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We would like to thank the reviewers for their positive and constructive feedback, which helped improving the quality of the 
paper. The reviewers have pointed out issues that required further improvements or explanations. Below we address each 
specific issue and the manuscript has been updated accordingly. 

 

Anonymous Referee #1 5 

Received and published: 17 September 2020 

The lockdowns instituted by many governments around the world in response to the COVID-19 pandemic have had significant 
effects on emissions of air pollutants and resulting ambient air quality. This topic has already received a lot of attention in the 
scientific literature within a relatively short period of time. The manuscript by Guevara et al. provides a timely contribution to 
the quantification of the emission changes due to lockdown measures implemented in Europe. Traditionally, the compilation 10 
of emission inventories is a long, slow process, with reliable emission data usually becoming available after several years. 
Given the strong interest from modelling groups in simulating the effects of these lockdowns on air quality, there is clearly a 
need for a fast-track estimate of COVID-19-related changes in emissions for use in modelling studies 

Guevara et al. compile a set of national, sectoral emission reduction factors for European countries based on various datasets 
which are available now. The methodology used to derive the reduction factors is clearly described, the contingent nature of 15 
the resulting reduction factors is acknowledged and clearly described, and the reduction factors themselves are provided for 
the community. This aspect alone makes the paper a valuable contribution to the literature. 

Guevara et al. also apply these emission reduction factors in a model simulation and compare the reductions in modelled NO2 
with observed reductions in selected European cities during the lockdowns. The analysis of the model simulations is relatively 
superficial, but the value of the paper is clearly in the transparent calculation of the reduction factors and the provision of these 20 
factors to the community. 

I only have one minor comment. The authors should indicate the year on which the CAMS-REG-AP emission inventory used 
in the modelling component of the study is based. 

The reference year of the CAMS-REG-AP emission inventory used is 2016, which is the most recent year available at the time 
of the study. We have added this information in the revised version of the manuscript as follows: 25 

“The base year of the CAMS-REG-APv3.1 emissions used in the three scenarios is 2016, which was the most recent year 
available at the time of the study” (lines 370-371 of the revised manuscript) 
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Anonymous Referee #2 

Received and published: 28 September 2020 30 

The authors estimated the daily reductions in air pollutant emissions due to COVID-19 in Europe and evaluated the time-

resolved emissions data through air quality model simulations of NO2. Activity indicators including electricity demand, 

heating degree day, and Google mobility reports are used in this study to represent the relative changes in emissions from 

different source sectors. The comparisons between simulated and observed NO2 concentrations suggest the improvement of 

modeling results driven by the daily emission reduction factors based on the activity indicators. This paper provides important 35 

results on the effect of COVID-19 on anthropogenic emissions and air quality, which is a hot topic at present not only in 

Europe but also in the other continents. Overall, I think this paper deserves publication in ACP but I still have concerns about 

the uncertainties in the method and results. I suggest that the authors carefully clarify the uncertainties in the method and add 

a specific section in the main text to discuss the uncertainties in detail 

Major comments: 40 

1. Energy industry. The electricity demand is estimated to have increased during COVID-19 over the Northern European 

countries such as Denmark, Norway, and Sweden. Why did this happen? Are these weird results relevant to the errors in the 

ML models designed to account for the influence of temperature fluctuations on electricity demand? Are there any temperature 

anomalies over North Europe during the COVID period? The authors did not explain the potential errors in the method but 

just assumed a null reduction of the electricity demand in Denmark, Finland, and Norway (Lines 178 to 180 in Page 6), which 45 

is not acceptable in my opinion. 

Regarding the case of Sweden, as mentioned in the manuscript, we hypothesize that the obtained increase in electricity demand 
is due to the combination of the two factors: (i) the electricity demand from public and commercial services may have remained 
unperturbed as there was no enforced lockdown in contrast to most other countries and (ii) the voluntary self-isolation of a 
fraction of the population may have increased household electricity consumption. 50 

The reasons for assuming a null reduction of electricity demand for the other countries mentioned by the reviewer are detailed 
below. 

In this study, we used a ML method for predicting the fluctuations of electricity demand based on temperature, assuming that 
temperature is a strong driver of electricity demand (for heating and air conditioning). However, temperature is obviously not 
the only driver of electricity demand variability, which can be influenced by various other factors (e.g. change of technology, 55 
behaviour, regulation). In addition, the gradient boosting machine models used in this study are non-parametric, meaning that 
they cannot extrapolate, i.e. predict electricity demand values outside the range of values used during the training phase. As a 
consequence, such models may perform poorly when overly strong trend and/or inter-annual variability (not directly due to 
temperature variability) are affecting the target variable of interest. In practice, the results obtained in this study show that this 
approach performs relatively well in most countries, although exceptions cannot be excluded, as shown by the case of Finland. 60 

In Finland, the electricity demand reported by ENTSO-E in early 2020 (around late January/early February) was substantially 
lower than during all previous years. However, this anomaly in the power data cannot be explained by a drastic change in the 
temperature, as this parameter remained within the same range of values than during previous years. In such a situation, where 
changes in power demand cannot be related to changes in temperature, the ML cannot produce accurate predictions. We have 
included the following multi-panel plot (with time series and scatter plot) in the Supplement material (Fig. S1) to illustrate the 65 
behaviour observed in the input data. Besides temperature, electricity demand in Finland is thus likely driven by other factors 
not included in our ML framework. Improving the predictions of electricity demand would require more complex models 
including heterogeneous socio-economic data, which is far beyond the scope of the present study.  For this reason, we decided 
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to discard the use of ML for this country and assume a null reduction of emissions, given that no strong lockdown was imposed 
to the population and no clear reduction of electricity demand was observed during the lockdown period. 70 

 
Figure S1. Time plots representing 7-day running averages of the electricity demand [MW] (ENTSO-E, 2020) and 
population-weighted outdoor temperature [ºC] (C3S, 2017) in Finland for the years 2015 until 2020 (left) and 
corresponding scatterplot between both variables (right). The electricity demand data represented in the time plots 
include ENTSO-E reported values for 2015-2020 (OBS) and the business as usual 2020 values predicted with the ML 75 
algorithm (BAU). The values of the scatterplot with the "lockdown" label (non-filled symbols) correspond to the period of 
the year 15/03-31/05, while the others correspond to the rest of the year. The data corresponding to the 2020 period in 
which negative anomalies in the electricity demand data were detected are highlighted with a dark red outline.  

A relatively similar situation was observed in Denmark. We found higher-than-usual electricity demand levels reported by 
ENTSO-E in late February/early March 2020 which, as in the case of Finland, could not be explained by drastic changes in 80 
temperature. At this time of the year, such relatively high power demand were already observed in 2018 but because of strong 
cold waves, while temperature was not particularly cold in 2020. Similar to the Finland case, we also included the following 
multi-panel plot in the supplementary material (Fig. S2). Thus, like in Finland, other (non-meteorological) factors are likely 
driving this substantial increase of electricity demand in Denmark, which explains the bias obtained from mid-February to 
mid-March. Without additional sources of information regarding this, we assumed again a null emission reduction. 85 
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Figure S2. Similar to Fig. S1 but for Denmark. The period with strongest discrepancies between observed and predicted 
electricity demand before the lockdown is indicated in red. 90 

In Norway, although the mean bias over the entire pre-lockdown period in 2020 (2020/01/01-2020/03/15) is low (and 
comparable to the biases obtained in the other countries), looking at the time series shows that the bias was low at the begining 
of the period but started to increase in mid-February (i.e. well before the lockdown), and persisted (with some variability) 
during the lockdown period. The reliability of these predictions is thus lower. In addition, the increase in electricity demand 
obtained during the lockdown period was found to be in the same order of magnitude of the bias found before. Considering 95 
again the fact that COVID-19-related mobility restrictions were relatively soft in this country, we prefered to discard the use 
of ML for this country and assume a null reduction of electricity demand. 

 
Figure S3. Similar to Fig. S1 but for Norway.  
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For these different countries, we do not expect that the assumed null reductions of the electricity demand will cause a significant 100 
impact on the computed emission reductions, as the majority of the electricity production in these countries comes from 
renewable energy sources. For instance, in the case of Norway more than 90% of the electricity production comes from 
hydropower (IEA, 2020). Moreover, the assumption of a null reduction for these countries is in line with the very low average 
changes in electricity demand reported by Le Quéré et al. (2020) (e.g. Finland, -2%, Denmark +1%). 

All this information has been included in the revised version of the manuscript as follows: 105 

“In this study, ML models are used for predicting the fluctuations of electricity demand based on temperature (and additional 
time features), which assumes that temperature is a strong driver of electricity demand (for heating and air conditioning). 
However, temperature is obviously not the only driver of electricity demand variability, which can be influenced by various 
other factors (e.g. change of technology, behaviour, regulation). In addition, the gradient boosting machine models used in 
this study are non-parametric, meaning that they cannot extrapolate, i.e. predict electricity demand values outside the range 110 
of values used during the training phase. As a consequence, such models may perform poorly when a strong trend and/or 
inter-annual variability (not directly due to temperature variability) are affecting the electricity demand to predict. In practice, 
the results obtained in this study show that this approach performs well in most countries, although there are some exceptions. 
The poorest performance was obtained in Finland (r = 0.33), due to a strong negative anomaly (-12% on average) in electricity 
demand during January-February 2020 compared to previous years used for training. As shown in Fig. S1, the electricity 115 
demand reported by ENTSO-E for this country in early 2020 (i.e. late January/early February) was substantially lower than 
during all previous years (2015-2019). However, this anomaly in the power data cannot be explained by a drastic change in 
the temperature, as this parameter remained within the same range of values than during previous years. In such situations, 
where changes in power demand cannot be related to changes in temperature, the ML cannot produce accurate predictions. 
Compared to most other countries, a larger NRMSE and lower correlation was also found in Luxembourg. In this case, we 120 
attribute the low performance of the ML algorithm to the large data gap found in the historical data used for training. For 
instance, for the year 2019 the ENTSO-E dataset presents a temporal coverage lower than 50%. In addition, despite relatively 
good statistics in early 2020, the electricity demand computed in Denmark and Norway shows a substantial and unexpected 
increase during the COVID-19 lockdown (up to +12%). In the case of Denmark, we found higher-than-usual electricity 
demand levels reported by ENTSO-E in late February/early March 2020 which, as in the case of Finland, could not be directly 125 
explained by drastic changes in temperature (Fig. S2). At this time of the year, such relatively high power demand were already 
observed in 2018 but because of strong cold waves, while temperature was not particularly cold in 2020. Like in the case of 
Finland, unexplained changes in the electricity demand induce errors in the predictive ML algorithm. For Norway, although 
the mean bias on the entire test period is relatively low, a closer look to the time series indicates that this bias was low at the 
beginning of the period and started to increase in mid-February and persisted during the lockdown (Fig. S3). Therefore, it is 130 
unclear to which extent the increase of electricity demand during the lockdown is real or simply the persistence of the bias 
previously observed before the lockdown starts (as both are in the same order of magnitude). Without additional sources of 
information and given the relatively soft mobility restrictions imposed in Norway, we also discarded the use of ML for this 
country and assumed that electricity demand during the lockdown period was not significantly impacted.  

Considering all of the above, and as a precautionary measure, we assumed a null reduction of the electricity demand in 135 
Denmark, Finland and Norway, and a fixed -16% reduction in Luxembourg starting the first day of the national lockdown 
implementation (15th of March), following the results reported by Le Quéré et al. (2020). Importantly, we do not expect that 
assuming a null reduction will cause a significant impact on the computed emission reductions, as the majority of the electricity 
production in these countries comes from renewable energy sources. For instance, in the case of Norway more than 90% of 
the electricity production comes from hydropower (IEA, 2020a).” (lines 174-210 of the revised manuscript) 140 

 

IEA: Key energy statistics. Norway. Available at: https://www.iea.org/countries/norway (last access: October 2020), 2020a. 

Le Quéré, C., R. B. Jackson, M. W. Jones, A. J. P. Smith, S. Abernethy, R. M. Andrew, A. J. De-Gol, D. R. Willis, Y. Shan, J. 
G. Canadell, P. Friedlingstein, F. Creutzig and G. P. Peters: Temporary reduction in daily global CO2 emisisons during the 
COVID-19 forced confinement.  Nature Climate Change, https://doi.org/10.1038/s41558-020-0797-x, 2020. 145 
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2. Manufacturing industry. This study attributed 25% of the total electricity demand reduction to the reduction in manufacturing 

industry activity, which is rather arbitrary. What is the uncertainty involved in using such a uniform factor for the industry 

sector in different European countries? The authors said that the manufacturing industry sector has maintained certain activities 

during the COVID-19 pandemic (Line 215 in Page 7), which is not consistent with what I saw in Fig. 4a. The production of 150 

cement, iron, steel, and glass all declined significantly during April 2020 in Spain. 

The attribution of 25% of the total electricity demand reduction to the reduction in manufacturing industry activity is consistent 
with the -27% decrease in electricity use by the manufacturing sector reported by the electricity transmission system operator 
of France (RTE, 2020). We have added this information in the revised version of the manuscript. 

We believe the uncertainty involved in using this uniform factor is not significant compared to the uncertainty associated to 155 
the assumption of the same reduction factors for all the industry branches. We illustrated this fact in the revised version of the 
manuscript as follows: 

“Manufacturing industry: For this sector, the same reduction factors are assumed for all the industry branches. Yet, 
information reported by national industrial production indexes are indicating that not all industrial sectors were affected in 
the same way by the lockdown restrictions. For instance, Spanish pharmaceutical, food and paper industries experienced 160 
almost no changes in their activity during April 2020 when compared to the previous year (between 0 and -9%), while 
industries related to the production of petroleum and mineral products showed moderate to significant decreases in April 
(between -28% to -43%). For this month and country, the average reduction factor computed with the current methodology is 
-12.5% which, despite falling within the range of the aforementioned reductions, is not representative of the changes reported 
for any of the specific industrial branches. In order to overcome this limitation, specific reduction factors should be developed 165 
for each industrial branch or groups of industrial branches presenting a similar behaviour” (lines 649-664 of the revised 
manuscript) 

 

Regarding the second part of the comment, we updated Fig. 4a by adding the evolution of the Industrial production Index in 
Spain for the food and paper industries, which remained almost unaffected during the COVID-19 lockdowns (similar to what 170 
we were already showing for the manufacturing of pharmaceutical and cleaning products). We also clarified in the text that 
the industrial branches responsible of manufacturing essential goods (e.g. food, pharmaceutical preparations and other 
chemical products) were the ones that remained almost unaffected during the COVID-19 lockdowns.  

 
 175 
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3. Road transport. The authors acknowledged that the emission reduction factors for the traffic sector may be overestimated 

because the activity levels of heavy-duty vehicles on interurban roads did not decline as much as those light-duty vehicles on 

urban roads. This could be the largest source of uncertainty in this study because the transport sector is the major source of 

NOx emissions and the heavy-duty vehicles account for a large part of transport emissions. I suggest that the authors provide 

more discussions on this uncertainty and try to reduce it if possible. 180 

We agree with the reviewer that the potential overestimation of the emissions drop from heavy duty vehicles when using the 
Google mobility trends may be one of the largest sources of uncertainty in this study. Therefore, an extended discussion on 
this topic has been added in the revised manuscript.  

We used the Spanish official EMEP road transport emissions (EMEP/CEIP, 2020) which, unlike CAMS-REG-AP, are reported 
by vehicle category, to quantify the impact of omitting the distinction between light and heavy-duty vehicle when developing 185 
the reduction factors. We computed the evolution in daily NOx road transport emissions [t·day-1] during the entire period of 
study (20 January to 26 April) for Spain and for three different scenarios: (i) considering the reduction factors reported by the 
Google reports for Spain (Google, 2020) for all vehicle types (Google), (ii) considering the reduction factors reported by the 
Google reports for Spain for light duty vehicles and the ones reported by DGT (2020) for heavy duty vehicles (Google-HDV) 
and (iii) without considering any reduction factor (Business as usual scenario, i.e. BAU). The following figure, which has been 190 
included in the revised version of the supplementary material (Figure S4), shows the computed results: 

 

 
Figure S4. Evolution in daily NOx road transport emissions [t·day-1] during the entire period of study (20 January to 26 

April) for Spain and for three different scenarios: (i) considering the reduction factors reported by the Google reports for 195 

Spain (Google, 2020) for all vehicle types (Google), (ii) considering the reduction factors reported by the Google reports 

for Spain for light duty vehicles and the reduction factors reported by DGT (2020) for heavy-duty vehicles (Google-HDV) 

and (iii) without considering any reduction factor (Business as usual scenario, i.e. BAU). In all three cases, the results are 

based on the Spanish official EMEP emissions as reported in CEIP (EMEP/CEIP, 2020) 

 200 
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We compared the average emissions computed for each scenario during the strictest lockdown period (23 March to 26 April). 
Results indicate a -18% difference between the computed average reductions (-528.5 t when using Google trends for all vehicle 
categories and -434.4 t when considering specific heavy-duty vehicle trends). This difference may vary across countries due 
to differences in: (i) the impact of COVID-19 restriction on the activity of heavy-duty vehicles and (ii) the contribution of the 
heavy-duty vehicles to the overall traffic emissions.  205 

This discussion has been introduced in the revised version of the manuscript as follows: 

“In order to quantify this uncertainty, we used the Spanish official EMEP road transport emissions (EMEP/CEIP, 2020) 
which, unlike CAMS-REG-AP, are reported by vehicle category, to quantify the impact of omitting the distinction between 
light and heavy-duty vehicle when developing the reduction factors. We compared the NOx average emission reductions 
obtained for the road transport sector during the strictest lockdown period (23 March to 26 April) when considering the DGT 210 
(2020) trends for heavy duty vehicles instead of the Google movement trends. Results indicate a -18% difference between the 
computed average reductions, i.e. -528.5 t when using Google trends for all vehicle categories and -434.4 t when considering 
specific heavy-duty vehicle trends (Fig. S4). This difference may vary across countries due to differences in: (i) the impact of 
COVID-19 restriction on the activity of heavy-duty vehicles and (ii) the contribution of the heavy-duty vehicles to the overall 
traffic emissions (lines 314-321 of the revised manuscript) 215 

We also detailed how this uncertainty could be reduced in future versions of the dataset. For that, we added the following 
discussion in a new subsection of the manuscript entitled “5.2 Future perspective”: 

“Future works will focus on amending the shortcomings mentioned above, particularly for the case of road transport emissions 
and the potential overestimation of the emissions drop from heavy duty vehicles when using the Google mobility trends. 
Measured traffic counts from other countries will be collected in order to perform an intercomparison exercise against the 220 
Google movement trends and derive a set of European adjustment factors to consider when using the original Google dataset 
for computing changes in emissions from heavy-duty vehicles.” (lines 683-687 of the revised manuscript) 

4. Modeling results. This study evaluated modeled NO2 concentrations with observations (Fig. 12) during the pre-lockdown 

and lockdown periods, respectively, which is very helpful to understand the uncertainties in the estimates of daily emissions. 

I suggest the authors add another figure that compares the observed and simulated NO2 decline from pre-lockdown to 225 

lockdown periods, which gives the audience more information on the accuracy of the estimated emission reduction factors. 

We agree with the reviewer. A new figure (Figure 13) has been added to the manuscript, which shows the comparison between 
observed and simulated NO2 decline from pre-lockdown (20 January to 20 February) to lockdown periods (23 March to 26 
April) in each region of study. Results are provided in absolute and relative terms: 
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 230 
Figure 13. Absolute [µg·m-3] and relative [%] observed and modelled NO2 concentration declines from pre-lockdown 
(20 January to 20 February) to lockdown (23 March to 26 April) periods at urban (a, b) and rural (c, d) background 
stations for selected countries (cities). 
 

The discussion of the results shown in the figure were added in section 4.2 of the revised manuscript: 235 

“The simulated NO2 declines from pre-lockdown to lockdown periods when considering the covid19_all scenario are fairly in 
line with the observed ones (Fig.13.a), although a general underestimation is shown (i.e. -7.3 µg·m-3 and -6.2 µg·m-3 
differences between modelled and observed declines in Italy and France, respectively). This underestimation could be related 
to the fact that we are currently not considering emission reductions from fuel combustion processes in commercial and 
institutional buildings, which were obliged to close during the lockdown period in almost all European countries.” (lines 534-240 
543 of the revised manuscript) 

“The modelled decline of NO2 concentrations from pre-lockdown to lockdown periods presents a slight overestimation in all 
rural background regions except for Italy (Fig. 13.b). The largest differences occur in Germany and France, where modelled 
declines are 4.1 µg·m-3 and 2.8 µg·m-3 larger than the observed ones. Rural background levels can be determined by the 
combination of multiple emission sources and therefore it is difficult to attribute these differences to a sole reason. 245 
Nevertheless, one plausible explanation for the obtained results could be the limitation of the Google mobility trends in 
representing the drop of emissions from heavy-duty vehicles, as discussed in Sect. 2.3” (lines 563-569 of the revised 
manuscript) 

5. Conclusions. The conclusion section is not organized well. Some paragraphs repeated the text from the method section, such 

as lines 509 to 517 in Page 16. Besides, the discussions on the uncertainties are not the conclusions of this study and should 250 

be written in a specific new section. Please remove the unnecessary text in the conclusions, add a new section of 

‘Uncertainties’, and provide a condensed conclusion section 

The conclusion section has been reorganised following the reviewer’s comment. A new subsection entitled “5.1 Uncertainties” 
has been added to include the discussion related to the limitations and uncertainties of the present study. The original discussion 
has been restructured in the form of bullet points and extended considering comments #2 and #3 of the reviewer. Moreover, a 255 
new subsection called “5.2 Future perspective” has also been added, which includes the discussion related to future works. 
The repeated text from the method section has also been modified.  
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Time-resolved emission reductions for atmospheric chemistry 
modelling in Europe during the COVID-19 lockdowns 

Marc Guevara1, Oriol Jorba1, Albert Soret1, Hervé Petetin1, Dene Bowdalo1, Kim Serradell1, Carles 260 
Tena1, Hugo Denier van der Gon2, Jeroen Kuenen2, Vincent-Henri Peuch3, Carlos Pérez García-Pando1,4 
1 Barcelona Supercomputing Center, Barcelona, 08034, Spain 
2 TNO, Department of Climate, Air and Sustainability, Utrecht, the Netherlands 
3 European Centre for Medium-Range Weather Forecasts, Reading, UK 
4 ICREA, Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Spain 265 
 

Correspondence to: Marc Guevara (marc.guevara@bsc.es) 

Abstract. We quantify the reductions in primary emissions due to the COVID-19 lockdowns in Europe. Our estimates are 

provided in the form of a dataset of reduction factors varying per country and day that will allow modelling and identifying 

the associated impacts upon air quality. The country- and daily-resolved reduction factors are provided for each of the 270 

following source categories: energy industry (power plants), manufacturing industry, road traffic and aviation (landing and 

take-off cycle). We computed the reduction factors based on open access and near-real time measured activity data from a 

wide range of information sources. We also trained a machine learning model with meteorological data to derive weather-

normalised electricity consumption reductions. The time period covered is from 21 February, when the first European localised 

lockdown was implemented in the region of Lombardy (Italy), until 26 April 2020. This period includes five weeks (23 March 275 

until 26 April) with the most severe and relatively unchanged restrictions upon mobility and socio-economic activities across 

Europe. The computed reduction factors were combined with the Copernicus Atmosphere Monitoring Service’s European 

emission inventory using adjusted emission temporal profiles in order to derive time-resolved emission reductions per country 

and pollutant sector. During the most severe lockdown period, we estimate the average emission reductions to be -33% for 

NOx, -8% for NMVOC, -7% for SOx and -7% for PM2.5 at the EU-30 level (EU-28 plus Norway and Switzerland). For all 280 

pollutants more than 85% of the total reduction is attributable to road transport, except SOx. The reductions reached -50% 

(NOx), -14% (NMVOC), -12% (SOx) and -15% (PM2.5) in countries where the lockdown restrictions were more severe such 

as Italy, France or Spain. To show the potential for air quality modelling we simulated and evaluated NO2 concentration 

decreases in rural and urban background regions across Europe (Italy, Spain, France, Germany, United-Kingdom and Sweden). 

We found the lockdown measures to be responsible for NO2 reductions of up to -58% at urban background locations (Madrid, 285 

Spain) and -44% at rural background areas (France), with an average contribution of the traffic sector to total reductions of 

86% and 93%, respectively. A clear improvement of the modelled results was found when considering the emission reduction 

factors, especially in Madrid, Paris and London where the bias is reduced with more than 90%. Future updates will include the 

extension of the COVID-19 lockdown period covered, the addition of other pollutant sectors potentially affected by the 

Deleted: Earth Sciences Department, 290 
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restrictions (commercial/residential combustion and shipping) and the evaluation of other air quality pollutants such as O3 and 

PM2.5. All the emission reduction factors are provided in the supplementary material. 

1 Introduction 

Since the end of February 2020, most European countries have imposed lockdowns to combat the spread of the COVID-19 

pandemic, forcing many industries, businesses and transport networks to either close down or drastically reduce their activity. 295 

Such a socioeconomic disruption, which is unprecedented in many ways, has resulted in a sudden drop of atmospheric 

anthropogenic emissions, including both criteria pollutants and greenhouse gases. The fall of pollutant levels across countries 

has been identified in multiple studies through the analysis of air quality ground-based and satellite observations (e.g. Bauwens 

et al., 2020; Collivignarelli et al., 2020; Petetin et al., 2020). While these studies have assessed changes in pollutant 

concentrations, further understanding of the lockdown impacts upon air quality and climate requires quantifying the reduction 300 

of primary emissions. Emissions and weather changes are entangled and looking at concentrations changes only can be largely 

affected by specific weather conditions, especially considering that the past winter and spring 2020 were exceptionally hot in 

Europe (C3S, 2020).  

 

Understanding and quantifying the impact of the COVID-19 lockdowns upon European emissions and air quality is difficult 305 

due to the heterogeneous implementation of restrictions across different countries, including: (i) different starting dates of the 

restrictions, (ii) diversity in the levels and type of restrictions, (iii) changes in time of the restriction levels and (iv) different 

spontaneous response by individuals (e.g. voluntary decision to change the way of commuting). The chronology of the 

lockdowns is illustrated in Fig. 1, which shows stringency index trends computed by the Oxford COVID-19 Government 

Response Tracker (OxCGRT) for selected countries (Hale et al., 2020). The stringency index reports how the response of 310 

governments varied over several indicators (e.g. school closures, restrictions in movement, implementation of economic 

policies), becoming stronger or weaker over the course of the COVID-19 pandemic. The analysis of the stringency index trends 

is focussed on 6 European countries with different lockdown patterns for illustration (Italy, Spain, France, Germany, the United 

Kingdom and Sweden). As observed, Italy was the country where restrictions first started, followed by Spain and France, 

where national lockdowns were imposed on 14 and 17 March, respectively. In contrast to Italy, where the transition from low 315 

to high stringency levels was gradual, these two countries abruptly experienced severe restrictions on movements, and 

commercial and industrial activities. A similar pattern is observed for Germany and the United-Kingdom (UK), where national 

lockdowns were imposed on the 20 and 23 March, respectively. Sweden, on the other hand, was one of the few European 

countries where no national lockdowns were implemented and only national recommendations (e.g. relatively soft social 

distancing measures) were provided to citizens. This is clearly illustrated in the evolution of its stringency index, which 320 

remained lower than in the other countries during the whole period. 
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Considering all of the above, the quantification of emission changes due to the COVID-19 lockdown requires the use of 

reduction factors that are, at least: (i) country-dependent, (ii) pollutant sector-dependent and (iii) daily dependent for some 

sectors. Some studies focussing on the quantification of emission reductions are beginning to be published. Le Quéré et al. 325 

(2020) quantified the reduction in daily CO2 emissions during the COVID-19 lockdown from January 2020 to April 2020 over 

69 countries, 50 US states and 30 Chinese provinces for a total of six sectors of the economy (i.e. energy industry, 

manufacturing industry, road transport, residential sector, public sector and aviation). The study, which calculates the emission 

reductions based on national activity data, was focussed on estimating the expected impact of the lockdowns upon the 2020 

annual CO2 emissions and climate, but it did not include an analysis of emission cuts of criteria pollutants (NOx, SOx, NMVOC, 330 

NH3, PM10 and PM2.5) or air pollution levels. More recently, Menut et al. (2020) developed an emission scenario for Western 

Europe to quantify the impact of the lockdowns on air quality levels. Although focussing on criteria pollutants, the emission 

scenario was limited to March 2020 and was set up using only the Apple movement trends, which were used to derived 

emission reductions not only for road transport but also for other anthropogenic sources (i.e. manufacturing industry, non-road 

transport and residential/commercial combustion). 335 

 

We present an open-source dataset of daily, sector- and country-dependent emission reduction factors for Europe associated 

with the COVID-19 lockdowns. These factors are designed to both support the quantification of European primary emission 

reductions and the associated impacts upon air quality. Our emission reduction factors are based on a bottom-up approach that 

considers a wide range of information sources, including open access and near-real time measured activity data, proxy 340 

indicators and other available reports. The resulting dataset covers from the 21st February 2020, the beginning of localised 

lockdown in Italy (region of Lombardy), to the 26th April 2020 and the following anthropogenic source categories: energy 

industry, manufacturing industry, road transport and aviation (landing and take-off cycle, LTO). 

 

To assure easy adoption of the emission reduction factors they are produced in a format consistent with the CAMS-REG-AP 345 

emission inventory developed under the Copernicus Global and Regional emissions service (CAMS_81) (Kuenen et al., 2014; 

Granier et al., 2019), whose main objective is to provide gridded distributions of global and European emissions in direct 

support of the Copernicus Atmosphere Monitoring Service (CAMS) production chains (Marécal et al., 2015; Huijnen et al., 

2019; Rémy et al., 2019). In the framework of CAMS, the CAMS-REG-AP emission inventory is currently used by several 

modelling services, mainly to provide short term air quality forecasts, long-term air quality re-analysis or policy support 350 

products. To illustrate the potential application of our reduction factors, we also performed air quality simulations to quantify 

and evaluate the observed changes in NO2 concentrations across Europe. We considered three emission scenarios: (i) a first 

one with business as usual emissions using the default CAMS-REG-AP inventory, (ii) a second one considering only the 

traffic-related emission reductions, and (iii) a third one including the reductions from all the aforementioned sectors. The 

difference between scenarios allows quantifying the impact of the lockdown measures on emissions and air quality levels and, 355 

particularly, the contribution of the road transport activity to the overall reductions. The study period of these modelling 
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exercises covers one month prior to the first day of lockdown in Italy (20 January to 20 February) and more than two months 

of COVID-19 lockdown conditions (21 February to 26 April). Therefore, the focus of the work is on the transition to full 

lockdown conditions. The process toward normal conditions is a still ongoing process and will be assessed in future works. 

 360 

Section 2 describes the methods and datasets used to estimate the European emission reduction factors for each one of the 

aforementioned pollutant sectors. Section 3 describes the setup of the modelling experiment to test the performance of the 

reduction factors on modelling the decrease of emissions and NO2 concentrations across Europe. Section 4 discusses the results 

obtained in terms of emissions and NO2 level reductions. Section 5 includes our main conclusions and perspectives for future 

updates. 365 

2 Time-, country- and sector-resolved emission reduction factors 

We computed a set of emission reduction factors for Europe that vary per day, country and sector. The resulting dataset follows 

the sector classification reported by the CAMS-REG_AP emission inventory, which corresponds to the Gridded aggregated 

Nomenclature For Reporting (GNFR). We considered four GNFR sectors, GNFR_A (energy industry), GNFR_B 

(manufacturing industry), GNFR_F (road transport) and GNFR_ H (aviation), which we assumed to be the ones suffering the 370 

largest reduction in their activity during the COVID-19 lockdowns, in line with Le Quéré et al. (2020). Other sectors potentially 

affected by the COVID-19 lockdown such as GNFR_C (other stationary combustion activities) or GNFR_G (shipping) were 

not included in this first assessment and will be addressed in future releases of the dataset. 

 

In terms of spatial coverage, we included as many countries as possible that are covered by the CAMS-REG_AP European 375 

working domain (30° W – 60° E and 30° N – 72°N) (a complete list of the countries can be found in Granier et al. (2019)), 

giving a special priority to EU-30 (EU-28 plus Norway and Switzerland). A list of the countries included for each sector is 

summarised in Table 2. The time span of the reduction factors is from 21 February to 26 April 2020. The beginning of the 

period corresponds to the date of the first localised lockdown in the region of Lombardy, Italy. Three distinct phases can be 

identified from the OxCGRT stringency index trends in Fig. 1: (i) a first phase without restrictions, with the exception of Italy 380 

(1st January to 12th March), (ii) a second phase with increasingly severe restrictions (12 to 23 March) and (iii) a third and final 

phase when the restrictions were at their maximum and remained almost unchanged for five weeks (23 March to 26 April). 

 

We collected and processed daily measured time-series representing the main activities of each sector. We then combined this 

information with specific methods in order to derive daily emission reduction factors as a function of the country and sector. 385 

Table 1 summarises the main sources of information used and the countries included for each sector. The following subsections 

describe the data and methods for each sector along with the underlying assumptions. 
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2.1 Energy industry 

We assumed the changes in emissions from the energy industry (which includes power and heat plants) to follow the changes 

observed in the electricity demand data reported by the European Network of Transmission System Operators for Electricity 390 

(ENTSO-E) transparency platform (Hirth et al., 2018; ENTSO-E, 2020). ENTSO-E centralizes the collection and publication 

of the electricity generation for each European Member State. For each country, we collected daily electricity demand data for 

years 2015 to 2020 (January to April). Data gaps and inconsistencies found in the original dataset were corrected using the 

electricity generation statistics reported by the national Transmission System Operators (TSOs). For Russia, we derived the 

electricity demand data directly from Russia’s Federal Grid Company of Unified Energy System (FGC UES, 2020). 395 

 

In addition to its characteristic weekly variability, with higher values during weekdays, part of the electricity demand is driven 

by temperature fluctuations. Therefore, to calculate the reduction in electricity demand during the COVID-19 lockdowns, we 

first estimated the business-as-usual (BAU) electricity demand, i.e., the demand that would have occurred in the absence of 

lockdowns under the same meteorological conditions. To estimate the BAU electricity demand we used ML models trained 400 

with meteorological data and other time features. This approach has been used to weather-normalize NO2 surface concentration 

time-series, whose variability is also partly driven by the meteorological conditions, to quantify actual reductions of NO2 

during the COVID-19 lockdown (Petetin et al., 2020). More specifically, we used gradient boosting machine (GBM) models 

trained and tuned independently for each country using daily data from January to April between 2015 and 2019. As inputs, 

we considered the following features: country-level daily population-weighted Heating Degree Days, date index (number of 405 

days since 2015/01/01), Julian date, day of week and a Boolean feature indicating the country-specific bank holidays. The 

HDD is defined relative to a threshold temperature (𝑇!) above which a building needs no heating and is used to approximate 

the daily energy demand for heating a building (Quayle and Diaz, 1980). In order to provide a more realistic estimate of the 

potential electricity demand for space heating on a national level, we computed country-specific population-weighted HDD 

values (𝐻𝐷𝐷_𝑝𝑜𝑝(𝑑)) following Eq. (1): 410 

 

𝐻𝐷𝐷_𝑝𝑜𝑝(𝑑) = ∑ (#$%	('!('"#(),+),-))∗/01())

∑ /01())$
%&'

3
)45         (1) 

 

Where 𝑇67(𝑥, 𝑑) is the daily mean 2 meter outdoor temperature for grid cell x and day d [ºC]; 𝑃𝑜𝑝(𝑥) is the amount of 

population included in grid cell x [nº of inhabitants] and n is the total number of grid cells that corresponds to a specific country. 415 

A threshold temperature value of 15.5ºC was selected following Spinoni et al. (2015). Outdoor temperature information was 

obtained from the ERA5 reanalysis dataset for the period 2015 – 2020 (C3S, 2017), while information on gridded population 

was derived from the Gridded Population of the World, Version 4 (GPWv4; CIESIN, 2016). Each grid cell was assigned to a 

specific country following the global country mask available in the Emissions of atmospheric Compounds and Compilation of 

Ancillary Data system (ECCAD, https://eccad.aeris-data.fr/).  420 
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Julian day and day of week serve here as proxies for the (climatological) main drivers of the seasonal and weekly variability 

of the power demand, and the date index acts as the trend term. We replicated the tuning strategy previously used in Petetin et 

al. (2020) with random search in the hyper-parameter space and rolling-origin cross-validation (appropriate for time series). 

While the training and tuning of the GBM models was performed from 2015 to 2019, we used the two first months of 2020 425 

(January-February) to test the performance of the models.  

 

Figure 2 summarizes the main statistics (normalized mean bias, NMB; normalized root mean square error, NRMSE and 

correlation, r) obtained from the comparison between measured and ML-based electricity demand during the first two months 

of 2020 for selected countries. Generally, a high correlation (above 0.9) and low NMB and NRMSE (below 5%) are observed 430 

for all cases, especially in those countries with stronger lockdown restrictions such as Italy, France or Spain. In this study, ML 

models are used for predicting the fluctuations of electricity demand based on the temperature (and additional time features), 

assuming that temperature is a strong driver of electricity demand (for heating and air conditioning). However, temperature is 

obviously not the only driver of electricity demand variability that can be influenced by various other factors (e.g. change of 

technology, behaviour, regulation). In addition, the GBM models used in this study are non-parametric, meaning that they 435 

cannot extrapolate, i.e. predict electricity demand values outside the range of values used during the training phase. As a 

consequence, such models may perform poorly when overly strong trend and/or inter-annual variability (not directly due to 

temperature variability) are affecting the electricity demand to predict. In practise, the results obtained in this study show that 

this approach performs relatively well in most countries, although there are some exceptions. The poorest performance was 

obtained in Finland (r = 0.33), due to a strong negative anomaly (-12% on average) of electricity demand in January-February 440 

2020 compared to previous years used for training. As shown in Fig. S1, the electricity demand reported by ENTSO-E for this 

country in early 2020 (i.e. late January/early February) was substantially lower than during all previous years (2015-2019). 

However, this anomaly in the power data cannot be explained by a drastic change in the temperature, as this parameter remained 

within the same range of values than during previous years. In such situation, where changes in power demand cannot be 

related to changes in temperature, the ML cannot produce accurate predictions. Compared to most other countries, a larger 445 

NRMSE and lower correlation was also found in Luxembourg. In this case, we attribute the low performance of the ML 

algorithm to the large data gap found in the historical data used for training. For instance, for the year 2019 the ENTSO-E 

dataset presents a temporal coverage lower than 50%. In addition, despite relatively good statistics in early 2020, the electricity 

demand computed in Denmark and Norway shows a substantial and unexpected increase during the COVID-19 lockdown (up 

to +12%). In the case of Denmark, we found higher-than-usual electricity demand levels reported by ENTSO-E in late 450 

February/early March 2020 which, as in the case of Finland, could not be directly explained by drastic changes in temperature 

(Fig. S2). At this time of the year, such relatively high-power demand was already observed in 2018 but because of strong cold 

waves, while temperature was not particularly cold in 2020. Like in the case of Finland, unexplained changes in the electricity 

demand induce errors in the predictive ML algorithm. For Norway, although the mean bias on the entire test period is relatively 
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low, a closer look to the time series indicates that this bias was low at the beginning of the period and started to increase in 455 

mid-February and persisted during the lockdown (Fig. S3). Therefore, it is unclear to which extent the increase of electricity 

demand during the lockdown is real or simply the persistence of the bias previously observed before the lockdown starts (as 

both are in the same order of magnitude). Without additional sources of information and given the relatively soft mobility 

restrictions imposed in Norway, we also discarded the use of ML for this country and assumed that electricity demand during 

the lockdown period was not significantly impacted.  460 

 

Considering all of the above, and as a precautionary measure, we assumed a null reduction of the electricity demand in 

Denmark, Finland and Norway, and a fixed -16% reduction in Luxembourg starting the first day of the national lockdown 

implementation (15th of March), following the results reported by Le Quéré et al. (2020). Importantly, we do not expect that 

assuming a null reduction will cause a significant impact on the computed emission reductions, as the majority of the electricity 465 

production in these countries comes from renewable energy sources. For instance, in the case of Norway more than 90% of 

the electricity production comes from hydropower (IEA, 2020a) 

 

The electricity demand started to decrease by the end of February and the beginning of March 2020 compared to the BAU 

electricity demand estimated from the GBM models in countries where strong restrictions had been implemented. We 470 

attributed these discrepancies to the direct effect of lockdown measures, regardless of the meteorological conditions, and used 

them to derive quantitative daily emission reduction factors for the energy industry sector (Eq. 2) 

 

𝑅𝐹8389_;3+<(𝑑, 𝑐) = 2
=>()*+,-'.(+,?)(=>#/0123/4(+,?)

=>#/0123/4(+,?) 3 ∗ 100       (2) 

 475 

where 𝑅𝐹8389_;3+<(𝑑, 𝑐)  is the final reduction factor for the energy industry sector for day d and country c [%]; 

𝐸𝐷@ABC>(5D(𝑑, 𝑐)  is the estimated BAU electricity demand computed using ML for day d and country c [MW] and 

𝐸𝐷78EF<98+(𝑑, 𝑐) is the measured electricity demand for day d and country c [MW]. 

 

Figure 3.a illustrates the reduction factor trends obtained for selected countries. As expected, the strong weekly cycle of 480 

electricity demand normally observed in most countries smoothed down during the COVID-19 lockdown. The resulting trends 

are consistent with the national lockdown calendars and restriction levels implemented in each country. Italy is the first country 

where traffic activity reductions happened, followed by Spain, France, Germany, UK and Sweden. This is in line with the 

starting dates of lockdown restrictions in each country (Sect. 2). For Spain, reduction increased between March 30th and April 

9th, the most restrictive phase of the Spanish lockdown when only essential activities including food trade, pharmacy, and some 485 

industries were authorized. In the case of Sweden, positive values are observed for certain days until the beginning of April. 

These results agree with the ones reported in Le Quéré et al. (2020), who obtained a 4% increase during the lockdown for this 
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country. It is likely that electricity demand from public and commercial services remained unperturbed as, in contrast to most 

countries, there was no enforced lockdown in Sweden. We also hypothesize that a voluntary self-isolation of a fraction of the 

population may have increased household electricity consumption. During the strictest period of the COVID-19 lockdown (23 500 

March – 26 April), Italy was the country experiencing the largest reductions (-21%), followed by Spain (-15%) and France (-

14.4%).  

 

The countries for which daily reduction factors could be computed are shown in Table 1. For countries with no data, we 

constructed a set of reduction factors based on the average data of all the available countries except Italy, where the lockdown 505 

restrictions began approximately 3+ weeks before other countries. 

2.2 Manufacturing industry 

The reduction factors for manufacturing industry are based on the daily electricity demand reduction factors described in Sect. 

2.1. We attributed 25% of the total electricity demand reduction to the reduction in manufacturing industry activity, which is 

consistent with the -27% decrease in electricity use by the manufacturing sector reported by the electricity transmission system 510 

operator of France (RTE, 2020). We estimated this value considering that: (i) the European industry sector consumes 22.3% 

of the total final electricity demand (Eurostat, 2020a) and (ii) most of the electricity reduction during the lockdown can be 

linked to commercial and public services. Indeed, those industrial branches responsible of manufacturing essential goods (e.g. 

food, pharmaceutical preparations and other chemical products) remained almost unaffected during the COVID-19 lockdowns, 

in contrast to the commercial and public services sectors, which were forced to drastically reduce or even completely halt their 515 

activities (i.e. restaurants and hotels, office buildings, shopping centres). This fact is illustrated in Fig. 4 which shows, on the 

one hand, the evolution of the Industrial Production Index (IPI) for selected industrial branches in Spain between January 2019 

and April 2020 (INE, 2020) and, on the other hand, the contribution of each Spanish commercial and public service branch to 

the total electricity consumption (IDAE, 2018). While certain industrial branches have suffered important decreases on their 

production levels during March and April 2020 (i.e. production of mineral products, steel industry), the essential ones kept 520 

about the same level of productivity (i.e. pharmaceutical preparations, manufacturing of soap and detergents, food and paper 

production and, to a lesser extent, petroleum refining). In contrast, office and commercial buildings, schools, universities, 

restaurants and hotels, which represent more than 70% of the total electricity consumption, were obliged, in most cases, to 

close their facilities during the lockdown. 

 525 

The reduction of power demand attributable to the manufacturing industry sector was then translated into a total reduction in 

industrial activity using the national energy balances reported in Eurostat (2020a) (Eq. 3): 

 

𝑅𝐹7E3<G_;3+<(𝑑, 𝑐) =
HI/$/5$42(+,?)∗-.6K

L5$42(?)
         (3) 
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where 𝑅𝐹7E3<G_;3+<(𝑑, 𝑐) is the final reduction factor for the manufacturing industry sector for day d and country c [%], 

𝑅𝐹8385$42(𝑑, 𝑐) is the reduction factor for the total electricity demand for day d and country c estimated as described in Sect. 

2.1 [%], and 𝑆;3+<(𝑐) is the share of final electricity consumed by the industrial sector in country c [%] (Eurostat, 2020a). 

 540 

Figure 3.b shows the daily reduction factors computed for selected countries. The original positive values (i.e. increase of 

electricity consumption) obtained for the energy industry sector (Fig. 3.b) were replaced by zeros for the calculations, as we 

consider unlikely that average increases in manufacturing industrial emissions occurred during the lockdown. In general, the 

trends observed in all countries follow the same pattern as the ones presented for the energy industry. During the strictest 

period of the COVID-19 lockdown, computed reductions are between -13 and -10% for Italy, Spain, France and UK, -4% for 545 

Germany and -0.8% for Sweden.  

2.3 Road transport 

The emission reduction factors considered for the road transport sector are based on the Google COVID-19 Community 

Mobility Reports (Google LLC, 2020). The Google dataset reports daily movement trends over time by geography (country 

and region) across different categories of places (i.e. groceries and pharmacies, parks, transit stations, retail and recreation, 550 

residential and workplaces) based on aggregated and anonymized sets of data from users who have turned on the Location 

History setting for their Google Account on their mobile devices. For the present study, we used the mobility trends reported 

for the transit stations category, which includes places like public transport hubs such as subway, bus, and train stations. The 

assumption behind this choice is that movement trends observed in public transport hot-spots correlate with private transport 

trends. Reductions for each day are calculated by Google from a baseline taken as the median value, for the corresponding day 555 

of the week, over a 5-week period prior to the lockdowns (3 January to 6 February). 

 

We evaluated the Google movement trends with actual measured traffic counts from the city of Barcelona (ATM, personal 

communication) and other major interurban roads in Spain (DGT, 2020), the latter discriminated by vehicle type (light- and 

heavy-duty) (Fig. 5). Note that for the Barcelona and DGT data, the information is available from 3 and 9 March onwards, 560 

respectively. In general terms, Google data reproduce the measured-based trends obtained for the city of Barcelona (BCN) and 

the Spanish interurban roads (DGT-all), with correlations of 0.96 and 0.92, respectively. Overall, the average reductions 

reported by each of these three datasets are similar: -74.6% (Google), -69.1% (BCN) and -63.62% (DGT-all). Using Google 

data at transit stations tends to slightly overestimate the reductions observed during the weekdays. However large discrepancies 

are shown when comparing the Google trend against the one reported by DGT for heavy-duty vehicles (DGT-heavy). The data 565 

from the DGT reports an average reduction of heavy-duty vehicles of only -31% (more than 2 times lower than the one reported 

by Google), as these vehicles supported the delivery of essential goods and products (e.g. food, medical supplies). Nevertheless, 
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we omitted the distinction between light and heavy-duty vehicle when developing the reduction factors because CAMS-

REG_AP/GHG traffic-related emissions are not discriminated by type of vehicle. Consequently, our factors for the traffic 

sector may overestimate the overall reduction of emissions, especially in areas with a higher share of heavy-duty vehicles, 570 

typically interurban roads. In order to quantify this uncertainty, we used the Spanish official EMEP road transport emissions 

(EMEP/CEIP, 2020) which, unlike CAMS-REG-AP, are reported by vehicle category, to quantify the impact of omitting the 

distinction between light and heavy-duty vehicle when developing the reduction factors. We compared the NOx average 

emission reductions obtained for the road transport sector during the strictest lockdown period (23 March to 26 April) when 

considering the DGT (2020) trends for heavy duty vehicles instead of the Google movement trends. Results indicate a -18% 575 

difference between the computed average reductions, i.e. -528.5 t when using Google trends for all vehicle categories and -

434.4 t when considering specific heavy-duty vehicle trends (Fig. S4). This difference may vary across countries due to 

differences in: (i) the impact of COVID-19 restriction on the activity of heavy-duty vehicles and (ii) the contribution of the 

heavy-duty vehicles to the overall traffic emissions. This approach may be improved in the future but was constrained in this 

study by data availability. 580 

 

Figure 3.c shows the reduction factors proposed for selected countries. As in the case of energy industry, the resulting trends 

are in line with the implementation and evolution of the national restrictions imposed in each country. The decrease of the 

traffic activity in Italy starts two days after the implementation of the localized lockdown and intensified once the national 

lockdown was imposed on 12 March, reaching reductions of about -80%. In the case of Spain and France, similar traffic 585 

reduction levels were reached just 3 days after the beginning of the corresponding national lockdowns. For UK and Germany, 

the largest reductions are around -70% and -50%, respectively. The lower reductions in Sweden (around -40%) are consistent 

with the lack of enforced mobility restrictions in this country at any point. In all cases, the activity started recovering during 

the last week of the period of study, coinciding with the relaxation of the mobility restrictions. 

 590 

The list of countries included for this sector is summarised in Table 1. For countries without available data we constructed a 

set of average reduction factors considering all countries except Italy. 

2.4 Aviation 

We derived the reduction factors related to air traffic emissions during Landing and Take-Off cycles (LTO) in airports from 

statistics provided by FlightRadar24 (FlighRadar24, 2020), which reports every day the total number of tracked operations per 595 

airport over the preceding 30 days. For each country, we selected the largest airport to represent a national proxy. We computed 

country specific daily flight operation trends using as a baseline value the average number of operations per airport from the 

previous year reported by Eurostat statistics (Eurostat, 2020b).  
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We started collecting the information from FlightRadar24 for all airports on 6 March, and the information from previous dates 

could not be retrieved as it is not archived. Therefore, our reduction factors have as initial date the 6 March in all cases, 

independently of the lockdown calendars. As shown in Fig. 3.d for most countries the reductions in flight activity were starting 605 

to occur during those dates and therefore the trends presented are consistent. However, in some other countries such as Italy, 

reductions were already in a more advanced state (first day of reduction is -15%). We do not expect this lack of information 

to affect significantly the emission and air quality modelling results, as the contribution of this pollutant sector to total European 

emissions is very low, i.e. 1.1% and 0.14% to total NOx and PM10 emissions, according to the last available EMEP official 

reported emission data (EMEP/CEIP, 2020). We expect to complement this information from alternative sources of data in a 610 

future release of the dataset. Regarding the obtained results, it is observed that in almost all countries, the reduction levels 

reached values of -90% or more before the beginning of April. In contrast to road transport, there were no signs of recovery 

during the last week of April for this sector, as the movements between countries were still restricted at that time. 

3 Evaluating the reduction factors with air quality modelling 

We performed an emission and air quality modelling study as a first demonstration and evaluation of the applicability of the 615 

developed emission reduction factors. We used the Multiscale Online Nonhydrostatic AtmospheRe CHemistry model 

(MONARCH) (see section 3.1) and the High-Elective Resolution Modelling Emission System version 3 (HERMESv3) (Sect. 

3.2) both developed at the Barcelona Supercomputing Center. The simulation period for the case study is from 20 January to 

26 April 2020. The study period covers one month of pre-COVID lockdown conditions (the first localised lockdowns in Europe 

began on 21 February in the region of Lombardy) and more than two months of lockdown conditions, including five weeks 620 

(23 March to 26 April) during which the most severe restrictions were already implemented in most (22) European countries. 

Therefore, the selected period of study allows analysing the changes in concentrations between the lockdown period and before. 

 

Three air quality simulations were run: (i) using the default CAMS-REG-APv3.1 emissions without considering any emission 

reduction, hereafter referred to as baseline scenario, (ii) considering the traffic-related emission reduction factors only, 625 

hereafter referred to as covid19_traffic scenario, and (iii) including the reduction factors from the traffic, energy and 

manufacturing industry and aviation sectors, hereafter referred to as covid19_all scenario. The base year of the CAMS-REG-

APv3.1 emissions used in the three scenarios is 2016, which was the most recent year available at the time of the study.  

 

We also compared the model results against measurements of the European Environmental Agency (EEA) AQ e-Reporting 630 

(EEA, 2020) available through the Globally Harmonised Observational Surface Treatment (GHOST) project (Sect. 3.3). The 

model and evaluation work focus on NO2. Given that our main focus are the emission reductions and their evaluation, the 

inclusion of other relevant, yet more model-dependent secondary pollutants such as O3 or PM2.5 is beyond the scope of this 
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paper. The impact of the lockdown upon secondary pollutants, which are affected by more complex chemical interactions and 635 

source contributions, may be addressed in a follow-up multi-model study. 

3.1 MONARCH model 

MONARCH v1.0 (Pérez et al., 2011; Haustein et al. 2012; Jorba et al., 2012; Spada et al., 2013; Badia and Jorba, 2015; Badia 

et al., 2017) is a fully online integrated system for meso- to global-scale applications developed at the Barcelona 

Supercomputing Center (BSC). A flexible gas-phase module combined with a hybrid sectional-bulk multicomponent mass-640 

based aerosol module is implemented in the MONARCH model, that uses the Nonhydrostatic Multiscale Model on the B-grid 

(NMMB; Janjic and Gall, 2012) as the meteorological core driver. The Carbon Bond 2005 chemical mechanism (CB05; 

Yarwood, 2005) extended with Toluene and Chlorine chemistry is the gas-phase scheme used in MONARCH. The CB05 is 

well formulated for urban to remote tropospheric conditions and it considers 51 chemical species and solves 156 reactions. 

The rate constants were updated based on evaluations from Atkinson et al. (2004) and Sander et al. (2006). The photolysis 645 

scheme used is the Fast-J scheme (Wild et al. 2000). It is coupled with physics of each model layer (e.g., aerosols, clouds, 

absorbers as ozone) and it considers grid-scale clouds from the atmospheric driver. The Fast-J scheme has been updated with 

CB05 photolytic reactions. The quantum yields and cross section for the CB05 photolysis reactions have been revised and 

updated following the recommendations of Atkinson et al. (2004) and Sander et al. (2006). The aerosol module in MONARCH 

describes the lifecycle of dust, sea-salt, black carbon, organic matter (both primary and secondary), sulfate and nitrate aerosols. 650 

While a sectional approach is used for dust and sea-salt, a bulk description of the other aerosol species is adopted. A simplified 

gas-aqueous-aerosol mechanism has been introduced in the module to account for the sulfur chemistry, the production of 

secondary nitrate - ammonium aerosol is solved using the thermodynamic equilibrium model EQSAM, and a two-product 

scheme is used for the formation of secondary organic aerosols from biogenic gas-phase precursors. Meteorology driven 

emissions are computed within MONARCH. Mineral dust emissions are calculated with an updated version of Pérez et al. 655 

(2011) scheme, the sea salt aerosol emissions following Jaeglé et al. (2011), and biogenic gas-phase species using the 

MEGANv2.04 model (Guenther et al., 2006). The model provides operational regional mineral dust forecasts for the World 

Meteorological Organization (WMO; https://dust.aemet.es/), and participates to the WMO Sand and Dust Storm Warning 

Advisory and Assessment System for Northern Africa-Middle East-Europe (http://sds-was.aemet.es/). Since 2012, the system 

contributes with global aerosol forecast to the multi model ensemble of ICAP initiative (Xian et al., 2019) and since 2019, it 660 

is a candidate model of the CAMS - Air Quality Regional Production (Marecal et al., 2015).  

 

In this work, the model is configured for a regional domain covering Europe and part of northern Africa. The rotated lat-lon 

projection is used, with a regular horizontal grid spacing of 0.2 degrees, and the top of the atmosphere is set at 50 hPa using 

48 vertical layers. Figure S1 displays the domain of study. Meteorological initial and boundary conditions were obtained from 665 

the ECMWF global model forecasts at 0.125 degrees and chemical boundary conditions from the CAMS global model 
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forecasts at 0.4 degrees (Flemming et al., 2015). For an efficient execution of the modelling chain, the autosubmit workflow 

manager is used (Manubens-Gil et al., 2016). 

3.2 HERMESv3 emission system 

The original annual CAMS-REG-APv3.1 emission inventory was processed using the HERMESv3 system, an open source, 670 

stand-alone multi-scale atmospheric emission modelling framework developed at the BSC that computes gaseous and aerosol 

emissions for use in atmospheric chemistry models (Guevara et al., 2019). The HERMESv3 system was used to remap the 

original CAMS-REG-AP data (0.1x0.05 degrees) onto the MONARCH modelling domain and to derive hourly and speciated 

emissions. Aggregated annual emissions were broken down into hourly resolution using the emission temporal profiles 

reported by Denier van der Gon et al. (2011). The speciation of NMVOC and PM emissions was performed using the split 675 

factors reported by TNO (Kuenen et al., 2014).  

 

For the covid19_traffic and covid19_all scenarios, the estimated reduction factors (Fig. 3.a,b,c,d) were combined with the 

original temporal profiles in order to model dynamic emission reductions for each sector and country. For each pollutant sector, 

we constructed a dataset of country-specific COVID-19 daily temporal profiles by combining the original temporal weight 680 

factors reported by Denier van der Gon et al. (2011) with the computed emission reduction factors, following Eq. (4): 

 

𝐷𝐹_𝑐𝑜𝑣𝑖𝑑19F(𝑐, 𝑑) = 	𝐷𝐹F(𝑑) ∗ 21 +
HI1(?,+)
5-- 3        (4) 

 

where 𝐷𝐹F(𝑑) are the daily temporal factors for pollutant source s and day of the year d [0 to 366], and 𝑅𝐹F(𝑐, 𝑑) is the 685 

reduction factor computed for sector s, day of the year d and country c [%]. The 𝐷𝐹F(𝑑) weight factors were obtained by 

combining the original monthly (January to December) and weekly (Monday to Sunday) temporal profiles reported by Denier 

van der Gon et al. (2011). Figure 3.e illustrates the COVID-19 daily temporal factors for the road transport sector in selected 

countries. The original daily profile for this sector, which is used in baseline scenario, is also plotted for comparison purposes. 

In general, the temporal disaggregation of emissions would require the sum of the daily weight factors to be 366 (as in this 690 

case the year of study is a leap year). Nevertheless, and due to the application of the reduction factors, the sum of the COVID-

19 daily factors do not add up to this number, which allows simulating time-resolved emission reductions.  

3.3 Observational dataset 

The GHOST project is a BSC initiative dedicated to the harmonisation of publicly available global surface observations (most 

notably air quality pollutants) and metadata, for the purpose of facilitating a greater quality of observational/model comparison 695 

in the atmospheric chemistry community (Bowdalo, in preparation). Numerous networks are currently processed and contained 

under the umbrella of GHOST including, among other, the EBAS and EEA networks. For each network, all relevant numerical 



23 
 

and textual metadata (e.g. station classifications, measurement methodologies) is standardised and all data is passed through 

numerous quality control tests, giving detailed quality assurance (QA) flags. 

 700 

In this work, we used the NO2 near-real time EEA data. We selected rural and urban background stations located at selected 

countries (Italy, Spain, France, Germany, UK and Sweden). In the case of urban background stations, we selected those located 

in Milano, Madrid, Paris, Berlin and London. For Sweden, and due to the low density of stations found in individual cities 

(e.g. Stockholm, 1 station), we decided to consider all urban background stations available country wise (6). GHOST provides 

a wide range of harmonized metadata and quality assurance (QA) flags for all pollutant measurements. In this study, we took 705 

benefit of these flags to apply an exhaustive QA screening. More details on the QA flags used can be found in Appendix A. 

Note that for Italy, there is a data gap between 1 February and 13 February in all stations. We nevertheless decided to keep 

this country in our evaluation study since it is one of the European countries most affected by the COVID-19 pandemic and 

the data gap does not affect the lockdown period. In the case of Sweden, only 1 rural background station was available for the 

entire country, which may reduce the representativity of the computed results. A detailed description of the stations is available 710 

in Table S1 and Fig. S5 of the supplementary material. 

4 Results and discussion 

Figure 6 shows maps of daily average NOx emissions [kg·s-1·m-2] and NO2 concentrations [µg·m-3] obtained for the baseline 

scenario between 23 March and 26 April, as well as the differences with respect to the covid19_all scenario (i.e. covid19_all 

minus baseline). During this 5-week period most European countries were under severe national lockdown restrictions, which 715 

allows illustrating the largest impacts upon emissions and air quality levels. 

 

For both NOx emissions and NO2 concentrations, the main reductions occurred in urban areas and main interurban roads, 

especially within the most affected countries (i.e. Italy, Spain, France, the UK). The largest emission reductions are related to 

traffic (Sect. 4.1), which is the main contributor to urban NO2 levels, with approximately a 40% share on average (EEA, 2019). 720 

Below we discuss the results obtained from the modelling experiments in terms of daily changes in emissions (Sect. 4.1) and 

NO2 air quality concentrations (Sect. 4.2) during the study period. 

4.1 Emissions 

Figure 7 (a, b, d, c) shows the evolution of daily NOx, NMVOC, SOx and PM2.5 emissions during the entire period of study (20 

January to 26 April) for EU-30 and for each of the three scenarios. The largest emission reductions occurred during the second 725 

and third week of March, when several European countries enforced national lockdown restrictions. After this period, there 

was a stabilization of the emission reductions until approximately the 19 April. Thereafter, a slight recovery of the emission 

levels started to occur, which is consistent with the recovery of traffic activity shown in Fig. 3.c. Overall, and when comparing 
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the baseline and covid19_all scenarios, the reduction of total emissions is -33% for NOx, -8% for NMVOC, -7% for SOx and 730 

-7% for PM2.5. The contribution of the traffic sector to total reductions is especially relevant for NOx (90%), NMVOC (87%) 

and PM2.5 (82%) while for SOx most of the total reduction can be attributable to the decreases in the energy and manufacturing 

industries (97%), according to the results shown by the covid19_traffic scenario. Figure 7 (e, f) illustrates the average and 

5th/95th percentiles (p05, p95) of the daily relative changes [%] in the gridded NOx emissions for Italy and Sweden. The results 

were computed considering all the grid cells within each of the countries. In Italy, the last two weeks of March and first two 735 

weeks of April certain shows areas of the country reaching reductions up to -75%, whereas in other areas less affected by 

anthropogenic (and particularly road transport) emissions the reductions were significantly lower (~ -25%). In the case of 

Sweden, the reductions ranged between -6% (p95) and -36% (p05). 

 

Figure 8 summarises the average, minimum and maximum national daily emission changes [%] obtained for NOx, NMVOC, 740 

SOx and PM2.5 between 23 March and 26 April for selected countries along with the average at EU-30 level. Changes in 

emissions present strong variations from country to country and pollutant to pollutant. For NOx and SOx, all countries except 

Germany and Sweden present stronger average reductions than the ones reported at the EU-30 level (-33% and -7%, 

respectively), and Italy and France are the two countries with the largest reductions (-50% for NOx and -12% for SOx). For 

NOx, minimum and maximum daily emission reductions are in general relatively close to the average (e.g. Italy: avg = -50%, 745 

min = -47% and max = -56%; Spain: avg = -40%, min = -43% and max = -46%). In contrast, there are large differences among 

the average, minimum and maximum daily SOx changes, especially in Germany (Sweden) where changes in emissions go 

from 0.6% (0.15%) to -12% (-5%). The different behaviours observed for NOx and SOx are related to the different trends of 

the road transport and energy industry (Fig. 3.a and c). The daily variability of the reduction factors for road transport is 

generally low; in the case of the energy industry large day-to-day variations are observed. 750 

 

Despite having experienced one of the largest reductions in road transport activity (more than -80%), Spain was the country 

with the lowest decrease in total PM2.5 emissions (-4.3%), and the second lowest in terms of NMVOC (-4.4%). Sweden shows 

a PM2.5 emission reduction of -7.6%, almost two times larger than Spain and very close to Italy (-9.2%), despite its lower 

traffic activity decrease (less than -40%). This is explained by the different contributions of the road transport sector 755 

contribution to total emissions in each country. Figure 9 shows the relationship between the reduction of traffic activity and 

contribution of the road transport sector to total emissions per country and pollutant. In the case of Sweden, road transport 

represents around 21.3% of total PM2.5 emissions, while in Spain the contribution is just 7.9%. Similarly, in the case of 

NMVOC emissions the contribution of road transport emissions is 15.9% in Italy and 8.9% in France, while in Spain is only 

4.3%.  760 
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4.2 Air quality 

Figure 10 shows the observed and modelled hourly NO2 concentrations between 20 January and 26 April at selected urban 

background sites in Italy (Milano), Spain (Madrid), France (Paris), UK (London), Germany (Dusseldorf) and Sweden (all 

available sites). In the same way, the results at rural background stations are presented in Fig. 11. In both cases, the results are 765 

presented separately for each of the emission scenarios considered: baseline (in magenta), covid19_traffic (in green) and 

covid19_all (in blue). Statistical parameters computed on an hourly basis (i.e. mean bias, MB; root mean square error, RMSE; 

correlation coefficient, r) are presented for each emission scenario, country and station type for the pre-lockdown (20 January 

to 20 February) and most restrictive lockdown period (23 March to 26 April) (Fig. 12). For the pre-lockdown period, the 

calculated statistics are equal for all scenarios, as no emission reductions are considered during that time. The computation of 770 

statistics during the pre-lockdown period allows quantifying the performance of the system under BAU conditions. We also 

compare the observed and simulated NO2 decline from pre-lockdown to lockdown periods in each region, to quantify the 

accuracy of the estimated emission reduction factors (Fig. 13). Finally, Table 2 summarises the absolute and relative changes 

of NO2 concentrations modelled at each station type and country between 23 March and 26 April. 

 775 

The MONARCH model is capable of reproducing fairly well the urban background NO2 observations during the pre-lockdown 

period, particularly in London (MB = -0.25 µg·m-3, RMSE = 16 µg·m-3, r = 0.74), Madrid (MB = -4 µg·m-3, RMSE = 19 µg·m-

3, r = 0.64) and Paris (MB = -7.7 µg·m-3, RMSE = 13 µg·m-3, r = 0.78). Milano is the location with the largest MB (-14 µg·m-

3) and RMSE (22 µg·m-3). The relatively low performance in Milano may be related with the inability of reproducing the strong 

atmospheric stability conditions of the Po Valley region, a general problem for chemical transport models. After the 780 

implementation of the national lockdowns, a decrease in NO2 is simulated in all sites for both the covid19_traffic and 

covid19_all scenarios. Nevertheless, the decreasing rate strongly varies from one country to the next. In Madrid and Paris, 

NO2 concentrations drop abruptly just a few days after the beginning of the lockdown, while in Milano, Berlin and London 

the decreases occur at a slower pace. These results are consistent with the traffic activity reduction trends computed for these 

countries (Fig. 3.c). The statistics computed for the most restrictive lockdown period (23 March to 26 April) clearly reveal a 785 

general improvement of the model performance when the emission reductions are considered. As shown in Fig. 12, the 

calculated MB and RMSE values for the baseline scenario are significantly reduced when considering the covid19_traffic and 

covid19_all scenarios, especially in Madrid, Paris and London where overestimations of 9 to 14 µg·m-3 are drastically reduced 

to 1 to -1.5 µg·m-3. In Berlin the performance of the model slightly decreases when considering the lockdown scenarios. Both 

the MB and RMSE of the baseline scenario remain lower in magnitude. This feature is attributed to a significant increase in 790 

observed NO2 during the week of 7 April that neither the baseline nor the covid scenarios capture, either due to missed emission 

activity changes or errors in meteorology. In terms of correlation, no significant changes are observed when comparing the 

baseline and covid scenarios (for all cases except Milano values stay above 0.6). The simulated NO2 declines from pre-

lockdown to lockdown periods when considering the covid19_all scenario are fairly in line with the observed ones (Fig.13.a), 
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although a general underestimation is shown (i.e. -7.3 µg·m-3 and -6.2 µg·m-3 differences between modelled and observed 

declines in Italy and France, respectively). This underestimation could be related to the fact that we are currently not 

considering emission reductions from fuel combustion processes in commercial and institutional buildings, which were obliged 

to close during the lockdown period in almost all European countries. The computed absolute and relative decreases of NO2 800 

urban background levels during the most restrictive lockdown period reveals that the differences between the covid19_traffic 

and covid19_all scenarios are generally low, i.e. the decrease in modelled NO2 concentrations is mainly driven by reduction 

of road traffic emissions. This is consistent with the large contribution of the traffic sector to total NOx emission reductions as 

discussed in Sect. 4.1. According to the modelling results, the largest decreases in urban background NO2 levels during the 

lockdown period occur in Madrid (-58% and -51% for covid19_all and covid19_traffic, respectively) and Milano (-56% and -805 

54%), followed by Paris (-41% and -32%), Berlin (-30% and -23%), London (-28% and -25%) and Sweden (-11% and -10%). 

Among these, Paris and Berlin are the locations where non-traffic sources contribute more to total NO2 reductions (around 

23% in both cases).  

 

When it comes to rural background levels, pre-lockdown statistics also indicate a good capability of MONARCH in 810 

reproducing observed values, particularly in France (MB = 1.5 µg·m-3, RMSE = 2.8 µg·m-3, r = 0.93) and Spain (MB = -0.16 

µg·m-3, RMSE = 1.3 µg·m-3, r = 0.52). A persistent overestimation is observed in Germany, UK and Sweden (MB between 

3.5 and 4.6 µg·m-3), while in Italy the system tends to underestimate (MB = -3.6 µg·m-3). The overestimation in Germany, UK 

and Sweden occurs mainly at night-time (not shown). Similar to what is observed at urban background sites, modelled and 

observed concentrations between 23 March and 26 April tend to be more in agreement when considering the emission reduction 815 

scenarios. The UK and Germany are the countries were the performance improves more, with MB values going from 7.5 and 

2.3 µg·m-3 (baseline) to 3.4 and 0.42 µg·m-3 (covid19_traffic) and 3 and 0.29 µg·m-3 (covid19_all). On the other hand, the 

improvement is not obvious in Italy, as the model shows a negative bias during the pre-lockdown period and the lockdown 

scenarios constitutes an important reduction of the modelled values. However, the trend is in agreement with results in Spain, 

France and Germany but with some additional underestimations. The modelled decline of NO2 concentrations from pre-820 

lockdown to lockdown periods presents a slight overestimation in all rural background regions except for Italy (Fig. 13.b). The 

largest differences occur in Germany and France, where modelled declines are 4.1 µg·m-3 and 2.8 µg·m-3 larger than the 

observed ones. Rural background levels can be determined by the combination of multiple emission sources and therefore it 

is difficult to attribute these differences to a sole reason. Nevertheless, one plausible explanation for the obtained results could 

be the limitation of the Google mobility trends in representing the drop of emissions from heavy-duty vehicles, as discussed 825 

in Sect. 2.3. The rural background NO2 modelled concentrations in the two lockdown scenarios are substantially lower than in 

the baseline run. Nevertheless, the relative decreases modelled during the lockdown period are generally lower than in urban 

environments (Table 2). France (-44% and -42% for covid19_all and covid19_traffic, respectively) and Italy (-43% and -41%) 

are the countries that experience the largest decreases, followed by Spain, UK and Germany (around -30% and -28% in all of 

them). In Sweden, relative reductions are almost equal to the ones obtained in urban background locations (-12% and -11%). 830 
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Although no robust conclusions can be extrapolated as the results are based on only one rural station, the similar reductions 

obtained in both environments could be related to the soft restrictions implemented in this country. When comparing the 

covid19_all and covid19_traffic scenarios, only around 4 to 8% of the total reduction can be attributed to non-traffic sources. 

5 Conclusions 

This paper presents a dataset of daily, sector- and country-dependent emission reduction factors that allows quantifying the 835 

impact of the COVID-19 lockdown on European primary emissions and air quality levels. The reduction factors are provided 

for a period that goes from 21 February, when the first European localised lockdown was implemented in the region of 

Lombardy (Italy), to 26 April 2020, and for the four emission sectors presumably most affected by the mobility restrictions, 

i.e., road transport, energy industry, manufacturing industry and aviation. Our emission reduction factors are based on a wide 

range of information sources, including open access and near-real time measured activity data, proxy indicators and other 840 

available reports. We also make use of machine learning techniques trained with meteorological data to estimate reductions in 

electricity consumption. 

 

We combine the computed emission reduction factors with the Copernicus CAMS-REG-APv3.1 European gridded emission 

inventory to spatially and temporally quantify reductions in emissions from criteria pollutants. The resulting gridded and time-845 

resolved emission reductions are used to perform an air quality modelling study to evaluate its capability on reproducing 

observed NO2 concentration changes in selected rural and urban background regions across Europe (Italy, Spain, France, 

Germany, UK and Sweden). Three emission scenarios were considered: baseline scenario (no emission reductions applied), 

covid19_traffic scenario (consideration of emission reductions only from road transport), and covid19_all scenario 

(consideration of emission reductions from all four sectors).  850 

 

The main findings and conclusions of this work are as follows: 

• During the most severe lockdown period (23 March to 26 April), estimated emission reductions at the EU-30 level 

were -33% for NOx, -8% for NMVOC, -7% for SOx and -7% for PM2.5, with road transport being the main contributor 

to total reductions in all cases (85% or more) except for SOx, for which reductions were mainly driven by the energy 855 

and manufacturing industry sectors. 

• Italy, France and Spain are the countries that experienced the major NOx and SOx emission reductions (up to -50% 

and -12%, respectively), a result that is in line with the strong lockdown restrictions implemented by their 

corresponding governments. On the contrary, Sweden shows reductions of only -15% (NOx) and -2.5% (SOx) due to 

implementation of national recommendations instead of a state-enforced lockdown.  860 

• Despite showing lower reductions of road transport activity, calculated reductions of total PM2.5 in Sweden are much 

larger (-8%) than in Span (-4%). This is due to the variation in the contribution of the road transport sector to total 
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emissions from country to country. While in Sweden road transport represents around 21.3% of total PM2.5 emissions, 875 

in Spain this contribution is of just 7.9%. A similar outcome is obtained for NMVOC when comparing traffic activity 

and total emission reductions in Spain and France. 

• According to air quality modelling results, the larger decreases of urban background NO2 levels occurred in Madrid 

(-58%) and Milano (-56%). The calculated NO2 relative reductions at rural background areas are generally lower, 

with France (-44%) and Italy (-43%) being the countries that experience the largest decreases. 880 

• In both urban and rural environments, the comparison between covid19_traffic and covid19_all results, indicates that 

the road transport sector is on average responsible for 90% of the total NO2 reductions, with the largest and lowest 

contributions found in Milano (97%) and Berlin (76%), respectively. 

• Overall, we found the performance of the modelled NO2 results to clearly improve when considering the emission 

reduction scenarios. Calculated MB values for the covid19_traffic and covid19_all scenarios are significantly lower 885 

than the ones estimated for the baseline scenario, especially in Madrid, Paris and London where overestimations of 9 

to 14 µg·m-3 are drastically reduced to 1 to -1.5 µg·m-3. On the other hand, the improvement is not so obvious at 

locations where the modelled results already display an important bias during the pre-lockdown period. 

5.1 Uncertainties 

In this work we present and evaluate a methodology not only to calculate time-resolved emission reductions associated to the 890 

COVID-19 lockdown, but also to adapt them for air quality modelling purposes, which may be relevant for the modelling 

community. There are, however, some limitations associated to the current version of the reduction factors dataset: 

• First, and most importantly, emission changes in each sector were inferred from changes not observed directly in 

emissions but in general activity proxies such as electricity demand or mobility indicators. The use of such general 

indicators may lead to disregard changes associated to specific processes or sources.  895 

o Road transport: Comparisons against observed traffic counts showed that the Google movement trends are 

not representative of observed changes in heavy-duty vehicle’s activity, and that their use may lead to a 

potential overestimation of the overall traffic activity reduction, especially in interurban roads, where the 

share of these vehicle categories is more important. 

o Energy industry: The association between changes in electricity demand and emissions from power and heat 900 

plants neglects potential changes in the national power mixes. As recently presented by the International 

Energy Agency (IEA), certain countries have shifted their electricity production towards renewables 

following lockdown measures due to low operating costs and priority access to the grid through regulations, 

among other (IEA, 2020b). Omitting this aspect may be leading to an underestimation of the emission 

reductions for this sector, and therefore will be revised in future versions of the dataset. 905 

o Manufacturing industry: For this sector, the same reduction factors are assumed for all the industry branches. 

Yet, information reported by national industrial production indexes are indicating that not all industrial 
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sectors were affected in the same way by the lockdown restrictions. For instance, Spanish pharmaceutical, 

food and paper industries experienced almost no changes in their activity during April 2020 when compared 915 

to the previous year (between 0 and -9%), while industries related to the production of petroleum and mineral 

products showed moderate to significant decreases in April (between -28% to -43%). For this month and 

country, the average reduction factor computed with the current methodology is -12.5% which, despite 

falling within the range of the aforementioned reductions, is not representative of the changes reported for 

any of the specific industrial branches. In order to overcome this limitation, specific reduction factors should 920 

be developed for each industrial branch or groups of industrial branches presenting a similar behaviour. 

 

• It is important to note that the specificity of the computed reduction factors also depends upon the degree of sectoral 

disaggregation used to report the original CAMS inventory. In the case of the manufacturing industry sector, all 

emissions are reported under a unique category, which hampers the consideration of industrial divisions. Similarly, 925 

traffic emissions are split by fuel category but not by vehicle category, which difficult the use of different emission 

reduction factors as a function of the vehicle type. 

• Another important shortcoming is related to the spatial variability of the proposed reduction factors. In its current 

version, the reduction factors are country-dependent and therefore do not take into account potential variations within 

each country. This includes, for instance, the contrast between the large cut in road traffic to and from airports on the 930 

one hand and the traffic congestion of heavy-duty vehicles at the national borders captured by the Copernicus satellite 

images on the other (EU, 2020). This aspect will be also relevant when extending the time series of the dataset and 

including the period when governments started to soften lockdown measures. In some countries such as Spain this 

process was implemented heterogeneously across the different administration units. 

5.2 Future perspective 935 

Despite the aforementioned limitations, we believe that providing these timely emission modelling results will help with the 

understanding of air quality related aspects of the pandemic and also to better prepare in case of new waves or resurgences. 

As a matter of fact, this dataset supports a number of studies that are on-going in particular within CAMS and under the Global 

Atmosphere Watch Programme of the World Meteorological Organization (WMO/GAW). Future works will focus on 

amending the shortcomings mentioned above, particularly for the case of road transport emissions and the potential 940 

overestimation of the emissions drop from heavy duty vehicles when using the Google mobility trends. Measured traffic counts 

from other countries will be collected in order to perform an intercomparison exercise against the Google movement trends 

and derive a set of European adjustment factors to consider when using the original Google dataset for computing changes in 

emissions from heavy-duty vehicles. Other works will be performed to extend the number of sectors considered, in particular 

the residential/commercial and shipping sectors, and cover the transition period towards the post-lockdown conditions. The 945 

investigation of the calculated emission reductions obtained when combining the reduction factors with the new CAMS 
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emission temporal profiles (Guevara et al., 2020) will be also studied. New datasets and information sources will become soon 950 

available and therefore allow for an improvement in the representativeness of the current emission reductions. Moreover, the 

evaluation of the reduction factors in reproducing observed changes in other air pollutants such as O3 or PM2.5 will be also 

addressed in the future. We also expect to perform inter-comparisons of our modelled results against reductions associated to 

the COVID-19 lockdown derived from satellite-based observations following Barré et al. (2020).  

 955 

Appendix A: Quality Assurance (QA) applied to NO2 observational dataset  

Using the information provided by GHOST (Globally Harmonised Observational Surface Treatment), we applied numerous 

QA screening to the NO2 dataset, in order to remove : missing measurements (flag 0), infinite values (flag 1), negative 

measurements (flag 2), zero measurements (flag 4), measurements associated with data quality flags given by the data provider 

which have been decreed by the GHOST project architects to suggest the measurements are associated with substantial 960 

uncertainty or bias (flag 6), measurements for which no valid data remains to average in temporal window after screening by 

key QA flags (flag 8), measurements showing persistently recurring values (rolling 7 out of 9 data points; flag 10), 

concentrations greater than a scientifically feasible limit (above 5000 ppbv) (flag 12), measurements detected as distributional 

outliers using adjusted boxplot analysis (flag 13), measurements manually flagged as too extreme (flag 14), data with too 

coarse reported measurement resolution (above 1.0 ppbv) (flag 17), data with too coarse empirically derived measurement 965 

resolution (above 1.0 ppbv) (flag 18), measurements below the reported lower limit of detection (flag 22), measurements above 

the reported upper limit of detection (flag 25), measurements with inappropriate primary sampling for preparing NO2 for 

subsequent measurement (flag 40), measurements with inappropriate sample preparation for preparing NO2 for subsequent 

measurement (flag 41) and measurements with erroneous measurement methodology (flag 42).  

6 Data availability 970 

The computed emission reduction factors per country, sector and day are provided in the supplementary material. 
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Table 1: GNFR sector classification with the definition and sources of information used to derive emission reduction 

factors. The countries considered for each sector are also listed. 

Sector Description Sources of information Countries included 

GNFR_A Energy industry 

• Electricity demanda data: 
ENTSO-E (2020); FGC UES 
(2020) 

• Outdoor temperature: C3S 
(2017) 

• Population map: CIESIN 
(2016) 

Austria, Belgium, Bulgaria, Croatia, Czech 
Republic, Estonia, France, Germany, Greece, 

Hungary, Ireland, Italy, Latvia, Lithuania, 
Netherlands, Poland, Portugal, Romania, Slovakia, 
Slovenia, Spain, Sweden, Switzerland, UK, Russia 

GNFR_B Manufacturing 
industry 

• Electricity demanda data: 
ENTSO-E (2020); FGC UES 
(2020) 

• Outdoor temperature: C3S 
(2017) 

• Population map: CIESIN 
(2016) 

• Energy balances: Eurostat 
(2020a) 

Austria, Belgium, Bulgaria, Croatia, Czech 
Republic, Estonia, France, Germany, Greece, 

Hungary, Ireland, Italy, Latvia, Lithuania, 
Netherlands, Poland, Portugal, Romania, Slovakia, 
Slovenia, Spain, Sweden, Switzerland, UK, Russia 

GNFR_F Road Transport • Movement trend reports: 
Google (2020) 

Austria, Belgium, Bulgaria, Croatia, Republic of 
Cyprus, Czech Republic, Denmark, Estonia, 
Finland, France, Germany, Greece, Hungary, 
Ireland, Italy, Latvia, Lithuania, Luxembourg, 

Malta, Netherlands, Poland, Portugal, Romania, 
Slovakia, Slovenia, Spain, Sweden, Switzerland, 
UK, Turkey, Georgia, Bosnia and Herzegovina, 

Moldova, North Macedonia, Malta, Belarus 

GNFR_H Aviation 
• Airport movement statistics: 

FlightRadar (2020); Eurostat 
(2020b) 

Austria, Belgium, Bulgaria, Croatia, Republic of 
Cyprus, Czech Republic, Denmark, Estonia, 
Finland, France, Germany, Greece, Hungary, 
Ireland, Italy, Latvia, Lithuania, Luxembourg, 

Malta, Netherlands, Poland, Portugal, Romania, 
Slovakia, Slovenia, Spain, Sweden, Switzerland, 

UK, North Macedonia, Norway 
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Table 2: Absolute [µg·m-3] and relative changes [%] of modelled NO2 concentrations at urban and rural background 

stations (UB, RB) for selected countries between 23 March and 26 April. The “N” column indicates the number of 

stations used to compute the changes. 

Country Station 
Type N  covid19_traffic - 

baseline (abs) 
covid19_all - 
baseline (abs) 

covid19_traffic - 
baseline (rel) 

covid19_all - 
baseline (rel) 

IT (Milano) UB 6 -17.1 -17.7 -54% -56% 
ES (Madrid) UB 19 -13.1 -14.9 -51% -58% 
FR (Paris) UB 16 -8.5 -11.0 -32% -41% 

DE (Berlin) UB 6 -2.9 -3.9 -23% -30% 
GB (London) UB 8 -7.4 -8.3 -25% -28% 

SE (all) UB 8 -0.9 -1.1 -10% -11% 
IT RB 69 -2.6 -2.7 -41% -43% 
ES RB 58 -0.7 -0.8 -28% -31% 
FR RB 23 -2.2 -2.3 -42% -44% 
DE RB 74 -1.9 -2.0 -26% -28% 
GB RB 14 -3.7 -4.0 -28% -30% 
SE RB 1 -0.5 -0.6 -11% -12% 

 1160 

 

  



38 
 

 
Figure 1: Evolution of the stringency index (0 to 100) computed by the Oxford COVID-19 Government Response 

Tracker (OxCGRT) (Hale et al., 2020) from 1 January to 26 April 2020 for selected countries (IT, Italy; ES, Spain; FR, 1165 

France; DE, Germany; GB, United Kingdom; SE, Sweden). Filled circles indicate the starting dates of national 

lockdowns and unfilled circles indicate the starting dates of the localised lockdown in Italy and national 

recommendations in Sweden. 
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Figure 2: Summary of the statistics (normalized mean bias, NMB; normalized root mean square error, NRMSE and 

correlation, r) obtained from the comparison between measured and computed electricity demand during the first two 

months of 2020 for selected countries. 

 1175 
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Figure 3. Emission reduction factors computed for the energy (a) and manufacturing (b) industry, road transport (c) 

and aviation (d) for selected countries (IT, Italy; ES, Spain; FR, France; DE, Germany; GB, Great Britain; SE, Sweden) 

for the period 21 February to 26 April 2020. Original and COVID-19 version of the emission daily temporal factors 1180 

computed for the road transport sector and used for emission modelling (e). 
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Figure 4. Evolution of the Industrial production Index in Spain for selected manufacturing industrial branches between 

January 2019 and April 2020 (INE, 2020) (a). Contribution of each commercial and public service branch to total 1185 

electricity consumption in Spain for 2017 (IDAE, 2018) (b). 

 

 
Figure 5. Comparison of traffic movement trends for Spain derived from Google reports (Google, 2020) and measured 

traffic counts in the city of Barcelona (ATM, personal communication) and the main Spanish interurban roads (DGT, 1190 

2020), the latter one being also distinguished by type of vehicle (i.e. light duty vehicles, LDV; heavy duty vehicles HDV). 
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 1195 
Figure 6. Maps of the daily average NOx emissions [kg·s-1·m-2] (a) and NO2 concentrations [µg·m-3] (b) obtained for the 

baseline scenario (23 March to 26 April) and differences (c and d) when compared to the covid19_all scenario (i.e. 

covid19_all minus baseline). The spatial resolution of all maps is 0.2x0.2 degrees. 
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 1200 
Figure 7. Evolution in daily NOx (a), NMVOC (b), SOx (c) and PM2.5 (d) emissions [kg·day-1] during the entire period 

of study (20 January to 26 April) for EU-30 and for each of the emission scenarios (baseline, covid19_traffic and 

covid19_all). Average (black) and 5th/95th percentiles (p05/p95) (light blue shading) relative changes [%] in gridded 

NOx emissions in Italy (e) and Sweden (f) for the period 21 February to 26 April. The changes are computed considering 

the differences in total emissions reported by the covid19_all and baseline scenarios. 1205 
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Figure 8. Average (Avg), maximum (Max) and minimum (Min) relative changes [%] in total national NOx (a), NMVOC 

(b), SOx (c) and PM2.5 (d) emissions for selected countries (IT, Italy; ES, Spain; FR, France; DE, Germany; GB, United 

Kingdom; SE, Sweden) between 23 March and 26 April. The dashed lines indicate the relative changes at the EU-30 1210 

level. The changes are computed considering the differences in total emissions reported by the covid19_all and baseline 

scenarios.  
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Figure 9. Relationship between the reduction of traffic activity (23 March to 26 April) and contribution of the road 1215 

transport sector to total emissions per country (IT, Italy; ES, Spain; FR, France; DE, Germany; GB, Great Britain; 

SE, Sweden) and pollutant (NOx, NMVOC, SOx, PM2.5) 
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 1220 
Figure 10. Observed (black) and modelled hourly NO2 concentrations [µg·m-3] (20 January to 26 April) at selected 

urban background sites, including: Milan (a), Madrid (b), Paris (c), Berlin (d), London (e) and Sweden (f, all available 

sites). Modelled results are presented separately for each of the emission scenarios considered: baseline (in magenta), 

covid19_traffic (in green) and covid19_all (in purple). 
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 1230 
Figure 11. Observed (black) and modelled hourly NO2 concentrations [µg·m-3] (20 January to 26 April) at selected 

rural background sites, including: Italy (a), Spain (b), France (c), Germany (d), United Kingdom (e) and Sweden (f). 

Modelled results are presented separately for each of the emission scenarios considered: baseline (in magenta), 

covid19_traffic (in green) and covid19_all (in purple). 
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Figure 12. Statistics calculated for NO2 on an hourly basis for the pre-lockdown period (20 January to 20 February) 

and the strictest lockdown period (23 March to 26 April) at urban (a, b, c) and rural (d, e, f) background stations for 1240 

selected countries (cities). Statistics calculated for most severe lockdown period are reported separately for each 

emission scenario (baseline, covid19_traffic and covid19_all), while for the pre-lockdown period this distinction is not 

made as the same emissions were used in all scenarios. The calculated statistics are mean bias (MB, µg·m-3), root mean 

square error (RMSE, µg·m-3) and correlation coefficient (r). 
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Figure 13. Absolute [µg·m-3] and relative [%] observed and modelled NO2 concentration declines from pre-lockdown 
(20 January to 20 February) to lockdown (23 March to 26 April) periods at urban (a, b) and rural (c, d) background 
stations for selected countries (cities). 
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