Supporting Information (SI) for

Methane mapping, emission quantification and attribution in two European cities; Utrecht, NL and Hamburg, DE

Hossein Maazallahi^{1,2}, Julianne M. Fernandez³, Malika Menoud¹, Daniel Zavala-Araiza^{1,4}, Zachary D. Weller⁵, Stefan Schwietzke⁶, Joseph C. von Fischer⁷, Hugo Denier van der Gon², and Thomas Röckmann¹

¹Institute for Marine and Atmospheric research Utrecht (IMAU), Utrecht University (UU), Utrecht, The Netherlands

²Netherlands Organisation for Applied Scientific Research (TNO), Utrecht, The Netherlands

³Department of Earth Sciences, Royal Holloway University of London (RHUL), Egham, United Kingdom

⁴Environmental Defense Fund (EDF), Utrecht, The Netherlands

⁵Department of Statistics, Colorado State University (CSU), United States of America

⁶Environmental Defense Fund (EDF), Berlin, Germany

⁷Department of Biology, Colorado State University (CSU), United States of America

This section includes: Supplementary Text Supplementary Tables S1 to S15 Supplementary Figures S1 to S18 In this section the supporting documents related to the measurements and data evaluation are provided.

Table of Contents

Acronyms, Chemical Symbols and Scientific Units	V
S.1) Instrumentation, driving scheme, and each day's surveys	VI
S.2) Data Evaluation Procedures of CH ₄ Quantification	XI
S.2.1) Data Quality Check and Instrument Comparison	XI
S.2.2) Unintended Measurement; Example of a Car Exhaust and the New Elbe Tunnel	XIII
S.2.3) Background Extraction	XV
S.2.4) Quantification of emissions from facilities	XVI
S.2.5) Cartesian System and Clustering	XVIII
S.2.6) Data Evaluation Flowcharts	XIX
S.2.7) Code Comparison with CSU	XIX
S.3) Spatial Data	XX
S.3.1) Open Street Map (OSM)	XX
S.3.1.1) Road Categories and Visits	XX
S.3.1.2) Methane Emission Distribution over Different Road Categories	XXI
S.3.2) LandScan data	XXII
S.4) Data Evaluation Procedures of Isotopic Analysis	XXIII
S.4.1) Sample Collection	XXIII
S.4.2) Lab Analysis of Samples	XXIII
S.5) Revisits; example of Utrecht City Centre	XXIV
S.6) Isotopic Signatures of Samples and Ethane/Methane Ratio	XXV
S.7) Standards and Regulations for local gas companies in Germany	XXVII
S.8) Measurement procedures by GasNetz Hamburg	XXVIII
S.9) Distance of LI Locations to Pipeline and Pipeline Material	XXIX
S.10) Gas Leak Detection and Repair Protocol	XXX
References in SI	XXXI

List of Tables

Table S1- Information about each day's mobile measurement surveys in Utrecht
Table S2- Information about each day's mobile measurement surveys in Hamburg
Table S3- Comparison of enhancements detected with the G2301 and G4302 instrumentsXII
Table S4- Measurement from the waste water treatment plant in Utrecht (52.109791 °N, 5.107605 °E) XVI
Table S5- CH ₄ emitting facilities in Hamburg XVI
Table S6- Local geographical datums in Utrecht and HamburgXVIII
Table S7-Road category visits- Inside the Ring of UtrechtXX
Table S8- Road category visits, North side of Elbe, HamburgXX
Table S9- Statistics of observed LIs for different street categories in Hamburg and Utrecht. The three values per
cell are the number of LIs, the total emission rate from all LIs in this category and the emission rate per LI. XXI
Table S10- Isotopic signature and ethane/methane (C2/C1) ratio; North Elbe area in Hamburg XXV
Table S11- Isotopic signature and C2/C1 ratio from facilities in HamburgXXVI
Table S12- Inspection intervals of gas pipes in the ground (Table 2 in DVGW G465-1 (DVGW, 2018)) XXVII
Table S13- Leak classes and action required XXVII
Table S14- Distances of observed LIs from the natural gas distribution network gridXXIX
Table S15- Pipeline materials at the locations of observed LIs

List of Figures

Figure S1 - Mobile measurement platform
Figure S2 - Mobile measurement in (a) Utrecht and (b) Hamburg
Figure S3 - Construction at the street level; (a) not possible to access the total width or (b) streets were completely
blockedX
Figure S4-(a) Example of raw data and data quality check of G4302, (b) timeseries of CH4 mole fraction recorded
by G2301 and G4302, (c) in-situ measurement correlation plot of G2301 and G4302 while the G4302 was in
ethane mode, and (d) in-situ measurement correlation plot of G2301 and G4302 while the G4302 was in methane
modeXI
Figure S5 - Exhaust measurement from a car; (a) timeseries of CH4 and CO2 mole fractions from G2301, (b)
timeseries of CH4 and C2H6 mole fractions from G4302, and (c) the CH4 excess track of measurement while
following the carXIII
Figure S6 – In situ measurements from G2301 during driving inside the new Elbe tunnel; (a) on 07 November
2018, (b) on 09 November 2018 including signatures from isotopic sampling analysis, (c) on 10 November 2018,
and (d) CH ₄ /CO ₂ ratio of enhancements inside the tunnel XIV
$Figure \ S7-(a) \ Example \ of \ concomitant \ CH_4 \ and \ CO_2 \ enhancements \ for \ a \ LI \ measured \ with \ the \ G2301 \ instrument$
and (b) CH ₄ and CO ₂ correlations for the LIs attributed to combustion sources in Hamburg XIV
Figure S8 - Background extraction of (a) CO ₂ and (b) CH ₄ ; example of a survey in HamburgXV
Figure S9- Emission locations and clusters. (a) All LIs and clusters in the target area, (b) LIs and clusters in a
smaller region, (c) complete view of each day's surveys across Hamburg, and (d) focus of each day's surveys
across city centre of HamburgXVIII
Figure S10- Flow diagrams for the evaluating CH ₄ emissions of (a) leak indications and (b) facilities XIX
Figure S11- Comparison of evaluation code from UU and CSU XIX
Figure S12- Population distribution in (a) Utrecht and (b) Hamburg
Figure S13- Taking samples (a) inside the car or (a) outside
Figure S14- Flow diagram for isotope analysisXXIII
Figure S15- Mobile measurement across city centre of Utrecht in February 2018 (red) and April 2019 (green)
XXIV
Figure S16- (a) CH ₄ enhancements in the southern part of the Alster in Hamburg, the LIs inside the white polygon
were attributed to a microbial source, and (b) the photograph shows an exhaust from the sewage system that was
identified as strong CH4 sourceXXV
Figure S17- Leak detection operation by GasNetz Hamburg XXVIII
Figure S18- Gas detection and repair practices flowchartXXX

Acronyms, Chemical Symbols and Scientific Units

reconjunity ene	intent symbols and scientific emits
ACM	Authority for Consumers and Markets in the Netherlands
bcm	billion cubic meters
°C	degree Celsius
C2/C1	Ethane to Methane Enhancements Ratio
C_2H_6	Ethane
CCAC	Climate and Clean Air Coalition
CH ₄	Methane
CO ₂	Carbon Dioxide
CSU	Colorado State University
DBI GUT Leipzig	DBI Gas- und Umwelttechnik GmbH Leipzig
DE	Deutschland
DVGW	Deutscher Verein des Gas-und Wasserfaches
EDF	Environmental Defense Fund
EIA	Energy Information Administration
GHG	Greenhouse Gas
GIS	Geographic Information System
GPDM	Gaussian Plume Dispersion Model
GPS	Global Positioning System
H ₂ O	Water
Hz	Hertz
ICOS	Integrated Carbon Observation System
IMAU	Institute for Marine and Atmospheric research Utrecht
KNMI	Koninklijk Nederlands Meteorologisch Instituut
L	Liter
LBEG	Landesamt für Bergbau, Energie und Geologie
LDC	Local Distribution Company (for natural gas consumption)
LI	Leak Indication: spatially clustered and temporally aggregated locations of methane
	enhancements which are >10 % above background level
mbar	millibar
ml	milliliter
MEMO ²	Methane goes Mobile-Measurements and Modelling
MI	Meteorological Institute
MPI-Met	Max-Planck Institute for Meteorology
NGDN	Natural Gas Distribution Network
NL	The Netherlands
ОН	Hydroxyl radical
OSM	Open Street Map
ppb	parts per billion
ppm	parts per million
RHUL	Royal Holloway University of London
RIVM	Rijksinstituut voor Volksgezondheid en Milieu
t	tons
u	wind speed
UBA	Umweltbundesamt
UU	Utrecht University
US	The United States
UTC	Coordinated Universal Time
V	volts
WWTP	Waste Water Treatment Plant
yr	Year
δ ¹³ C	δ ¹³ C-CH ₄
δD	δ^2 H-CH ₄
σ _y	horizontal plume dispersion coefficient
σz	vertical plume dispersion coefficient

S.1) Instrumentation, driving scheme, and each day's surveys

Figure S1 - Mobile measurement platform

In Figure S2a and Figure S2b total length of roads driven in Utrecht (\approx 1,300 km) and Hamburg (\approx 2,500 km) are shown. The areas outlined in black are the city areas where LIs from the NGDN were evaluated.

Figure S2 - Mobile measurement in (a) Utrecht and (b) Hamburg

In Table S1 and Table S2, each day's survey dates, districts targeted, instruments on-board, and duration of mobile measurements during each individual measurement days are provided.

Date dd.mm.yyyy	Picarro G2301		Pie G4	Picarro G4302			km (
	Availability	Time correction (delay + UTC adjustment)	Availability	Time correction (delay + UTC adjustment)	Target District	km driven	triven inside the ring
20.02.2018	Yes	14	-	-	Kanaleneiland	48.2	46.4
25.02.2018	Yes	14	-	-	Oud Hoograven, Hoograven, Lunette, and Hoograven,	53.2	50.5
26.02.2018	Yes	14	-	-	Tolsteeg	31.8	29.2
27.02.2018	Yes	14	-	-	Rivierenwijk	28.6	26.0
01.03.2018	Yes	14	-	-	Lombok, Nieuw Engeland, Oog in Al, and Halve Maan	72.2	69.8
12.03.2018	Yes	14	-	-	Rubenslaan, Schildersbuurt, Rijnsweerd, Tuindorp, and the Waste Water Treatment Plant	68.7	64.1
13.03.2018	Yes	14	-	-	Zeeheldenbuurt Hengeveldstraat, Rijnsweerd Noord, Wittevrouwen, Buiten Wittevrouwen, and Oudwijk	51	45.8
14.03.2018	Yes	14	-	-	Overvecht, Wolga- en Donaudreef, Taag- en Rubicondreef, Tigris- en Bostondreef, Schaakbuurt, and Geuzenwijk	123.9	119.6
15.03.2018	Yes	14	-	-	Lauwerecht, Pijlsweerd-Zuid, Tweede Daalsebuurt, Egelantierstraat- Mariëndaalstraat, Het Kleine Wijk, and Waste Water Treatment Plant	51.9	42.3
23.04.2018	Yes	14	-	-	Zuilen-Noord, Prins Bernhardplein, and Elinkwijk,	45.6	25.2
24.04.2018	Yes	14	-	-	Elinkwijk, Schepenbuurt bedrijvengebied Cartesiusweg, Dichterswijk, City Centre (Lange Nieuwstraat, Hooch Boulandt Moreelsepark, Wijk C, Breedstraatbuurt, Nobelstraat) and Waste Water Treatment Plant	204.4	117.1

25.04.2018	Yes	14	-	-	Blauwkapel and Voordorp en Voorveldsepolder	25.5	23.3
26.04.2018	Yes	14	-	-	Transwijk-Noord, Bedrijvengebied Kanaleneiland, and Bedrijventerrein De Wetering	100.5	94.0
29.04.2018	Yes	14	-	-	Bedrijventerrein Lageweide, Bedrijvengebied Overvecht, Wijk C, Rijnsweerd Noord, Waste Water Treatment Plant, and City Rings	36.3	33.9
09.05.2018	Yes	14	-	-	Hoograven-Zuid, Kanaleneiland, and Waste Water Treatment Plant	53.3	39.0
07.01.2019	Yes	28	-	-	Kanaleneiland and Waste Water Treatment Plant	38.4	30.4
14.02.2019	Yes	28	Yes	108	City Centre (Lange Nieuwstraat, Hooch Boulandt Moreelsepark, Wijk C, Breedstraatbuurt, Nobelstraat)	54.7	52.2
15.02.2019	Yes	28	Yes	108	Kanaleneiland	63.2	60.0
24.04.2019	Yes	28	Yes	220	City Centre, Kardinaal de Jongweg and Kanaleneiland	39.2	23.1
04.06.2019	Yes	21	Yes	220	Joseph Haydnlaan, Westbroek, and Waste Water Treatment Plant	68.1	18.8

Table S2- Information about each day's mobile measurement surveys in Hamburg

Date dd.mm.yyyy	Pi G	carro 2301	Picarr	o G4302			
	Availability	Time correction (delay + UTC adjustment)	Availability	Time correction (delay + UTC adjustment)	Target District	km driven	km North Elbe
18.10.2018	Yes	28	Yes	212	Harbor	50.9	13.7
19.10.2018	Yes	28	Yes	212	Harbor and oil extraction site	125.39	18.39
20.10.2018	Yes	28	Yes	212	Rotherbaum, Hoheluft-West, and Lokstedt	76.2	76.2
22.10.2018	Yes	28	Yes	217	Niendorf	89.3	89.3

24.10.2018	Yes	28	Yes	218	Schnelsen and Eidelstedt-West	98.8	91.6
25.10.2018	Yes	28	Yes	218	Harbor	122.6	12.6
26.10.2018	Yes	28	-	-	Groß Flottbek	47.1	47.1
27.10.2018	Yes	28	Yes	220	City Centre	74.2	72.3
28.10.2018	Yes	28	Yes	220	Altona	80.9	80.9
29.10.2018	Yes	28	Yes	220	Othmarschen-West, Nienstedten-East	66.8	66.8
30.10.2018	Yes	28	Yes	220	Blankenese, Sülldorf, and Rissen	137.6	132.4
31.10.2018	Yes	28	Yes	226	St. Georg, Hamburg-Hamm, Hohenfelde, Eilbek, and Barmbek-Süd	99.5	99.5
01.11.2018	Yes	28	Yes	227	Rahlstedt, Wandsbek, and Billstedt	156.5	154.8
02.11.2018	Yes	28	Yes	228	Sasel, Bergstedt, and Bramfeld,	111.3	111.3
03.11.2018	Yes	28	Yes	229	Barmbek-Süd, Winterhude, and Barmbek-Nord	82.7	82.7
04.11.2018	Yes	28	Yes	230	Hamburg-Nord, Hummelsbüttel, Langenhorn, Lemsahl-Mellingstedt, Duvenstedt, and Wohldorf- Ohlstedt	201.7	192.5
06.11.2018	Yes	28	Yes	236	Eimsbüttel, Lokstedt, Winterhude-North, Rotherbaum-West, and Schnelsen	114.6	114.6
07.11.2018	Yes	28	Yes	236	Harbor and Sampling	93.2	12.2
08.11.2018	Yes	28	Yes	236	Sampling	81.7	76.4
09.11.2018	Yes	28	Yes	236	Sampling	122.9	43.5
10.11.2018	Yes	28	Yes	236	Lurup, Groß Flottbek – NorthWest, Marmstorf, Neugraben-Fischbek, Harburg, and Ronneburg	171.6	78.7
11.11.2018	Yes	28	Yes	240	Bergedorf, Allermöhe, Lohbrügge,	175.1	88.5
14.11.2018	Yes	28	Yes	245	East-West Transects on the North Side of the Elbe River	87.4	72.6

Figure S3 - Construction at the street level; (a) not possible to access the total width or (b) streets were completely blocked

S.2) Data Evaluation Procedures of CH₄ Quantification

S.2.1) Data Quality Check and Instrument Comparison

In the Hamburg study, the two analyzers (G2301 and G4302) were operated in parallel. The Picarro G2301 instrument measures methane (CH₄), carbon dioxide (CO₂), and water vapor (H₂O) and provides 0.3 Hz measurements at a flow rate of about 200 ml/min and the G4302 measures CH₄, ethane (C₂H₆), and H₂O with a frequency of 1 Hz and at a flow rate of about 2 L/min. The G4302 can be operated in CH₄ only mode, or in C₂H₆ – CH₄ mode, where the noise of CH₄ measurements increases by about one order of magnitude. The inlet for the Picarro G2301 instrument was from the bumper while the inlet for the G4302 was from the roof of the vehicle (Figure S1). In Figure S4c and Figure S4d linear correlation of methane mole fractions shows a correlation of results from the G2301 and G4302 instruments, the latter in both C₂H₆ and CH₄-only mode. which show good linear correlation in both modes. In order to guarantee consistency with the von Fischer et al., (2017) and Weller et al., (2019) quantification algorithm which was developed for a G2301 instrument, in our study the data from this instrument are used for the CH₄ quantification and attribution through CH₄/CO₂ ratio, and the G4302 is primarily used for source attribution via the C₂H₆/CH₄ ratio (C2/C1).

Figure S4 – (a) Example of raw data and data quality check of G4302, (b) timeseries of CH_4 mole fraction recorded by G2301 and G4302, (c) in-situ measurement correlation plot of G2301 and G4302 while the G4302 was in ethane mode, and (d) in-situ measurement correlation plot of G2301 and G4302 while the G4302 was in methane mode

The evaluation procedure was established by von Fischer et al. (2017) and Weller et al., (2019) for the G2301 instrument, so this dataset is used for standard evaluation in the main paper. Table S3 shows a comparison between the different instruments and inlets for a selection of CH₄ enhancements where the G4302 operated in CH₄ mode. CH₄ enhancements above background level are referred to leak indications (LIs). All the LIs were observed by both instruments when both instruments were running together. In a few cases, the G4302 places an LI in a higher category (when using the Weller et al., (2019) algorithm). The largest difference between the two instruments was observed for the highest LI in Utrecht, where a CH₄ enhancement of 16.2 ppm (corresponding to 100 L/min) was recorded on the G2301 instrument, whereas an enhancement of 31.9 ppm (corresponding to 230

L/min) was recorded by the G4302. The difference may be due to the higher flow rate and sampling rate of the G4302, which reduces smoothing in the sample cell compared to the G2301 instrument. However, the difference may also be due to the two different inlets sampling different parts of the plume, because of the different inlet location. In principle, the expected behavior would then be opposite: Larger enhancements would be expected closer to the ground where the inlet of the G2301 instrument is located, but turbulent plume dispersion in on streets by driving cars can result in very irregularly shaped emission plumes.

	Yellow category (0.5 – 6 L/min emissions)	Orange category (6 – 40 L/min emissions)	Red Category (>40 L/min emissions)	Total	Sum Emissions (L/min)
Hamburg					
G2301	90	8	2	100	370
G4302	86	12	2	100	400
Utrecht					
G2301	22	3	1	26	180
G4302	20	5	1	26	370*

Table S3- Comparison of enhancements detected with the G2301 and G4302 instruments

* The large difference is primarily due to the much higher CH₄ elevation recorded with the G4302 for the LI in the "red" category, see text.

S.2.2) Unintended Measurement; Example of a Car Exhaust and the New Elbe Tunnel

Figure S5 shows measurements during a period when the measurement vehicle followed a car exhausting black smoke. Black smoke is an indication for incomplete internal combustion of the vehicle. In Figure S5 the ratio of the sum of CH₄ enhancements (in ppb) to the sum of CO₂ enhancements (in ppm) is 5.5 which is much higher than reported in previous studies, possibly indicating incomplete combustion.

Figure S5 - Exhaust measurement from a car; (a) timeseries of CH_4 and CO_2 mole fractions from G2301, (b) timeseries of CH_4 and C_2H_6 mole fractions from G4302, and (c) the CH_4 excess track of measurement while following the car

During three surveys (07, 09, and 10 - November 2018), we drove inside the new Elbe tunnel to reach the south side of the Elbe river. Figure S6a-c show the CO₂ and CH₄ measurement time series during these passages, and Figure S6d shows a correlation of CO₂ and CH₄ enhancements above the background. The average CH₄/CO₂ enhancement ratio inside the tunnel was 0.2 ± 0.1 ppb/ppm which is in agreement with the ratio of 0.3 reported by Naus et al. (2018) for cars working under normal conditions.

Figure S6 – In situ measurements from G2301 during driving inside the new Elbe tunnel; (a) on 07 November 2018, (b) on 09 November 2018 including signatures from isotopic sampling analysis, (c) on 10 November 2018, and (d) CH₄/CO₂ ratio of enhancements inside the tunnel

Figure S7 – (a) Example of concomitant CH₄ and CO₂ enhancements for a LI measured with the G2301 instrument and (b) CH₄ and CO₂ correlations for the LIs attributed to combustion sources in Hamburg

S.2.3) Background Extraction

Figure S8 - Background extraction of (a) ${\rm CO}_2$ and (b) ${\rm CH}_4$; example of a survey in Hamburg

S.2.4) Quantification of emissions from facilities

There are considerable difficulties and uncertainties in quantifying CH₄ emissions from facilities. Finding suitable roads that allow application of the Gaussian Plume Dispersion Model (GPDM) technique downwind of the source is often challenging. In addition, the characteristics of the sources are often complex. Waste water treatment plants like the one in Utrecht consist of several water tanks, but in the GPDM the whole plant was considered as one-point source. The same applies to the Compost and Soil Company and water-oil separator in Hamburg. Changing the distance from the source along the x-axis in GPDM analysis results in changes in σ_z , and for the case shown in Figure 7 $\sigma_z = 32.1 \pm 14.2$ m. Errors in wind speed are estimated to be $\pm 10\%$ and for wind direction $\pm 5^\circ$. These errors are included in the total error estimate. The uncertainty in the height of the CH₄ emission is most relevant for the case of the storage tank in Hamburg. Most likely, emissions are from the top of tanks, but there can also be emissions at ground level. In addition, vertically stable atmospheric conditions or larger turbulences may lead to transport of air from a higher emission point to the ground level. In the simple GPDM, emission estimates rise exponentially when the point of emission is elevated. E.g. by changing source emission height from 0-10m for the storage tank in Hamburg, the emission rate would change from 3.4 to 10.6 t/yr.

Emissions from facilities show significant contributions to the total emissions in both cities. This highlights the importance of considering emissions from all possible sources within a boundary of an study area. Hopkins et al. (2016) showed that more than 30% of emissions from Los Angeles basin were not accounted in the emission inventory which are due to widely spread sources and mostly originate from fugitive fossil fuel emissions.

No.	Date dd.mm.yyyy	Wind Direction (°)	Wind Speed (m/s)
1	12.03.2018	200 ± 5	3.7 ± 0.4
2	24.04.2018	210 ± 5	4 ± 0.4
3	07.01.2019	178 ± 5	3.5 ± 0.4

Table S4- Measurement from the waste water treatment plant in Utrecht (52.109791 °N, 5.107605 °E)

Table S5- CH₄ emitting facilities in Hamburg

Facility	Date dd.mm.yyyy	Lat (°N)	Lon (°E)	Time Start (UTC) hh:mm:ss	Time End (UTC) hh:mm:ss	Wind Direction (°)	Wind Speed (m/s)
A) Tank Reserves	18.10.2018	53.493237	9.969307	11:25:43	12:10:46	342 ± 9.5	3.2 ± 0.4
B) Refinery	18.10.2018	Unknown	Unknown	11:00:01	11:11:48	328 ± 4.3	3.2 ± 0.2
B) Refinery	20.10.2018	Unknown	Unknown	13:47:00	13:49:21	289.8 ± 3.3	4.7 ± 0.5
C) Steel factory	25.10.2018	53.519042	9.906555	12:42:54	13:15:54	288.7 ± 3.3	7.0 ± 0.9
C) Steel factory	07.11.2018	53.519042	9.906555	11:44:46	12:31:04	153.7 ± 9.8	1.4 ± 0.2
C) Steel factory	09.11.2018	53.519042	9.906555	09:59:41	10:22:23	109.5 ± 6.4	1.8 ± 0.2

D1) Extraction Well	19.10.2018	53.468829	10.184400	08:42:11	08:42:36	323.5 ± 25.4	1.0 ± 0.2
D2) Extraction Storage	19.10.2018	53.468446	10.187410	08:41:44	10:04:36	323.5 ± 25.4	1.0 ± 0.2
D3) Extraction Well	19.10.2018	53.466709	10.180733	08:41:44	10:04:36	323.5 ± 25.4	1.0 ± 0.2
D2) Extraction Storage	11.11.2018	53.468446	10.187410	14:02:53	14:28:08	175 ± 1.4	2.7 ± 0.3
E) Farm	11.11.2018	53.444276	10.226374	14:34:30	15:07:49	174 ± 1.6	2.5 ± 0.2
F) Compost and Soil Company	04.11.2018	53.680233	10.053751	14:44:34	15:29:26	112 ± 3.1	1.5 ± 0.3
G) Landfill	04.11.2018	53.690721	10.092599	09:42:58	10:00:52	124 ± 3.2	2.4 ± 0.1
H) Car manufacturing factory	07.11.2018	53.475618	9.925336	14:28:41	14:40:29	171.5 ± 3.8	0.8 ± 0.1

S.2.5) Cartesian System and Clustering

GPS records logged in decimal degrees were converted to a Cartesian coordinate system for further LI clustering using Eq. (S1). For this, local geographical datums were defined in both cities, in Utrecht it was the city cathedral (Domtoren) and in Hamburg the St. Nicholas' Church (Table S6). The location of a point i relative to the reference point was calculated as:

$$X(i) = (\text{Longitude (i)} - \text{Longitude (Ref)}) * \frac{\pi}{180} * \cos\left(\frac{\text{Latitude (Ref)} * \pi}{180}\right) * R_e$$
(S1a)

$$Y(i) = (\text{Latitude } (i) - \text{Latitude } (\text{Ref})) \frac{\pi}{180} * R_e$$
(S1b)

where $\text{Re} = 6.378 \times 10^6 \text{ m}$ is the radius of the Earth.

Table S6- Local geographical datums in Utrecht and Hamburg

City	Location	Latitude (°N)	Longitude (°E)
Utrecht	Domtoren	52.090628	5.121310
Hamburg	St. Nicholas' Church	53.547479	9.990709

Each Day's Surveys; Hamburg, DE

Hamburg Ca

©Google Earth

(C)

Figure S9- Emission locations and clusters. (a) All LIs and clusters in the target area, (b) LIs and clusters in a smaller region, (c) complete view of each day's surveys across Hamburg, and (d) focus of each day's surveys across city centre of Hamburg

S.2.6) Data Evaluation Flowcharts

Overview of CH₄ emission quantification steps for emissions from the natural gas distribution network (Figure S10a) and from facilities (Figure S10b).

Figure S10- Flow diagrams for the evaluating CH₄ emissions of (a) leak indications and (b) facilities

S.2.7) Code Comparison with CSU

Figure S11 shows a comparison of results obtained with the MATLAB code from Utrecht University (UU) (Maazallahi et al., 2020) with the code that was used by Colorado State University (CSU) for US cities. The two evaluation systems return basically very similar results.

We adopt the distribution of observed CH₄ enhancements into different LI categories according to von Fischer et al., (2017).

S.3) Spatial Data

S.3.1) Open Street Map (OSM)

Information from the Open Street Map (OSM) (Figure 1) was used for several purposes. Firstly, it was investigated whether there is any correlation between type of roads and CH₄ enhancements. Therefore, the streets in both cities were categorized into level 1, 2, 3, residential, and unclassified streets based on the categories from the OSM (Table S7 and Table S8). Secondly, not all streets across the cities were covered and data on the total road network from OSM were used to extrapolate the results from the roads covered to the entire natural gas distribution network in the cities. The OSM was also used to determine from the recorded GPS coordinates how many times each street was surveyed. As GPS coordinates may not perfectly sit on OSM data, 15m both-sided buffer zone was used for level 1,2, and 3 and 10m both-sided buffer zone was used to extract driven streets out of OSM data. These distances are slightly smaller than used for the US cities, reflecting the denser infrastructure and street network in Utrecht and Hamburg.

S.3.1.1) Road Categories and Visits

	Total (km)	Once (km)	More than Once (km)
Level 1	37.4	9.0	28.4
Level 2	45.4	12.0	33.4
Level 3	43.5	14.8	28.7
Residential	246.8	146.8	100.0
Unclassified	81.7	48.7	33.0

Table S7-Road category visits- Inside the Ring of Utrecht

Table S8- Road category visits, North side of Elbe, Hamburg

	Total (km)	Once (km)	More than Once (km)
Level 1	160.5	92.5	68.0
Level 2	197.8	124.2	73.6
Level 3	194.3	142.5	51.8
Residential	619.6	509.6	110.0
Unclassified	50.5	35.7	14.8

S.3.1.2) Methane Emission Distribution over Different Road Categories

Table S9- Statistics of observed LIs for different street categories in Hamburg and Utrecht. The three values per cell are the number of LIs, the total emission rate from all LIs in this category and the emission rate per LI

Level 1				
		Total	Once	More than once
Utrecht (Inside the Ring)	Number	6 LIs		6 LIs
	Emissions	4.6 L/min		4.6 L/min
	Emissions per LI	0.76 L/min/LI		0.76 L/min/LI
Hamburg (North Elbe)	Number	29 LIs	10 LIs	19 LIs
	Emissions	68.1 L/min	15.5 L/min	52.7 L/min
	Emissions per LI	2.3 L/min/LI	1.5 L/min/LI	2.8 L/min/LI
	Le	vel 2		
		Total	Once	More than once
Utrecht (Inside the Ring)	Number	16 LIs	2 LIs	14 LIs
	Emissions	144.7 L/min	6.4 L/min	138.3 L/min
	Emissions per LI	9.0 L/min/LI	3.2 L/min/LI	9.9 L/min/LI
Hamburg (North Elbe)	Number	34 LIs	2 LIs	32 LIs
	Emissions	99.4 L/min	1.5 L/min	97.94 L/min
	Emissions per LI	2.9 L/min/LI	0.7 L/min/LI	3.1 L/min/LI
	Le	vel 3		
		Total	Once	More than once
Utrecht (Inside the Ring)	Number	3 LIs	1 LI	2 LIs
	Emissions	10.2 L/min	1.6 L/min	8.6 L/min
	Emissions per LI	3.4 L/min/LI	1.6 L/min/LI	4.3 L/min/LI
Hamburg (North Elbe)	Number	23 LIs	8 LIs	15 LIs
	Emissions	43.0 L/min	7.6 L/min	35.4 L/min
	Emissions per LI	1.9 L/min/LI	1.0 L/min	2.4 L/min/LI
	Resi	dential		
		Total	Once	More than once
Utrecht (Inside the Ring)	Number	45 LIs	8 LIs	37 LIs
	Emissions	92.7 L/min	12.6 L/min	80.1 L/min
	Emissions per LI	2.1 L/min/LI	1.6 L/min/LI	2.2 L/min/LI

Hamburg (North Elbe)	Number	52 LIs	23 LIs	29 LIs
	Emissions	273.8 L/min	41.8 L/min	232.1 L/min
	Emissions per LI	5.3 L/min/LI	1.8 L/min/LI	8.0 L/min/LI
	Uncla	assified		
		Total	Once	More than once
Utrecht (Inside the Ring)	Number	11 LIs	5 LIs	6 LIs
	Emissions	37.8 L/min	13.4 L/min	24.4 L/min
	Emissions per LI	3.4 L/min/LI	2.7 L/min/LI	4.1 L/min/LI
Hamburg (North Elbe)	Number	7 LIs	2 LIs	5 LIs
	Emissions	5.9 L/min	1.5 L/min	4.4 L/min
	Emissions per LI	0.8 L/min/LI	0.8 L/min/LI	0.9 L/min/LI

S.3.2) LandScan data

Per-capita emissions in both cities were based on the LandScan data, which use remote sensing imagery and analysis of nighttime lights, land cover and road proximity at $\approx 1 \text{ km}^2$ (30" * 30") spatial resolution (Bright et al., 2000) to estimate population density. The LandScan data yield 0.28 and 1.45 million inhabitants in the study area of Utrecht and Hamburg respectively (Figure 1).

Figure S12- Population distribution in (a) Utrecht and (b) Hamburg

S.4) Data Evaluation Procedures of Isotopic Analysis

S.4.1) Sample Collection

Samples were taken either inside the car or outside depending on road accessibility. Sampling locations were selected guided by the LIs observed during the untargeted surveys (Figure S14). As the delay time of G4302 reading was lower and the analyzer is portable, it was more practical to use this instrument for sampling. In Figure S13a, M. M. is taking samples at a location where the car could stop at the LI locations. In Figure S13b, J. M. F. is walking with the G4302 analyzer to locate a source, in this case the source is shown in Figure S16.

Figure S13- Taking samples (a) inside the car or (a) outside

S.4.2) Lab Analysis of Samples

Figure S14- Flow diagram for isotope analysis

S.5) Revisits; example of Utrecht City Centre

In Figure S15, one of the revisit surveys across Utrecht is shown in which the city centre was revisited after about 10 months.

Figure S15- Mobile measurement across city centre of Utrecht in February 2018 (red) and April 2019 (green)

S.6) Isotopic Signatures of Samples and Ethane/Methane Ratio

Figure S16- (a) CH₄ enhancements in the southern part of the Alster in Hamburg, the LIs inside the white polygon were attributed to a microbial source, and (b) the photograph shows an exhaust from the sewage system that was identified as strong CH₄ source

No.	Latitude (°N)	Longitude (°E)	Location	$\delta^{13}C$	δD	C2/C1 (%)	Emission (L/min)
1	53.5605556	9.99483722	Warburgstrasse	-50.4	-278.5	0	7.6
2	53.577521	9.988869	Rothenbaumchaussee	-62.7	-258	0	1.9
3	53.567191	9.999819	Alte Rabenstrasse	-52.19	-317.9	0	7.5
4	53.557113	9.996773	Lombardsbrücke	-46.3	-344.6	0	11.4
5	53.548297	9.973536	Neumayerstrasse	-49.9	-315.6	0	15.0
6	53.558212	10.006785	An der Alster	-23.4	-152.5	0	1.8
7	53.582506	10.016915	Geibelstrasse	-40.7	-194.2	3.0 ± 1.0	1.6
8	53.63921	10.040574	Distelweg	-42.6	-206.8	1.5 ± 0.5	46.6
9	53.614763	9.892181	Halstenbekerweg	-43.3	-187	3.6 ± 1.5	1.7
10	53.61402	9.890026	Astweg	-41.9	-185.1	3.6 ± 1.5	98.1
11	53.5631395	9.9862702	Edmund-Siemers Allee	-41.2	-207.4	3.8 ± 0.7	19.5
12	53.5836695	9.9839906	Eppendorfer Baum	-51.1	-301.3	0	2.0
13	53.5431789	10.0255373	Amsinckstrasse+Süders trasse	-53.6	-272.7	0	1.6

Table S10- Isotopic signature and	ethane/methane (C2/C1) ratio;	North Elbe area in Hamburg

Table S11- Isotopic signature and C2/C1 ratio from facilities in Hamburg

No.	Date dd.mm.yyyy	Latitude (°N)	Longitude (°E)	Location	Wind Direction	$\delta^{13}C$	δD	C2/C1
1	04.11.2018	53.68281	10.046241	Hummelsbütteler Steindamm (F)	112 ± 3.1	-46.9	-265.4	0
2	10.11.2018	53.572974	9.898723	Luruper Chaussee; Sudden wide plume	155.9 ± 10.1	-62.6	-287.8	0
3	09.11.2018	53.541798	9.917605	The New Elbe Tunnel	111.7 ± 6.3	-28.6	-176.2	
4	09.11.2018	53.51684	9.91380075	Steel factory; Dradenaustrasse (C)	109.5 ± 6.4	-50.1	-228.2	4.6 ± 1.9
	09.11.2018	53.5214485	9.90923915	Steel factory; Dradenaustrasse (C)	109.5 ± 6.4	-49.5	-269.9	
5	18.10.2018	53.49147	9.97216	Oil storage tanks (A)	342 ± 9.5	-48.3	-421.7	0
6	07.11.2018	53.47645	9.924026	Mercedesstraße (H)	171.5 ± 3.8	-43.0	-207.3	2.4 ± 0.6
7	19.10.2018	53.40675	10.13535	Big Plume; Steller Chaussee	290 ± 29.5	-66.0	-101.9	
8	11.11.2018	53.445221	10.228102	Farm; Neuengammer Hausdeich	174 ± 1.6	-57.0	-317.2	0
9	19.10.2018	53.46275	10.18198	Neuengammer	323.5 ± 25.4	-53.0	-235.8	
10	19.10.2018	53.467774	10.19001	Oil Storage Tank; Randerseidet schleusendam (D2)	323.5 ± 25.4	-45.6	-164	6.6 ± 1.4
	11.11.2018	53.469045	10.188069	Oil Storage Tank; Neuengammer Hausdeich (D2)	175 ± 1.4	-44.8	-183.2	7.7 ± 1.5

S.7) Standards and Regulations for local gas companies in Germany

In this section, technical regulations on inspection of gas pipework systems with operation pressures up to 16 bar by Deutscher Verein des Gas- und Wasserfaches (DVGW) are provided (document DVGW G 465-1 to 4 (DVGW, 2019b)). Inspections are carried out with measurement equipment (according to DVGW G 465-4 (DVGW, 2019b)) while walking along the street/areas with pipelines in the ground. Inspections of pipelines follow a fixed schedule (Table S12).

Leak frequency (Number of detected leaks per km monitored / checked pipe	≤ 0.1	≤ 0.5	≤ 1
Operating pressure	Inspection interval in years [a]		
≤ 1 bar	6 (only for PE-pipes and pipes with cathodic corrosion protection)	4	2
> 1 bar to ≤ 5 bar	4 (additional bimonthly track inspection)	2	1
> 5 bar to ≤ 16 bar	1 (depended on the material of t	he pipe)	

Leaks are classified into four categories based on proximity of the leaks to buildings, and each category requires certain actions to prevent incidents/accidents (DVGW, 2019a).

Table S13- Leak classes and action required

Leak classification	Leak detection proximity to the building	Repairing actions
A1	Leak into a building	Immediate
A2	Leak very close to a building	Within a weak
В	Leak in bigger distance to a building	3 months
С	There is no danger of incoming gas in a building or cavity	According to recommended recovery plan

S.8) Measurement procedures by GasNetz Hamburg

GasNetz Hamburg uses gas detectors from Sewerin (e.g. portable Ex-Tec PM4, detection limit 1 ppm above background). The analyzer sucks in air close to the ground and a person pushes the analyzer forward while online readings are available on a screen (Figure S17), while all the local gas distribution network pipelines are available and checked on site. All the 145 reported LIs where initially checked by GasNetz Hamburg by overlapping with the network map to see if the locations are in close proximity to pipeline from the NGDN. The LIs were prioritized in classes mentioned in Table S13, and finally leak detection and repair practices were carried out. The company not only checked the reported locations by this study, but also the surrounding area including house connections, parks, gardens, etc., where pipelines are located close by.

Figure S17- Leak detection operation by GasNetz Hamburg

S.9) Distance of LI Locations to Pipeline and Pipeline Material

Distance (m)	Red	Orange	Yellow
0	100 %	75%	67%
10		25%	21%
20			5%
30			3%
40			1%
50			2%

Table S14- Distances of observed LIs from the natural gas distribution network grid

Table S15- Pipeline materials at the locations of observed LIs

Pipeline material	Red	Orange	Yellow
Steel	100 %	67%	63%
Polyethylene		33%	37%

S.10) Gas Leak Detection and Repair Protocol

In Figure S18, a protocol in which mobile measurement and attribution (blue box) are combined with the current repair practice (green box) is suggested. Introducing the rapid mobile surveys before current detection and repair procedures may increase efficiency.

Figure S18- Gas detection and repair practices flowchart

References in SI

Bright, E. A., Coleman, P. R. and Dobson, J. E.: LandScan : A Global Population database for estimating populations at risk, [online] Available from: https://www.semanticscholar.org/paper/LandScan-%3A-A-Global-Population-database-for-at-risk-Bright-

Coleman/17e6076b6761788684434d1e14e85e8877fc0146 (Accessed 23 September 2019), 2000. DVGW: Technische Regel-Arbeitsblatt; DVGW G465-1 (A). [online] Available from:

- https://shop.wvgw.de/var/assets/leseprobe//510544_lp_G 465-1_2019_05.pdf, 2018.
- DVGW: Technische Mitteilungen Hinweis; DVGW G 465-3. [online] Available from: https://shop.wvgw.de/var/assets/leseprobe//510545_lp_G 465-3_2019_05.pdf, 2019a.
- DVGW: Technischer Hinweis Merkblatt; DVGW G465-4 (M). [online] Available from: https://shop.wvgw.de/var/assets/leseprobe//510546_lp_G 465-4_2019_05.pdf, 2019b.
- Hopkins, F. M., Kort, E. A., Bush, S. E., Ehleringer, J. R., Lai, C.-T., Blake, D. R. and Randerson, J. T.: Spatial patterns and source attribution of urban methane in the Los Angeles Basin, J. Geophys. Res. Atmos., 121(5), 2490–2507, doi:10.1002/2015JD024429, 2016.
- Naus, S., Röckmann, T. and Popa, M. E.: The isotopic composition of CO in vehicle exhaust, Atmos. Environ., 177, 132–142, doi:10.1016/J.ATMOSENV.2018.01.015, 2018.
- Maazallahi, H., Fernandez, J. M., Menoud, M., Zavala-Araiza, D., Weller, Z. D., Schwietzke, S., von Fischer, J. C., Denier van der Gon, H., and Röckmann, T.: MATLAB® code for evaluation of Urban Surveys, Zenodo, doi: 10.5281/zenodo.3928972, 2020.