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This review was prepared as part of graduate program course work at Wageningen 
University, and has been produced under supervision of Prof Wouter Peters. The review has 
been posted because of its good quality, and likely usefulness to the authors and editor. This 
review was not solicited by the journal. 
 

Review of “Global Impact of COVID-19 Restrictions on the Surface Concentrations of Nitrogen 

Dioxide and Ozone” by Keller et al. (2020) 

The paper by Keller et al. (2020) aims to create a ‘business as usual’ model output to compare with 
the changes in nitrogen dioxide (NO2) and ozone (O3) concentrations observed during the 2020 
lockdown situation. To create this ‘business as usual’ output (how emissions in the first half of 2020 
would have been without lockdown) the authors adapt the NASA GEOS-CF model to include 
seasonal variability of air pollutants. The result is a biased-corrected model (BCM) that also includes 
meteorological and compositional information. Publicly available data on NO2 and O3 is used from 
5,756 observation sites, from which most are in Europe, North America and China. A machine 
learning algorithm is used to predict the time-varying bias at each observation site. Reductions in 
NO2 range from 60% in more severely affected cities as Wuhan, to little difference in less affected 
cities as Rio de Janeiro. They estimate a reduction of NOx (NO+NO2) of 2.9 TgN during the first half of 
2020, equivalent to 5.1% of the annual anthropogenic total. Following changes in O3 concentrations 
is more difficult due to competing influences of non-linear atmospheric chemistry. The analysis does 
indicate a flattening of the O3 diurnal cycle with O3 increasing during the night and decreasing during 
the day. They do expect that the importance of photochemical production will increase in the 
Norther Hemisphere, resulting in an overall decrease in surface O3, if NOx emissions continue to 
decrease as a result of COVID-19 restrictions.  
 
The main reason for writing this paper is to report new knowledge on a very recent (and still 

ongoing) event that is of global importance. Keller et al. correctly identify the knowledge-gap for a 

need of quantification of the reduction in global emissions, fitting the scope of the journal. Their 

research contributes to the reporting and is based on suitable methods for quantification of 

reductions. Therefore, this overall well written research should be published. However, not in this 

current state. My major comment is on the absence of 3 important things that need to be added 

before publication: (1) statistics, (2) calculation steps and (3) definition of ‘lockdown’.  The 3 major 

comments are followed by a list of minor comments. 

Major comments: 

Major comment (1): Statistics need to be included. The aim of the paper is to quantify, uncertainties 

should be quantified as well. The reported numbers are easily disregarded without the proper 

statistics (e.g. p-values, t-tests or z-tests) and uncertainty ranges. This problem is present in 

figures 4 and 6 (but applies for all given emission changes in the manuscript). Here the difference 

between the BCM prediction and observations is shown, but without noting whether this 

difference is significant (or perhaps falls within the uncertainty range of the BCM prediction).  

 

Example 1, line 145: “For Wuhan, we find a reduction in NO2 of 60% relative to the expected BCM 
value for February and March 2020, and similar decreases are found over Milan (60%) and New 
York (45%) starting in mid-March and lasting through April (Fig. 4; Tables A1-A3).”  

How certain are these numbers? Is it between 62% and 58%? Or between 70% and 50%? I urge 
the authors to please quantify the uncertainty of these numbers by providing uncertainty ranges 
or mentioning of significance. This could be implemented similar to Le Quéré et al. (2020), here 
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reductions in emissions are provided by stating the range (representing ±1σ) instead of a single 
number. 

Example 2, line 228: “Compared to the BCM model, there has been an increase in the 
concentration of night time O3 (midnight-5.00 local time, Fig. 8a) by 1 part per billion by volume 
(ppbv = nmol mol-1) compared to the BCM, whereas Ox shows a decrease of 1 ppbv (Fig. 8b).” 

Is this reported 1 ppbv difference significant? I highly suggest you to report whether the 
modelled change is significantly different from the observations. The recent paper by Liu et al., 
(2020), also referenced by Keller et al., does report significance and thereby makes a more 
compelling case. Liu et al. derived uncertainty from 10000 Monte Carlo simulations from monthly 
statistics to estimate a 68% confidence interval. This procedure could be followed here as well.  
Another suggestion is to provide a paragraph on uncertainty estimation for the machine learning 
algorithm in the method section, similar to Petetin et al. (2020). Perhaps here the method of 
Hengl et al. (2017) could be useful. They describe a procedure for machine-learning uncertainty 
estimation with the use of the program R and the package ‘xgboost’. 

 

Major comment (2): It’s unclear how numbers in the result section are constructed from the 
represented data, no calculation steps are mentioned in the method section. Most importantly, 
how is the reduction in global NOx emissions of 2.9 TgN calculated? 
 

Line 253 states the following: “This results in anthropogenic emission adjustment factors of 0.3 to 
1.4 (Fig. A7).” 

Because of the lack of clarification on calculation steps or argumentation, it is unclear how the 
adjustment factors of 0.3 and 1.4 are determined. Is perhaps the approach of Mendoza & Russel 
(2001) used to derive adjustment factors for NOx emissions? Please refer to the used 
methodology or provide the calculation steps. The in the manuscript referred figure A7 does not 
provide the calculations either (even though this seems to be suggested). Figure A7 only shows 
the monthly average perturbations applied to the 2018 anthropogenic base emissions, ranging 
from 0.5 to 1.5. As a consequence, the resulting quantification of reduction in emissions loses 
credibility. 

Lines 262-266: “Based on bottom-up emissions estimates for 2015 from the Emission Database 
for Global Atmospheric Research (EDGAR v5.0_AP, Crippa et al., 2018, 2020) and using a constant 
concentration/emissions ratio of 0.8 based on the best fit line obtained from the model sensitivity 
simulation (dashed purple line in Fig. 9a), we calculate that the total reduction in anthropogenic 
NOx emissions due to COVID-19 containment measures during the first six months of 2020 
amounted to 2.9 TgN (Fig. 9b and Table 2).” 

It is clear a calculation is performed, but not how. How is the quite important 2.9 TgN reduction 
in anthropogenic NOx emission due to COVID-19 containment constructed? The 2.9 TgN is not in 
the referred Table 2 nor in Figure 9b. I urge the authors to provide the taken calculation steps 
resulting in the (quite important) 2.9 TgN reduction in anthropogenic NOx emission. This will 
improve the credibility of that given number. 

 

Major comment (3): The manuscript mentions ‘lockdown’ situations but does not provide a 

definition of ‘lockdown’. The restrictions vary per country (Ravindran & Shah, 2020) and the 

definition will have consequences on changes in NO2 emissions. Some countries only enforced 

restrictions based on time, while keeping most forms of transport, schools and business open. 

Others have been reported to only had restrictions for part of the country. Please provide a 

definition of ‘lockdown’. 
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Lines 156-162: For Taipei and Rio de Janeiro, the observations and the BCM show little difference 

(Fig. 4), consistent with the less stringent quarantine measures in these places. Other cities with only 

short-term NO2 reductions of less than 25% include Atlanta (USA), Budapest (Hungary), and 

Melbourne (Australia), again correlating with the comparatively relaxed containment measures in 

these places (Fig. A1-A3). In contrast, Tokyo (Japan) and Stockholm (Sweden), which also 

implemented a less aggressive COVID-19 response, exhibit NO2 reductions comparable to those of 

cities with official lockdowns (>20%), suggesting that economic and human activities were similarly 

subdued in those cities.” 

This suggests that degrees of reduction in NO2 emissions are linked to severity in measures taken 

by local governments (e.g. lines 156-162), however, the severity of measures per country are not 

characterised.  I suggest providing an overview of ‘lockdowns’ via a table including severity of 

measures and start and end dates. As an example, take a look at Ravidran & Shah (2020), where 

countries were classified on severity by introducing colour codes.  

Line 142: The start and end dates for these are from 

https://en.wikipedia.org/wiki/COVID19_pandemic_lockdowns or based on local knowledge.” 

Because of Wikipedia’s quickly changing contents, stating the start and end dates in a table will be 

an improvement on the derived results and will be more concrete than the stated ‘local knowledge’. 

Lines 21-22: Reductions in NO2 correlate with timing and intensity of COVID-19 restrictions, ranging 

from 60% in severely affected cities (e.g., Wuhan, Milan) to little change (e.g., Rio de Janeiro, 

Taipei).” 

Also, the manuscript mentions correlations in timing and intensity of COVID-19 restrictions and 

reductions in NO2 (e.g. lines 21-22). A quantification of this correlation is however missing. Are these 

findings only based on eying the figures? Was a correlation test performed? I recommend adding 

quantification of the correlations.  

 

Minor comments: 

Table 1: The links for AEROS (Japan) and EPA Victoria (Australia, Melbourne) do not work. 

119: Provide an argumentation on why all observations below or above 2 standard deviations from 

the mean are removed, contrary to Ma et al. (2020) where observations below or above 3 standard 

deviations were removed. 

Figures 2 and 3: The presentation of the machine learning statistics could be simplified in form of 
a table. I fail to see how the representation of the machine learning statistics in a graph are 
useful to the reader (including the location#, since no information is supplied to deduct which 
location# is which location). I suggest replacing figures 2 and 3 by a table providing statistical 
performance, similar to Table 4 of Ivatt & Evans (2019). 

Figures 4 and 6: Reductions in % are difficult to read in the figures, one must go back to the text 

for the actual numbers. Consider including the numbers in the figures, so they stand stronger by 

themselves. Both figures could be shortened on the x-as as well, starting at 2019. The (incomplete) 

data from 2018 does not contribute to the results. I would even consider replacing both figures 4 

and 6 entirely by new figures that better meet the objective of quantifying the difference in 

reductions of NO2 and O3 concentrations (including notification of significance or uncertainty ranges, 

see major comment 1). 
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191: Consider replacing the vague terms ‘some countries’ and ‘most countries’. These results are 
stronger when presented in numbers, for example: '42 out of 46 countries...' 

208: Reconsider the phrasing of this result. Belgium, Italy, Luxembourg and Switzerland do not all 

four show pronounced peaks in early April, based on Figure 7. 

221-225: Consider including chemical equations of the mentioned processes to improve readability 

of this paragraph. 

252-258: Move this text to methods, it seems out of place here in the result section. 

305-309: Move this text to methods as well, it seems out of place her in the conclusion section. 

Figure 10: Consider moving this figure to the result section instead of below the conclusion.  
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