily mean PM2.s concentrations at the Beijing, Shanghai,
and Chengdu grids, which had a low bias in Beijing and high biases in Shanghai and
Chengdu, respectively. The simulated biases possibly affected the subsequent results
and brought uncertainties to some extent. The simulated spatial distribution of PM2 s

was also similar to that of observations with spatial correlation coefficient = 0.78. We



further verified whether the simulations could capture the roles of meteorological
changes in February 2020 under a substantial reduction in emissions because of

COVID-19 quarantines.......

Line 93 The difference of PM2.5 was linearly decomposed into three parts. | think
this is a reasonable approximation, but the author should give more explanation
on the rationality of such decomposition.

Reply:

The linear decomposition is definitely a reasonable and feasible approximation
and must have differences with the reality due to complex atmospheric chemical
processes. The reasons for selecting the linear hypothesis were as follows.

(1) From 2013 to 2019, the impacts of emission reduction were approximatively
linear, which might related to the enhanced and reinforced control measures in
China. Because the signal of emissions reduction in China had been particularly
strong since 2013, it could be easily detected and the assumption of a linear reduction
in pollution caused by emission reduction was applicable in China in the past few
years. This linear approximation was employed by many previous studies (Geng et al.
2017; Zheng et al. 2018) and even by national assessments aimed to evaluate the
effects of Action Plan of Air Pollution Prevention and Control from 2013 to 2017
(Geng et al. 2020; Wang et al. 2020). We have introduced the evaluated results in lines
137-142.

(2) After disentangling the effects of meteorology, the variations in PMas
concentrations also showed linear change (Figure 5 in our manuscript), which laterally
verified the rationality of linear approximation.

(3) Because of the significantly linear reduction of PM>s due to changing
emissions, the linear decomposition or approximation became reasonable in China in
recent years to some extent.

In the revised versions, we illustrated the linear decompositions were an
reasonable estimated approach and must brought some uncertainties due to ignoring
the meteorology-emission interactions, the product of emissions and their loss lifetime

(Lines 263-267).



Related references:

Geng, G., Zhang, Q., Tong, D., Li, M., Zheng, Y., Wang, S., and He, K.: Chemical
composition of ambient PM». s over China and relationship to precursor emissions
during 2005-2012, Atmos. Chem. Phys., 17, 9187-9203, https://doi.org/10.5194/acp-
17-9187-2017, 2017.

Geng, G., Xiao, Q., Zheng, Y., Tong, D., Zhang, Y., Zhang, X., Zhang, Q., He, H., and
Liu, Y.: Impact of China’s Air Pollution Prevention and Control Action Plan on PM2.5
chemical composition over eastern China, Sci. China Ser. D., 62, 1872-1884,
https://doi.org/10.1007/s11430-018-9353-x, 2020.

Wang, P., Chen, K., Zhu, S., Wang, P., and Zhang, H.: Severe air pollution events not
avoided by reduced anthropogenic activities during COVID-19 outbreak, Resour.
Conserv. Recy., 158, http://doi:10.1016/j.resconrec.2020.104814, 2020.

Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Q1, J.,
Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's
anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos.

Chem. Phys., 18, 14095-14111, 2018

Revision:

Lines 110-112: As mentioned above, we aimed to examine the impact of the COVID-
19 quarantines on PM>s over the February 2017 level basing on an observational-
numerical hybrid method. The observed PM; s difference in February 2020 (PMdogs)
was linearly decomposed into three parts: the impacts of changing meteorology (PMdwm),
expected routine emissions reductions (PMdr) and COVID-19 quarantines (PMdc),
which was a reasonable approximation......

Lines 263-267: Furthermore, during the calculation process, the observed PMb> s
difference in February 2020 was linearly decomposed into three parts. Although this
linear decomposition was reasonable in china in the past few years, we must note that
this approximation was lack of considering the meteorology-emission interactions, the
product of the emission, the loss lifetime and particularly the sulfate-nitrate-ammonia

thermodynamics (Cai et al., 2017), which brought some uncertainties.


https://doi.org/10.1007/s11430-018-9353-x
http://doi.cnki.net/doi/Resolution/Handler?doi=%2010.1016/j.resconrec.2020.104814

Line 98-99 Please give a detailed calculation method of calculating the percentages
of PM2.5 changes due to meteorological conditions.

Reply:

We use the simulated PM:2.s data driven by changing meteorology with two fixed-
emissions (1985 and 2010). This percentage is the difference of simulated PM:s
between each year and 2017 under the same emission scenario divided by the

simulated PM2.s in 2017. We have added this detailed description in the text.

Revision:
Lines 120-121: This percentage was the difference of simulated PM; 5 between each

year and 2017 under the same emission scenario divided by the simulated PM» 5 in 2017.

Line 110 The author performed linear extrapolation to obtain PMdR in 2020. The
reason to use linear extrapolation here is that the emission reduction caused by
the policy is linear, or that the PM2.5 decline caused by emission reduction is
approximate linear based on the calculated value of PMdR from 2015 to 2019?
The calculated extrapolation results in 2020 are compared with others studies in
the latter part of the paper, but please analyze the uncertainty of using this method
itself.

Reply:

From 2013 to 2019, the impacts of emission reduction on PM; s in China were
approximatively linear, which might due to the control measures in China were
particularly enhanced and reinforced. This linear approximation was employed even
by national assessments aimed to evaluate the effects of Action Plan of Air Pollution
Prevention and Control from 2013 to 2017 (Geng et al. 2020; Wang et al. 2020).

(1) Due to the implementation of clean air action, control measures have been
enhanced and reinforced in China, showing a strong emission reduction signal.
Therefore, the pollutant reduction caused by emission reduction in China from 2013
to 2019 was linear, which might be related to the huge emission reduction. The link
has a lot to do with the intensity of emissions reduction. Because the signal of emissions
reduction in China had been particularly strong since 2013, it could be easily detected
and showed a linear reduction.

(2) The effect of emission reduction on PM2s in February 2020 was calculated

as the change of PM 5 caused by expected routine emission reduction, which did not



actually happen, but merely gave an assessment of the change of PM»s caused by
emission reduction in the case of “if no COVID-19”. Under this hypothetical
assessment, the linear change was still tenable.

(3) Furthermore, what we emphasize more was the effect of total emission
reduction (PMdr + PMdc), that was, the common utility of expected routine emissions
reductions and COVID-19 quarantines. This quantity was obtained after excluding the
effect of meteorological conditions, which was completely unaffected by linear
extrapolation of emission reduction.

(4) The calculated extrapolation results in 2020 is consistent with others
observational and numerical studies, but we must note that it is still conjectures rather
than true values, which was lack of considering the meteorology-emission interactions
and the sulfate-nitrate-ammonia thermodynamics, which brought some uncertainties.

We have added the analyze of this uncertainty in line 267.

Revision:

Lines 130-137: According to many previous studies, the change in emissions resulted
in a linear change in air pollution in China from 2013-2019 (Wang et al., 2020; Geng
et al., 2020) which might be related to the huge emission reduction due to the
implementation of clean air action. Because the signal of emissions reduction in China
had been particularly strong since 2013, it could be easily detected and the assumption
of a linear reduction in pollution caused by emission reduction was applicable in China
in the past few years. Based on this approximation, we used the method of extrapolation
to speculate the impact of routine emission reduction on PM> 5. We performed linear
extrapolation based on known PMdr values from 2015 to 2019 to obtain PMdr in 2020
(STEP 2, Fig. S3). This PMdr in 2020 was calculated as the change of PM> s caused by
expected routine emission reduction, which did not actually happen, but merely gave
an assessment in the case of “if no COVID-19”. Under this hypothetical assessment,

the linear change was still tenable.

Lines 265-267: ...... we must note that this approximation was lack of considering the

meteorology-emission interactions, the product of the emission, the loss lifetime and



particularly the sulfate-nitrate-ammonia thermodynamics (Cai et al., 2017), which

brought some uncertainties.

Line 145 The changes of circulation field, humidity and wind under stagnant
weather are analyzed here. Could you give more details about the specific changes
in the weather conditions under these stagnant days? Such as boundary layer
height and wind speed?

Reply:

Appreciate for your valuable suggestion. We not only show more quantitative
results, but also statistically (with observations and regressions) verified the
percentage of changed PM s due to the difference in meteorology between 2017 and
2020. We have added more quantitative analysis in the revised presentations.

(1) In February 2020, the correlation coefficients of daily PM» s and BLH, relative
humidity, wind speed and SAT in North China were -0.63, 0.44, -0.45 and 0.46
respectively, all of which passed the 95% significance test. Compared with the climate

mean status (February 2017), in February 2020 BLH decreased by 19.5m (34.5m),

relative humidity increased by 5% (10.6%), and SAT rose by 1.6°C (0.9°C) after

detrending, which are conductive to the increase of PM2 s concentration.

(2) We used the meteorological data of boundary layer height, relative humidity,
surface temperature and wind speed in February 2017 to establish a multiple linear
regression equation to fit PMzs. The correlation coefficients between the fitting results
and the actual PM2s concentration in North China, Yangtze River Delta and Hubei
reached 0.84, 0.64 and 0.65, all of which passed the 99% significance test. Then, we
put the observed meteorological data in February 2020 into the established multiple
regression equation to get the predicted PM»s concentration. Using the regress-
predicted value, the percentage of changed PMa s due to the difference between in
meteorology between 2017 and 2020 were re calculated and is 20.7%, -3.2% and 9.5%
in NC, YRD and HB, respectively (the hollow column in Figure S2), which is
consistent with and enhanced the robustness of the results obtained by our

previous model simulation.
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Figure S2. The percentage of changed PM, s due to the difference in meteorology between 2020
and 2017 by simulated PM» s with 2010 (red) and 1985 (blue) emission, and regress-fitted PM> s
(hollow). The GEOS-Chem simulations were driven by meteorological conditions in 2017 and 2020
under fixed emissions in 1985 and 2010. The regress-fitted PM» s was calculated by putting the
observed meteorological data in February 2020 into the multiple regression equation fitting PM s
established by meteorological data in February 2017.

Revision:

Lines 175-186: Compared with the climate (February 2017) monthly mean, boundary
layer height (BLH) decreased by 19.5m (34.5m), surface relative humidity (rhum)

increased by 5% (10.6%) and surface air temperature (SAT) rose by 1.6°C (0.9°C) after

detrending, which were conductive to the increase of PM2.s concentration in February
2020. Furthermore, the correlation coefficients of daily PM>s and BLH, rhum, wind
speed and SAT in North China were -0.63, 0.44, -0.45 and 0.46, respectively, all of
which passed the 95% significance test and indicated importance of meteorology. We
used the meteorological data in February 2017 to establish a multiple linear regression
equation to fit PMa2s. The correlation coefficients between the fitting results and the
observed PM2 5 concentration in NC, YRD and HB reached 0.84, 0.64 and 0.65,
exceeding the 99% significance test. Then, we put the observed meteorological data in

February 2020 into this established multiple regression equation to get the predicted



PMb> s concentration. Using the regress-predicted value, the percentage of changed
PM3 5 due to the differences in Meteorology between 2017 and 2020 were re-calculated
and is 20.7%, -3.2% and 9.5% in NC, YRD and HB, respectively (Figure S2), which is
consistent with and enhanced the robustness of the results obtained by our previous

model simulation.

Line 167-170 The results of PMdC showed great differences in the north and south
regions. What do you think is the cause of this regional difference? Can you give
some explanation?

Reply:

The south of 30N is less polluted than the north region, therefore the background
of basic PMys concentration is relatively low (Figure S4a). In addition,
meteorological conditions in the south in February 2020 had no positive contribution
relative to that in February 2017, which would not lead to the increase of PMays
concentration. Both of the above two reasons resulted in a smaller space for PM; s
decrease. So the PM> 5 concentration that can be reduced by COVID-19 in the south is

not as large as that in North China, and had regional differences.
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Figure S4a. Observed PM, 5 concentrations (unit: pg/m?) in February 2017.
Revision:
Lines 209-212: Generally, the south region was less polluted than the north, therefore

the baseline of PM2s concentration was relatively lower (Fig. S4a). In addition,



meteorological conditions in the south in February 2020 had no positive contribution
(Fig. 3a), which would not lead to the increase of PMas concentration. These two
possible reasons resulted in a smaller space for PM»s decrease due to COVID-19

quarantines in the south and accompanying regional differences.

Specific comments

Line 98 Please explain “the ratio of PMdM of each year/PMdOBS in 2017” more
clearly. Are you sure this is divided by “PMdOBS in 2017” here? Or by observed
PM2.5 in 20177?

Reply:

Sorry for this expression error. What we mean here is that to determine the ratio
of PMdM of each year/ observed PMz.s in 2017, which mean the percentage of changed
PM; 5 due to the differences in meteorology compared with 2017. This percentage is the
difference of simulated PM2 s between each year and 2017 under the same emission
scenario divided by the simulated PM> 5 in 2017. We have changed the expression to be

clearer.

Revision:
Lines 117-120: Simulated PM> 5 data driven by changing meteorology with two fixed-
emissions (1985 and 2010) were employed to determine the ratio of PMdwm of each year/
observed PM> s in 2017. Depending on the GEOS-Chem simulations, we found that the
percentage of changed PMzs due to the differences in meteorology remained nearly
constant regardless of the emission level (Fig. S2)
Line 101 Keep the same one decimal place.
Reply:

We have made the corresponding modifications and have retained a decimal

place.

Revision:
Line 122: For example, the percentages due to different meteorology between 2020
and 2017 were 22.1% (21.4%), —1.2% (-0.7%) and 9.0% (8.2%) in NC, YRD and HB

under the low (high) emissions (Fig. S2).



Line 103 Please specify which value is multiplied by this percentage.
Reply:
Here we multiply the 2017 observation by this percentage, and we have changed

the expression to be clearer.

Revision:

Lines 125-126: Then, through multiplying the 2017 observation by this percentage,
PMdwm can be quantified in each simulation grid with respect to 2017

Line 112 The citation format of this reference is incorrect.

Reply:

We have corrected the citation format of this reference.

Revision:

Line 139: Zhang et al. (2020) also showed that......

Linell3 I think it makes more reasonable to write the abbreviation for Beijing-
Tian-Hebei here instead of on line 132.

Reply:
We have marked here the abbreviation BTH of Beijing-Tianan-Hebei and have

quoted the abbreviation directly later in the paper.

Revision:
Line 139: Zhang et al. (2020) also showed that the emission controls in Beijing-Tianjin-
Hebei (BTH) region......
Line 158: Furthermore, Zhang et al. (2020) reported that meteorology contributes 50%
and 78% of the wintertime PMz 5 reduction between 2017 and 2013 in the BTH and
YRD, respectively.
Line 124 The abbreviations for North China here and line 122 are repeated.
Reply:

We have deleted the second repeated abbreviation and referred to the abbreviation

directly.

Revision:

Line 151: Relative to the observations in February 2017, negative PM» s anomalies



were centered in NC......
Line 195 Please write NOx here and line 68 in the same way.
Reply:

We have changed NOx into the same way as before.

Revision:
Line 226: Because of break-off transportations, reduced nitrogen oxide (NOx)

increased the concentrations of 0zone and nighttime nitrate (NO3) radical formations.

Figure la Clarify what the red and blue bars mean so that the reader can
understand this information.

Reply:
The red bars indicate an increase in existing confirmed cases, and the blue bars

indicate a decrease. We make this significance clear in the caption of Figure 1 (a).

Revision:
Line 414: Figure 1. (a) Variation in existing confirmed cases (bar; red: increase, blue:
decrease) and the ratio of accumulated confirmed cases to total confirmed cases (black

line) in China.......

Figure 2 Please give the latitude and longitude range of NC, YRD and HB in the
figure caption.

Reply:
We select the latitude and longitude range of NC is 32.5-42°N,110-120°E, the
range of YRD is 28-32.5°N,118-122°E, and the range of HB is 30-32.5°N,109.5-116°

E. We have added the information in the figure caption.

Revision:
Lines 418-419: Figure 2. Differences in the observed PMz s (unit: pg/m?) in February
between 2020 and 2017. The black boxes indicate the locations of North China (NC,

32.5-42°N,110-120°E), the Yangtze River Delta (YRD, 28-32.5°N,118-122°E) and

Hubei Province (HB, 30-32.5°N,109.5-116°E).



Figure 3 The “due to” after each subheading is repeated, leaving out the last three.
Reply:

We have deleted the repeated “due to”.

Revision:
Lines 420-421: Figure 3. PM> s difference (unit: ug/m?) in February between 2020 and
2017 due to (a) changing meteorology (PMdwm), (b) expected routine emission
reductions (PMdRr), (c¢) the COVID-19 quarantines (PMdc), and (d) due to the total
emission reduction (PMdg = PMdr+ PMdc).
Figure 4 Add the units of climate elements in the caption (c) and (d).
Reply:

We have added the units of geopotential potential height at 500 hPa, wind and

surface relative humidity in the caption.

Revision:

Lines 426-427: ...... including (c) geopotential potential height at 500 hPa (shading;
unit: gpm) and its climate mean in February (contour), and (d) wind at 850 hPa (black
arrows; unit: m/s), its climate mean (blue arrows) and the increased surface relative
humidity (shading; unit: %, stagnant days minus climate mean).

Figure 5 The y-coordinate name is inconsistent with the figure caption.

Reply:

We have corrected the y-coordinate name.

Revision:

T T T
Beijing Shanghai Wuhan



Figure 5. Variation in PMdr (unit: pg/m?) with respect to the February 2017 level in Beijing,
Shanghai and Wuhan from 2015 to 2019. PMdr in 2020 was linearly extrapolated from that in the
20152019 period. The dotted line is the linear trend.

Figure 6 Add the y-coordinate variable name and unit, just like Figure 5.
Reply:

We have added the y-coordinate variable name and unit in the figure.

Revision:
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Figure 6. Contributions of PMdwm (orange bars with hatching), PMdr (purple bars with hatching)
and PMdc (blue bars with hatching) to the change in PMx s concentration (unit: pg/m®) between
2020 and 2017 in the three regions. The observed PM, 5 concentration in February 2017 (black) and
2020 (gray) was also plotted, and the expected PM.s concentration without the COVID-19
quarantine is indicated by black hollow bars. The contribution ratios of the three factors (relative to

the PM 5 observations in 2020) are also indicated on the corresponding bars.

Figure 7a Change the subtitle “PMd” to “PMdOBS” to maintain consistency of
expression.

Reply:
We have changed in the figure.
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Figure 7. (a) Differences in the observed PMz s (unit: pg/m?) in March between 2020 and 2017. (b)
Contributions of PMdc to the change in PM, s concentration (unit: pg/m?®) between 2020 and 2017
and (c) the contribution ratios of PMdc (relative to the PM 5 observations in 2020) in March (blue)
and February (red) in the three regions.



© o0 ~N o o1~ w

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
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Abstract. The top-level emergency response to the COVID-19 pandemic involved an exhaustive quarantine in China. The
impacts of COVID-19 quarantine on the decline in fine particulate matter (PM>s) were quantitatively assessed based on

numerical simulations and observations in February. Relative to both of February 2017 and climate mean, anomalous

southerlies and moister air occurred in the east of China in February 2020, which caused considerable PM» s anomalies. Thus,

it is a must to disentangle the contributions of stable meteorology from the effects of the COVID-19 lockdown. The-stable

contributions of routine emission reductions were also quantitatively extrapolated. The top-level emergency response

substantially alleviated the level of haze pollution in the east of China. Although climate variability elevated the PM, s by 29%
(relative to 2020 observations), 59% decline related to COVID-19 pandemic and 20% decline from the expected pollution
regulation dramatically exceeded the former in North China. The COVID-19 quarantine measures decreased the PM, s in
Yangtze River Delta by 72%. In Hubei Province where most pneumonia cases were confirmed, the impact of total emission

reduction (72%) evidently exceeded the rising percentage of PM; 5 driven by meteorology (13%).

Keywords: COVID-19, PM; s, Emission Reduction, Climate Variability, Haze

1 Introduction

The COVID-19 pandemic devastatingly blew China in the beginning of 2020 (Luo, 2020; Xia et al., 2020; Cao et al.,
2020). By April 2020, more than 84 thousand confirmed cases were reported by the National Health Commission of China,
approximately 75% of which were confirmed in February (Fig. 1a). To effectively control the large spread of COVID-19
pneumonia, stringent quarantine measures were implemented by the Chinese government and people themselves, including
prohibiting social activities, shuttering industries, stopping transportation, etc. (Chen S. et al., 2020). The abovementioned
emergency response measures were first carried out in Wuhan on 23 January, which resulted in the delayed arrival of COVID-

19 in other cities by 2.91 days, and these response measures were in effect in all cities across China, thus limiting the spread
1/23
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of the COVID-19 epidemic in China (Tian et al., 2020). Since March 7, the number of newly confirmed cases in China has
been nearly below 100. On the other hand, the COVID-19 quarantine measures greatly reduced anthropogenic emissions, and
therefore, the air quality in China was considerably improved (Wang et al., 2020). Chen K. et al. (2020) simply compared
observations of atmospheric components before and during the quarantine and found that the concentration of fine particulate
matter (PMz s) in Wuhan decreased 1.4 pg/m?, but it decreased 18.9 ug/m? in 367 cities across China. Shi et al. (2020) quantified
a 35% reduction of PM> s on average during the COVID-19 outbreak compared to the pre-COVID-19 period. Huang et al.
(2020) used comprehensive measurements and modeling to show that the haze during COVID-19 lockdown was driven by

enhancements of secondary pollution, which offset reduction of primary emissions during this period in China. However, the

impacts of meteorology on the air quality were neglected in many previous studies.

—Climate variability notably influences the formation and intensity of haze pollution

in China (Yin and Wang 2016; Xiao et al., 2015; Zou et al., 2017), and the impacts are embodied by variations in surface wind,

boundary layer height and moisture conditions (Shi et al., 2019; Niu et al., 2010; Ding et al., 2014). During December 16th-

21st 2016, although most aggressive control measures for anthropogenic emissions were implemented, severe haze pollution

with PM> s concentrations = 1100ug m3 still occurred and covered 710,000km?. The continuous low surface wind speed of

less than 2ms™!, high humidity above 80% and strong temperature inversion lasting for 132h caused the rebound of wintertime

PM, s in 2016 (Yin and Wang, 2017). In winter 2017, the air quality in North China largely improved; however, the stagnant

atmosphere in 2018 resulted in a major PM»s rebound by weakening transport dispersion and enhancing the chemical
production of secondary aerosols (Yin and Zhang 2020). Wang et al. (2020) applied the Community Multiscale Air Quality

model to emphasize that the role of adverse meteorological conditions cannot be neglected even during the COVID-19

outbreak. Fhus;-hich PMa s

2020, North China suffered severe pollutions, with maximum daily PM> 5 exceeding 200ug m 3. During this period, weak

southerly surface winds lasted for nearly 5 days, relative humidity was close to 100%., and atmospheric inversion reached more

than 10°C. Although pollution emissions from basic social activities have been reduced, heavy pollution still occurred when

adverse meteorological conditions characterized by stable air masses appeared (Wang et al., 2020).

After the severe haze events of 2013, routine emission reductions resulted in an approximately 42% decrease in the annual

mean PM, s concentration between 2013 and 2018 in China (Cleaner air for China, 2019). In November 2019, the Ministry of

Environmental Protection of China issued a series of Autumn-Winter Air Pollution Prevention and Management Plans
2/23
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indicating that the routine emission reductions would be conventionally implemented in the following winter (Ministry of

Environmental Protection of China, 2019). As reported by the government, the mean ratio of work resumption in large
industrial enterprises was approximately 90% in the east of China until the end of February (Fig. 1b). In this study, we attempted
to quantify the impacts of the COVID-19 pandemic on the observed PM, 5 concentration in February 2020 when the quarantine
measures were the strictest. The official 7-day Chinese New Year holiday occurs in January and February and commonly
accounts for approximately 25% of a month. From 2013-2020, there were only two years (2017 and 2020) when the official
7-day holiday occurred in January (Fig. 1c). Thus, to avoid the impacts of the Spring Festival, the observed PM; 5 concentration
in February 2017 (Fig. 1a) was adopted to calculate the PM, s difference, which was decomposed into the results due to

expected routine emission reductions, changing meteorology climate variability, and COVID-19 quarantines.

2 Datasets and methods

2.1 Data description

Monthly mean meteorological data from 2015 to 2020 were obtained from NCEP/NCAR reanalysis datasets, with a
horizontal resolution of 2.5°%2.5°, including the geopotential height at 500 hPa (H500), zonal and meridional winds at 850
hPa, vertical wind from the surface to 150 hPa, and relative humidity at the surface (Kalnay et al., 1996). PM 5 concentration

data from 2015 to 2020 were acquired from the China National Environmental Monitoring Centre (https://quotsoft.net/air/

http/fbeijingair-sinaapp-eomt). The monitoring network expanded from 1500 sites in 2015 to 1640 sites in 2020, covering

approximately 370 cities nationwide. The PM» 5 data were monitored every 5 min using two methods: a tapered element

oscillating microbalance and B-rays, which were operated under the China National Quality Control.

2.2 GEOS-Chem description, evaluation and experimental design.

We used the GEOS-Chem model (http://acmg.seas.harvard.edu/geos/) to simulate the PM» s concentration, driven by
MERRA-2 assimilated meteorological data (Gelaro et al., 2017). The nested grid over China (15° N-55° N, 75-135°E) had a
horizontal resolution of 0.5° latitude by 0.625° longitude and consisted of 47 vertical layers up to 0.01 hPa. The GEOS-Chem
model included the fully coupled Os—NOx—hydrocarbon and aerosol chemistry module with more than 80 species and 300
reactions (Bey et al., 2001; Park et al., 2004). The PM» s components simulated in the GEOS-Chem model included sulfate,

nitrate, ammonium, black carbon and primary organic carbon, mineral dust, and sea salt. Aerosol thermodynamic equilibrium

is computed by the ISORROPIA package, which calculates the gas—aerosol partitioning of the sulfate—nitrate—ammonium

system (Fountoukis and Nenes, 2007). Heterogeneous reactions of aerosols include the uptake of HO, by aerosols (Thornton

et al., 2008), irreversible absorption of NO, and NOs on wet aerosols (Jacob, 2000), and hydrolysis of N>Os (Evans and Jacob,

2005). Two alternate simulations of aerosol microphysics are implemented in GEOS-Chem: the TOMAS simulation (Kodros
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and Pierce, 2017) and the APM simulation (Yu and Luo, 2009).

At-present-GEOS-Chem model has been widely used_to examines-and the historical changes in air quality in China-were

also-examined-through-medeling studies and quantitatively separate the impacts of physical-chemical processes. Using the

GEOS-Chem model, Yang et al. (2016) found an increasing trend of winter PM> s concentrations during 1985-2005, 80% of

which due to anthropogenic emissions and 20% due to meteorological conditions. Dang-et-al-(2019)showed-that-this-medel

in February 2017 and evaluated the performance of GEOS-Chem (Fig. Sla). The values of mean square error / mean equals

were 5.8%., 7.0% and 5.4% in North China (NC), Yangtze River Delta (YRD) and Hubei Province (HB), respectively,

indicating the good performance of reproducing the haze-polluted conditions. The absolute biases were larger in the south of

China, which was consistent with Dang and Liao (2019). They also compared the simulated and observed daily mean PM> s

concentrations at the Beijing, Shanghai, and Chengdu grids, which had a low bias in Beijing and high biases in Shanghai and

Chengdu, respectively. The simulated biases possibly affected the subsequent results and brought uncertainties to some extent.

The simulated spatial distribution of PM> s was also similar to that of observations with spatial correlation coefficient = 0.78.

n-We further verified whether the simulations

could capture the roles of meteorological changes in February 2020 under a substantial reduction in emissions because of

COVID-19 quarantines. In—-Nerth—China— (NC i YRD) and i i HB), the correlation
coefficients between daily PM, s observations and simulated data under 2010 (1985) emission scenario reached 0.83 (0.82
0.67 (0.63), and 0.79 (0.73), respectively. For example, in NC, the simulation could well simulate severe haze events (e.g.

from 8—134 and 198252 February) and good air quality events (e.g., from 145189 February), reflecting that it has ability to

accurately capture the change of meteorological conditions (Fig. S1b).

The PM5 concentration in February from 2015 to 2020 was simulated in this study. Due to delayed updates of the
emission inventory, we used the emissions data of 2010
(http://geoschemdata.computecanada.ca/ExtData/HEMCO/AnnualScalar) and 1985 (M. Li et al., 2017) for the simulations,
which represented high- and low-emission scenarios, respectively. In total, we conducted two sets of numerical experiments
to drive the GEOS-Chem simulations, one combining the meteorological conditions from 2015 to 2020 with fixed emissions

in 1985 and the other with fixed emissions in 2010, which could determine the stability of simulated results.



http://geoschemdata.computecanada.ca/ExtData/HEMCO/AnnualScalar

24

25

26

127

128

29

30

31

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

2.3 The method to quantify the influence of the COVID-19 quarantine.

As mentioned above, we aimed to examine the impact of the COVID-19 quarantines on PM> s over the February 2017

level basing on- an observational-numerical hybrid method. The observed PMs 5 difference in February 2020 (PMdogs) was

linearly decomposed into three parts: the impacts of changing meteorology (PMdwm), expected routine emissions reductions

(PMdr) and COVID-19 quarantines (PMdc), which was a reasonable approximation, and the decomposition equation was

PMdogs = PMdwm + PMdr + PMdc. That is, PMdc = PMdoss — PMdwm — PMdr. It should be noted that PMdc is the impact of
the COVID-19 quarantines over the situation whereby the pandemic did not occur and routine emission reductions
conventionally were in effect. The value of PMdg (i.e., PMdr + PMdc) was the total impact of the emission reductions in
February 2020 over the 2017 level.

Simulated PM» s data driven by changing meteorology with two fixed-emissions (1985 and 2010) were employed to
determine the ratio of PMdwm of each year/PMédogs observed PM, s in 2017. Depending on the GEOS-Chem simulations, we

found that the PM. s-percentage of changed PM> s due to-ehanging the differences in meteorology remained nearly constant

regardless of the emission level (Fig. S2), which was consistent with the results of Yin and Zhang (2020). This percentage was

the difference of simulated PM, s between each year and 2017 under the same emission scenario divided by the simulated

PM,5in 2017. For example, the percentages due to different meteorology between 2020 and 2017 were 22.1% (21.4%), —1.2%
(—0.7%) and 9.0% (8.2%) in NC, YRD and HB under the low (high) emissions (Fig. S2). The percentage under 2010 emission
scenario was selected as the final percentage because the emissions from each sector in 2010 were more similar to recent years,

and thus was more reasonable. Then, through multiplying the 2017 observationieatien by this percentage - PMés—with-respeet

to-the 201 7-ebservations, PMdw can be quantified in each simulation grid with respect to 2017 (STEP 1).

From 2015 to 2019, PMdc = 0; thus, PMdr = PMdoss— PMdwm. Here, we repeated STEP 1 to determine PMdy in each year
from 2015 to 2019 relative to 2017 (i.e., PMdm = 0 in 2017). After removing the effect of meteorological conditions in PM 5
differences, PMdg in all years except 2020 can also be calculated. According to many previous studies, the change in emissions
resulted in a linear change in air pollution in China from 2013-2019 (Wang et al., 2020; Geng et al., 2020) which might be

related to the huge emission reduction due to the implementation of clean air action. (Cai-et-al; 2047 Wang-et-al;2049);

Because the signal of emissions reduction in China had been particularly strong since 2013, it could be easily detected and the

assumption of a linear reduction in pollution caused by emission reduction was applicable in China in the past few years. Based

on this approximation,therefere; we used the method of extrapolation to speculate the impact of routine emission reduction on

PM; 5. We performed linear extrapolation based on known PMdr values from 2015 to 2019 to obtain PMdg in 2020 (STEP 2,
5/23
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Fig. S3). This PMdg in 2020was calculated as the change of PM, 5 caused by expected routine emission reduction, which did

not actually happen, but merely gave an assessment in the case of “if no COVID-19”. In Beijing and Shanghai, for example,
PM: s fell by 23.1% and 26.6% due to routine emission reduction in 2019, respectively, compared with 2015. Zhou et al. (2020)
indicated that emission reductions caused 20—26% decreases in winter in Beijing which has been translated into 5 years. Zhang
et al. (2020)* also showed that the emission controls in Beijing-Tianjin-Hebei (BTH) region have led to significant reductions
in PM> s from 2013 to 2017 of approximately 20 % after excluding the impacts of meteorology. Geng et al. (2020) found a 20%
drop in the main component of PM, 5 in the Yangtze River Delta from 2013 to 2017. These results are consistent with our
extrapolated resultsiens. Therefore, it is reasonable to obtain PMdr by extrapolation after disentangling remeving-the effects
of meteorological conditions.

Through STEP 1 and STEP 2, PMdc and PMdg, respectively, in 2020 can be determined. PMdogs can be directly
calculated from the observed data. After removing the influences of climate anomalies and routine emission reductions, the

impact of COVID-19 quarantines on PM, 5 (PMdc) was extracted as PMdogs — PMdwm — PMdg (STEP 3).

3 Results

The mean PM, 5 concentration in February 2020 was nearly below 80 pg/m® at the vast majority of sites in the east of
China, which was much lower than before (Fig. S4). North China (NC) was still the most polluted region (>40 pg/m?), but the
PM, s concentrations in the Pearl River Delta (PRD) and Yangtze River Delta (YRD) were < 20 pg/m’ and < 40 pg/m>,
respectively. Relative to the observations in February 2017, negative PM, s anomalies were centered in Nerth-China+{NC),
with values of approximately —60 to —40 pg/m® in southern Hebei Province and northern Henan Province (Fig. 2). In Hubei
Province (HB), where the COVID-19 pneumonia cases were the most severe in February, the PM» 5 concentration was 20~40
ug/m? lower than that in 2017. The PM, s differences were also negative in YRD and PRD. Therefore, how much did air
pollution decrease due to the COVID-19 quarantines in February in east of China?

Climate variability notably influences the interannual-decadal variations in haze pollution as verified by both
observational analysis (Yin et al., 2015) and GEOS-Chem simulations (Dang and Liao, 2019). Furthermore, Zhang et al. (2020)
reported that meteorology contributes 50% and 78% of the wintertime PM> s reduction between 2017 and 2013 in the Beijing-

Fanjin-HebeiABTH )region-and YRD, respectively. Therefore, it is necessary to remevedisentangle the influences of climate

=B H-(Hia3a)The highest observed PMa s

concentrations were 274, 223, and 303 pg/m’ in Beijing, Tianjin and Shijiazhuang, respectively. Although human activities
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had sharply decreased, severe haze pollution (e.g., 813 and 19-25 February 2020) was not avoided, which was attributed to
the stagnant atmosphere (Wang et al., 2020), and these severe haze events were also reproduced by the GEOS-Chem simulation
(see Section 2.2 and Fig. S1b).

As shown in Figure 4a-b, the meteorological conditions in February 2020 were more favorable for the occurrence of haze
pollution in NC. In the mid-troposphere, an anomalous anticyclone was located over NC and the Sea of Japan (Fig. 4a). These
anticyclonic anomalies clearly stimulated anomalous southerlies over eastern China, which not only transported sufficient
water vapor to NC but also overwhelmed the climatic northerlies in winter (Fig. 4b). In addition, the anomalous upward motion
associated with anomalous anticyclones prevented the downward transportation of westerly momentum and preserved the
thermal inversion layer over NC (Fig. S5). Particularly, in the stagnant days (i.e., 813 and 19-25 February), the East Asia

deep trough, one of the most significant zonally asymmetric circulations in the wintertime Northern Hemisphere (Song et al.,

2016), shifted eastwards and northwards than climate mean, which steered the cold air to North Pacific instead of North China
(Fig. 4c). The climatic northerlies in February, related to East Asia winter monsoon, also turned to be south winds in the east

of China (Fig. 4d)._Physically, the weakening surface winds and strong thermal inversion corresponded to weaker dispersion

conditions, and the higher humidity indicated a favorable environment for the hygroscopic growth of aerosol particles to

evidently decrease the visibility. Compared with the climate (February 2017) monthly mean, boundary layer height (BLH)

decreased by 19.5m (34.5m), surface relative humidity (rhum) increased by 5% (10.6%) and surface air temperature (SAT)

rose by 1.6°C (0.9°C) after detrending, which were conductive to the increase of PM, s concentration in February 2020.

Furthermore, the correlation coefficients of daily PM» s and BLH, rhum, wind speed and SAT in North China were -0.63, 0.44

-0.45 and 0.46. respectively, all of which passed the 95% significance test and indicated importance of meteorology. We used

the meteorological data in February 2017 to establish a multiple linear regression equation to fit PM»s. The correlation

coefficients between the fitting results and the observed PM; s concentration in NC, YRD and HB reached 0.84, 0.64 and 0.65,

exceeding the 99% significance test. Then, we put the observed meteorological data in February 2020 into this established

multiple regression equation to get the predicted PM, s concentration. Using the regress-predicted value, the percentage of

changed PM, s due to the differences in meteorology between 2017 and 2020 were re-calculated and is 20.7%., -3.2% and 9.5%

in NC, YRD and HB, respectively (Fig. S2), which is consistent with and enhanced the robustness of the results obtained by

our previous model simulation. Based on the GEOS-Chem simulations, PMdy-(-e—the PM, s-difference-dueto—changing

meteorelogy) was calculated between February 2020 and 2017 (see Methods). To the south of 30°N, most PMdy values were

negative with small absolute values, at < 10 pg/m>. To the north of 30°N, the PMdy values were mostly positive, ranging from

30~60 pg/m’ in BTH (Fig. 3a).

Since 2013, the Chinese government has legislated and implemented stringent air pollution prevention and management

policies that have clearly contributed to air quality improvement (Wang et al., 2019). As mentioned above, without the COVID-
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19 pandemic, these emission reduction policies would certainly remain in effect in February 2020. Thus, we extrapolated PMdr
(i.e., the PMs s difference due to expected routine emission reductions) between February 2020 and 2017 to isolate the impacts
of the COVID-19 quarantines (i.e., PMdc). PMdr was mostly negative in the east of China (Fig. 3b). Because the impacts of
meteorology were proactively removed, these negative values illustrated that routine emission reductions substantially reduced
the wintertime PM, 5 concentration. The contributions of the emission reduction policies were the greatest in the south of BTH
and were also remarkable in Hubei Province (Fig. 3b). Although the PMdr of Beijing in 2016 did not strictly comply with the
pattern of monotonous decrease, which might be caused by the fluctuation of policy and its implementation, the value of PMdr
in 2020 relative to 2017 was —8.4 pg/m® and was comparable to the 11.5 pg/m® reductions due to policy during 2013-2017
(Zhang et al., 2020). In Shanghai, PMdr was —12.0 pg/m*® (Fig. 5), whose magnitude was proportional with assessments by
Zhang et al. (2020), and the trend was nearly linear. The rationality of the extrapolations of PMdr was also proved in Section
2.3. The trend of PMdg in Wuhan was —9.6 pg/m?® per year from 2015-2019, which indicated high efficiency of the emission
reduction policies and resulted in large PMdg values in 2020 (i.e., —21.8 pg/m?).

By disentangling remeving-the impacts of meteorology and routine emission reduction policies, the change in PM> s due
to the COVID-19 quarantines was quantitatively extracted. As expected, this severe pandemic caused dramatic slumps in the
PM, s concentration across China (Fig. 3c). Large PMdc values (approximately —60 to —30 pg/m?®) were located in the high-
polluted NC regions where intensive heavy industries were stopped and the traditional massive social activities and
transportations around Chinese New Year were cancelled as part of the COVID-19 quarantine measures. To the south of 30°N,
the impacts of the COVID-19 quarantines on the air quality were relatively weaker (—30 ~ 0 pg/m?) than those in the north;

nt. Generally, the south region was less

polluted than the north, therefore the baseline of PM,s concentration was relatively lower (Fig. S4a). In addition,

meteorological conditions in the south in February 2020 had no positive contribution (Fig. 3a), which would not lead to the

increase of PM, s concentration. These two possible reasons resulted in a smaller space for PM, s decrease due to COVID-19

quarantines in the south and accompanying regional differences. To reduce the assessment uncertainties, the percentage of

changed PM> 5 due to the differences in meteorology were PMédc-was-alse-recalculated based on the GEOS-Chem simulations

with fixed emission in 1985;-whichrepresented-alow-emission-seenario. As described in the Methods section, the recalculated

PMdc results-in Figure S6 are consistent with those in Figure 3¢, showing a high robustness. Furthermore, the mean PM; s
concentration decreases due to the COVID-19 quarantines in NC, HB and YRD were analyzed, which accounted for 59%, 26%
and 72% of the observed February PM; s concentration in 2020;revealing-elear regional-differences (Fig. 6).

It should be noted that the sum of PMdr and PMdc (i.e., PMdg) is the total contribution of the emission reduction in
February 2020 with respect to 2017 (Fig. 3d). In NC, YRD and HB, the COVID-19 quarantines and routine emission reductions
drove PM5 in the same direction. The mean PM, s decrease in NC, due to the total emission reduction, was —43.3 pg/m’,

accounting for 79% of the observed February PM; 5 concentration in 2020 (Fig. 6). Although the absolute values of both PMdg
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and PMdc in YRD were smaller than those in NC, the change percentage (92%) was larger because of the lower base PM2s
concentration. In HB, where more than 80% of the confirmed COVID-19 cases in China occurred and the cities were in
emergency lockdown, the total anthropogenic emissions were clearly limited, which resulted in a 72% decline in PM> 5 in the
atmosphere (Fig. 6). In particular, if the anthropogenic emissions did not decline, the PM» s concentration in NC, YRD and HB
would increase to nearly twice the current observation (Fig. 6), indicating significant contributions of human activities to the
air pollution in China.

The declines of PM,s seemed not to be directly proportional to the almost complete shutoff of vehicle traffics and
industries, that is, the reduction ratio of PM> s concentrations were smaller than that of precursor emissions (Wang et al., 2020).
The unexpected air pollutions during the marked emission reductions were closely related to the stagnant air flow, enhanced
productions of secondary aerosols, and uninterrupted residential heating, power plants and petrochemical facilities (Le et al.,
2020). The partial impacts of stagnant meteorological conditions have been explained earlier (Fig. 4). In Wuhan, the PM> s
remained the main pollutant during the city lockdown and the high level of sulphur dioxide (SO,) may be related to the
increased domestic heating and cooking (Lian et al., 2020). In North China, large reductions of primary aerosols were observed,
but the decreases in secondary aerosols were much smaller (Sun et al., 2020; Shi et al., 2020). Because of break-off
transportations, reduced nitrogen oxide (NOxNOy) increased the concentrations of ozone and nighttime nitrate (NO3) radical
formations. The increased oxidizing capacity in the atmosphere enhanced the formation of secondary particulate matters
(Huang et al., 2020). Thus, the non-linear relationship of emission reduction and secondary aerosols also partially contributed

to the haze occurrence during the COVID-19 lockdown. Adtheugh-thePM, o

4 Conclusions and discussion

In the beginning of 2020, the Chinese government implemented top-level emergency response measures to contain the
spread of COVID-19. The traditional social activities surrounding Chinese New Year, industrial and transportation activities,
etc. were prohibited, which effectively reduced the number of confirmed cases in China. Concomitantly, anthropogenic
emissions, which are the fundamental reason for haze pollution, were dramatically reduced by the COVID-19 quarantine
measures. In this study, we employed observations and GEOS-Chem simulations to quantify the impacts of the COVID-19
quarantines on the air quality improvement in February 2020 after decomposing remevingthe contributions of expected routine
emission reductions and climate variability. Although the specific influences varied by the region, the COVID-19 quarantines
substantially decreased the_level of haze pollution level-in the east of China (Fig. 6). In North China, the meteorological

conditions were stagnant that enhanced the PM, s concentration by 30% (relative to the observations in 2020). In contrast, the
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expected routine emissions reductions and emergency COVID-19 quarantine measures resulted in an 80% decline. In YRD,
the impacts of meteorology were negligible but the COVID-19 quarantines decreased PM» 5 by 72%. In Hubei Province, the
impact of the total emission reduction (72%) evidently exceeded the PM, 5 increase due to meteorological conditions (13%).
In March, due to the continued control of the COVID-19, the quarantines measures still contributed to the negative anomalies
of the observed PM, s between 2020 and 2017 (Figure 7a). Because the activities in production and life have been gradually
resumed in March, the PM, 5 drops caused by the COVID-19 quarantines became weaker compared with February (Fig. 7b,
c). The contributions of PMdc to the change of PM» 5 concentration in NC, YRD and HB declined from 32.2, 21.0 and 12.1
ug/m? in February to 7.0, 2.4 and 6.7 pg/m?® in March respectively.

Because of the common update delay of the emission inventory, we employed a combined analysis consisting of statistieal
observational and numerical methods. We strictly demonstrated the rationality of this method and the results, mainly based on

the relatively constant contribution ratio of changing meteorology from GEOS-Chem simulations under the different emissions

(Yin and Zhang 2020).;-and-the PM: 5

stlations—with-fixed-emisstons-of 1985-were-also-relativelystable- However, there was a certain bias in the simulations by

GEOS-Chem model, and the biases also showed regional differences (Dang and Liao, 2019). Therefore, gGaps between the

assessed results and reality still exist, which requires further numerical experiments when the emission inventory is updated.

Furthermore, Bduring the calculation process, the observed PM, s difference in February 2020 was linearly decomposed into

three parts. Although this linear decomposition was reasonable in Cehina in the past few years, we must note that this

approximation was lack of considering the meteorology-emission interactions, the product of the emission, the loss lifetime

and particularly the sulfate-nitrate-ammonia thermodynamics (Cai et al., 2017), which brought some uncertainties. Fhe PMey

numerical simulations;-with-eertainuneertaintyJIn-faet tThe actual emission reduction effect is stil-considerable (Fig. 3d), in

line with the increasingly strengthened emission reduction policies in recent years. When calculating the PMdr in 2020, we

use the method of extrapolation. Although the result is consistent with others observational and numerical studies (Geng et al.,

2020; Zhang et al., 2020; Zhou et al., 2019), it is still conjectures rather than true values. fa=fae

interaction betweenthese-two-faetors—These issues need to be examined in the future studies to unlock eftherespective effects

of emissions and meteorological conditions on PM; 5 over eastern China. To restrict the possible uncertainties, we set up some

constraints: 1. The pivotal contribution ratio of changing meteorology were calculated under two emission levels and

recalculated by statistical regressed model: 2. The values of PMdwm and PMdg were widely compared to previous studies.

If the COVID-19 epidemic did not occurred, the concentrations of PM,s would increase up to 1.3—1.7 times the
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observations in February 2020 (Fig. 6). Therefore, the pollution abatement must continue. Because of the huge population base

in the east of China, the anthropogenic emissions exceeded the atmospheric environmental capacity even during COVID-19

quarantines. Although the PM, 5 dropped much, marked air pollutions also occurred during this unique experiments that the

human emissions were sharply closed. This raised new scientific questions, such as changes of atmospheric heterogeneous

reactions and oxidability under extreme emission control, quantitative meteorology-emission interactions, and so on.

emissions—were sharply closed—This_also implied reconsiderations of policy for pollution controls and necessity to cut off

secondary productions of particulate matters basing on sufficient scientific research (Le et al., 2020; Huang et al., 2020). Some

Sstudies estimated that thousands of deaths were prevented during the quarantine because of the air pollution decrease (Chen
K. etal., 2020). However, medical systems were still overstressed, and transportation to hospitals also decreased. Furthermore,
the deaths related to air pollution were almost all due to respiratory diseases (Wang et al., 2001), and their corresponding
medical resources were also further stressed by COVID-19. Therefore, the mortality impacted by the air pollution reduction

during the COVID-19 outbreak should be comprehensively assessed in future work.

Data availability. Monthly mean meteorological data are obtained from ERAS reanalysis data archive:
https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset. PM,s concentration data are acquired from the China
National Environmental Monitoring Centre: http://beijingair.sinaapp.com/. The emissions data of 1985 can be downloaded
from http://geoschemdata.computecanada.ca/ExtData/HEMCO/AnnualScalar/, and that of 2010 can be obtained from MIX:

http://geoschemdata.computecanada.ca/ExtData/HEMCO/MIX.

Acknowledgements

The National Natural Science Foundation of China (41991283, 9174431 and 41705058), the funding of Jiangsu innovation &
entrepreneurship team, and the special project “the impacts of meteorology on large-scale spread of influenza virus” from CIC-

FEMD supported this research.

Authors’ contribution

Wang H. J. and Yin Z. C. designed and performed researches. Zhang Y. J. simulated the PM, s by GEOS-Chem model and Li

Y. Y. did the statistical analysis. Yin Z. C. prepared the manuscript with contributions from all co-authors.

Competing interests

11/23


http://beijingair.sinaapp.com/
http://geoschemdata.computecanada.ca/ExtData/HEMCO/AnnualScalar
http://geoschemdata.computecanada.ca/ExtData/HEMCO/MIX

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

B56

B57

358

359

360

361

362

363

364

365

366

367

The authors declare no conflict of interest.

References

Bey, L., Jacob, D. J., Yantosca, R. M., Logan, J. A,, Field, B. D., Fiore, A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., and
Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation,
J. Geophys. Res. Atmos., 106, 23073-23095, https://doi.org/10.1029/2001;d000807, 2001.

Cai, S., Wang, Y., Zhao, B., Wang S., Chang, X., and Hao, J.: The impact of the “Air Pollution Prevention and Control Action
Plan” on PM 5 concentrations in Jing-Jin-Ji region during 2012-2020, Sci. Total Environ., 580, 197 =209, 2017.

Cao, W., Fang, Z., Hou, G., Han, M., Xu X., and Dong, J.: The psychological impact of the COVID-19 epidemic on college
students in China, Psychiat. Res., 287, 112934, 2020.

Chen, S., Yang, J., Yang W., Wang, C., and Till, B.: COVID-19 control in China during mass population movements at New
Year, Lancet, 395(10226), 764-766, 2020.

Chen, K., Wang, M., Huang, C., Patrick, L., and Paul, T.: Air Pollution Reduction and Mortality Benefit during the COVID-
19 Outbreak in China, MedRxiv, https://doi.org/10.1101/2020.03.23.20039842, 2020.

Cleaner air for China, Nat. Geosci., 12, 497-497, https://doi.org/10.1038/s41561-019-0406-7, 2019.

Dang, R., and Liao, H.: Severe winter haze days in the Beijing-Tianjin-Hebei region from 1985 to 2017 and the roles of
anthropogenic emissions and meteorology, Atmos. Chem. Phys., 19, 10801-10816, 2019.

Ding, Y., and Liu, Y.: Analysis of long-term variations of fog and haze in China in recent 50 years and their relations with
atmospheric humidity, Sci. China Ser. D., 57, 3646, 2014.

Evans, M. J. and Jacob, D. J.: Impact of new laboratory studies of N>Os hydrolysis on global model budgets of

tropospheric nitrogen oxides, ozone, and OH, Geophys. Res. Lett.. 32. 1.09813. https://doi.org/10.1029/2005¢1022469,

2005.

Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K*-

Ca?'-Mg?"-NH4"-Na"-SO4* -NO; -Cl -H,0 aerosols, Atmos. Chem. Phys., 7. 46394659, https://doi.org/10.5194/acp-

7-4639-2007, 2007.

Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Molod, A., Takacs,L., Randles,C.A., Darmenov,A., Bosilovich,M.G.,
Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim,
G. K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka,G., Pawson,S., Putman,W., Rienecker,M., Schubert,S.D.,
Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA2),
J. Climate, 30, 5419-5454, https://doi.org/10.1175/jcli-d-160758.1, 2017.

Geng, G., Xiao, Q., Zheng, Y., Tong, D., Zhang, Y., Zhang, X., Zhang, Q., He, H., and Liu, Y.: Impact of China’s Air Pollution

12/23


https://doi.org/10.1101/2020.03.23.20039842
https://doi.org/10.1038/s41561-019-0406-7

368

369

370

371

372

373

74

75

376

377

378

379

80

81

382

383

384

385

386

387

388

389

390

391

392

393

94

95

396

397

398

399

Prevention and Control Action Plan on PM; s chemical composition over eastern China, Sci. China Ser. D., 62, 1872-1884,
https://doi.org/10.1007/s11430-018-9353-x, 2020.

Huang, X., Ding, A., Gao, J., Zheng, B., Zhou, D., Qi, X., Tang, R., Ren, C., Nie, W., Chi, X., Wang, J., Xu, Z., Chen, L., Li,
Y., Che, F., Pang, N., Wang, H., Tong, D., Qin, W., Cheng, W., Liu, W., Fu, Q., Chai, F., Davis, S., Zhang, Q., and He, K.:
Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China, Natl. Sci. Rev.,
nwaa 137, 2020.

Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone, Atmos. Environ., 34. 21312159,

https://doi.org/10.1016/s1352- 2310(99)00462-8, 2000.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G.,Woollen, J., Zhu,
Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki,W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C.,Wang, J.,
Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437471,
https://doi.org/10.1175/1520-0477(1996)077<0437:-TNYRP>2.0.CO;2, 1996.

Kodros, J. K., Pierce, J. R.: Important global and regional differences in cloud-albedo aerosol indirect effect estimates between

simulations with and without prognostic aerosol microphysics, J. Geophys. Res., 122, https://10.1002/2016JD025886, 2017.

Le, T., Wang, Y., Liu, L., Yang, J., Yung, Y. L., Li, G., and John, H.: Unexpected air pollution with marked emission reductions
during the covid-19 outbreak in China, Science, 369(6504), eabb7431, 2020.

Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng,
Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission
inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935-963,
https://doi.org/10.5194/acp-17-935-2017, 2017.

Lian, X., Huang, J., Huang, R., Liu, C., and Zhang, T.: Impact of city lockdown on the air quality of COVID-19-hit of Wuhan
city, Sci. Total Environ., 742, 140556, 2020.

Luo, Z.: The impact of new outbreak on economy, capital market and national governance and its response, Finance Economy,
2020(2), 8-15,2020.

Ministry of Environmental Protection of China.

http://www.mee.gov.cn/xxgk2018/xxgk/xxgk05/201903/t20190306_694550.html, 2019.

of Enyzg
Ot +=F

+
D
B
=3

Ja
]
=

)

Niu, F, Li, Z., Li, C., Lee, K., and Wang, M: Increase of wintertime fog in China: Potential impacts of weakening of the
Eastern Asian monsoon circulation and increasing aerosol loading, J. Geophys. Res., 115, D7, 2020.
Park, R.: Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States:

Implications for policy, J. Geophys. Res. Atmos., 109, D15204, 2004.
13/23


https://doi.org/10.1007/s11430-018-9353-x
http://www.mee.gov.cn/xxgk2018/xxgk/xxgk05/201903/t20190306_694550.html

400
401
402
403

04

05
406
407
408

09

10

11
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

430

)431

Shi, X., and Brasseur, G.: The Response in Air Quality to the Reduction of Chinese Economic Activities during the COVID
Outbreak, Geophys. Res. Lett., 2020, 47, 2020.

Shi, Y., Hu, F., LU R., and He, Y.: Characteristics of urban boundary layer in heavy haze process based on beijing 325m tower
data, Atmos. Oceanic Sci. Lett., 12, 41-49, 2019.

Song., L.. Wang, L., Chen, W., and Zhang. Y.: Intraseasonal Variation of the Strength of the East Asian Trough and Its

Climatic Impacts in Boreal Winter, J. Climate, 29 (7), 2557-2577. https://doi.org/10.1175/JCLI-D-14-00834.1, 2016.

Sun, Y., Lei, L., Zhou, W., Chen, C., and Worsnop, D. R.: A chemical cocktail during the COVID-19 outbreak in Beijing,
China: Insights from six-year aerosol particle composition measurements during the Chinese New Year holiday. Sci. Total
Environ., 140739, 2020.

Thornton, J. A., Jaegle, L., and McNeill, V. F.: Assessing known pathways for HO2 loss in aqueous atmospheric aerosols:

Regional and global impacts on tropospheric oxidants, J. Geophys. Res.-Atmos., 113, D05303,

https://doi.org/10.1029/2007jd009236, 2008.

Tian, H., Liu, Y., Li, Y., Wu, C., Chen, B., Kraemer, M., Li, B., Cai, J., Xu, B., Yang, Q., Wang, B., Yang, P., Cui, Y., Song, Y.,
Zheng, P., Wang, Q., Bjornstad, O., Yang, R., Grenfell, B., Pybus, O., Dye, C.: An investigation of transmission control
measures during the first 50 days of the COVID-19 epidemic in China, Science, eabb6105, 2020.

Wang, H., and Jin, Y.: The Study on Air Pollution Effects on the Mechanism of Respiratory System. Science of Travel
Medicine, 007(002), 29-33, 2001.

Wang, P., Chen, K., Zhu, S., Wang, P., and Zhang, H.: Severe air pollution events not avoided by reduced anthropogenic
activities during COVID-19 outbreak, Resour. Conserv. Recy., 158, http://doi:10.1016/j.resconrec.2020.104814, 2020.

Wang, Y., Li, W., Gao, W., Liu, Z., Tian, S., Shen, R., Ji, D., Wang, S., Wang, L., Tang, G., Tao, S., Cheng, M., Wang, G., Gong,
Z., Hao, J., and Zhang, Y.: Trends in particulate matter and its chemical compositions in China from 2013-2017, Sci. China
Ser. D., 62(12), 1857-1871, 2019.

Xia, J., and Feng, X.: Impacts of COVID-19 epidemic on tourism industry and related countermeasures, Chinese Business and
Market, 34(3), 3-10, 2020.

Xiao, D., Li, Y., Fan, S., Zhang, R., Sun, J., and Wang, Y.: Plausible influence of Atlantic Ocean SST anomalies on winter haze
in China. Plausible influence of Atlantic Ocean SST anomalies on winter haze in China, Theor. Appl. Climatol., 122, 249-257,
2015.

Yang, Y., Liao, H., and Lou, S.: Increase in winter haze over eastern China in recent decades: Roles of variations in
meteorological — parameters and  anthropogenic  emissions, J. Geophys. Res. Atmos., 121, 13050-
13065, https://doi.org/10.1002/2016jd025136, 2016.

Yin, Z., and Wang, H.: The relationship between the subtropical Western Pacific SST and haze over North-Central North China

Plain, Int. J. Climatol., 36, 3479-3491, 2016.
14/23


https://doi.org/10.1175/JCLI-D-14-00834.1
https://science.sciencemag.org/content/early/2020/03/30/science.abb6105#aff-3
http://doi.cnki.net/doi/Resolution/Handler?doi=%2010.1016/j.resconrec.2020.104814
https://doi.org/10.1002/2016jd025136

32

33
434
435
436
437

38

39
440
441
442
443
444
445
446

447

448

)449

450
451
452
453
454
455

456

457

458
459

460

)461

Yin, Z., and Wang, H.: Role of atmospheric circulations in haze pollution in December 2016, Atmos. Chem. Phys. 17, 11673—

11681. https://doi.org/10.5194/acp-17-11673-2017 , 2017.

Yin, Z., Wang, H., and Guo, W.: Climatic change features of fog and haze in winter over North China and Huang-Huai Area,
Sci. China Ser. D., 58, 1370-1376, 2015.

Yin, Z., and Zhang, Y.: Climate anomalies contributed to the rebound of PM: 5 in winter 2018 under intensified regional air
pollution preventions, Sci. Total Environ., 726, 138514, 2020.

Yu, F., and Luo, G.: Simulation of particle size distribution with a global aerosol model: Contribution of nucleation to aerosol

and CCN number concentrations, Atmos. Chem. Phys., 9, 7691-7710, 2009.

Zhang, X., Xu, X., Ding, Y., Liu, Y., Zhang, H., Wang, Y., Zhong, J.: The impact of meteorological changes from 2013 to 2017
on PM; s mass reduction in key regions in China, Sci. China Ser. D., 62, 1885-1902, https://doi.org/10.1007/s11430-019-9343-
3, 2020.

Zhou, W., Gao, M., He, Y., Wang, Q., Xie, C., Xu, W., Zhao, J., Du, W,, Qiu, Y., Lei, L., Fu, P., Wang, Z., Worsnop, D., Zhang,
Q., and Sun, Y.: Response of aerosol chemistry to clean air action in Beijing, China: Insights from two-year ACSM
measurements and model simulations, Environ. Pollut., 255, 113345, 2019.

Zou, Y., Wang, Y., Zhang, Y., and Koo, J.: Arctic sea ice, Eurasia snow, and extreme winter haze in China, Sci. Adv., 3,

e1602751, 2017.

Figure Captions

Figure 1. (a) Variation in existing confirmed cases (bar; red: increase, blue: decrease) and the ratio of accumulated confirmed

cases to total confirmed cases (black line) in China. (b) The ratio of work resumption in large industrial enterprises in the east
of China. (c) Time of the official 7-days holiday of Chinese New Year from 2013 to 2020.

Figure 2. Differences in the observed PMa s (unit: pg/m®) in February between 2020 and 2017. The black boxes indicate the

locations of North China (NC, 32.5-42°N.110-120°E), the Yangtze River Delta (YRD, 28-32.5°N,118-122°E) and Hubei

Province (HB, 30-32.5°N,109.5-116°E).

Figure 3. PM, s difference (unit: pg/m?) in February between 2020 and 2017 a)-due to (a) changing meteorology (PMdw), (b)
due-to-expected routine emission reductions (PMdg), (c) due-te-the COVID-19 quarantines (PMdc), and (d) due to the total

emission reduction (PMdg = PMdr+ PMdc).

Figure 4. Differences in the observed atmospheric circulation in February between 2020 and 2017, including (a) geopotential
potential height at 500 hPa (unit: gpm), (b) wind at 850 hPa (arrows; unit: m/s), surface relative humidity (shading; unit: %).
The atmospheric circulations in the stagnant days (e.g., from 8—13 and 19-25 February 2020) were also showed, including (c)
geopotential potential height at 500 hPa (shading; unit: gpm) and its climate mean in February (contour), and (d) wind at 850
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}462 hPa (black arrows; unit: m/s), its climate mean (blue arrows) and the increased surface relative humidity (shading; unit: %,

463  stagnant days minus climate mean).

464 Figure 5. Variation in PMdg (unit: pg/m?®) with respect to the February 2017 level in Beijing, Shanghai and Wuhan from 2015
465 to 2019. PMdr in 2020 was linearly extrapolated from that in the 2015-2019 period. The dotted line is the linear trend.

466 Figure 6. Contributions of PMdy (orange bars with hatching), PMdr (purple bars with hatching) and PMdc (blue bars with
467  hatching) to the change in PM, s concentration (unit: pug/m?®) between 2020 and 2017 in the three regions. The observed PM, 5
468 concentration in February 2017 (black) and 2020 (gray) was also plotted, and the expected PM, s concentration without the
469 COVID-19 quarantine is indicated by black hollow bars. The contribution ratios of the three factors (relative to the PMy s
470  observations in 2020) are also indicated on the corresponding bars.

471 Figure 7. (a) Differences in the observed PM; s (unit: pg/m3) in March between 2020 and 2017. (b) Contributions of PMdc to
472 the change in PM s concentration (unit: pg/m?) between 2020 and 2017 and (c) the contribution ratios of PMdc (relative to the

473 PM, s observations in 2020) in March (blue) and February (red) in the three regions.
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475

}476 Figure 1. (2) Variation in existing confirmed cases (bar; red: increase, blue: decrease) and the ratio of accumulated confirmed

477 cases to total confirmed cases (black line) in China. (b) The ratio of work resumption in large industrial enterprises in the east

478 of China. (c) Time of the official 7-days holiday of Chinese New Year from 2013 to 2020.
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480 Figure 2. Differences in the observed PM, s (unit: pg/m?) in February between 2020 and 2017. The black boxes indicate the
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Figure 3. PM, s difference (unit: pg/m?) in February between 2020 and 2017 {a)-due to (a) changing meteorology (PMdw), (b)
due-te-expected routine emission reductions (PMdg), (c)-due-te the COVID-19 quarantines (PMdc), and (d) due to the total

emission reduction (PMdg = PMdr+PMdc).
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Figure 4. Differences in the observed atmospheric circulation in February between 2020 and 2017, including (a) geopotential
potential height at 500 hPa (unit: gpm), (b) wind at 850 hPa (arrows; unit: m/s), surface relative humidity (shading; unit: %).
The atmospheric circulations in the stagnant days (e.g., from 8—13 and 19-25 February 2020) were also showed, including (c)
geopotential potential height at 500 hPa (shading; unit: gpm) and its climate mean in February (contour), and (d) wind at 850
hPa (black arrows; unit: m/s), its climate mean (blue arrows) and the increased surface relative humidity (shading; unit: %,

stagnant days minus climate mean).
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Figure 5. Variation in PMdg (unit: pg/m?) with respect to the February 2017 level in Beijing, Shanghai and Wuhan from 2015

to 2019. PMdr in 2020 was linearly extrapolated from that in the 2015-2019 period. The dotted line is the linear trend.
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502 Figure 6. Contributions of PMdwm (orange bars with hatching), PMdr (purple bars with hatching) and PMdc (blue bars with
503 hatching) to the change in PM, s concentration (unit: pg/m?) between 2020 and 2017 in the three regions. The observed PM, s
504 concentration in February 2017 (black) and 2020 (gray) was also plotted, and the expected PM, s concentration without the
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Figure 7. (a) Differences in the observed PMy s (unit: pg/m?) in March between 2020 and 2017. (b) Contributions of PMdc to

the change in PM, 5 concentration (unit: pg/m?) between 2020 and 2017 and (c) the contribution ratios of PMdc (relative to the

PM, 5 observations in 2020) in March (blue) and February (red) in the three regions.
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