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Abstract 19 

A 16-month (July 2018 – October 2019) dataset of size-resolved aerosol composition is used to 20 

examine the sources and characteristics of five organic acids (oxalate, succinate, adipate, 21 

maleate, phthalate) and methanesulfonate (MSA) in Metro Manila, Philippines. As one of the 22 

most polluted megacities globally, Metro Manila offers a view of how diverse sources and 23 

meteorology impact the relative amounts and size distributions of these species. A total of 66 24 

sample sets were collected with a Micro-Orifice Uniform Deposit Impactor (MOUDI), of which 25 

54 sets were analyzed for composition. Organic acids and MSA surprisingly were less abundant 26 

than in other global regions that are also densely populated. The combined species accounted for 27 

an average of 0.80 ± 0.66 % of total gravimetric mass between 0.056 and 18 µm, leaving still 28 

33.74 % of mass unaccounted for after considering black carbon and water-soluble ions and 29 

elements. The unresolved mass is suggested to consist of non-water-soluble metals as well as 30 

both water-soluble and non-water-soluble organics. Oxalate was approximately an order of 31 

magnitude more abundant than the other five species (149 ± 94 ng m-3 versus others being < 10 32 

ng m-3) across the 0.056 – 18 µm size range. Both positive matrix factorization (PMF) and 33 

correlation analysis is conducted with tracer species to investigate the possible sources for 34 

organic acids and MSA. Enhanced biomass burning influence in the 2018 southwest monsoon 35 

resulted in especially high levels of submicrometer succinate, MSA, oxalate, and phthalate. 36 

Peculiarly, MSA had negligible contributions from marine sources but instead was linked to 37 

biomass burning and combustion. Enhanced precipitation during the two monsoon seasons (8 38 

June – 4 October 2018 and 14 June – 7 October 2019) coincided with stronger influence from 39 

local emissions rather than long-range transport, leading to notable concentration enhancements 40 

in both the sub- and supermicrometer ranges for some species (e.g., maleate and phthalate). 41 

While secondary formation via gas-to-particle conversion is consistent with submicrometer 42 

peaks for the organic acids and MSA, several species (i.e., phthalate, adipate, succinate, oxalate) 43 

exhibited a prominent peak in the coarse mode, largely owing to their association with crustal 44 

emissions (i.e., more alkaline aerosol type) rather than sea salt. Oxalate’s strong association with 45 

sulfate in the submicrometer mode supports an aqueous-phase formation pathway for the study 46 

region. However, high concentrations during periods of low rain and high solar radiation 47 

suggests photo-oxidation is an important formation pathway.   48 
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1. Introduction 49 

Organic acids are ubiquitous components of ambient particulate matter and can contribute 50 

appreciably to total mass concentrations in diverse regions ranging from the Arctic to deserts 51 

(e.g., Barbaro et al., 2017; Gao et al., 2003; Kawamura et al., 2005). Furthermore, another class 52 

of species contributing to ambient aerosol mass is organosulfur compounds, with 53 

methanesulfonate (MSA) being an example species (Bardouki et al., 2003b; Ding et al., 2017; 54 

Falkovich et al., 2005; Kerminen et al., 1999; Maudlin et al., 2015; Ziemba et al., 2011). The 55 

spatiotemporal and size-resolved mass concentration profiles of organic and sulfonic acids are 56 

difficult to characterize and can significantly vary depending on the time of day, season, region, 57 

and meteorological profile (Adam et al., 2020; Bagtasa et al., 2019; Kobayashi et al., 2004; 58 

Maudlin et al., 2015; Mochida et al., 2003; Reid et al., 2013). It is necessary to quantify their 59 

relative abundances, and to understand factors affecting their production and eventual removal to 60 

be able to quantify their influence on aerosol hygroscopic and optical properties (Beaver et al., 61 

2008; Cai et al., 2017; Freedman et al., 2009; Marsh et al., 2017; Marsh et al., 2019; Myhre and 62 

Nielsen, 2004; Peng et al., 2016; Xue et al., 2009). Low molecular weight organic acids are 63 

water-soluble and can range widely in hygroscopicity when in their pure salt form depending on 64 

factors such as carbon number (Prenni et al., 2001; Saxena and Hildemann, 1996; Sorooshian et 65 

al., 2008) and interactions with other components in multi-component aerosol particles (Drozd et 66 

al., 2014). 67 

Organic acids are generally believed to effectively scatter light and have a cooling effect on 68 

climate (McGinty et al., 2009; Myhre and Nielsen, 2004), although their overall impact on 69 

properties such as refractive index in multicomponent aerosols is poorly characterized. 70 

Refractive indices for species investigated in this work range widely from 1.43 (MSA) to 1.62 71 

(phthalic acid). MSA is assumed to be purely scattering similar to sulfate (Hodshire et al., 2019) 72 

and to have hygroscopic properties close to those of ammonium sulfate (Asmi et al., 2010; 73 

Fossum et al., 2018). However, its hygroscopic and optical behavior is not fully understood, and 74 

is still an active area of research (Liu et al., 2011; Peng and Chan, 2001; Tang et al., 2019; Tang 75 

et al., 2015; Zeng et al., 2014). 76 

Decades of research into atmospheric organic acids and MSA have yielded rich insights into 77 

their sources, production mechanisms, and fate in the atmosphere (Baboukas et al., 2000; 78 

Bardouki et al., 2003a; Gondwe et al., 2004; Kawamura and Bikkina, 2016; Limbeck et al., 79 

2001; Norton et al., 1983; Ovadnevaite et al., 2014; Sorooshian et al., 2009; van Pinxteren et al., 80 

2015). MSA is produced predominantly from the oxidation of dimethylsulfide (DMS) emitted 81 

from oceans (Bates et al., 2004; Davis et al., 1998; Kerminen et al., 2017), but it also can be 82 

linked to biomass burning, urban, and agricultural emissions (Sorooshian et al., 2015). Sources 83 

of organic acids include primary emissions from biomass burning, biogenic activity, and the 84 

combustion of fossil fuels (Kawamura and Kaplan, 1987) and secondary formation via gas-to-85 

particle conversion processes stemming from both biogenic (Carlton et al., 2006) and 86 

anthropogenic emissions (Sorooshian et al., 2007b). Secondary processing can include both 87 

aqueous phase chemistry in clouds (Blando and Turpin, 2000; Ervens, 2018; Ervens et al., 2014; 88 

Hoffmann et al., 2019; Rose et al., 2018; Sareen et al., 2016; Warneck, 2005) and photo-89 
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oxidation of volatile organic compounds (VOCs) in cloud-free air (Andreae and Crutzen, 1997; 90 

Gelencsér and Varga, 2005). These various sources and production pathways result in mono- and 91 

dicarboxylic acids being prevalent across a range of aerosol sizes (Bardouki et al., 2003b; 92 

Kavouras and Stephanou, 2002; Neusüss et al., 2000; Yao et al., 2002). Little is reported in terms 93 

of the size-resolved nature of organic acids and MSA over long periods (> 6 months) of time 94 

with high sampling frequency (weekly or better). Although insights have already been gathered 95 

from size-resolved measurement studies (Table S1), most measurement reports are based on bulk 96 

mass concentration measurements (Chebbi and Carlier, 1996; Kawamura and Bikkina, 2016). 97 

Studying the seasonal variations of size-resolved organic acid and MSA aerosols could prove 98 

vital in improved understanding of their formation and removal mechanisms, and associated 99 

sensitivity to seasonally dependent sources and meteorological factors.  100 

The Philippines is an important region to study aerosols due to the wide range in both 101 

meteorological conditions and diverse local and regional emissions sources (Alas et al., 2018; 102 

Bagtasa and Yuan, 2020; Braun et al., 2020; Hilario et al., 2020a; Kecorius et al., 2017). In 103 

addition to aerosol sources from nearby regions (Hilario et al., 2020b), the Philippines also has a 104 

significant source of local pollution largely consisting of vehicular emissions due to high 105 

population density (Madueño et al., 2019), the use of outdated vehicles (Biona et al., 2017), ship 106 

exhaust from high density shipping lanes (Streets et al., 1997; Streets et al., 2000), and more 107 

lenient air regulations leading to significant air pollution due to rapid growth and urbanization 108 

(Alas et al., 2018; Kecorius et al., 2017). This leads to Metro Manila containing some of the 109 

highest black carbon (BC) concentrations in Southeast Asia, and quite possibly the world (Alas 110 

et al., 2018; Hopke et al., 2011; Kecorius et al., 2017; Kim Oanh et al., 2006). Past aerosol 111 

characterization work for that region has focused mainly on gravimetric analysis for total bulk 112 

mass (e.g., PM2.5, PM10) (Bagtasa et al., 2018; Bagtasa et al., 2019; Cohen et al., 2009; Kim 113 

Oanh et al., 2006), water-soluble inorganic and organic ion speciation (AzadiAghdam et al., 114 

2019; Braun et al., 2020; Cruz et al., 2019; Kim Oanh et al., 2006; Simpas et al., 2014; Stahl et 115 

al., 2020a), and BC analysis (Alas et al., 2018; Bautista et al., 2014; Kecorius et al., 2017; 116 

Takahashi et al., 2014). In an analysis of two size-resolved aerosol sets in Manila, a significant 117 

portion of the total mass unaccounted for by the water-soluble inorganic, water-soluble organic, 118 

and BC components was attributed to (but not limited to) organics and non-water soluble metals 119 

(Cruz et al., 2019). However, a concentrated effort to characterize the contributions of the water-120 

soluble organic acids to the total aerosol mass in Manila over the course of a full year has not 121 

been undertaken.  122 

The aim of this study is to use a 16 month-long dataset of size-resolved composition in Quezon 123 

City in Metro Manila to address the following questions: (i) how much do organic acids and 124 

MSA contribute to the region’s aerosol mass concentrations?; (ii) what are the seasonal 125 

differences in the mass size distribution profile of organic acids and MSA, and what drives the 126 

changes?; and (iii) what are the sources and predominant formation mechanisms of these species 127 

in the sub- and super-micrometer diameter ranges? The results of this study are put in broad 128 

context by comparing findings to those in other regions. 129 

 130 
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2. Methods 131 

2.1 Study site description 132 

Metro Manila is comprised of 16 cities and a municipality totaling to a population of about 12.9 133 

million people and a collective population density of 20,800 km-2 (Alas et al., 2018; PSA, 2016). 134 

Quezon City is the most populated city in Metro Manila containing 2.94 million people with a 135 

population density of 18,000 km-2 (PSA, 2016), which is amidst the highest in the world. 136 

Because of these reasons, Metro Manila is a fitting location for examining locally produced 137 

anthropogenic aerosols superimposed on a variety of other marine and continentally influenced 138 

air masses transported from upwind regions (Kim Oanh et al., 2006).  139 

Measurements were conducted over a 16-month period between July 2018 and October 2019 at 140 

Manila Observatory (MO; 14.64° N, 121.08° E) on the third floor (~85 m a.s.l.) of an office 141 

building, which is on the Ateneo de Manila University campus in Quezon City, Philippines (Fig. 142 

1). Sampling was conducted approximately 100 m away from the nearest road on campus and 143 

therefore campus emissions do not impact sampling to a large degree, qualifying the monitoring 144 

site as an urban mixed background site (Hilario et al., 2020a) capturing local, regional, and long-145 

range transported emissions. The following four seasons were the focus of the sampling period: 146 

the 2018 southwest monsoon (SWM18, 8 June – 4 October 2018) (PAGASA, 2018b, a), a 147 

transitional period (Transitional, 5 – 25 October 2018), the northeast monsoon (NEM, 26 148 

October 2018 – 13 June 2019) (PAGASA, 2018c), and the 2019 southwest monsoon (SWM19, 149 

14 June – 7 October 2019) (PAGASA, 2019a, b). These seasons have also been defined in other 150 

works (i.e., Akasaka et al., 2007; Cruz et al., 2013; Matsumoto et al., 2020) and can 151 

predominately be separated into two general seasons, wet (SWM) and dry (NEM). Generally, 152 

there is a second transitional period in May that transitions between the NEM and SWM 153 

(Bagtasa and Yuan, 2020), however, recent studies suggest that the transition is abrupt 154 

(Matsumoto et al., 2020). Consequently, the second transitional period was combined with the 155 

NEM season. 156 

2.2 Instrument description 157 

Ambient aerosol was collected with a Micro-Orifice Uniform Deposit Impactor II (MOUDI II 158 

120R, MSP Corporation, Marple et al. (2014)) using Teflon substrates (PTFE membrane, 2 μm 159 

pores, 46.2 mm diameter, Whatman). The MOUDI-II is a 10-stage impactor with aerodynamic 160 

cutpoint diameters (Dp) of 10, 5.6, 3.2, 1.8, 1.0, 0.56, 0.32, 0.18, 0.10, and 0.056 μm with a 161 

nominal flow rate of ~30 L min-1. A total of 66 MOUDI sets were collected on a weekly basis 162 

usually over a 48-hour period; however, only 54 sets where analyzed for ions and 47 of those 163 

sets were also analyzed for elements. A 48-hour period was chosen because it offered an optimal 164 

compromise between gathering samples with fine temporal resolution and samples with a 165 

sufficiently large chemical signal to exceed analytical limits of detection. Details of the sample 166 

sets are shown in Table S2 can be found in more detail in Stahl et al. (2020a), but a brief 167 

summary of the storage and extraction methods will be described here. Substrates were stored in 168 

a freezer at -20 °C after samples were collected from the MOUDI until extractions could be 169 

carried out, which on average was approximately 2 weeks. The stored substrates were then 170 
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extracted by sonication in Milli-Q water (18.2 MΩ-cm) for 30 minutes. After sonication, 171 

solutions were immediately analyzed to prevent degradation while the remaining extracts were 172 

stored in a refrigerator for additional analyses. There have been studies that discuss the effects of 173 

sonication oxidation degrading organic species (i.e., Miljevic et al., 2014). It was determined 174 

through experimental tests that no significant degradation occurred during the sonication process 175 

for the species being analyzed in this study. 176 

Water-soluble organic acids, MSA, and inorganic ions were speciated and quantified using ion 177 

chromatography (IC; Thermo Scientific Dionex ICS-2100 system) with a flowrate of 0.4 mL 178 

min-1. The anionic species of relevance to this study were MSA, chloride (Cl-), nitrate (NO3
-), 179 

sulfate (SO4
2-), adipate, succinate, maleate, oxalate, and phthalate. These anions were resolved 180 

using potassium hydroxide (KOH) eluent, an AS11-HC 250 mm column, and an AERS 500e 181 

suppressor. The cationic species of relevance to this study was sodium (Na+), which was detected 182 

using methanesulfonic acid eluent, a CS12A 250 mm column, and a CERS 500e suppressor. The 183 

IC instrument methods for anion and cation analysis can be found in Stahl et al. (2020a). Water-184 

soluble elements were measured using a triple quadrupole inductively coupled plasma mass 185 

spectrometry (ICP-QQQ; Agilent 8800 Series). The quantified elements of relevance to this 186 

study include Al, As, Cd, K, Ni, Pb, Rb, Ti, and V. Limits of detection (LOD) and recoveries 187 

were calculated for all ionic and elemental species and provided in Table S3. Aside from the 188 

species that are the focus of this study (organic acids and MSA), the other elements and ions 189 

were included as they are useful tracers for different aerosol sources to aid in source 190 

apportionment. Although pyruvate was speciated with IC, it is not considered with the other 191 

organic acids because it was below the LOD for 48 of the 54 sets. It should also be noted that 192 

only a subset of species used for analyses were listed here. The full suite of species can be seen 193 

in Stahl et al. (2020a). 194 

Eleven of the 66 MOUDI sets included simultaneously operated MOUDIs next to each other to 195 

complement the chemical speciation analysis with gravimetric analysis. A Sartorius ME5-F 196 

microbalance (sensitivity of ± 1 µg) was used in an air-buffered room with controlled 197 

temperature (20 – 23 °C) and relative humidity (RH: 30 – 40 %). Each substrate was passed near 198 

an antistatic tip for approximately 30 seconds to minimize bias due to electrostatic charge. 199 

Multiple weight measurements were conducted before and after sampling, with the difference 200 

between weighings being less than 10 µg for each condition, respectively. The difference 201 

between substrate weights before and after sampling was equated to total gravimetric mass.  202 

Black carbon was measured using a Multi-wavelength Absorption Black Carbon Instrument 203 

(MABI; Australian Nuclear Science and Technology Organisation). The MABI optically 204 

quantifies black carbon concentrations by detecting the absorption at seven wavelengths (405, 205 

465, 525, 639, 870, 940, and 1050 nm); however, the wavelength at 870 nm is used here as black 206 

carbon is the primary absorber at that wavelength (Cruz et al., 2019; Ramachandran and Rajesh, 207 

2007; Ran et al., 2016).  208 

Meteorological parameters were measured at MO during the study period using a Davis Vantage 209 

Pro2TM Plus automatic weather station, which was located on the roof. Measured parameters of 210 

relevance included temperature, accumulated rain, RH, and solar radiation. Data were collected 211 
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in five-minute increments and were cleaned based on the method of Bañares et al. (2018) to 212 

verify values were in acceptable ranges. The meteorological parameters, except for rain, were 213 

averaged over each sampling period while rain was summed over time to obtain the accumulated 214 

precipitation for a sampling period. There were two periods where the automatic weather station 215 

located at MO had missing values, 6 November – 27 November 2018 and 7 August – 3 216 

September 2019. In these cases, missing values were substituted with values from a secondary 217 

automatic weather station located approximately 2 km away (14.63° N, 121.06° E), and if 218 

missing data still persisted, a tertiary station located 5 km away (14.67° N, 121.11° E) was used. 219 

Identical data cleaning procedures were implemented for the secondary and tertiary sites. 220 

 221 

2.3 Concentration weighted trajectories (CWT) 222 

A CWT analysis was conducted to identify sources of detected species. The method assigns a 223 

weighted concentration to a grid that is calculated by finding the mean of sample concentrations 224 

that have trajectories crossing a particular cell in the grid (e.g., Dimitriou, 2015; Dimitriou et al., 225 

2015; Hilario et al., 2020a; Hsu et al., 2003). The software TrajStat (Wang et al., 2009) 226 

determines CWT profiles by using back-trajectories from the NOAA Hybrid Single-Particle 227 

Lagrangian Integrated Trajectory (HYSPLIT) model (Rolph et al., 2017; Stein et al., 2015). 228 

Three-day back-trajectories were obtained with an ending altitude of 500 m above ground level 229 

using the Global Data Assimilation System (GDAS) and the “Model vertical velocity” method. 230 

The choice of 500 m is based on representativeness of the mixed layer and having been widely 231 

used in other studies (e.g., Crosbie et al., 2014; Mora et al., 2017; Sorooshian et al., 2011). 232 

Trajectories were obtained every 6 hours after MOUDI sampling began for each sample set, 233 

yielding approximately nine trajectories per set. A grid domain of 95° to 150° E longitude and -234 

5° to 45° N latitude was used with a grid cell resolution of 0.5° × 0.5°. The analysis was 235 

performed for each measured organic acid and MSA for the full diameter range of MOUDI sets 236 

(0.056 – 18 μm). A weighting function was applied to the CWT plots to minimize uncertainty. 237 

 238 

2.4 Positive matrix factorization (PMF) 239 

PMF analysis was applied to identify sources and their relative importance for the mass 240 

concentration budgets of the species discussed in this work (Paatero and Tapper, 1994). Model 241 

simulations were conducted based on MOUDI data for the diameter range of 0.056 – 18 μm. 242 

Nineteen species (Al, Ti, K, Rb, V, Ni, As, Cd, Pb, Na+, Cl-, NO3
-, SO4

2-, MSA, adipate, 243 

succinate, maleate, oxalate, and phthalate) were included in the analysis and categorized as 244 

“strong”. Each individual stage of MOUDI sets was considered an independent variable for the 245 

analysis. Missing values or values below detection limit were replaced with zeros with the 246 

exception of sets where ICP-QQQ analysis was not performed (57, 59, 60, 61, 62, 64, 65). Those 247 

missing values were replaced with the geometric mean for each respective stage. The uncertainty 248 

for each stage and species was calculated as follows: 249 

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = 0.05 ∗ [𝑥]  + 𝐿𝑂𝐷        (Eq. 1) 250 
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where [x] is the concentration of the species (Reff et al., 2007). No additional uncertainty was 251 

added to account for any unconsidered errors for all species. The uncertainty of the model output 252 

was evaluated using displacement (DISP), bootstrapping (BS), and bootstrapping with 253 

displacement (BS-DISP). For BS, 100 resamples were used and a value of 0.6 was used as a 254 

threshold for the correlation coefficient (r) to pass as successful mapping for each simulation. 255 

To qualify as a valid result, reported PMF results had to meet the following criteria: (i) factors 256 

mapped with BS runs, (ii) no factor swaps in DISP, (iii) dQ values being close or equal to 0%, 257 

and (iv) no factor swaps in BS-DISP where Al, Ti, K, Rb, V, Ni, As, Cd, Pb, Na+, Cl-, NO3
-, and 258 

SO4
2- were displaced. PMF diagnostics can be seen in Table S4 based on the method of Brown et 259 

al. (2015). 260 

 261 

3. Background on Measured Acids 262 

A brief overview of the species being examined is first provided before reviewing concentration 263 

statistics. MSA is an oxidation product of dimethylsulfide (DMS) emitted primarily from the 264 

ocean (Berresheim, 1987; Saltzman et al., 1983), but it can also be formed from dimethyl 265 

sulphoxide (DMSO) emitted from anthropogenic sources such as industrial waste (Yuan et al., 266 

2004). Gaseous MSA can become associated with particulate matter via new particle formation 267 

(Dawson et al., 2012), and through heterogeneous reactions or condensation onto existing 268 

particles (De Bruyn et al., 1994; Hanson, 2005).  269 

Of the three saturated dicarboxylic acids, succinate (C4) and adipate (C6) are larger chain 270 

dicarboxylic acids linked to ozonolysis of cyclic alkenes, which is common in areas with 271 

extensive vehicular emissions (Grosjean et al., 1978; Hatakeyama et al., 1987). They can also be 272 

emitted via processes such as meat cooking (Rogge et al., 1993) and biomass burning 273 

(Kawamura et al., 2013; Pereira et al., 1982) and can be secondarily formed by the photo-274 

oxidation of higher chain organic acids, such as azelaic acid (Bikkina et al., 2014; Ervens et al., 275 

2004). Oxalate (C2) is the smallest of those three acids and is usually the most abundant on a 276 

mass basis of all dicarboxylic acids in tropospheric aerosols as it represents an end-product in the 277 

oxidation of both larger-chain carboxylic acids and also glyoxylic acid (Ervens et al., 2004). It 278 

can be emitted via direct emissions such as from biomass burning (Graham et al., 2002; 279 

Narukawa et al., 1999; Xu et al., 2020), combustion exhaust (Kawamura and Kaplan, 1987; 280 

Kawamura and Yasui, 2005; Wang et al., 2010), and from various biogenic sources (Kawamura 281 

and Kaplan, 1987).  282 

Maleate (C4) is an unsaturated dicarboxylic acid originating from combustion engines, including 283 

via direct emissions (Kawamura and Kaplan, 1987) and secondarily produced from the photo-284 

oxidation of benzene (Rogge et al., 1993). Lastly, phthalate (C8) represents an aromatic 285 

dicarboxylic acid associated with incomplete combustion of vehicular emissions (Kawamura and 286 

Kaplan, 1987) and oxidation of naphthalene or other polycyclic aromatic hydrocarbons (Fine et 287 

al., 2004; Kawamura and Ikushima, 2002; Kawamura and Yasui, 2005). However, it has also 288 

been linked to biomass burning (Kumar et al., 2015) and burning of plastic material such as 289 

polyvinyl chloride (PVC) products, garbage, and plastic bags (Agarwal et al., 2020; Claeys et al., 290 
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2012; Fu et al., 2012; Li et al., 2019; Nguyen et al., 2016; Simoneit et al., 2005). Secondary 291 

formation via aqueous-phase chemistry has been documented for these organic acids (Kunwar et 292 

al., 2019; Sorooshian et al., 2007a; Sorooshian et al., 2010; Sorooshian et al., 2006; Wonaschuetz 293 

et al., 2012) and MSA (Hoffmann et al., 2016).  294 

 295 

4. Results 296 

4.1 Meteorology and Transport Patterns 297 

Meteorological data are summarized based on average values temporally coincident with each 298 

MOUDI sample set period for each of the seasons. The exception to this was the accumulated 299 

rainfall, which was summed for the MOUDI set duration. Temperatures were stable during the 300 

different seasons: 28.0 ± 1.04 °C (SWM18), 28.9 ± 0.8 °C (Transitional), 28.3 ± 1.9 °C (NEM), 301 

and 28.4 ± 1.5 °C (SWM19). Solar radiation was the highest during the Transitional (279.61 ± 302 

19.68 W m-2) and NEM (304.01 ± 67.54 W m-2) seasons, and lowest during the SWM18 (225.32 303 

± 56.26 W m-2) and SWM19 (256.05 ± 86.88 W m-2) seasons owing largely to more cloud cover. 304 

Accumulated rain was highest for both SWM seasons (SWM18: 29.78 ± 27.28 mm; SWM19: 305 

16.66 ± 23.98 mm) and much lower during the Transitional (1.00 ± 1.11 mm) and NEM (2.20 ± 306 

6.70 mm) seasons. Relative humidity was relatively consistent across seasons: SWM18 (69.6 ± 307 

5.0 %), Transitional (69.2 ± 2.2 %), NEM season (62.4 ± 8.0 %), SWM19 (72.6 ± 11.7 %). 308 

Finally, Fig. 1 summarizes predominant wind patterns for each season based on HYSPLIT back-309 

trajectories collected every 6 hours during sampling periods. The SWM18 and SWM19 seasons 310 

were characterized by predominantly southwesterly winds, while the NEM and Transitional 311 

seasons experienced mostly northeasterly winds. In conclusion, there was much higher potential 312 

for wet scavenging during the SWM seasons, with the potential for more photochemical 313 

reactivity in the NEM and Transitional seasons owing to enhanced incident solar radiation. As 314 

humidity was generally enhanced year-round, there was the likelihood of aqueous-phase 315 

processing to occur in all seasons. The combination of sustained RH, low boundary layer height, 316 

and high surface-level particle concentrations have been suggested to counteract the effects of 317 

wet deposition on total particle concentration in Metro Manila (Hilario et al., 2020a). 318 

 319 

4.2 Bulk aerosol measurements 320 

The range, mean, and standard deviation of concentrations integrated across the MOUDI 321 

diameter range (0.056 – 18 µm) are shown in Table 1 for each organic acid and MSA for all 322 

seasons. In order of decreasing concentration, the following was the order of abundance based on 323 

the cumulative dataset: oxalate (149 ± 94 ng m-3) > succinate (10 ± 22 ng m-3) > maleate (10 ± 324 

20 ng m-3) > phthalate (9 ± 14 ng m-3) > adipate (7.6 ± 9.4 ng m-3) > MSA (5.4 ± 5.2 ng m-3). 325 

The relative order of abundance varies for the sub- and super-micrometer ranges with the only 326 

consistent feature being that oxalate was the most abundant species. This result was consistent 327 

with past works showing oxalate to be the most abundant organic acid in different global regions 328 
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(e.g., Decesari et al. (2006); Kerminen et al. (1999); Sorooshian et al. (2007b); Ziemba et al. 329 

(2011)). 330 

Figure 2 shows the combined contribution of the organic acids and MSA to total gravimetric 331 

mass, while Table S5 summarizes percent contributions of individual species to total mass for 332 

different size bins. Combined, the measured organic acids and MSA accounted for only a small 333 

part of the total cumulative mass (0.80 ± 0.66 %) across the 11 individual gravimetric sets. When 334 

the combined contribution of organic acids and MSA to total gravimetric mass were separated by 335 

season, results are generally the same (Fig. S1), with differences in the percent range being as 336 

follows: SWM18 = 0.64 %; Transitional = 0.95 %; NEM = 0.50 – 1.49 %; and SWM19 = 0.23 – 337 

0.83 %. The highest contribution of these organic acids and MSA occurred for MOUDI sets 338 

collected 12 – 14 March 2019 during the NEM season, which accounted for 1.49 % (0.50 μg m-3) 339 

of the total mass. The lowest contribution of these organic acids and MSA occurred for MOUDI 340 

sets collected 11 – 13 September 2019 during the SWM19 season, which accounted for 0.23 % 341 

(0.06 μg m-3) of the total mass. The summed contributions of the six species were nearly the 342 

same in the sub- and supermicrometer ranges (0.78 ± 0.74 % and 0.84 ± 0.58 %, respectively). 343 

Their contributions peaked in the two sizes bins covering the range between 0.56 and 1.8 µm 344 

(0.56 – 1 µm: 1.06 ± 1.01 %; 1 – 1.8 µm: 1.01 ± 0.78 %). After accounting for all measured 345 

species (BC, water-soluble species), there still remained 33.74 ± 19.89 % (range: 23.86 – 50.88 346 

%) of unresolved mass. Therefore, the six species of interest in this work only explain a small 347 

amount of the region’s mass concentrations and further work is still needed to resolve the 348 

remaining components, which presumably is dominated by water-insoluble organics and 349 

elements. Of most need is to resolve those missing components in the supermicrometer range, 350 

where Table S5 shows that the unresolved fraction is 69.10 ± 25.91 %, in contrast to 17.78 ± 351 

17.25 % for the submicrometer range. 352 

Although there are fairly wide ranges in concentration for the individual species, a few features 353 

are noteworthy based on the cumulative dataset. First, the oxalate concentrations are lower than 354 

expected for such a highly polluted area, as will be expanded upon in Sect. 5.5. Second, there is a 355 

significant decrease in concentration after oxalate for the remaining five species, which had 356 

similar mean concentrations. Lastly, although the sampling site is on an island and close to 357 

marine sources, MSA is surprisingly the least abundant among the six species of interest.  358 

Mean mass concentrations of these species varied greatly by season as visually shown in Fig. 3a 359 

and summarized numerically in Table 1. In contrast, Fig. 3b shows that the mass fractions of the 360 

six species did not change much seasonally owing to the dominance of oxalate (37.67 – 472.82 361 

ng m-3), which accounted for between 69.1-87.3 % of the cumulative concentration of the six 362 

species across the four seasons. Important features with regard to seasonal mass concentration 363 

differences include the following: (i) maleate concentrations were much higher in the SWM18 364 

and SWM19 seasons; (ii) the lowest overall concentrations of most species, besides oxalate and 365 

succinate (lowest in SWM19), were observed in the NEM season; (iii) oxalate and phthalate 366 

were the only species that peaked in the Transitional period, whereas the rest of the species 367 

peaked in either SWM18 or SWM19; and (iv) succinate and phthalate were peculiarly much 368 
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more enhanced in SWM18 than SWM19, pointing to significant variability between consecutive 369 

years. 370 

 371 

4.3 Source apportionment 372 

To help elucidate how different emissions sources impact the six species, PMF analysis was 373 

conducted and yielded a solution with five source factors using year-round data (Fig. 4). The five 374 

sources are as follows in decreasing order of their contribution to the total mass based on the sum 375 

of species used in the PMF analysis (Fig. 4): combustion (32.1 %), biomass burning (20.9 %), 376 

sea salt (20.9 %), crustal (14.2 %), and waste processing (11.9 %). The contribution of each 377 

source to the total concentration of organic acids and MSA was as follows: combustion (33.5 %), 378 

biomass burning (29.0 %), crustal (27.0 %), waste processing (9.8 %), and sea salt (0.6 %). The 379 

source factor names were determined based on the enhancement of the following species (Fig. 380 

4): (i) crustal (Al, Ti) (Harrison et al., 2011; Malm et al., 1994; Singh et al., 2002), (ii) biomass 381 

burning (K, Rb) (Andreae, 1983; Artaxo et al., 1994; Braun et al., 2020; Chow et al., 2004; 382 

Echalar et al., 1995; Ma et al., 2019; Schlosser et al., 2017; Thepnuan et al., 2019; Yamasoe et 383 

al., 2000), (iii) sea salt (Na, Cl) (Seinfeld and Pandis, 2016), (iv) combustion (V, Ni, As) (Allen 384 

et al., 2001; Linak et al., 2000; Mahowald et al., 2008; Mooibroek et al., 2011; Prabhakar et al., 385 

2014; Wasson et al., 2005), and (v) waste processing (Cd, Pb) (Cruz et al., 2019; Gullett et al., 386 

2007; Iijima et al., 2007; Pabroa et al., 2011). While both SO4
2- and NO3

- are secondarily 387 

produced, the latter is more commonly linked to supermicrometer particles (Allen et al., 1996; 388 

Dasgupta et al., 2007; Fitzgerald, 1991; Maudlin et al., 2015), including in the study region 389 

(Cruz et al., 2019). Additionally, Al, K, and Cl are linked to biomass burning (Reid et al., 1998; 390 

Reid et al., 2005; Schlosser et al., 2017; Wonaschütz et al., 2011). The source factor names 391 

should be interpreted with caution, as a single profile may consist of a mix of sources (e.g., waste 392 

processing). It should be noted that Cruz et al. (2019) performed PMF analysis for only the 393 

SWM18 season, which yielded similar and additional sources for only the SWM18 season, 394 

whereas this study used year-round data. 395 

To provide size-resolved context for the five aerosol sources, Fig. 5 shows their respective 396 

reconstructed mass size distributions based on PMF output. Distributions for combustion, 397 

biomass burning, and waste processing primarily peaked in the submicrometer range, while 398 

crustal and sea salt sources primarily peaked in the supermicrometer range. Combustion and 399 

biomass burning factors showed a dominant peak between 0.32 – 0.56 µm, whereas waste 400 

processing had a peak between 0.56 – 1 µm. The crustal and sea salt factors exhibited their peak 401 

concentrations between 1.8 – 5.6 µm. Both crustal and biomass burning sources showed signs of 402 

bimodal size distributions with a minor peak in the sub- and supermicrometer ranges, 403 

respectively.  404 

As reported in Table 2, combustion was the largest contributor to the cumulative mass 405 

concentrations of organic acids and MSA, with the largest influence being for maleate (69.7 %) 406 

and MSA (57.4 %). Biomass burning was marked by its significant contribution to succinate 407 

(90.3 %). The sea salt source showed minor contributions to phthalate (9.9 %) and adipate (4.7 408 
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%). The crustal source contributed appreciably to adipate (35.9 %) and oxalate (31.2 %), with the 409 

rest of the organic acid or MSA species being less influenced (0.1 – 13.3 %). Organic acids have 410 

been shown in past work to be associated with mineral dust (Russell et al., 2002), including both 411 

oxalic and adipic acids (Falkovich et al., 2004; Kawamura et al., 2013; Sullivan and Prather, 412 

2007; Tsai et al., 2014), although less has been documented for adipate. Wang et al. (2017) and 413 

Yao et al. (2003) both report that gaseous acids are likely to adsorb onto supermicrometer 414 

particles that are highly alkaline, such as dust. The waste processing factor contributed to 415 

maleate (30.1 %), oxalate (10.5 %), and MSA (1.4 %). An unexpected result was that the sea salt 416 

factor did not contribute to MSA even though the latter is derived from ocean-emitted DMS; the 417 

results of Table 2 suggest that other sources such as biomass burning and industrial activities are 418 

more influential in the study region similar to other regions like Beijing (Yuan et al., 2004) and 419 

coastal and inland areas of California (Sorooshian et al., 2015).  420 

 421 

4.4 Species interrelationships 422 

Correlation analysis was conducted for the same species used in the PMF analysis to quantify 423 

interrelationships and to gain additional insight into common production pathways. Correlation 424 

coefficients (r) values are reported in Table 3 for for the sub- and supermicrometer ranges, 425 

whereas results for full size range are shown in Table S6. Values are only shown and discussed 426 

subsequently for correlations with p-values below 0.05. Unless otherwise stated, correlations 427 

discussed below correspond to the full size range for simplicity, whereas notable results when 428 

contrasting the two size ranges (< 1 µm and > 1 µm) are explicitly mentioned. 429 

MSA exhibited a statistically significant correlation with Rb (r = 0.37), suggestive of its link 430 

with biomass burning as Rb has been shown in the study region to be a biomass burning marker 431 

(Braun et al., 2020). Additionally, MSA was correlated with Na, NO3
-, and SO4

2- (r: 0.35 – 0.59), 432 

which are associated with marine aerosol (e.g., sea salt, DMS, shipping) but also biomass 433 

burning. The supermicrometer results indicate MSA was correlated only with Na (r = 0.32), due 434 

presumably to co-emission from both crustal and sea salt sources, with the former commonly 435 

linked to biomass burning (Schlosser et al., 2017). For the submicrometer range, MSA was 436 

correlated with Rb and SO4
2- (r: 0.39 – 0.60), which are derived from biomass burning and other 437 

forms of combustion, consistent with smaller particles formed secondarily from gas-to-particle 438 

conversion processes. That is also why MSA was well correlated with succinate, oxalate, and 439 

phthalate (r: 0.53 – 0.67), which were also prominent species in either (or both of) the biomass 440 

burning and combustion factors.  441 

Adipate only exhibited significant correlations with maleate and phthalate for the full diameter 442 

range (r: 0.43 – 0.45), while maleate was correlated only with adipate. In contrast, succinate, 443 

oxalate, and phthalate were correlated with a wide suite of species, indicating that maleate and 444 

adipate exhibited more unique behavior in terms of their production routes. Succinate, oxalate, 445 

and phthalate similarly exhibited significant correlations with each other, and species linked to 446 

crustal sources (Al, Ti, Na), sea salt (Na), and biomass burning (Rb). Succinate and oxalate in 447 
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particular were better correlated with tracer species related to either dust or sea salt (Al, Na) in 448 

the supermicrometer range, and were correlated with each other also in that size range.  449 

 450 

4.5 Cumulative size distribution variations 451 

Mass size distributions for each individual organic acid and MSA are shown for the full study 452 

period in Fig. S2 and seasonal mass size distributions can be seen in Figs. 6-11. General 453 

information for the cumulative dataset will be described here before examining seasonal results 454 

in Sect. 5. While significant variability exists between individual sets for the cumulative dataset, 455 

a few general features are evident: (i) mass size distributions all appear multi-modal with the 456 

exception of maleate, which on average exhibited a uni-modal profile; (ii) all species show a 457 

larger peak in the submicrometer range versus supermicrometer sizes; (iii) phthalate and adipate 458 

show more comparable peaks in the sub- and supermicrometer range; and (iv) the size bin where 459 

the peaks occur vary between species. These results point to differences in the species with 460 

regard to their source, formation mechanism, and eventual fate.  461 

One factor relevant to the mass size distribution plots is the source origin of sampled air masses. 462 

The CWT plots in Fig. 12 reveal the bulk of the concentration of a few species (e.g., phthalate, 463 

succinate, and MSA) was explained by southwesterly flow. Consistent with the PMF results 464 

showing that the biomass burning factor contributed the most to these three species, the 465 

predominant fire sources were to the southwest of Luzon. Past work has linked these areas to 466 

significant biomass burning influence over Luzon and the South China Sea during the SWM 467 

season (Atwood et al., 2017; Ge et al., 2017; Hilario et al., 2020b; Reid et al., 2016; Song et al., 468 

2018; Wang et al., 2013; Xian et al., 2013). Noteworthy is that the CWT maps for SWM18 469 

reveal more influence from the biomass burning hotspots to the southwest (e.g., Borneo and 470 

Sumatra), in contrast to SWM19, pointing to more biomass burning influence in the former 471 

season. Oxalate’s CWT profile shows the most spatial heterogeneity in terms of source regions; 472 

this is consistent with it being an end-product in the oxidation of other carboxylic acids that can 473 

originate from numerous sources. Finally, adipate and maleate similarly showed a localized 474 

hotspot in terms of where their greatest influence originated, approximately 290 km to the north-475 

northwest of MO. This could be partly linked to the Sual coal-fired power station located near 476 

that area where an ash disposal site is also in close proximity. The uniquely similar CWT maps 477 

between adipate and maleate is consistent with them having few correlations, if any, with species 478 

aside from each other (Table S6). Subsequent sections discuss each organic acid and MSA in 479 

more detail, beginning with larger acids since knowledge of their behavior is important to better 480 

understand the smaller acids.  481 

 482 

5. Discussion 483 

5.1 Phthalate 484 

Results from Sect. 4 show that phthalate has the following characteristics:  485 
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(i) influenced most by biomass burning (49.5 %), followed by combustion (27.4 %), crustal 486 

sources (13.3 %), and then sea salt (9.9 %); 487 

(ii) significant correlations with more species in Table S6 than any other organic acid or MSA; 488 

(iii) comparable mass size distribution modes in the sub- and supermicrometer size ranges; 489 

(iv) highest mass concentration in the Transitional period, but also exhibited significantly 490 

different concentrations between the two SWM seasons; 491 

(v) had concentrations dominated by sources to the southwest.  492 

A more detailed examination based on seasonally resolved mass size distributions and CWT 493 

maps follows to try to gain more insights into this species. Although not referenced hereafter, 494 

Table S7 provides numerical details about mass concentration mode sizes and associated 495 

concentrations for each season and the cumulative dataset for each species.  496 

The average size distributions for phthalate appeared bi-modal for each individual season (Fig. 497 

6). Depending on the season, concentration peaks occurred in three separate MOUDI stages for 498 

the submicrometer range, and between 1.8 – 3.2 or 3.2 – 5.6 µm in the supermicrometer range. 499 

The NEM season was unique in that the supermicrometer peak was considerably more 500 

pronounced than in the submicrometer range, which was a rare occurrence in this study for all 501 

species except adipate. Phthalate appears in the submicrometer range due to secondary formation 502 

by photo-oxidation (i.e., Kautzman et al., 2010; Kawamura and Ikushima, 2002; Kawamura and 503 

Yasui, 2005; Kleindienst et al., 2012) and from primary emissions (i.e., combustion, 504 

biomass/waste burning) (i.e., Deshmukh et al., 2016; Kawamura and Kaplan, 1987; Kumar et al., 505 

2015; Kundu et al., 2010). Its general presence in the supermicrometer range, especially during 506 

the NEM season, can be explained by possible adsorption onto larger particles such as dust and 507 

sea salt (i.e., Wang et al., 2012; Wang et al., 2017). Others have observed an enhancement in 508 

phthalate in the supermicrometer mode, specifically in Xi’an, China, due to suspected adsorption 509 

of its vapor form (Wang et al., 2012) derived from photo-oxidation of naphthalene (Ho et al., 510 

2006; Wang et al., 2011; Wang et al., 2012; Wang et al., 2017).  511 

CWT results for phthalate (Fig. S3) showed high concentrations across all seasons coming from 512 

the southwest, most notably in the SWM18 and SWM19 seasons. The significant reduction in 513 

phthalate levels from SWM18 (17 ± 25 ng m-3) to SWM19 (5.7 ± 7.4 ng m-3) is coincident with 514 

stronger influence from biomass burning from the southwest in 2018. Figure 3 showed that the 515 

highest concentration of phthalate occurred in the Transitional period, assumed to be largely due 516 

to local emissions (e.g., vehicular traffic) based on the CWT results with significant influence in 517 

the immediate vicinity of Luzon unlike the other seasons. The peculiar size distribution results 518 

for the NEM season can be explained by the CWT map showing strong influence from the 519 

northeast, which likely includes supermicrometer aerosol influences from sea salt and dust from 520 

East Asia. The reduced influence of upwind anthropogenic and biomass burning emissions 521 

during the NEM season can explain the lower seasonal concentrations, especially in the 522 

submicrometer size range (Hsu et al., 2009).  523 

 524 
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5.2 Adipate 525 

Adipate was shown in Sect. 4 to have the following features:  526 

(i) influenced most by crustal sources (35.9 %), followed by combustion (32.9 %), biomass 527 

burning (26.4 %), and finally sea salt (4.7 %);  528 

(ii) only correlated with maleate and phthalate;  529 

(iii) comparable concentrations in the sub- and supermicrometer size ranges, with a mode 530 

between 5.6 and 10 µm;  531 

(iv) highest mass concentration in the SWM seasons, but especially the SWM19 season; 532 

(v) concentrations dominated by sources from the southwest as well as from the northwest.  533 

Mass size distributions for adipate were the most variable in structure compared to the other five 534 

species with multiple peaks present at different sizes (Fig. S2). In general, its distributions 535 

appeared uniquely and consistently tri-modal with the exception of the SWM18 season where it 536 

was bi-modal (Fig. 7). Modes appeared between 0.10 – 0.18 µm and 0.32 – 0.56 µm for the 537 

submicrometer range, and between 1.0 – 1.8 µm and 3.2 – 5.6 µm in the supermicrometer range. 538 

The SWM19 season was unique for adipate as the highest peak was in the supermicrometer 539 

range and it was higher than any other peak across the other seasons. Submicrometer adipate is 540 

likely derived from a photo-oxidation of higher chain organic acids (i.e., van Drooge and 541 

Grimalt, 2015), ozonolysis of vehicular emissions (i.e., Grosjean et al., 1978), and from the 542 

primary emissions of biomass burning (i.e., Graham et al., 2002). The appearance in the 543 

supermicrometer range likely due to adsorption onto larger particles such as dust and sea salt 544 

(e.g., Wang et al., 2012; Wang et al., 2017). As the PMF results suggest crustal sources were 545 

more influential for adipate in contrast to sea salt, dust was more likely the supermicrometer 546 

particle type that adipate preferentially partitioned to. The source of the dust was likely a 547 

combination of long-range transport from (i) the southwest especially during biomass burning 548 

periods, (ii) East Asia, and (iii) locally generated dust via anthropogenic activities (Fig. S4).  549 

Past work in the study region showed that broad mass size distributions with comparable 550 

concentrations in the sub- and supermicrometer ranges were coincident with wet scavenging 551 

(Braun et al., 2020) and appreciable primary emissions of sea salt and dust (AzadiAghdam et al., 552 

2019; Cruz et al., 2019). Scavenging was suggested to remove transported pollution while 553 

allowing for more pronounced contributions from more localized emissions, which could include 554 

vehicular traffic, sea salt, and anthropogenic forms of dust (e.g., road dust, construction), all of 555 

which are consistent with adipate’s mass size distribution data and CWT maps (Fig. S4) showing 556 

high concentrations predominately around Luzon for all seasons. 557 

 558 

5.3 Succinate 559 

Succinate exhibited the following characteristics:  560 
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(i) influenced primarily by biomass burning (90.3 %) followed by crustal sources (9.7 %);  561 

(ii) exhibited high correlation coefficients (0.67 – 0.76) with oxalate, phthalate, and MSA (Table 562 

S6);  563 

(iii) mass was focused in the submicrometer range;  564 

(iv) highest mass concentrations were in the SWM18 season, and, similar to phthalate, showed a 565 

significant reduction in the SWM19 season;  566 

(v) had concentrations dominated by sources from the southwest.  567 

The average size distributions for succinate varied in the number of peaks present (2 – 4), but on 568 

average were bi-modal with a submicrometer mode usually between 0.32 – 0.56 µm or 0.56 – 1.0 569 

µm, and a smaller supermicrometer mode between either 1.8 – 3.2 µm or 3.2 – 5.6 µm (Fig. 8). 570 

The chief source of succinate, which is concentrated in the submicrometer peak, is biomass 571 

burning (Pratt et al., 2011; Vasconcellos et al., 2010), which is reinforced by the PMF results 572 

(Table 2), its high correlation with the biomass burning tracer Rb (r = 0.67; Table S6) (Braun et 573 

al., 2020) and CWT maps showing its most pronounced influence from biomass burning hotspots 574 

to the southwest during the SWM18 season (Fig. S5). There likely was also local biomass 575 

burning during the NEM season contributing to succinate concentrations. Hilario et al. (2020a) 576 

showed based on satellite data that local fire activity peaks between March and May. There was 577 

less influence from biomass burning in the SWM19 season, which is why succinate’s levels were 578 

lower (4.7 ± 7.4 ng m-3) than in the SWM18 season (22 ± 43 ng m-3). Similar to phthalate and 579 

adipate, there were more local hotspots of concentration in seasonal CWT maps pointing to local 580 

anthropogenic sources such as vehicular traffic and the presence of supermicrometer particles 581 

like dust and sea salt that succinate can partition to (e.g., Wang et al., 2012; Wang et al., 2017).  582 

 583 

5.4 Maleate 584 

The results of Sect. 4 showed that maleate had the following attributes:  585 

(i) influenced most by combustion (69.7 %), followed by waste processing (30.1 %), and then 586 

barely by crustal sources (0.2 %);  587 

(ii) only correlated with adipate of all species shown in Table S6;  588 

(iii) showed a uni-modal mass size distribution, with negligible contribution in the 589 

supermicrometer range;  590 

(iv) highest mass concentration in the SWM19 season, but was comparable to the SWM18 591 

season;  592 

(v) CWT maps showed the most localized sources as compared to the other species examined 593 

(Fig. 11).  594 
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The average seasonal size distributions for maleate appeared to be uni-modal with peaks between 595 

0.32 – 0.56 µm and 0.56 – 1.0 µm (Fig. 9). The absence of a supermicrometer peak, in contrast to 596 

most other species, suggests that it had less diverse sources and was derived from combustion 597 

emissions without being adsorbed onto supermicrometer particles like the other species 598 

investigated. The association of maleate with the waste processing source factor in Table 2 can 599 

be explained partly by the burning and recycling of electronic waste (Cruz et al., 2019; Gullett et 600 

al., 2007; Iijima et al., 2007). The Pabroa et al. (2011) study reported that there are few licensed 601 

operators for battery recycling, but there are numerous unregulated melters frequently melting 602 

metal and discarding the waste. 603 

Seasonal CWT maps for maleate (Fig. S6) consistently showed hotspots around Luzon indicative 604 

of local emissions. Maleate concentrations for the SWM18 (19 ± 15 ng m-3) and SWM19 (19 ± 605 

34 ng m-3) were significantly higher than the other seasons (Transitional: 3.8 ± 4.2 ng m-3; NEM: 606 

1.7 ± 3.7 ng m-3), and this could likely be due to increased traffic emissions because of gridlock 607 

due to intense rainfall. It should be noted that the Ateneo de Manila campus has student break 608 

periods in March, April, May, and December (Hilario et al., 2020a); those months pertain to the 609 

NEM season, which could lead to lower combustion emissions from vehicles (e.g., maleate and 610 

phthalate). Although the SWM season is associated with enhanced precipitation over Metro 611 

Manila, lower boundary layer height and appreciable RH values could counteract wet scavenging 612 

to some degree by promoting aqueous processing of aerosol (Hilario et al., 2020a). Furthermore, 613 

maleate’s largely submicrometer size distribution (Fig. 9) may reduce the efficiency of wet 614 

scavenging (Greenfield, 1957). 615 

 616 

5.5 Oxalate 617 

Oxalate was shown to have the following traits:  618 

(i) influenced somewhat uniformly by combustion (32.9 %) and crustal (31.2 %) sources, 619 

followed by biomass burning (25.4 %), and waste processing (10.5 %);  620 

(ii) only organic acid to correlate with combustion tracers (V, Ni);  621 

(iii) pronounced presence in both the sub- and supermicrometer size ranges;  622 

(iv) highest mass concentrations in the Transitional period;  623 

(v) had contributions from the southwest, east/northeast, and locally.  624 

Oxalate concentrations in this study (37.67 – 472.82 ng m-3) were surprisingly low for such a 625 

polluted megacity with strong regional sources. For context, concentrations in a few other 626 

regions are as follows: 270 – 1,350 ng m-3 in Tokyo, Japan (Kawamura and Ikushima, 2002; 627 

Sempére and Kawamura, 1994); 195 – 669 ng m-3 in Beijing, China (Du et al., 2014); and 149 – 628 

735 ng m-3 in Thumba, India (Hegde et al., 2016).  629 

The average size distributions for oxalate appeared bi-modal for each individual season with 630 

modes between 0.32 – 0.56 µm and 0.56 – 1.0 µm for the submicrometer range and a separate 631 
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mode between 1.8 – 3.2 µm for the supermicrometer range (Fig. 10). A unique aspect for oxalate 632 

was its consistency in having a bi-modal profile each season with the supermicrometer mode 633 

always between 1.8 – 3.2 µm. Note that the modes discussed here represent the most pronounced 634 

ones but others could have been present too reflecting other sources. Submicrometer oxalate 635 

likely originated from secondary production from both biogenic and anthropogenic precursor 636 

emissions, and potentially from primary emissions (i.e., combustion/biomass burning) (i.e., 637 

Decesari et al., 2006; Falkovich et al., 2005; Golly et al., 2019; Kundu et al., 2010; Wang et al., 638 

2010). Of all the six species studied, oxalate was best correlated with SO4
2- (r = 0.69; Table S6), 639 

especially in the submicrometer range (r = 0.72; Table 3), which is consistent with their common 640 

production mechanism via aqueous processing (Sorooshian et al., 2006; Yu et al., 2005). 641 

Additionally, high concentrations of oxalate in the Transitional period suggest that photo-642 

oxidation was an important process for oxalate formation since the Transitional period had low 643 

rain and high solar radiation. The prominent supermicrometer presence was likely due to 644 

adsorption onto supermicrometer particles. Past work by Sullivan and Prather (2007) reported 645 

the following with regard to oxalate’s behavior in coarse particles of relevance to this study: (i) 646 

oxalic acid was predominately associated with mineral dust and to a lesser degree with aged sea 647 

salt; (ii) even though most of the total mass was sea salt, there was more oxalate per mass of 648 

mineral dust than sea salt; (iii) Asian dust particles are more alkaline as opposed to sea salt and 649 

therefore act as better sinks for dicarboxylic acids than sea salt; and (iv) it is feasible that a large 650 

fraction of supermicrometer dicarboxylic acid mass in remote marine air is associated with 651 

mineral dust and not sea salt. The PMF results from the present study suggest that oxalate was 652 

much more influenced by crustal sources (31.2 %) versus sea salt (0 %), similar to phthalate, 653 

adipate, and succinate (Table 2). Reinforcing the relationship between oxalate and dust is the 654 

significant correlation between oxalate and both Al (r = 0.59) and Ti (0.29) in the 655 

supermicrometer range.  656 

CWT results for oxalate (Fig. S7) showed high concentrations around Luzon for all seasons, with 657 

the caveat that the SWM18 exhibited high concentrations coming from the southwest, which has 658 

already been linked to biomass burning emissions. The difference in oxalate levels between the 659 

SWM18 (178 ± 139 ng m-3) and SWM19 (110 ± 62 ng m-3) seasons is largely due to the 660 

enhanced contribution of biomass burning in the former season since oxalate is abundant in fire 661 

emissions (Falkovich et al., 2005; Mardi et al., 2018; Narukawa et al., 1999). 662 

 663 

5.6 MSA 664 

Previous sections revealed the following characteristics for MSA:  665 

(i) influenced most by combustion (57.4 %), followed by biomass burning (41.2 %), waste 666 

processing (1.4 %), and then crustal sources (0.1 %);  667 

(ii) significantly correlated with succinate, oxalate, phthalate, and SO4
2-;  668 

(iii) similar to maleate, primarily consisted of a submicrometer mass size distribution peak with 669 

only minor contributions from the supermicrometer mode;  670 
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(iv) concentration was highest during the SWM18 season;  671 

(v) had concentrations dominated by sources from the southwest.  672 

Concentrations of MSA in this study were surprisingly low for a site so close to marine and 673 

anthropogenic sources (0.10 – 23.23 ng m-3). For context, MSA concentrations in nearby regions 674 

are as follows: 30 – 60 ng m-3 in Nanjing, China (Yang et al., 2005); 29 – 66 ng m-3 over the 675 

China Sea (Gao et al., 1996). 676 

The average size distributions for MSA appeared uni-modal with the peak size being between 677 

0.32 – 0.56 µm (Fig. 11). The consistent mass size distribution for MSA in all seasons, similar to 678 

maleate, could be due to some combination of limited sources and production pathways. 679 

Surprisingly, MSA showed no association to the sea salt source factor (Table 2) even though it 680 

would be expected given that DMS is co-emitted from the ocean with sea salt. Due to the 681 

proximity of the sampling site to the ocean it is possible that the local sea salt was relatively 682 

fresh with short transport time, which could potentially explain the lack of an association with 683 

MSA as it requires time to be produced from its marine precursor DMS. Instead, combustion and 684 

biomass burning sources were more significantly related to MSA, which is consistent with some 685 

past studies linking MSA to anthropogenic sources (Yuan et al., 2004) and biomass burning 686 

(Sorooshian et al., 2015). Consequently, concentrations of MSA from these other non-marine 687 

sources could be much higher causing the PMF model to associate MSA with non-sea salt 688 

related sources. CWT results for MSA (Fig. S8) showed high concentrations coming from the 689 

southwest during the SWM18 and SWM19 seasons, and from the east-northeast during the NEM 690 

and Transitional period. 691 

Both MSA and oxalate had significantly lower concentrations than other regions, and there are a 692 

few possible explanations for this. First, it is worth noting that degradation of these species is 693 

unlikely due to storage or sonication as careful procedures were followed as noted in Sect. 2.2. 694 

The Philippines has relatively high temperatures, humidity, and solar radiation year-round, 695 

providing optimal conditions for processing and degradation to occur, yielding low 696 

concentrations for MSA and oxalate. Furthermore, there are mechanisms by which species such 697 

as oxalate can be degraded via complexation effects with metal cations (Paris and Desboeufs, 698 

2013; Siffert and Sulzberger, 1991; Sorooshian et al., 2013; Zuo, 1995), which are abundant in 699 

the study region. 700 

 701 

6. Conclusions 702 

This work used a 16-month long dataset of size-resolved aerosol composition to investigate the 703 

nature of five organic acids (oxalate, succinate, adipate, maleate, and phthalate) and MSA in the 704 

polluted Metro Manila region in the Philippines. Selected results are as follows in order of the 705 

three major questions posed at the end of Sect. 1. 706 

 Organic acids and MSA contribute only a small fraction to the total gravimetric aerosol 707 

mass in Metro Manila (0.80 ± 0.66 %). The combined contribution of these six species 708 

was similar between the sub- and supermicrometer range (0.78 % and 0.84 %, 709 
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respectively). After accounting for water-soluble ions and elements, and black carbon, 710 

there still was an unresolved mass fraction amounting to 33.74 % across all sizes, and 711 

17.78 % and 69.10 % for sub- and supermicrometer sizes, respectively. Therefore, future 712 

work is still warranted to identify what the missing fraction is comprised of, which is 713 

speculated to be water-insoluble organics and elements.  714 

 Oxalate was the most abundant of the six species accounting for 69.1 – 87.3 % of the 715 

total combined mass of the six species depending on the season. However, the bulk 716 

concentrations of oxalate were unusually low (149 ± 94 ng m-3) for such a polluted area 717 

in contrast to other populated regions. Concentrations of the other five species were much 718 

lower than oxalate, with mean levels for the entire study period being less than 10 ng m-3. 719 

In particular, MSA exhibited the lowest mean concentration (5.4 ± 5.2 ng m-3). It is 720 

unclear exactly as to the reason for the low concentrations of the examined species in 721 

light of the diverse marine and anthropogenic sources in the region. The role of wet 722 

scavenging, especially in the SWM seasons, will be the subject of future research.  723 

 The six species exhibited different behavior seasonally, both in terms of relative 724 

concentration and mass size distribution. The SWM18 season was uniquely different than 725 

the SWM19 season, owing to more biomass burning emissions transported from the 726 

southwest that yielded enhanced levels for most species in the submicrometer range, 727 

especially succinate, MSA, oxalate, and phthalate. Enhanced precipitation in the SWM 728 

seasons also was coincident with more influence from localized emissions leading to 729 

enhanced levels in the sub- and supermicrometer ranges depending on the species. The 730 

NEM season was characterized by generally lower concentrations of most species as air 731 

was predominantly transported from the northeast with reduced influence of 732 

anthropogenic and biomass burning emissions. Phthalate was enhanced in the 733 

supermicrometer range during the NEM season due to presumed adsorption to Asian dust 734 

and to a lesser extent sea salt. The Transitional season was characterized by having strong 735 

influence from localized emissions for all six species, which promoted especially high 736 

concentrations for phthalate and oxalate in both the sub- and supermicrometer ranges.  737 

 All species exhibited a prominent submicrometer peak that likely stemmed largely from 738 

secondary formation from both anthropogenic and biogenic precursor emissions and was 739 

especially prominent during the SWM18 season due to extensive biomass burning 740 

influence. Biomass burning was an especially important source for succinate, phthalate, 741 

MSA, oxalate, and adipate. All six species exhibited relatively low association with sea 742 

salt particles; this was particularly interesting for MSA, which was instead better related 743 

to combustion and biomass burning emissions. In contrast to sea salt, most species were 744 

linked to crustal emissions as evident from peaks in the coarse mode during periods of 745 

dust influence. Oxalate, adipate, phthalate, and succinate in particular preferentially 746 

partitioned to dust rather than sea salt, potentially due to their affinity for alkaline particle 747 

types. Oxalate was best correlated with sulfate, especially in the submicrometer mode, 748 

explained by their common production via aqueous processing, which is common in the 749 

study region owing to high humidity levels year-round.  750 
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The results of this study point to the importance of size-resolved measurements of organic and 751 

sulfonic acids as this extensive dataset revealed important changes in mass size distributions 752 

between species and for different seasons. The data point to the partitioning of these species to 753 

coarse aerosol types and the potentially significant impact of precipitation on either the removal 754 

or enhancement of species’ mass size distribution modes; these topics warrant additional 755 

research to put on firmer ground the sensitivity of these species to source regions, transport 756 

pathway, and wet scavenging effects. More research is warranted to investigate the remaining 757 

fraction of the unresolved mass (approximately one third of the gravimetric mass) that is not 758 

accounted for by black carbon and the water-soluble constituents speciated in this work. This is 759 

especially important for the supermicrometer range. Lastly, the current results point to the 760 

question as to what drives the affinity of individual species towards the coarse mode for different 761 

aerosol types (e.g., dust, sea salt), and how common this is for other regions.  762 
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Table 1: Seasonal concentrations (ng m−3) of organic acids and MSA for all (0.056 – 18 μm), submicrometer (0.056 – 1 μm), and 1486 

supermicrometer (1 – 18 μm) sizes measured in Metro Manila from July 2018 to October 2019. n = number of sets. 1487 

Size/Species 
All (n = 54) SWM18 (n = 11) Transitional (n = 3) NEM (n = 27) SWM19 (n = 13) 

Range Mean (SD) Range Mean (SD) Range Mean (SD) Range Mean (SD) Range Mean (SD) 

A
ll

: 
0
.0

5
6
 -

 1
8
 μ

m
 Phthalate 0 - 67.02 9 (14) 1.97 - 67.02 17 (25) 17.36 - 45.30 27 (16) 0 - 14.72 4.8 (4.4) 0-25.03 5.7 (7.4) 

Adipate 0 - 43.83 7.6 (9.4) 0 - 20.18 9.1 (8.8) 0.24 - 19.56 8 (10) 0 - 13.00 4.2 (3.8) 0 - 43.83 13 (15) 

Succinate 0 - 116.28 10 (22) 0 - 116.28 22 (43) 0 - 14.31 7.6 (7.2) 0 - 62.83 7 (14) 0 - 20.14 4.7 (7.4) 

Maleate 0 - 119.19 10 (20) 2.56 - 58.39 19 (15) 0.19 - 8.45 3.8 (4.2) 0 - 14.42 1.7 (3.7) 2.30 - 119.19 19 (34) 

Oxalate 37.67 - 472.82 149 (94) 49.83 - 472.82 178 (139) 179.42 - 365.10 252 (99) 51.62 - 421.82 144 (76) 37.67 - 214.62 110 (62) 

MSA 0.10 - 23.33 5.4 (5.2) 2.77 - 23.33 10.0 (6.6) 0.16 - 16.14 5.6 (9.2) 0.10 - 7.45 3.1 (2.0) 0.84 - 17.52 6.3 (5.4) 

0
.0

5
6
 -

 1
 μ

m
 

Phthalate 0 - 64.53 6 (13) 0.51 - 64.53 15 (24) 9.14 - 39.62 20 (17) 0 - 9.38 1.6 (2.5) 0 - 8.51 2.7 (3.1) 

Adipate 0 - 31.57 4.3 (5.8) 0 - 15.94 6.1 (6.3) 0 - 10.99 5.5 (5.5) 0 - 10.64 2.5 (3.2) 0 - 31.57 6.1 (8.8) 

Succinate 0 - 108.47 7 (20) 0 - 108.47 19 (39) 0 - 13.54 7.3 (6.8) 0 - 52.42 4 (10) 0 - 15.68 4.3 (6.6) 

Maleate 0 - 108.65 9 (18) 2.56 - 57.73 18 (15) 0.19 - 8.45 3.8 (4.2) 0 - 14.42 1.6 (3.6) 2.30 - 108.65 18 (31) 

Oxalate 16.21 - 318.49 93 (62) 29.96 - 256.72 108 (75) 96.84 - 250.78 166 (78) 26.11 - 318.49 91 (58) 16.21 - 151.79 70 (40) 

MSA 0 - 21.32 5.0 (4.9) 2.41 - 21.32 9.3 (6.2) 0.08 - 15.58 5.3 (8.9) 0 - 7.45 2.9 (2.1) 0.84 - 16.22 5.7 (5.1) 

1
-1

8
 μ

m
 

Phthalate 0 - 16.52 3.1 (3.3) 0 - 4.07 2.0 (1.7) 5.43 - 9.03 6.7 (2.0) 0 - 9.42 3.2 (2.6) 0 - 16.52 3.0 (5.0) 

Adipate 0 - 26.00 3.3 (4.9) 0 - 7.87 3.0 (3.2) 0 - 8.56 2.9 (4.9) 0 - 8.07 1.7 (2.2) 0 - 26.00 7.1 (8.0) 

Succinate 0 - 21.18 2.2 (4.5) 0 - 16.02 3.1 (4.9) 0 - 0.77 0.3 (0.4) 0 - 21.18 2.9 (5.4) 0 - 5.33 0.4 (1.5) 

Maleate 0 - 10.54 0.4 (1.5) 0 - 2.30 0.3 (0.7) 0 0 0 - 0.45 0.02 (0.09) 0 - 10.54 1.2 (2.9) 

Oxalate 6.27 - 216.10 55 (39) 19.87 - 216.10 70 (67) 62.90 - 114.32 87 (26) 18.51 - 104.88 53 (23) 6.27 - 103.58 41 (29) 

MSA 0 - 2.00 0.4 (0.5) 0 - 2.00 0.8 (0.6) 0 - 0.56 0.2 (0.3) 0 - 1.58 0.2 (0.4) 0 - 1.93 0.6 (0.6) 
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Table 2: Contributions of the five positive matrix factorization (PMF) source factors to each 1489 

individual organic acid and MSA. 1490 

 Combustion 
Biomass 

Burning 
Crustal 

Sea 

Salt 

Waste 

Processing 

Phthalate 27.4 % 49.5 % 13.3 % 9.9 % 0 % 

Adipate 32.9 % 26.4 % 35.9 % 4.7 % 0 % 

Succinate 0 % 90.3 % 9.7 % 0 % 0 % 

Maleate 69.7 % 0 % 0.2 % 0 % 30.1 % 

Oxalate 32.9 % 25.4 % 31.2 % 0 % 10.5 % 

MSA 57.4 % 41.2 % 0.1 % 0 % 1.4 % 

 1491 

  1492 
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Table 3: Pearson’s correlation matrices (r values) of water-soluble species for submicrometer 1493 

(0.056 – 1.0 µm) and supermicrometer (1.0 – 18 µm) sizes. Blank boxes indicate p-values 1494 

exceeding 0.05 and thus deemed to be statistically insignificant. Ad – adipate, Su – succinate, 1495 

Ma – maleate, Ox – oxalate, Ph – phthalate. A similar correlation matrix for the full size range 1496 

(0.056 – 18 µm) is in Table S6. 1497 

 

< 1 μm

Al 1.00

Ti 1.00

K 0.91 1.00

Rb 0.44 0.48 1.00

V 0.28 0.36 1.00

Ni 0.47 0.40 0.89 1.00

As 1.00

Cd 0.64 0.68 1.00

Pb 0.41 0.32 0.27 0.28 0.40 0.42 1.00

Na 1.00

Cl 0.90 0.99 0.39 0.30 1.00

NO3 0.76 0.82 0.28 0.84 1.00

SO4 0.42 0.48 0.40 1.00

MSA 0.39 0.60 1.00

Ad 1.00

Su 0.31 0.67 0.45 0.67 0.33 1.00

Ma 0.32 1.00

Ox 0.35 0.70 0.47 0.53 0.72 0.47 0.69 1.00

Ph 0.37 0.53 0.39 0.67 0.45 0.82 0.57 1.00

Al Ti K Rb V Ni As Cd Pb Na Cl NO3 SO4 MSA Ad Su Ma Ox Ph

> 1 μm

Al 1.00

Ti 0.56 1.00

K 1.00

Rb 0.62 0.48 1.00

V 0.40 0.31 1.00

Ni 0.30 1.00

As 0.37 0.33 1.00

Cd 0.66 0.41 0.34 1.00

Pb 0.43 0.45 0.36 0.51 0.45 0.65 1.00

Na 0.49 0.42 1.00

Cl 0.45 0.48 0.90 1.00

NO3 0.38 0.32 0.41 0.64 0.30 1.00

SO4 0.39 0.81 0.64 0.37 0.29 0.36 1.00

MSA 0.32 1.00

Ad 1.00

Su 0.39 0.28 0.30 1.00

Ma 0.57 1.00

Ox 0.59 0.29 0.48 0.45 0.59 0.35 0.45 1.00

Ph 0.29 0.34 0.30 1.00

Al Ti K Rb V Ni As Cd Pb Na Cl NO3 SO4 MSA Ad Su Ma Ox Ph  1498 
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 1499 

Figure 1: HYSPLIT back-trajectories for four seasons: (a) 2018 southwest monsoon (SWM18), 1500 

(b) Transitional period, (c) northeast monsoon (NEM), and (d) 2019 southwest monsoon 1501 

(SWM19). Results shown are based on 72-hour back-trajectories collected every 6 h during 1502 

sampling periods. The top left corner of panel (a) zooms in on Metro Manila with Manila 1503 

Observatory (MO) marked. The black star in each panel represents the sampling site. Map data: 1504 

© Google Earth, Maxar Technologies, CNES/Airbus, Data SIO, NOAA, U.S. Navy, NGA, 1505 

GEBCO. 1506 

1507 
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 1508 

Figure 2: Size-resolved comparison of total mass versus the sum of measured organic acids and 1509 

MSA. The black curve represents total mass and the red curve represents the summed organic 1510 

acids and MSA. Solid lines are the averages and shaded areas are one standard deviation. These 1511 

plots were made based on data from the 11 MOUDI chemical sets with accompanying 1512 

gravimetric measurements. The average percent contribution of the organic acids and MSA to 1513 

total mass is provided for each size bin. Refer to Fig. S1 for the seasonally-resolved version of 1514 

this figure. 1515 
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 1517 

Figure 3: (a) Average concentrations (0.056 – 18 μm) for (left y-axis) MSA, adipate, succinate, 1518 

maleate, and phthalate, in addition to (right y-axis) oxalate. Black bars represent one standard 1519 

deviation. (b) Percentage relative mass abundance of organic acids and MSA separated based on 1520 

season.  1521 
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 1523 

Figure 4: Source factor profiles from positive matrix factorization (PMF) analysis. Blue bars 1524 

represent the mass concentration contributed to the respective factor, red filled squares represent 1525 

the percentage of total species associated with that source factor, and black squares with error 1526 

bars represent the average, 5th, and 95th percentiles of bootstrapping with displacement (BS-1527 

DISP) values. 1528 
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 1530 

Figure 5: Reconstructed mass size distributions of positive matrix factorization (PMF) factors. 1531 
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 1533 

Figure 6: Seasonal size distributions of phthalate. Gray lines represent individual sets, dark 1534 

colored lines are the average of all seasonal distributions, and transparent colored areas represent 1535 

one standard deviation. Note that the range of concentrations presented on the y-axis for each 1536 

season varies. 1537 
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 1539 

Figure 7: Same as Fig. 6 but for adipate. 1540 
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 1542 

Figure 8: Same as Fig. 6 but for succinate.  1543 
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 1544 

Figure 9: Same as Fig. 6 but for maleate. 1545 
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 1547 

Figure 10: Same as Fig. 6 but for oxalate. 1548 
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 1550 

Figure 11: Same as Fig. 6 but for MSA. 1551 

 1552 
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 1554 

Figure 12: CWT maps of (a-e) individual organic acids and (f) MSA over the entire sampling 1555 

period. These results are based on all MOUDI sizes (0.056 – 18 µm). Maps showing the seasonal 1556 

results for each organic acid and MSA are shown in the Supplement (Figs. S3 – S8). 1557 


