
We would like to thank the reviewers for their positive and constructive feedback, which helped 
improving the quality of the paper. The reviewers have pointed out issues that required further 
improvements or explanations. Below we address each specific issue and the manuscript has been 
updated accordingly. 

Anonymous Referee #1 

Received and published: 17 September 2020 

The lockdowns instituted by many governments around the world in response to the COVID-19 
pandemic have had significant effects on emissions of air pollutants and resulting ambient air quality. 
This topic has already received a lot of attention in the scientific literature within a relatively short 
period of time. The manuscript by Guevara et al. provides a timely contribution to the quantification 
of the emission changes due to lockdown measures implemented in Europe. Traditionally, the 
compilation of emission inventories is a long, slow process, with reliable emission data usually 
becoming available after several years. Given the strong interest from modelling groups in simulating 
the effects of these lockdowns on air quality, there is clearly a need for a fast-track estimate of COVID-
19-related changes in emissions for use in modelling studies 

Guevara et al. compile a set of national, sectoral emission reduction factors for European countries 
based on various datasets which are available now. The methodology used to derive the reduction 
factors is clearly described, the contingent nature of the resulting reduction factors is acknowledged 
and clearly described, and the reduction factors themselves are provided for the community. This 
aspect alone makes the paper a valuable contribution to the literature. 

Guevara et al. also apply these emission reduction factors in a model simulation and compare the 
reductions in modelled NO2 with observed reductions in selected European cities during the 
lockdowns. The analysis of the model simulations is relatively superficial, but the value of the paper is 
clearly in the transparent calculation of the reduction factors and the provision of these factors to the 
community. 

I only have one minor comment. The authors should indicate the year on which the CAMS-REG-AP 
emission inventory used in the modelling component of the study is based. 

The reference year of the CAMS-REG-AP emission inventory used is 2016, which is the most recent 
year available at the time of the study. We have added this information in the revised version of the 
manuscript as follows: 

“The base year of the CAMS-REG-APv3.1 emissions used in the three scenarios is 2016, which was the 
most recent year available at the time of the study” (lines 370-371 of the revised manuscript) 

  



Anonymous Referee #2 

Received and published: 28 September 2020 

The authors estimated the daily reductions in air pollutant emissions due to COVID-19 in Europe and 
evaluated the time-resolved emissions data through air quality model simulations of NO2. Activity 
indicators including electricity demand, heating degree day, and Google mobility reports are used in 
this study to represent the relative changes in emissions from different source sectors. The 
comparisons between simulated and observed NO2 concentrations suggest the improvement of 
modeling results driven by the daily emission reduction factors based on the activity indicators. This 
paper provides important results on the effect of COVID-19 on anthropogenic emissions and air 
quality, which is a hot topic at present not only in Europe but also in the other continents. Overall, I 
think this paper deserves publication in ACP but I still have concerns about the uncertainties in the 
method and results. I suggest that the authors carefully clarify the uncertainties in the method and 
add a specific section in the main text to discuss the uncertainties in detail 

Major comments: 

1. Energy industry. The electricity demand is estimated to have increased during COVID-19 over the 
Northern European countries such as Denmark, Norway, and Sweden. Why did this happen? Are these 
weird results relevant to the errors in the ML models designed to account for the influence of 
temperature fluctuations on electricity demand? Are there any temperature anomalies over North 
Europe during the COVID period? The authors did not explain the potential errors in the method but 
just assumed a null reduction of the electricity demand in Denmark, Finland, and Norway (Lines 178 
to 180 in Page 6), which is not acceptable in my opinion. 

Regarding the case of Sweden, as mentioned in the manuscript, we hypothesize that the obtained 
increase in electricity demand is due to the combination of the two factors: (i) the electricity demand 
from public and commercial services may have remained unperturbed as there was no enforced 
lockdown in contrast to most other countries and (ii) the voluntary self-isolation of a fraction of the 
population may have increased household electricity consumption. 

The reasons for assuming a null reduction of electricity demand for the other countries mentioned by 
the reviewer are detailed below. 

In this study, we used a ML method for predicting the fluctuations of electricity demand based on 
temperature, assuming that temperature is a strong driver of electricity demand (for heating and air 
conditioning). However, temperature is obviously not the only driver of electricity demand variability, 
which can be influenced by various other factors (e.g. change of technology, behaviour, regulation). 
In addition, the gradient boosting machine models used in this study are non-parametric, meaning 
that they cannot extrapolate, i.e. predict electricity demand values outside the range of values used 
during the training phase. As a consequence, such models may perform poorly when overly strong 
trend and/or inter-annual variability (not directly due to temperature variability) are affecting the 
target variable of interest. In practice, the results obtained in this study show that this approach 
performs relatively well in most countries, although exceptions cannot be excluded, as shown by the 
case of Finland. 

In Finland, the electricity demand reported by ENTSO-E in early 2020 (around late January/early 
February) was substantially lower than during all previous years. However, this anomaly in the power 
data cannot be explained by a drastic change in the temperature, as this parameter remained within 
the same range of values than during previous years. In such a situation, where changes in power 
demand cannot be related to changes in temperature, the ML cannot produce accurate predictions. 
We have included the following multi-panel plot (with time series and scatter plot) in the Supplement 



material (Fig. S1) to illustrate the behaviour observed in the input data. Besides temperature, 
electricity demand in Finland is thus likely driven by other factors not included in our ML framework. 
Improving the predictions of electricity demand would require more complex models including 
heterogeneous socio-economic data, which is far beyond the scope of the present study.  For this 
reason, we decided to discard the use of ML for this country and assume a null reduction of emissions, 
given that no strong lockdown was imposed to the population and no clear reduction of electricity 
demand was observed during the lockdown period. 

 

 
Figure S1. Time plots representing 7-day running averages of the electricity demand [MW] (ENTSO-E, 2020) 
and population-weighted outdoor temperature [ºC] (C3S, 2017) in Finland for the years 2015 until 2020 (left) 
and corresponding scatterplot between both variables (right). The electricity demand data represented in the 
time plots include ENTSO-E reported values for 2015-2020 (OBS) and the business as usual 2020 values 
predicted with the ML algorithm (BAU). The values of the scatterplot with the "lockdown" label (non-filled 
symbols) correspond to the period of the year 15/03-31/05, while the others correspond to the rest of the 
year. The data corresponding to the 2020 period in which negative anomalies in the electricity demand data 
were detected are highlighted with a dark red outline.  

A relatively similar situation was observed in Denmark. We found higher-than-usual electricity 
demand levels reported by ENTSO-E in late February/early March 2020 which, as in the case of Finland, 
could not be explained by drastic changes in temperature. At this time of the year, such relatively high 
power demand were already observed in 2018 but because of strong cold waves, while temperature 
was not particularly cold in 2020. Similar to the Finland case, we also included the following multi-
panel plot in the supplementary material (Fig. S2). Thus, like in Finland, other (non-meteorological) 
factors are likely driving this substantial increase of electricity demand in Denmark, which explains the 
bias obtained from mid-February to mid-March. Without additional sources of information regarding 
this, we assumed again a null emission reduction. 

 

  



 
Figure S2. Similar to Fig. S1 but for Denmark. The period with strongest discrepancies between observed and 
predicted electricity demand before the lockdown is indicated in red. 

 

In Norway, although the mean bias over the entire pre-lockdown period in 2020 (2020/01/01-
2020/03/15) is low (and comparable to the biases obtained in the other countries), looking at the time 
series shows that the bias was low at the begining of the period but started to increase in mid-February 
(i.e. well before the lockdown), and persisted (with some variability) during the lockdown period. The 
reliability of these predictions is thus lower. In addition, the increase in electricity demand obtained 
during the lockdown period was found to be in the same order of magnitude of the bias found before. 
Considering again the fact that COVID-19-related mobility restrictions were relatively soft in this 
country, we prefered to discard the use of ML for this country and assume a null reduction of 
electricity demand. 

 
Figure S3. Similar to Fig. S1 but for Norway.  



For these different countries, we do not expect that the assumed null reductions of the electricity 
demand will cause a significant impact on the computed emission reductions, as the majority of the 
electricity production in these countries comes from renewable energy sources. For instance, in the 
case of Norway more than 90% of the electricity production comes from hydropower (IEA, 2020). 
Moreover, the assumption of a null reduction for these countries is in line with the very low average 
changes in electricity demand reported by Le Quéré et al. (2020) (e.g. Finland, -2%, Denmark +1%). 

All this information has been included in the revised version of the manuscript as follows: 

“In this study, ML models are used for predicting the fluctuations of electricity demand based on 
temperature (and additional time features), which assumes that temperature is a strong driver of 
electricity demand (for heating and air conditioning). However, temperature is obviously not the only 
driver of electricity demand variability, which can be influenced by various other factors (e.g. change 
of technology, behaviour, regulation). In addition, the gradient boosting machine models used in this 
study are non-parametric, meaning that they cannot extrapolate, i.e. predict electricity demand values 
outside the range of values used during the training phase. As a consequence, such models may 
perform poorly when a strong trend and/or inter-annual variability (not directly due to temperature 
variability) are affecting the electricity demand to predict. In practice, the results obtained in this study 
show that this approach performs well in most countries, although there are some exceptions. The 
poorest performance was obtained in Finland (r = 0.33), due to a strong negative anomaly (-12% on 
average) in electricity demand during January-February 2020 compared to previous years used for 
training. As shown in Fig. S1, the electricity demand reported by ENTSO-E for this country in early 2020 
(i.e. late January/early February) was substantially lower than during all previous years (2015-2019). 
However, this anomaly in the power data cannot be explained by a drastic change in the temperature, 
as this parameter remained within the same range of values than during previous years. In such 
situations, where changes in power demand cannot be related to changes in temperature, the ML 
cannot produce accurate predictions. Compared to most other countries, a larger NRMSE and lower 
correlation was also found in Luxembourg. In this case, we attribute the low performance of the ML 
algorithm to the large data gap found in the historical data used for training. For instance, for the year 
2019 the ENTSO-E dataset presents a temporal coverage lower than 50%. In addition, despite relatively 
good statistics in early 2020, the electricity demand computed in Denmark and Norway shows a 
substantial and unexpected increase during the COVID-19 lockdown (up to +12%). In the case of 
Denmark, we found higher-than-usual electricity demand levels reported by ENTSO-E in late 
February/early March 2020 which, as in the case of Finland, could not be directly explained by drastic 
changes in temperature (Fig. S2). At this time of the year, such relatively high power demand were 
already observed in 2018 but because of strong cold waves, while temperature was not particularly 
cold in 2020. Like in the case of Finland, unexplained changes in the electricity demand induce errors 
in the predictive ML algorithm. For Norway, although the mean bias on the entire test period is 
relatively low, a closer look to the time series indicates that this bias was low at the beginning of the 
period and started to increase in mid-February and persisted during the lockdown (Fig. S3). Therefore, 
it is unclear to which extent the increase of electricity demand during the lockdown is real or simply 
the persistence of the bias previously observed before the lockdown starts (as both are in the same 
order of magnitude). Without additional sources of information and given the relatively soft mobility 
restrictions imposed in Norway, we also discarded the use of ML for this country and assumed that 
electricity demand during the lockdown period was not significantly impacted.  

Considering all of the above, and as a precautionary measure, we assumed a null reduction of the 
electricity demand in Denmark, Finland and Norway, and a fixed -16% reduction in Luxembourg 
starting the first day of the national lockdown implementation (15th of March), following the results 
reported by Le Quéré et al. (2020). Importantly, we do not expect that assuming a null reduction will 
cause a significant impact on the computed emission reductions, as the majority of the electricity 
production in these countries comes from renewable energy sources. For instance, in the case of 



Norway more than 90% of the electricity production comes from hydropower (IEA, 2020a).” (lines 174-
210 of the revised manuscript) 

 

IEA: Key energy statistics. Norway. Available at: https://www.iea.org/countries/norway (last access: 
October 2020), 2020a. 

Le Quéré, C., R. B. Jackson, M. W. Jones, A. J. P. Smith, S. Abernethy, R. M. Andrew, A. J. De-Gol, D. R. 
Willis, Y. Shan, J. G. Canadell, P. Friedlingstein, F. Creutzig and G. P. Peters: Temporary reduction in 
daily global CO2 emisisons during the COVID-19 forced confinement.  Nature Climate Change, 
https://doi.org/10.1038/s41558-020-0797-x, 2020. 

 

2. Manufacturing industry. This study attributed 25% of the total electricity demand reduction to the 
reduction in manufacturing industry activity, which is rather arbitrary. What is the uncertainty 
involved in using such a uniform factor for the industry sector in different European countries? The 
authors said that the manufacturing industry sector has maintained certain activities during the 
COVID-19 pandemic (Line 215 in Page 7), which is not consistent with what I saw in Fig. 4a. The 
production of cement, iron, steel, and glass all declined significantly during April 2020 in Spain. 

The attribution of 25% of the total electricity demand reduction to the reduction in manufacturing 
industry activity is consistent with the -27% decrease in electricity use by the manufacturing sector 
reported by the electricity transmission system operator of France (RTE, 2020). We have added this 
information in the revised version of the manuscript. 

We believe the uncertainty involved in using this uniform factor is not significant compared to the 
uncertainty associated to the assumption of the same reduction factors for all the industry branches. 
We illustrated this fact in the revised version of the manuscript as follows: 

“Manufacturing industry: For this sector, the same reduction factors are assumed for all the industry 
branches. Yet, information reported by national industrial production indexes are indicating that not 
all industrial sectors were affected in the same way by the lockdown restrictions. For instance, Spanish 
pharmaceutical, food and paper industries experienced almost no changes in their activity during April 
2020 when compared to the previous year (between 0 and -9%), while industries related to the 
production of petroleum and mineral products showed moderate to significant decreases in April 
(between -28% to -43%). For this month and country, the average reduction factor computed with the 
current methodology is -12.5% which, despite falling within the range of the aforementioned 
reductions, is not representative of the changes reported for any of the specific industrial branches. In 
order to overcome this limitation, specific reduction factors should be developed for each industrial 
branch or groups of industrial branches presenting a similar behaviour” (lines 649-664 of the revised 
manuscript) 

 

Regarding the second part of the comment, we updated Fig. 4a by adding the evolution of the 
Industrial production Index in Spain for the food and paper industries, which remained almost 
unaffected during the COVID-19 lockdowns (similar to what we were already showing for the 
manufacturing of pharmaceutical and cleaning products). We also clarified in the text that the 
industrial branches responsible of manufacturing essential goods (e.g. food, pharmaceutical 
preparations and other chemical products) were the ones that remained almost unaffected during the 
COVID-19 lockdowns.  



 
 

3. Road transport. The authors acknowledged that the emission reduction factors for the traffic sector 
may be overestimated because the activity levels of heavy-duty vehicles on interurban roads did not 
decline as much as those light-duty vehicles on urban roads. This could be the largest source of 
uncertainty in this study because the transport sector is the major source of NOx emissions and the 
heavy-duty vehicles account for a large part of transport emissions. I suggest that the authors provide 
more discussions on this uncertainty and try to reduce it if possible. 

We agree with the reviewer that the potential overestimation of the emissions drop from heavy duty 
vehicles when using the Google mobility trends may be one of the largest sources of uncertainty in 
this study. Therefore, an extended discussion on this topic has been added in the revised manuscript.  

We used the Spanish official EMEP road transport emissions (EMEP/CEIP, 2020) which, unlike CAMS-
REG-AP, are reported by vehicle category, to quantify the impact of omitting the distinction between 
light and heavy-duty vehicle when developing the reduction factors. We computed the evolution in 
daily NOx road transport emissions [t·day-1] during the entire period of study (20 January to 26 April) 
for Spain and for three different scenarios: (i) considering the reduction factors reported by the Google 
reports for Spain (Google, 2020) for all vehicle types (Google), (ii) considering the reduction factors 
reported by the Google reports for Spain for light duty vehicles and the ones reported by DGT (2020) 
for heavy duty vehicles (Google-HDV) and (iii) without considering any reduction factor (Business as 
usual scenario, i.e. BAU). The following figure, which has been included in the revised version of the 
supplementary material (Figure S4), shows the computed results: 

 



 
Figure S4. Evolution in daily NOx road transport emissions [t·day-1] during the entire period of study (20 
January to 26 April) for Spain and for three different scenarios: (i) considering the reduction factors reported 
by the Google reports for Spain (Google, 2020) for all vehicle types (Google), (ii) considering the reduction 
factors reported by the Google reports for Spain for light duty vehicles and the reduction factors reported by 
DGT (2020) for heavy-duty vehicles (Google-HDV) and (iii) without considering any reduction factor (Business 
as usual scenario, i.e. BAU). In all three cases, the results are based on the Spanish official EMEP emissions as 
reported in CEIP (EMEP/CEIP, 2020) 

 

We compared the average emissions computed for each scenario during the strictest lockdown period 
(23 March to 26 April). Results indicate a -18% difference between the computed average reductions 
(-528.5 t when using Google trends for all vehicle categories and -434.4 t when considering specific 
heavy-duty vehicle trends). This difference may vary across countries due to differences in: (i) the 
impact of COVID-19 restriction on the activity of heavy-duty vehicles and (ii) the contribution of the 
heavy-duty vehicles to the overall traffic emissions.  

This discussion has been introduced in the revised version of the manuscript as follows: 

“In order to quantify this uncertainty, we used the Spanish official EMEP road transport emissions 
(EMEP/CEIP, 2020) which, unlike CAMS-REG-AP, are reported by vehicle category, to quantify the 
impact of omitting the distinction between light and heavy-duty vehicle when developing the reduction 
factors. We compared the NOx average emission reductions obtained for the road transport sector 
during the strictest lockdown period (23 March to 26 April) when considering the DGT (2020) trends 
for heavy duty vehicles instead of the Google movement trends. Results indicate a -18% difference 
between the computed average reductions, i.e. -528.5 t when using Google trends for all vehicle 
categories and -434.4 t when considering specific heavy-duty vehicle trends (Fig. S4). This difference 
may vary across countries due to differences in: (i) the impact of COVID-19 restriction on the activity 
of heavy-duty vehicles and (ii) the contribution of the heavy-duty vehicles to the overall traffic 
emissions (lines 314-321 of the revised manuscript) 

We also detailed how this uncertainty could be reduced in future versions of the dataset. For that, we 
added the following discussion in a new subsection of the manuscript entitled “5.2 Future 
perspective”: 

“Future works will focus on amending the shortcomings mentioned above, particularly for the case of 
road transport emissions and the potential overestimation of the emissions drop from heavy duty 



vehicles when using the Google mobility trends. Measured traffic counts from other countries will be 
collected in order to perform an intercomparison exercise against the Google movement trends and 
derive a set of European adjustment factors to consider when using the original Google dataset for 
computing changes in emissions from heavy-duty vehicles.” (lines 683-687 of the revised manuscript) 

4. Modeling results. This study evaluated modeled NO2 concentrations with observations (Fig. 12) 
during the pre-lockdown and lockdown periods, respectively, which is very helpful to understand the 
uncertainties in the estimates of daily emissions. I suggest the authors add another figure that 
compares the observed and simulated NO2 decline from pre-lockdown to lockdown periods, which 
gives the audience more information on the accuracy of the estimated emission reduction factors. 

We agree with the reviewer. A new figure (Figure 13) has been added to the manuscript, which shows 
the comparison between observed and simulated NO2 decline from pre-lockdown (20 January to 20 
February) to lockdown periods (23 March to 26 April) in each region of study. Results are provided in 
absolute and relative terms: 

 

Figure 13. Absolute [µg·m-3] and relative [%] observed and modelled NO2 concentration declines from pre-
lockdown (20 January to 20 February) to lockdown (23 March to 26 April) periods at urban (a, b) and rural (c, 
d) background stations for selected countries (cities). 

 

The discussion of the results shown in the figure were added in section 4.2 of the revised manuscript: 

“The simulated NO2 declines from pre-lockdown to lockdown periods when considering the covid19_all 
scenario are fairly in line with the observed ones (Fig.13.a), although a general underestimation is 
shown (i.e. -7.3 µg·m-3 and -6.2 µg·m-3 differences between modelled and observed declines in Italy 
and France, respectively). This underestimation could be related to the fact that we are currently not 
considering emission reductions from fuel combustion processes in commercial and institutional 
buildings, which were obliged to close during the lockdown period in almost all European countries.” 
(lines 534-543 of the revised manuscript) 

“The modelled decline of NO2 concentrations from pre-lockdown to lockdown periods presents a slight 
overestimation in all rural background regions except for Italy (Fig. 13.b). The largest differences occur 
in Germany and France, where modelled declines are 4.1 µg·m-3 and 2.8 µg·m-3 larger than the 
observed ones. Rural background levels can be determined by the combination of multiple emission 
sources and therefore it is difficult to attribute these differences to a sole reason. Nevertheless, one 
plausible explanation for the obtained results could be the limitation of the Google mobility trends in 



representing the drop of emissions from heavy-duty vehicles, as discussed in Sect. 2.3” (lines 563-569 
of the revised manuscript) 

5. Conclusions. The conclusion section is not organized well. Some paragraphs repeated the text from 
the method section, such as lines 509 to 517 in Page 16. Besides, the discussions on the uncertainties 
are not the conclusions of this study and should be written in a specific new section. Please remove 
the unnecessary text in the conclusions, add a new section of ‘Uncertainties’, and provide a condensed 
conclusion section 

The conclusion section has been reorganised following the reviewer’s comment. A new subsection 
entitled “5.1 Uncertainties” has been added to include the discussion related to the limitations and 
uncertainties of the present study. The original discussion has been restructured in the form of bullet 
points and extended considering comments #2 and #3 of the reviewer. Moreover, a new subsection 
called “5.2 Future perspective” has also been added, which includes the discussion related to future 
works. The repeated text from the method section has also been modified. 


