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 13 

Abstract 14 

Elevated levels of fine particulate matter (PM2.5) during winter-time have become one of the most important 15 

environmental concerns over the Indo-Gangetic Plain (IGP) region of India, and particularly for Delhi. Accurate 16 

reconstruction of PM2.5, its optical properties, and dominant chemical components over this region is essential to 17 

evaluate the performance of the air quality models. In this study, we investigated the effect of three different 18 

aerosol mechanisms coupled with gas-phase chemical schemes on simulated PM2.5 mass concentration in Delhi 19 

using the Weather Research and Forecasting model with the Chemistry module (WRF-Chem). The model was 20 

employed to cover the entire northern region of India at 10 km horizontal spacing. Results were compared with 21 

comprehensive filed data set on dominant PM2.5 chemical compounds from the Winter Fog Experiment 22 

(WiFEX) at Delhi, and surface PM2.5 observations in Delhi (17 sites), Punjab (3 sites), Haryana (4 sites), Uttar 23 

Pradesh (7 sites) and Rajasthan (17 sites). The Model for Ozone and related Chemical Tracers (MOZART-4) 24 

gas-phase chemical mechanism coupled with the Goddard Chemistry Aerosol Radiation and Transport 25 

(GOCART) aerosol scheme (MOZART-GOCART) were selected in the first experiment as it is currently 26 

employed in the operational air quality forecasting system of Ministry of Earth Sciences (MoES), Government 27 

of India. Other two simulations were performed with the MOZART-4 gas-phase chemical mechanism coupled 28 

with the Model for Simulating Aerosol Interactions and Chemistry (MOZART-MOSAIC), and Carbon Bond 5 29 

(CB-05) gas-phase mechanism couple with the Modal Aerosol Dynamics Model for Europe/Secondary Organic 30 

Aerosol Model (CB05-MADE/SORGAM) aerosol mechanisms. The evaluation demonstrated that chemical 31 

mechanisms affect the evolution of gas-phase precursors and aerosol processes, which in turn affect the optical 32 

depth and overall performance of the model for PM2.5. All the three coupled schemes, MOZART-GOCART,  33 

MOZART-MOSAIC, and CB05-MADE/SORGAM, underestimate the observed concentrations of major 34 

aerosol composition (NO3
-
, SO4

2-
, Cl

-
, BC, OC, and NH4

+
) and precursor gases (HNO3, NH3, SO2, NO2, and O3) 35 

over Delhi. Comparison with observations suggests that the simulations using MOZART-4 gas-phase chemical 36 

mechanism with MOSAIC aerosol performed better in simulating aerosols over Delhi and its optical depth over 37 

the IGP. The lowest NMB (-18.8%, MB = -27.4 µg/m
3
) appeared for the simulations using MOZART-MOSAIC 38 
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scheme, whereas the NMB was observed 32.5% (MB = -47.5 µg/m
3
) for CB05-MADE/SORGAM and -53.3% 39 

(MB = -78 µg/m
3
) for MOZART-GOCART scheme. 40 

  41 
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1. Introduction 42 

The industrial activities in India have escalated to new heights in the past three decades which 43 

consequently have led to multiple urban environmental issues, especially deteriorating air quality due to 44 

suspended particulate matter of aerodynamic diameter smaller than 2.5 µm (PM2.5) (Ghude et al., 2016; Ghude 45 

et al., 2020). Therefore, it has become a matter of serious concern for public health in India. Currently, the air 46 

quality in India, especially in the northern region of India in general and Delhi in particular, is among the 47 

poorest in the world (World Health Organization, 2018). Therefore, managing air quality levels in this region of 48 

India has emerged as a complicated task. 49 

 50 

Recent studies indicate that the exposure to the exceptionally high level of outdoor PM2.5 pollution in 51 

the National Capital Region (NCR) Delhi poses a serious health risk to the public in Delhi (Ghude et al., 2016; 52 

Guttikunda et al., 2013), particularly during the winter season. Diversity of emission sources (Chandra et al., 53 

2018; Hakkim et al., 2019), larger use of fossil fuel such as transport, industries, etc. (Chen et al., 2020), and 54 

large scale intense open crop-residue burning in surrounding regions of Delhi (Jena et al., 2015a; Beig et al., 55 

2020; Kulkarni et al., 2020) is responsible for extreme air pollution episodes in the NCR region under 56 

favourable meteorological conditions (Vadrevu et al., 2011; Gargava et al., 2015; Tiwari et al., 2018; Liu et al., 57 

2018; Krishna et al., 2019; Chate et al., 2013; Beig et al., 2013; Parkhi et al., 2016). This has drawn significant 58 

academic and research interest in predicting high PM2.5 levels using numerical air quality models (Guttikunda et 59 

al., 2012; Beig et al., 2013; Krishna et al., 2019; Ghude et al., 2020; Kulkarni et al., 2020). Few recent studies 60 

have tested the performance of air quality models, particularly WRF-Chem, in simulating hourly PM2.5 61 

concentrations in Delhi (Ojha et al.,2020; Chen et al., 2020; Ghude et al., 2020; Kulkarni et al., 2020). These 62 

studies suggested that simulating and predicting extreme air quality episodes, particularly PM2.5 concentrations 63 

exceeding 300µg/m
3
, in the NCR region is a challenging task for the air quality models (Kumar et al., 2015; 64 

Krishna et al., 2019; Bali et al., 2019). Large uncertainties are involved in the prediction of atmospheric 65 

aerosols. This is because chemical transport models predictions suffer from errors in emission inventories (Jena 66 

et al., 2015b), inadequate understanding of some of the processes (e.g., secondary organic aerosol formation) 67 

(Balzarini et al., 2015), inaccuracies in the initialization of chemical and physical atmospheric state (Ghude et 68 

al., 2020), systematic and random errors because of numerical approximations, and approaches the different 69 

chemical mechanisms use to calculate size distribution of aerosols coupled with the gas-phase chemical 70 

mechanism. 71 

 72 

A recent study showed significant differences in simulating aerosol mass concentration over China  73 

(Chen et al., 2016, 2017), Europe (Solazzo et al., 2012; Balzarini et al. 2015; Georgiou et al. 2018), USA 74 

(Yahya et al., 2017; Hodzic et al., 2013) and Tibetan Plateau (Yang et al., 2018). Differences in the chemical 75 

mechanism (Knote et al., 2015), parameterization of heterogeneous formation of secondary inorganic aerosols 76 

(SIA), and secondary organic aerosols (SOA), which affects the aerosol process and the evolution of gas-phase 77 

precursors, are found to play a key role in the reconstruction of aerosols in above studies. For organic aerosols, 78 

the complexity of secondary formation and its aging processes and the lack of emission estimates of 79 

intermediate-volatility and semi-volatile organic compounds affect the model performance (Chen et al., 2017; 80 

Tsigaridis et al., 2014). Balzarini et al. (2015) showed that simulated total PM mass concentrations, as well as 81 
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aerosol subcomponents, vary between the RADM2 gas-phase chemical mechanism with Modal Aerosol 82 

Dynamics Model for Europe/Secondary Organic Aerosol Model (MADE/SORGAM) and CBMZ gaseous 83 

parameterization with Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) aerosol 84 

mechanisms, and CBMZ-MOSAIC performed better in reproducing lower aerosol concentration than RADM2-85 

MADE-SORGAM. Yang et al., (2018) also reported that RADM2-MADE/SORGAM could simulate higher 86 

surface PM2.5 mass concentrations better than the CBMZ-MOSAIC module over the Tibetan Plateau because of 87 

the difference in aerosol compounds and distribution of computed aerosol concentrations between modes and 88 

bins. On the other hand, Georgiou et al. (2018) showed that simulated PM2.5 by the RADM2-MADE/SORGAM 89 

mechanism exhibit lowest mean bias when compared to observations, but it overestimates the ammonium and 90 

sulfate aerosols. On the other hand, the MOSAIC aerosol mechanism overestimates PM2.5 mass concentrations 91 

substantially over the eastern Mediterranean region. In a recent study, Curi et al., (2015) showed that magnitude 92 

of the uncertinities in AOD arrising from the assumations of aerosol mixing state (external, internal 93 

homogeneous, and internal core shell), the chemical species density, the species complex refractive index, and 94 

the hygroscopic growth factors is significant if compared with typical differences found in comparison of 95 

simulated values with AOD observations. 96 

 97 

Most of these studies focused over the USA, Europe, or China. However, a detailed evaluation of PM2.5 98 

with different coupled chemcial schemes (gas-phase mechanism with aerosol schemes) over the IGP region in 99 

general and Delhi in particular with scare datasets left unclear view of WRF-Chem’s ability to predict PM2.5 100 

over this region, a region documented to be one of the most polluted regions in South Asia. A very limited 101 

number of modelling studies have focused on evaluating the performance of the air quality models in simulating 102 

PM2.5 mass concentration in Delhi on an hourly time scale during winter-time pollution. For example, Krishna et 103 

al., (2019); Ghude et al., (2020); Kulkarni et al., (2020) carried out WRF-Chem simulations over Delhi with 104 

MOZART-4 gas-phase chemistry and Goddard Chemistry Aerosol Radiation and Transport (GOCART) aerosol 105 

mechanism. They found that the model very well captures the temporal variation in PM2.5 mass concentration 106 

driven by synoptic-scale meteorological variability, but shows substantial error in simulating the PM2.5 107 

magnitude and large model-observations differences. It is therefore important to evaluate the model capability in 108 

simulating the concentration of major PM2.5 components and major oxidants and how different chemical 109 

mechanism affects the PM2.5 mass concentrations over this region. 110 

 111 

In this study, three two-month simulation experiments using Weather Research and Forecasting model 112 

with chemistry (WRF-Chem v3.9.1) were designed for the Northern region of India in general, and National 113 

Capital Region, Delhi in particular at 10 km grid resolution during winter-time. For this, we employ and inter-114 

compare MOZART-GOCART, MOZART-MOSAIC, CB05-MADE/SORGAM coupled gas-phase chemistry 115 

and aerosol mechanisms to evaluate the simulated PM2.5 mass concentrations with extensive ground-based 116 

observations in Delhi (17 sites), Punjab (3 sites), Haryana (4 sites), Uttar Pradesh (7 sites), and Rajasthan (17 117 

sites). We also investigated the optical properties of aerosols, and ability of the different coupled chemical 118 

mechanism in the model to reconstruct the different aerosol components of PM2.5 in Delhi using chemical 119 

speciation observations from the Winter Fog Experiment (WiFEX) that took place at the Indira-Gandhi 120 

International Airport, New Delhi (Ghude et al., 2017; Acharja et al., 2020). The comparison among the coupled 121 
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aerosol schemes aims at identifying the reasons for differences in model performance. Section 2 briefly 122 

describes the gas-phase chemistry and aerosol mechanisms used for the simulations, the basic model 123 

configuration, emission data used, and data used for the model evaluation. In section 3, we present the results 124 

from the sensitivity simulations and their evaluation with surface observations. Our conclusions and suggestions 125 

for further study are given in Section 4. 126 

 127 

2. Model setup and description 128 

In this study, we used the Weather Research and Forecasting model coupled with chemistry WRF-129 

Chem v3.9.1 to simulate surface PM2.5 mass concentration during the peak winter period, starting from 1 130 

December 2017 to 31 January 2018. Recently, the model has been widely used to simulate the air quality in 131 

Delhi (Beig et al., 2013; Gupta and Mohan 2015; Ghude et al., 2020; Kulkarni et al., 2020; Chen et al., 2020) 132 

and to estimate NOX and PM2.5 mass concentration over India (Ghude et al., 2013; Krishana et al., 2019; Ojha et 133 

al., 2020; Beig et al., 2020). In this study, three sets of simulations were designed using following three widely 134 

used coupled  schemes (gas-phase chemical mechanisms with aerosol schemes) to simulate the PM2.5 mass 135 

concentrations over the northern region of India. 136 

MOZART-GOCART (MG): In the first experiment, simulation is performed with the Model for Ozone and 137 

related Chemical Tracers (MOZART-4) gas-phase chemical mechanism (Emmons et al. 2010) coupled with the 138 

Goddard Chemistry Aerosol Radiation and Transport (GOCART) aerosol scheme (Chin et al., 2000; Ginoux et 139 

al., 2001). It includes 157 gas-phase reactions, 85 gas-phase species, 39 photolysis, and 16 bulk aerosol 140 

compounds. For this experiment, the chemistry scheme is consistent with the chemistry used in the global model 141 

that provides the chemical initial and boundary conditions. The GOCART aerosol model simulates five major 142 

types of aerosols, namely, sulfate, black carbon, organic carbon, dust, and sea salt. GOCART scheme does not 143 

simulate nitrate and secondary organic aerosols. The composition of GOCART aerosol module includes fine 144 

unspeciated aerosol contribution (P25), organic carbon (hydrophobic OC1 and hydrophilic OC2), organic black 145 

carbon (hydrophobic BC1 and hydrophilic BC2), sulfate (SO4
2-

), dust of different sizes (D1, D2, D3, D4 and D5  146 

representing dust with effective radii of 0.5, 1.4, 2.4, 4.5 and 8 µm respectively),  and sea salt of different sizes 147 

(S1, S2, S3 and S4 representing sea salt with effective radii of 0.3, 1.0, 3.25 and 5µm respectively). 148 

MOZART-MOSAIC (MM): In the second experiment, we used MOZART-4 gas-phase chemical mechanism 149 

coupled with the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) (Zaveri et al., 2008) 150 

aerosol scheme. MOSIAC includes sulfate (SULF = SO4
2-

 +HSO4
-
), methanesulfonate (CH3SO3), ammonium 151 

(NH4
+
), sodium (Na), calcium (Ca), nitrate (NO3

-
), chloride (Cl

-
), carbonate (CO3), black carbon (BC), primary 152 

and organic mass (OC). Other unspecified inorganic species, inert minerals, and trace metals are lumped 153 

together as OIN (other inorganic mass). MOSIAC also allowed the gas-phase to partition to the particle-phase, 154 

which include H2SO4, HNO3, HCl, NH3, and MSA (methanesulfonicacid), and also include secondary organic 155 

aerosols (SOA). MOSAIC uses a sectional aerosol bin approach for the representation of the aerosol size 156 

distribution. In the WRF-Chem model, one can choose between four and eight aerosol size bins, which are 157 

demarcated by their lower and upper dry particle diameters. In both cases, only one bin is assigned to aerosols 158 

with a diameter between 2.5 and 10 μm. Therefore, when four aerosol bins are used, three bins are assigned to 159 
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aerosols less than 2.5 μm in diameter. When eight aerosol bins are used, seven bins are assigned to aerosols with 160 

diameters within this range. Usually, it is sufficient to use the four-bin simulation option to which the focus is 161 

on air quality and it also reduces computational complexity (Georgiou et al., 2018). 162 

CB05-MADE/SORGAM (CMS): In the third experiment, we conducted simulations using the Carbon Bond 5 163 

(CB-05) gas-phase mechanism (Yarwood et al., 2005,) which includes 51 chemical species and 156 reactions. 164 

Aerosol processes are represented by the Modal Aerosol Dynamics for Europe/ Secondary Organic Aerosol 165 

Model (MADE/SORGAM) (Ahmadov et al., 2012) which uses modal aerosol size distribution, and includes an 166 

advanced secondary organic aerosol (SOA) treatment based on gas-particle partitioning and gas-phase oxidation 167 

in volatility bins. The CB05-MADE/SORGAM mechanism has also been coupled to existing model treatments 168 

of various feedback processes such as the aerosol semi-direct effect on photolysis rates of major gases and the 169 

aerosol indirect effect on cloud droplet number concentration and resulting impacts on shortwave radiation 170 

(Yahya et al., 2016). 171 

The model domain covers the entire northern region of India at a horizontal grid spacing of 10 km and 172 

47 vertical levels stretching from the surface to 10 hPa. Prior anthropogenic emissions of aerosols and trace 173 

gases (PM2.5, PM10, OC, BC, CO, NOx, etc.) were taken from the EDGAR-HTAP (Emission Database for 174 

Global Atmos. Res. for Hemispheric Transport of Air Pollution) for the year 2010 at 0.1º x 0.1º grid resolution 175 

and scaled to 2018 using scaling factors as given in Venkatraman et al. (2018). No diurnal variation was added 176 

to emissions. Biogenic emissions are calculated online using the Model of Emissions of Gases and Aerosols 177 

from Nature version 2.1 (MEGAN2.1) (Guenther et al., 2006) and dust emissions are based on the online 178 

Atmospheric and Environmental Research Inc. and Air Force Weather Agency (AER/AFWA) scheme (Jones 179 

and Creighton, 2011). Emissions from sea salt are generated based on the scheme of Gong et al. (1997). Daily 180 

open biomass burning emissions are obtained from the Fire INventory from NCAR (FINNv1.5) 181 

(http://bai.acom. ucar.edu/Data/fire/). The chemical initial and lateral boundary conditions come from the global 182 

model simulations from the Model for Ozone and Related Chemical Tracers (MOZART-4) and the 183 

meteorological initial and lateral boundary conditions are provided by National Centers for Environmental 184 

Prediction Final Reanalysis (NCEP/FNL) dataset, which is available every 6 hours. The simulations are 185 

reinitialized monthly to constrain meteorological fields toward NCEP/FNL reanalysis data while forwarding 186 

chemistry fields from the previous day. The details configuration of physics and chemistry options used in this 187 

study, as well as their corresponding references, can be found in Table S1. 188 

2.1. Observational datasets and evaluation protocol 189 

The surface PM2.5 data used in this study are taken from the air quality monitoring network operated by 190 

the Indian Institute of Tropical Meteorology (IITM) and the Central Pollution Control Board (CPCB) in Delhi 191 

(17 sites), and CPCB monitoring network in Punjab (3 sites), Haryana (4 sites), Uttar Pradesh (7 sites), and 192 

Rajasthan (9 sites). The details of these monitoring locations are given in Table S2, and the geographical 193 

locations are shown in Figure 1. These sites are representative of traffic, airport, urban, and suburban areas. The 194 

quality control and assurance method, followed by CPCB for these air quality monitoring stations, is given at 195 

https://cpcb.nic.in/quality-assurance-quality-control/. Furthermore, we take the following steps to reassure the 196 

quality of PM2.5 observations from the CPCB network stations. For Delhi data quality, we rejected all the 197 
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observations values below 10 µg/m
3
 and above 1500 µg/m

3
 at a given site if other sites in the network do not 198 

show values outside this range. The purpose of this step is to eliminate any short-term local influence that 199 

cannot be captured in the models and to retain the regional-scale variability. Second, we removed single peaks 200 

that are characterized by a change of more than 200 µg/m
3
 in just one hour for all the data in CPCB monitoring 201 

stations. This step filters random fluctuations in the observations. Third, we removed some very high PM2.5 202 

values that appeared in the time series right after the missing values. For any given day, we removed the sites 203 

from the consideration that either experience instrument malfunction and/or appear to be very heavily 204 

influenced by strong local sources. Measurement of the inorganic aerosol composition (chemical ions) CL
-
, 205 

NO3
-
, SO4

2-
, and NH4

+
 are made using MARGA-2S instrument during 01 December 2017 to 31 January 2018 at 206 

Delhi as a part of the WiFEX field campaign at Delhi international airport (Ghude et al., 2017; Acharja et al., 207 

2020). The quality assurance and control process applied to the measurement of the chemical ion is given at 208 

Acharja et al., (2020). The meteorological observation data used in this study are taken from the Indian 209 

Meteorological Department (IMD). 210 

The focus of the model evaluation was mainly to assess whether the model is able to effectively 211 

reproduce the spatial and temporal distributions of ambient total PM2.5 mass concentrations and key PM2.5 212 

aerosol composition in Delhi as compared to observations. WRF-Chem is currently employed in the operational 213 

air quality forecasting system of the Ministry of Earth Sciences (MoES), Government of India. It is therefore 214 

important to examine the performance assessment of WRF-Chem for air quality simulations on a regional scale 215 

in general and over Delhi in particular during heavy winter-time pollution. Statistical evaluation metrics such as 216 

mean bias (MB), Pearson’s correlation coefficient (R), normalized mean bias (NMB), normalized mean error 217 

(NME) (the definition of those measures can be found in Yu et al., 2006, and Zhang et al., 2006), and index of 218 

agreement (IOA) ranging from 0 to 1 (Yahya et al., 2016) with a value of 1 indicating a perfect agreement, is 219 

used to evaluate the perforation of different sets of the experiment. For evaluation, the observational data are 220 

paired up with the simulated data on an hourly basis for each site, and then observational data and simulated 221 

data are averaged out for all sites in Delhi, Haryana, Uttar Pradesh, and Rajasthan. The statistics are then 222 

calculated based on the state-specific data pairs. 223 

 224 

3. Results and discussion 225 

3.1. Meteorological evaluation 226 

To quantitatively evaluate the model performance for basic meteorological parameters, the data for the 227 

temperature at 2m (T2m), relative humidity at 2m (RH2m), and wind speed at 10m (WS10m) from six stations over 228 

Delhi, India is used. Statistical metrics are derived by comparing the output of the three model simulations to 229 

hourly measurements averaged over all ground stations. Table 1 shows the correlation coefficient (r), mean bias 230 

(MB), and root mean squared error (RMSE) between observed and modeled temperature at 2m (T2m), relative 231 

humidity at 2m (RH2m), and wind speed at 10m (WS10m)  over Delhi, India. Modelled T2m is in good agreement 232 

with observations (NMB = 2 to 5 %) but shows higher RSME values (8.84 to 8.92
o
C) for all three mechanisms. 233 

The statistic for RH2m indicates that the model has dry bias during winter for all the three mechanisms and 234 

model over-predicts WS10m by an average of ~1.2 ms
-1 

for all three mechanisms. The over prediction of wind 235 
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speed and poor correlation could be due to the poor representation of surface drag exerted by the unresolved 236 

topography, other smaller-scale terrain features, and building morphology (Mar et al., 2016; Zhang et al., 2013). 237 

 238 

3.2. Sensitivity simulation of different aerosol scheme  239 

3.2.1. Fine particulate matter (PM2.5) 240 

Figure 2 shows the comparison for temporal variation between observed and the modeled hourly PM2.5 241 

mass concentrations form the sensitivity simulations with the three aerosol mechanisms from 1 December 2017 242 

to 31 January 2018 over Delhi. Observed (black) surface PM2.5 mass concentrations are averaged from the 17 air 243 

quality monitoring stations in Delhi, while simulated PM2.5 are for the MG (red), MM (blue), and CMS (green) 244 

experiments are averaged from the 17 grids containing these observation sites. It can be seen that the run with 245 

the MG, MM and CMS chemical schemes did not perform well, although it could capture the temporal variation 246 

associated with the synoptic-scale variability during the study period. The mean observed PM2.5 concentration 247 

during peak winter months was about 191 µg/m
3
. Whereas, the mean modeled PM2.5 concentration vary from 248 

89.9 µg/m
3 

with the MG mechanism to 163.8 µg/m
3
 and 147.1 µg/m

3 
with the MM and CMS mechanism 249 

respectively, showing a large variability in simulated PM2.5 in Delhi among these mechanisms. All three 250 

simulations with MG, MM and CMS chemcial schemes significantly under-predict observed PM2.5 251 

concentration averaged over Delhi. The statistic showed a large mean bias of about -101µg/m
3 
(RMSE = 146.3) 252 

for the simulation with the MG mechanism, which was about 53% of the corresponding observation. On the 253 

other hand, simulations with the CMS and MM mechanisms showed much better agreement. The performance 254 

statistic showed that the magnitude of bias decrease to -44 µg/m
3 

(23%) and -27 µg/m
3 

(14%) in the CMS and 255 

MM simulations, respectively. Differences between the MG, MM, and CMS simulation are more pronounced 256 

during the days when hourly PM2.5 exceeds 250 µg/m
3
, particularly on 1-7 and 25-31 December 2017, and 17-20 257 

January 2018. Simulations with the MG mechanisms show poor ability of the model to capture these heavy 258 

pollution days, while the latter two show reasonable ability to capture hourly PM2.5 that exceeds 250 µg/m
3
. On 259 

some days, none of the simulation experiments captured the abrupt increase in PM2.5 values observed on 18 -23 260 

December, 26-28 December, and 8-16 January and underestimated the observed levels at the majority of the 261 

stations.   262 

Further, we evaluated the robustness of model performance for the individual stations in NCR Delhi 263 

region. Table S3 shows the statistical performance of three MG, MM and CMS chemical schemes for seventeen 264 

stations. Again, the MG mechanism showed the poorest performance with model mean bias varying from 19% 265 

to 65% among different stations. The statistics show that for some stations, the MM mechanism performed quite 266 

well, while the CMS mechanism shows better agreement for the others (Table S3). Surface PM2.5 concentration 267 

simulated with the MM mechanism show normalized mean bias (NMB) within ±15% for the following sites: 268 

CRRI Mathura (-1.9%), ITO (-7.3%), Lodhi Road (-4.8%), North Campus DU (-12.6%), and Shadipur (-269 

11.5%). The sites showing the NMB within ±15% for the CMS mechanism are Burari Crossing (-11.51%), 270 

CRRI Mathura (-7.3%), ITO (-12.1%), and Lodhi Road (-2.1%). Overall, the MM mechanism shows better 271 

performance for simulating hourly PM2.5 mass concentration over individual stations and Delhi as a whole, but 272 
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both the MM and CMS mechanisms show significant variability in NMB among the monitoring stations. This 273 

could be because of the anthropogenic emissions of aerosols and trace gases taken from the EDGAR- HTAP at 274 

0.1° x 0.1° grid resolution, which does not resolve the real variability in emissions in Delhi and may not 275 

accurately capture true values observed at the point of measurement. Simulations with the MG mechanism 276 

under-predicts PM2.5 within 70% at all stations, possibly due to lack of NO3
-
 and secondary organic aerosols 277 

(SOA) in the GOCART model. We find that simulated mean NO3
- 
and SOA together contributed ~44 µg/m

3
 278 

with the MM mechanism, which is about 30% of total PM2.5 mass concentration simulated during the winter 279 

period.   280 

We also examined the model performance of MG, MM and CMS chemical schemes over the Punjab, 281 

Haryana, Uttar Pradesh, and Rajasthan (Figure 3), which are the neighboring states of Delhi and often influences 282 

the air quality in NCR region (Kumar et al., 2015; Kulkarni et al., 2020). Table S4 shows the summary of the 283 

performance statistic for the individual sites in each state. The average observed PM2.5 concentration over 284 

Punjab was 84.21 µg/m
3
 and WRF-Chem showed biases of about -24.7 µg/m

3 
(RMSE = 52.1), 13.1 µg/m

3 285 

(RMSE = 52.6) and 1.9 µg/m
3 

(RMSE = 48.1) for the MG, MM, and CMS aerosol mechanisms respectively. 286 

This is about 29%, 15%, and 2% of the observed average value for the MG, MM, and CMS mechanisms, 287 

respectively. For the individual monitoring stations in Punjab, simulations with the CMS mechanism showed 288 

better performance with a bias of about 5.3% for Amritsar and 9.4% for Ludhiana, whereas the MM mechanism 289 

showed better performance with a bias of about -4.8% for Gobindgarh RIMT  station.  290 

The average observed PM2.5 concentration over Haryana was about 138.8 µg/m
3
, significantly higher 291 

(by 45%) than that of average PM2.5 over Punjab. WRF-Chem over Haryana showed a bias of about -82.7 µg/m
3 292 

(-59.6%), -43.7 µg/m
3 

(-31.5%) and -58.9µg/m
3
(-42.4%) for the MG, MM and CMS chemcial mechanisms 293 

respectively, indicating that all three aerosol mechanisms significantly under-predict PM2.5 surface 294 

concentration. For the individual monitoring stations in Haryana, simulations with the MM mechanism showed 295 

better performance, and NMB is found to vary from -22% to 48% relative to observations. For Uttar Pradesh, 296 

the MG mechanism showed the largest bias of about -126.5 µg/m
3 
(-62.2% of the observed value) while the MM 297 

and CMS showed biases of about -58.4 µg/m
3 

(-28.5%) and -84.6 µg/m
3
 (-42.4%) respectively, indicating a 298 

large error in simulations irrespective of the mechanism used. For the individual monitoring stations in Uttar 299 

Pradesh, NMB with simulations with the MM mechanism found to vary from -21% to 63% relative to 300 

observations. Relative to Haryana and Uttar Pradesh, performance statistics for Rajasthan show better results in 301 

terms of bias for MM mechanism (bias = -7.6µg/m
3
, NMB = -8.1%). Other two chemicall mechanisms, MG and 302 

CMS, showed biases of about -43.1 µg/m
3
 (-46%) and -22.3 µg/m

3
 (-24%), respectively. Overall, all three MG, 303 

MM and CMS chemcial mechanisms tend to underpredict the observed PM2.5 concentration over the majority of 304 

stations in northern India, but  the MM mechanism was found to be performing better over Delhi and 305 

neighbouring states, except Punjab, where the CMS mechanism performs the best.  306 

 307 

 308 

 309 
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3.2.2. Comparison with satellite AOD 310 

We further examined how the differences between coupled chemical mechanisms translate in 311 

simulating Aerosol Optical Depth (at 550 nm) over the model domain. Figure 4 shows the spatial distribution of 312 

observed mean AOD (MODIS/TERRA) and simulated AOD at TERRA overpass time with three aerosol 313 

mechanisms. All three mechanisms under-predict the observed AOD, and the difference between the three 314 

mechanisms is more pronounced over the central and eastern regions of IGP. The mean AOD difference was the 315 

highest (-58%) for the simulation with MG mechanism, while the latter two show reasonably good agreement 316 

with a mean bias of about -4.3% and -6.6% for the MM and CMS mechanism. This indicates the crucial role of 317 

the fine particle of aerosols, which have higher scattering efficiency, in aerosol optical depth budget (Seinfeld et 318 

al., 2016; Balzarini et al. 2015; Yang et al., 2018). In spite of good agreement with mean AOD, simulations with 319 

both the MM and CMS mechanisms show still large bias over the central and eastern regions of IGP compared 320 

to other regions in the model domain. With the simulation with MG mechanism, the difference in magnitude 321 

between observed and modelled AOD vary from -0.6 to -0.8 over this region. The observed differences between 322 

simulated and observed AOD values over this region are consistent with results from previous studies (Kulkarni 323 

et al., 2020 and Nair et al., 2012). These studies found that underestimation of anthropogenic emissions in the 324 

IGP and errors in simulating dust emission and transport over this region are some of the reasons for differences 325 

in observed and modelled AOD. However, given that emissions are constant in all the three simulation 326 

experiments, the considerable differences between modelled and observed AOD might partially coming from 327 

the difference in the simulation of the aerosol composition and dust scheme. In our simulation, the MG and 328 

CMS use GOCART/AFWA dust scheme while MM uses the GOCART dust scheme.  Some of the previous 329 

studies have shown that ammonium sulfate ((NH4)2SO4), ammonium bisulfate ((NH4)HSO4), ammonium nitrate 330 

(NH4NO3) and ammonium chloride (NH4Cl) scatter light more efficiently at 550 nm (Seinfeld et al., 2016), 331 

while BC absorbs the light at 550 nm. The spatial pattern of mean BC concentration and concentrations of gas-332 

phase compounds that lead to secondary inorganic aerosols and distribution of secondary aerosols for the three 333 

aerosol mechanisms is shown in Figure 5. We can see that the mean SO4
2-

 (Figure 5h) was generally lower in the 334 

MG experiment and highest in the CMS experiment, particularly over the IGP and northeastern India. This 335 

discrepancy may be related to less chemical aqueous-phase oxidation of SO2 by H2O2 in MOZART-4 gas-phase 336 

scheme because all the experiment shares the same SO2 emissions. H2O2 is an efficient oxidant of sulphuric 337 

compounds in clouds and fog. During peak winter months, widespread fog is often detected over the IGP region 338 

during early morning hours and persists till late early afternoon (Ghude et al., 2017; Jenamani et al., 2015). As 339 

shown in figure 5f, simulations with the MG and MM (MOZART-4 gas-phase chemistry) mechanism showed a 340 

higher concentration of H2O2 over IGP, suggesting inefficient oxidation of SO2 compared to the CMS 341 

experiment. Figure 5i shows the surface NO3 concentration simulated by the MM and CMS mechanism. Since 342 

the MG mechanism does not simulate nitrate aerosols, NO3
-
 from the MG epxeriment is not shown here. Mean 343 

NO3
-
 concentration was generally higher in the MM experiment than in the CMS experiment, particularly the 344 

magnitude of NO3
-
 over central and eastern IGP region is larger. Similarly, as shown in Figure 5j, the magnitude 345 

of mean NH4
+

 concentration was also higher in the MM experiment over central and eastern IGP. On the other 346 

hand, mean HNO3 concentration was found highest in the MG experiment, followed by the CMS experiment, 347 

and the lowest was found in MM (Figure 5g) experiment. The highest HNO3 concentration observed in the MG 348 

experiment is related to the efficient photochemical conversion of NO2 and OH to gas-phase HNO3. However, 349 
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the lack of aerosol thermodynamics in the MG mechanism means that HNO3 stays in the gas-phase and does not 350 

partition to particle-phase. The main precursor for NO3 is HNO3, and the equilibrium between nitrate and HNO3, 351 

and gas-phase NH3 and HNO3 can convert to aerosol NH4NO3. This indicates that the gas-particle partitioning 352 

from HNO3 to NH4NO3 is more efficient in the MM experiment than in the CMS experiment. While, higher 353 

HNO3 concentration in the CMS experiment than in the MM experiment may be related to higher surface NO2 354 

(Figure 5b) concentration due to an efficient O3-NO titration process that readily transforms to HNO3 with the 355 

photochemical reaction between NO2 and OH, but not sufficiently converting to aerosol NH4NO3. The MM and 356 

CMS experiment show higher BC concentration than the MG experiment (Figure 5d), but OC concentration is 357 

higher in the MG experiment over the entire IGP region than the MM and CMS experiments (Figure 5e). 358 

Further simulated BC to OC ratios is higher in the MG experiment over the IGP, compared to the other two 359 

experiments. Few recent studies have shown the significant concentration of chloride ions (Cl
-
) in the IGP 360 

region (Ghude et al., 2017) and correlation of NH4
+
 with Cl

- 
implied that sizeable fraction NH4

+
 with Cl

-
 361 

occurred in NH4Cl molecular form (Ali et al., 2019) through a gas-phase reaction between HCL and NH3 (Du et 362 

al., 2010). The primary source of this chloride is winter-time biomass and trash burning that occurred 363 

widespread over the IGP region, but emissions of chloride from these sources are not provided to the model, and 364 

therefore, the MM and CMS simulations show negligible concentrations of Cl
-
 over the IGP (Figure not shown) 365 

region. The bias between observed and simulated AOD may partially be related to missing NH4Cl aerosols in 366 

the simulations. Magnitude of the uncertinities in mdoel AOD also arrisie from the assumations of aerosol 367 

mixing state (external, internal homogeneous, and internal coreeshell), the chemical species density, the species 368 

complex refractive index, and the hygroscopic growth factors. Recent study show that uncertinities in mdoel 369 

AOD due to above paramter is significant if compared with typical differences found in comparison of 370 

simulated values with AOD observations (Curi et al., 2015). 371 

 372 

 373 

3.2.3. Major PM2.5 speciation 374 

Table 2 shows that all three chemcial mechanisms underestimate PM2.5 concentrations in Delhi. The 375 

lowest NMB appears for the MM mechanism (NMB = -18.8%, MB = -27.4 µg/m
3
), whereas the NMB for the 376 

GM mechanism is -53.3% (MB = -78 µg/m
3
) and -32.5% (MB = -47.5 µg/m

3
) for the CMS mechanism. Box-377 

whiskers' plot of observed PM2.5 mass concentrations at IGI airport and its comparison with simulated PM2.5 378 

mass concentrations for the different aerosol mechanisms is given in Figure6. For observations, the 25
th

 and 75
th 379 

percentile of PM2.5 values were observed between 75 µg/m
3
and 190 µg/m

3
, whereas 25

th
 and 75

th 
percentile of 380 

PM2.5 for the MM, CMS, and MG chemcial mechanisums was observed between 75 µg/m
3
 and 150 µg/m

3
,  60 381 

µg/m
3 

and 120 µg/m
3
, and 50 µg/m

3 
and 90 µg/m

3
, respectively. Among the three sensitivity experiments, the 382 

median value of PM2.5 for MM (100 µg/m
3
) simulation was found closer to observation (120 µg/m

3
). Overall, 383 

PM2.5 mass concentration simulated with the MM mechanism was found to be in better agreement with 384 

observations.  385 

In order to understand the individual components of PM2.5 chemical species and examine the difference 386 

in behavior by the aerosol mechanism for Delhi, we examine separately the dominant aerosol species in PM2.5 387 

https://doi.org/10.5194/acp-2020-673
Preprint. Discussion started: 27 August 2020
c© Author(s) 2020. CC BY 4.0 License.



12 
 

and gas-phase compounds that lead to secondary inorganic aerosols. Figure 6 presents the box-whiskers plot for 388 

components of PM2.5 from the observations and simulated by the model for the different coupled aeorsol 389 

mechanisms at Delhi during the study period. It should be noted that nitrate is absent in GOCART; therefore, 390 

ammonium and nitrate are not shown in Figure 6. The MG mechanism does not simulate NH4 but multiplies 391 

sulfate by 1.375 to account for NH4 mass in total PM2.5 mass concentration. Observations at Delhi during the 392 

study period suggest that the ratio of NH4 to sulfate is about 1.545 during the winter season, which is about 11% 393 

higher. Further, simulated mean sulfate aerosols (SO4
2-

) concentration was largely underestimated (~ 40 - 60%) 394 

by the model in all three experiments with bias raining from 9 µg/m
3 
to 14 µg/m

3 
compared to the observations 395 

(Table 2). However, the gas-phase precursor (SO2) of sulfate aerosol simulated by the model was found to be 396 

slightly overestimated by about 4 - 5 ppb in all the simulations. This implies that chemical aqueous-phase 397 

oxidation of SO2 by H2O2 and a heterogeneous nucleation rate from sulphuric acid (H2SO4) is not efficiently 398 

simulated by all three mechanisms over Delhi during the winter period. Nitrate and sulfate interact with each 399 

other through thermodynamic equilibrium but depends upon the gas-phase ammonia concentrations. It can be 400 

seen that for NH3, the simulations with MM and MG mechanism slightly overestimate NH3 by about 2 – 4 ppb, 401 

respectively. On the other hand, simulations with CMS mechanism underestimate NH3 by about 8 ppb for the 402 

same ammonia emissions. However, ammonium aerosols are underestimated by both the simulations with CMS 403 

(MB = -26.3 μg/m
3
) and MM (MB = -24.8 μg/m

3
) mechanisms compared to observations (~34 μg/m

3
). 404 

Simulated mean nitrate concentration was generally higher in the MM (MB = -7.6 μg/m
3
, NMB = ~25%) 405 

experiment than in the CMS (MB = -19.4 μg/m
3
, NMB = ~62%) experiment compared to observation (28 406 

μg/m
3
) but both the experiment show nitrate is negatively biased. As discussed earlier, the main precursor for 407 

NO3 is HNO3, and the equilibrium between nitrate, HNO3, and gas-phase NH3. It can be seen that simulations 408 

with the MM and CMS mechanisms highly underestimate the HNO3 concentration during the winter period. 409 

Overall, the gas-particle partitioning from HNO3 to ammonium nitrate is not efficient in the MM and CMS 410 

chemical mechanism. The difference between underestimation of simulated ammonium and nitrate aerosols in 411 

the MM and CMS experiments could be due to the differences in the different treatment of the gas-to-particle 412 

partitioning from the nitric acid to ammonium nitrate as a function of humidity (Balzarini et al., 2015; Georgiou 413 

et al., 2018). Simulations with the MM and CMS simulations highly underestimate chloride aerosol 414 

concentrations (by about 0.1 μg/m
3
) compared to observations (25 μg/m

3
) due to the absence of anthropogenic 415 

chloride emissions. This indicates considerable uncertainty in the representation of tropospheric chloride 416 

emissions and chemistry that affects aerosol formation. Earlier studies have also shown significant enhancement 417 

in anthropogenic chloride (chemical tracer for garbage, plastics, and tires burning) during the peak winter season 418 

(Acharja et al., 2020; Ghude et al., 2017). During cold winter nights, open biomass burning occurs on the streets 419 

and numerous residential localities in the IGP. In the cold winter conditions, people burn wood, leaf litter, 420 

garbage, plastics, and tires, etc. as these are available almost free-of-cost as compared to clean energy sources 421 

for which one needs to pay. Compared to observations, organic carbon and black carbon is underestimated by all 422 

the three experiments. The lowest mean bias (~ -11 μg/m
3
, ~45%) for BC is found for the simulations with MM 423 

and CMS mechanism, while the simulation with MG mechanism show ~65% bias (~ -16 μg/m
3
) with respect to 424 

the observed BC concentration. For OC the lowest mean bias (~ -9 μg/m
3
, ~35%) appears for the MG 425 

mechanism, whereas mean bias was ~ -12 μg/m
3
, (~45%) for MM mechanism, and ~ -15 μg/m

3
 (~51%) for 426 

CMS mechanism. Because all the three experiments use the same emission sources,  discrepancies between the 427 
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MG, MM, and CMS experiments could be partially attributed to differences treatment of aerosols calculations 428 

by the modal and sectional bin approach. The MOSAIC scheme in this study uses Zaveri et al. (2008) approach 429 

to divide aerosols into four bins, whereas the CMS scheme use Mozurkewich (1993) approach to divide aerosols 430 

into three modes. 431 

 432 

4. Conclusion 433 

In this study, we simulated atmospheric gases and aerosols using three WRF/Chem modelling 434 

configuration to investigate the effect of coupled gas-phase chemistry and aerosol mechanisms on the 435 

reproductions of aerosol concentrations and aerosol optical depth over the northern region of India for the winter 436 

period. Simulated results were compared with the air quality observational data from 17 sites in Delhi, 4 sites in 437 

Haryana, 7 sites in Uttar Pradesh, 9 sites in Rajasthan over North India. Further, the performance of MOZART-438 

GOCART (MG), MOZART-MOSAIC (MM), and CB05-MADE/SORGAM (CMS) coupled gas-phase 439 

chemistry and aerosol mechanisms were investigated for Delhi for major PM2.5 chemical spices observed during 440 

WiFEX field campaign at IGI Airport, Delhi. Performance of the model for basic meteorological parameters 441 

indicates that WRF-Chem could capture 2 m temperate very well but overestimate the wind speed by about 1.2 442 

ms
-1 

at Delhi and may be related to the limited representation of the topography by the model. 443 

Overall, all three coupled chemcial mechanisms tend to underpredict the observed PM2.5 concentration 444 

over the majority of stations in northern India, but the MOZART-MOSAIC mechanism was found to be 445 

performing better over Delhi and neighbouring states. Surface PM2.5 concentration simulated by the MOZART-446 

MOZAIC and CB05-MADE/SORGAM chemical mechanism demonstrated relatively lower bias compared to 447 

MOZART-GOCART chemical mechanism. The model sufficiently captured the spatial distribution of mean 448 

AOD in all three simulations, but MOZART-GOCART highly underpredicts the observed AOD compared to 449 

the other two chemcial mechanisms. This is partly due to the difference in aerosols compounds and particularly 450 

missing nitrate and secondary organic aerosols from the MOZART-GOCART mechanism. MOZART-MOZAIC 451 

and CB05-MADE/SORGAM mechanism underestimate ammonium, nitrate, sulfate, BC, and OC aerosol mass 452 

concentrations, and anthropogenic chloride is completely missing from the simulation. These fine mode aerosols 453 

scatter/absorbed light more efficiently at 550 nm (Seinfeld et al., 2016), and underestimation of these species in 454 

simulations MOZART-MOSAIC and CB05-MADE/SORGAM mechanisms is partly related to observed-455 

modelled bias for surface PM2.5 and AOD over the region. Observations in Delhi show a significant contribution 456 

of chloride aerosols in SOA, and missing sources of anthropogenic chloride emission lead to large-bias between 457 

model and observed chloride concentrations. This is found to be one of the contributing factors for observed 458 

discrepancies between surface PM2.5 and AOD in all three experiments over the northern region of India. In 459 

summary, the result suggests considerable uncertainty in MOZART-GOCART, MOZART-MOSAIC, and 460 

CB05-MADE/SORGAM chemistry in the representation of aerosol chemical species and chemistry that affects 461 

the aerosol formation. This further implies that the under-prediction of PM2.5 concentrations in all three 462 

chemical mechanisms is partially coming from the under-prediction of major aerosol species of fine particular 463 

matter over IGI Airport, Delhi. Therefore, the selection of chemical mechanisms is a key aspect, and MOZART-464 
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MOSAIC mechanism could perform better in reconstructing the AOD aerosols over the northern region of India 465 

and surface PM2.5 over Delhi and neighbouring states.  466 

 467 
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FIGURE CAPTIONS: 703 

Figure 1: Geographical locations of air quality monitoring stations. Delhi stations are represented by blue 704 
circles; red circles represent stations in the states of Punjab, Haryana, Rajasthan, and Uttar Pradesh. 705 

Figure 2: The time series of hourly PM2.5 concentrations from the simulation of MOZART-GOCART (red), 706 
MOZART-MOSAIC (blue), and CB05-MADE/SORGAM (green) aerosol mechanism was compared with the 707 
air quality observation (black) form the CPCB data in Delhi region from 1 December 2017 to 31 January 2018. 708 

Figure 3: The time series of hourly PM2.5 concentrations from the simulation of MOZART-GOCART (red), 709 
MOZART-MOSAIC (blue), and CB05-MADE/SORGAM (green) aerosol mechanism was compared with the 710 
air quality observation (black) form CPCB data of Punjab, Haryana, Uttar Pradesh, and Rajasthan. 711 

Figure4: Spatial distribution of simulated AOD of CB05-MADE/SORGAM, MOZART-MOSAIC, MOZART-712 
GOCART, and its difference with observed mean AOD from MODIS. 713 

Figure 5: Spatial distribution of simulated surface SO2, NO2, Ozone, BC, OC, H2O2, HNO3, SO4
2-

, NO3
-
, NH4

+
 714 

of CB05-MADE/SORGAM, MOZART-MOSAIC, MOZART-GOCART model.  715 

Figure 6: Box-whisker plots of Nitrate (NO3
-
), Ammonium (NH4

+
), Chlorine (Cl), Organic Carbon (OC), Black 716 

Carbon (BC), Sulfate (SO4
2-

), HNO3, SO2, NH3, NO2, Ozone and PM2.5 for the MOZART-GOCART (MG), 717 
MOZART-MOSAIC (MM), and CB05-MADE/SORGAM (CMS) mechanisms over IGI Airport, Delhi. 718 

 719 

 720 
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Table1. Pearson’s correlation coefficient (R), mean bias (MB), and root mean squared error (RMSE) of 

hourly values of temperature at 2m, relative humidity at 2m, planetary boundary layer height, and wind 

speed at 10m for the MOZART-GOCART (MG), MOZART-MOSAIC (MM), and CB05-

MADE/SORGAM(CMS) mechanisms averaged over all stations in Delhi. 

 

 

Table2: Index of Agreement (IOA), mean bias (MB), normalized mean bias (NMB), and root mean squared 

error (RMSE) of hourly values of PM2.5 for the MOZART-GOCART (MG), MOZART-MOSAIC (MM), and 

CB05-MADE/SORGAM (CMS) mechanisms  over IGI Airport, Delhi. 

 

State Station Variables MOZART-GOCART MOZART-MOSAIC CB05-MADE/SORGAM 

MB  NMB 

(%) 

RMSE IOA MB  NMB 

(%) 

RMSE IOA MB  NMB 

(%) 

RMSE IOA 

Delhi IGI 

Airport 

SO4
2- -13.8 -66.7 21.2 0.36 -13.9 -66.9 19.9 0.43 -8.7 -42.3 18.9 0.48 

BC -15.7 -68.4 20.8 0.46 -10.4 -45.1 18.2 0.52 -10.8 -47.1 18.3 0.52 

OC -9.2 -35.3 13.1 0.51 -11.7 -44.8 15.3 0.46 -13.4 -51.3 16.5 0.44 

NH4
+ - - - - -24.8 -73.8 30.2 0.44 -26.3 -78.1 31.5 0.43 

NO3
- - - - - -7.6 -25.8 18.8 0.45 -19.4 -62.4 24.7 0.41 

CL- - - - - - - - - - - - - 

PM2.5 -77.9 -53.3 102.7 0.53 -27.4 -18.8 81.2 0.69 -47.5 -32.5 86.5 0.66 

 

State Variables MOZART-GOCART MOZART-MOSAIC CB05-MADE/SORGAM 

MB  RMSE R MB  RMSE R MB  RMSE R 

Delhi T2m 0.78 8.92 0.23 0.39 8.84 0.24 0.31 8.91 0.23 

RH -36.6 41.8 0.21 -36.4 41.6 0.20 -36.5 41.7 0.17 

Wind  

Speed 

(WS10m) 

1.2 2.0 0.26 1.2 1.9 0.25 1.1 1.9 0.27 
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Figure 4: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CB05-MADE/SORGAM 
CB05-MADE/SORGAM  - MODIS 

MOZART/MOSAIC MOZART/MOSAIC  - MODIS 

MOZART/GOCART MOZART/GOCART - MODIS 

MODIS 

https://doi.org/10.5194/acp-2020-673
Preprint. Discussion started: 27 August 2020
c© Author(s) 2020. CC BY 4.0 License.



27 
 

Figure 5: 
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Figure 6: 
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