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Abstract. Observations of winds in the planetary boundary layer remain sparse making it challenging to 
simulate and predict atmospheric conditions that are most important for describing and predicting urban 
air quality. Short-lived chemicals are observed as plumes whose location is affected by boundary layer 
winds and with a lifetime affected by boundary layer height and mixing. Here we investigate the 5 
application of data assimilation of NO2 columns as will be observed from geostationary orbit to improve 
predictions and retrospective analysis of wind fields in the boundary layer.  

 
1 Introduction 
Data assimilation methods are a fundamental tool for numerical weather prediction (NWP) with 10 
observations of temperature, pressure, winds, humidity, etc. used as constraints on initial conditions and 
time evolution of atmospheric energy and winds (e.g. Bauer et al., 2015). With the exception of water 
vapor and ozone (e.g. Inness et al., 2019), observations of atmospheric constituents are generally not used 
in current NWP. However, the tools of data assimilation are increasingly the focus of a variety of off-line 
chemical transport models (CTM) that aim to improve regional air quality forecasts and to enhance 15 
understanding of emissions of gases and aerosol into the atmosphere (e.g. Miyazaki et al. 2014, 2017, 
2020 Bocquet et al., 2015; Zhang et al., 2012; Lahoz et al., 2007) and there is growing interest in on-line 
assimilation of other chemicals (e.g. Dee et al. 2014, Gelaro et al. 2012). Meteorology and chemical 
constituents are not independent. Coupled chemistry meteorology models such as WRF-Chem have 
evolved rapidly in recent years (Grell and Baklanov, 2011). This development in numerical modeling 20 
offers the opportunity to study the interaction/feedback between atmospheric physics, dynamics and 
composition such as the impact of air constituents on incoming radiation, the modification of weather 
(cloud formation and precipitation) by natural and anthropogenic aerosol, and the impact of climate 
change on the frequency and strength of events with poor air quality (e.g. Fiore et al., 2012; Grell et al., 
2011). In parallel with this advance in modeling capability, observations of gases and aerosols from space 25 
based instruments are providing an unprecedented view of constituents from the surface to the 
mesosphere. Space observations of column NO2 have been applied in the verification of point-source 
emissions (e.g. Russell et al. 2012; Beirle et al., 2011), quantification of uncertain sources (include 
biogenic and soil emissions) (Lin, 2012), and detection of episodic events, such as wildfire and lighting ( 
Zhu et al. 2019; Miyazaki et al., 2014; Mebust et al., 2011).  30 

The combination of these two advances sets the stage for joint assimilation of both meteorology and 
chemistry where chemical observations can improve the representation of dynamical motions in the 
atmosphere. In concept, it is easy to see the potential benefit of assimilating composition observations. 
For example, modeled winds might be transporting material to the southwest while an observed plume is 
moving to the west. In this example, the chemical observations would cause the assimilated model to alter 35 
the wind direction and thus, aligning the predicted meteorology with the observed flow of chemicals. This 
is just one example. Chemical observations are also sensitive to wind speed (Laughner, et al. 2016; Valin, 
et al. 2013;) and PBL dynamics. Examples of the beneficial information flow across the two sub-systems 
include the improvement in cloud distributions after assimilating aerosols (Saide et al., 2012) and the 
potential for improvement in temperature, winds and cyclone development during dust storms via 40 
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assimilation of aerosol optical depth (AOD) (Reale et al., 2011, 2014). Improvement in stratospheric 
winds by assimilating chemical tracers has also been demonstrated (Allen et al., 2013; Chu et al., 2013; 
Milewski and Bourqui, 2011; Semane et al., 2009; Peuch et al., 2000). Examples in simpler models 
include studies by Allen et al., 2014, 2015; and Haussaire and Bocquet, 2015. Among the challenges that 
must be addressed as we begin to understand the potential benefits of joint assimilation of physical state 5 
variables and composition are the aspects of two linked sub-systems (meteorology and chemistry) that 
can be most efficiently improved by linking them to observed chemical fields. 
Aerosols, CO and CO2 have been the focus of most prior chemical assimilation ( Mizzi et al., 2016; Saide 
et al., 2014; Liu et al., 2012;). In our first analysis of NO2 assimilation (Liu et al., 2017) we examined the 
potential for assimilation of high spatial (~ 3 km) and temporal (hourly) resolution NO2 columns as will 10 
be provided by future geostationary observations to improve the representation of NOx emissions. NOx 
has a lifetime of order five hours within the boundary layer and thus exhibits variation of concentrations 
at the spatial scales of order 50~75 km downwind of emissions. Those fine temporal and spatial scales 
make NOx variations more strongly coupled to short-timescale meteorological parameters than other more 
long-lived chemical tracers such as aerosol or CO. In our initial research (Liu et al., 2017), we focused 15 
on the retrieval of the NOx emissions. We found that using the column NO2 to constrain emission 
accurately required simultaneous meteorology and chemical assimilation. The strongest constraints were 
found in regions with high emissions and using hourly assimilation of meteorological observations.  
Our assimilation anticipates the launch of a Geostationary satellite for column NO2 observations, 
Tropospheric Emissions: Monitoring of Pollution (TEMPO)  scheduled for launch in 2022. Related 20 
instruments include The Korean GEMS instrument launched in early 2020 and the ESA Sentinel 4 
instrument to be launched in in the near future. The TEMPO observations will have two features that will 
make them a significant advance compared to current instruments in low earth orbit. First, the instrument 
will make measurements with hourly repeats during the sunlit portion of the day. Second the instrument 
will have approximately 3×3 km pixels, a substantial increase in spatial resolution compared to the OMI 25 
instrument and an improvement over the TROPOMI instrument (Zoogman et al. 2017).  That spatial 
resolution is also sufficient to quantify gradients in NO2 that result from the combined effects of 
emissions, chemistry and transport. 
Here we focus on winds. We expect the influence of NO2 column assimilation on wind fields to be at the 
spatial scale of 75 km set by the NO2 chemical lifetime (e.g. Laughner and Cohen 2019) and the average 30 
wind speed. We begin by describing the data assimilation tools and a simulator for future geostationary 
satellite observations of NO2 columns (section 2). In section 3 we describe assimilation experiments that 
provide insight into the constraints that the column NO2 observations will have on winds.  In section 4, 
we discuss the improvements to the accuracy of the modelled winds and assess the potential benefits of 
this approach to data assimilation. We conclude in section 5. 35 

2 Methodology 
The data assimilation system is comprised of the forecast model WRF-Chem and the Data Assimilation 
Research Testbed (DART) as described in Mizzi et al., (2016) and Liu et al., (2017). The WRF-
Chem/DART setup, TEMPO simulator and meteorological observations are described in more detail in 
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Liu et al., (2017). Here we briefly describe the updated data assimilation system that allows NO2 
observations to influence winds.  
2.1 WRF-Chem model 
We use WRF-Chem version 3.7 with a one-way nested domain (Figure 1). The outer domain of 12 km 
resolution covers the western United States and the inner domain of 3 km resolution covers Denver and 5 
the mountain region on its west. On the outer domain the initial and boundary conditions are driven by 
weather reanalysis data for meteorology and by MOZART for chemistry (Emmons et al. 2010). After 
one-month simulation on the outer domain, the inner domain is initialized with the initial and boundary 
conditions taken from the outer domain simulations.  
The anthropogenic emissions are taken from the National Emission Inventory (NEI) 2011, which 10 
describes the hourly emissions for a typical summertime weekday. Biogenic emissions are parameterized 
using Model of Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther et al. 2006). Gas 
phase reactions are simulated using regional acid deposition model version 2 (RADM2).  
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2.2 DART assimilation system 
WRF-Chem-DART is a regional multivariate data assimilation system developed by the National Center 
for Atmospheric Research (NCAR) to analyse meteorological and chemical states simultaneously 5 
(Anderson and Collins 2007, Anderson et al. 2009). In this study we use the DART toolkit configured as 
the ensemble adjustment Kalman filter (EAKF) (Anderson 2001). We apply adaptive spatially and 
temporally varying inflation to the prior state to maintain the ensemble spread (Anderson et al. 2009). We 
use horizontal localization to reduce influence from spurious correlations (Anderson 2012). A Gaspari 
and Cohn weighting function is applied with weights diminishing to zero 20 km away from the 10 
observation location. As in Liu et al. (2017), sensitivity tests show that NO2 data assimilation with an 

 

 

Figure 1. Model domain is 12 km outer domain and 3 km inner domain. Data assimilation is performed on 
the inner domain.  
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hour assimilation window performs the best using the weighting function with a width of 20 km. The 
analysed chemical states are NO2 concentrations. The analysed meteorological states include U, V, W, T, 
QVAPOR, QCLOUD, QRAIN, QICE, QSNOW, MU, PH, T2, Q2, U10, V10 and PSFC as described in 
Romine 2013 Table 2. The analysis is updated using DART from continuously cycled one-hour 30 
member ensemble WRF-Chem forecasts. The DART configuration details are provided in Liu et al 2017. 5 

Previous studies that assimilate chemistry and meteorology simultaneously apply the variable localization 
approach (Arellano 2007, Kang 2011, Liu 2017) which zeroes out the covariance between chemistry and 
some of the meteorology variables without taking advantage of the information related to meteorology 
carried by the chemical tracers. In this study, we partially turn off the variable localization and allow the 
assimilated NO2 observations to influence horizontal wind (U and V). With this setup, the advection 10 
scheme in the WRF-Chem model predicts downwind NO2 evolution based on the wind fields. The EAKF 
computes the covariances between the predicted NO2 distribution and wind variables. These sensitivities 
are utilized to refine the model state toward one that best fits the NO2 observations considering the 
confidence in both the observations and model prediction. 
 15 

2.3 Initial and boundary condition ensembles 
We add random perturbations to the temperature field of a single initial state to produce an ensemble of 
perturbed meteorological initial conditions. The perturbations were generated by sampling the NCEP 
background error covariance using the WRF Data Assimilation System (WRFDA) (Barker 2012) with 
cv_option=3. The statistics are estimated with the differences of 24 and 48-hour GFS forecasts with T170 20 
resolution, valid at the same time for 357 cases, distributed over a period of one year. The ensemble 
member lateral boundary conditions perturbations are generated using the DART pert_wrf_bc program 
based on the initial ensemble. The DART update_wrf_bc program is used to update the boundary 
condition including the tendency for the analysis time to match the analysis states from DART.  
 25 

2.4 Observations  
To generate synthetic TEMPO NO2 retrievals, we use the TEMPO NO2 simulator developed in Liu et al. 
(2017) as the observation operator to compute the observed column from a model prediction. It includes 
a layer dependent Box-Air Mass Factor (BAMF) for each observation pixel. BAMF is atmospheric 
scattering weights that depend on parameters including viewing geometry, surface (terrain or cloud) 30 
pressure, and surface reflectivity. The parameters used to compute BAMFs are sampled from a model run 
with hourly frequency and clear sky conditions. Details for the TEMPO simulator and observation error 
generation are described in (Liu et al., 2017). 
 

3 Assimilation experiments 35 

We perform observing system simulation experiments (OSSE) to analyze the wind constraints from 
synthetic NO2 observations. We initialized the WRF-Chem nature run (NR) on a 12 km resolution domain 
(d01) at 2014060100. The meteorological initial and boundary conditions are taken from the North 
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American Mesoscale Forecast System (NAM), and the chemistry simulation is constrained by MOZART 
output. After one-month simulation on d01, the NR on the 3 km domain (d02) is initialized from the d01 
model simulation at 2014070215. Its meteorological and chemical boundary conditions are provided by 
NAM reanalysis data and the d01 simulation respectively. We have a parallel model simulation labelled 
control run (CR), which is performed in the same way as the NR except its meteorological simulation is 5 
initialized and constrained by NARR. Constrained by different reanalysis data, the NR- and CR- 
simulated winds in the boundary layer differ and thus show the discrepancy in the NO2 transport 
processes. We perform data assimilation on d02 from 2014070313 to 2014070600 with an hourly 
assimilation window. In our OSSE, the nature run (NR) simulations are considered as the “true 
atmosphere” from which synthetic NO2 observations are generated using the TEMPO simulator. After a 10 
one-hour forecast the prior ensemble is combined with synthetic NO2 observations to produce the 
posterior ensemble. The difference in wind and NO2 simulations between the NR and the ensemble mean 
results from the utilization of two different reanalysis data as meteorological constraints and from the 
assimilation while we apply the same forecast model, emission input and model physics/chemistry 
scheme. The posterior ensemble will be used as the initial conditions to forecast the next hour. We 15 
evaluate the data assimilation performance by comparing the mean of the posterior estimate with the NR 
simulations. 
We designed a series of six experiments to evaluate the potential of geostationary observations of column 
NO2 to improve wind fields. First, we conduct a free model run (FREE) with 30 ensemble members 
derived from the CR without data assimilation. This will set the baseline performance and will be 20 
compared with cases that assimilate observations to evaluate the benefit of data assimilation to improve 
the winds. In the second experiment (CHEM), we assimilate TEMPO NO2 observations over the 12-hour 
daytime to constrain the winds in the ensemble. By comparing with FREE, we can evaluate the 
improvement in wind simulations as a result of assimilating NO2 observations. In experiment (T, H), we 
assimilate hourly observations of temperature and humidity which can indirectly update winds via the 25 
covariances of temperature and humidity against wind states. In experiment (T, H, CHEM) we assimilate 
TEMPO NO2 observations together with temperature and humidity observations. In this case, wind 
analyses are constrained by the multiple indirect observations via covariances with temperature, humidity 
and NO2. In the experiment (MET), we assimilate all meteorological observations including wind, 
temperature and humidity. This is representative of the current weather observing systems representation 30 
of boundary layer winds. Finally, we assimilate TEMPO NO2 observations in addition to the 
meteorological observations in the experiment (MET, CHEM) to assess the influence of NO2 observations 
on winds under the circumstances of a full meteorology assimilation.  
4 Results and discussion  
We compare the assimilation results with the NR states to evaluate the assimilation performance. The 35 

RMSE of the observed quantities are calculated as !∑ (𝑦%& − 𝑦%()*+
% 𝑛⁄ , where 𝑦%& and 𝑦%( are the model 

and true values for the ith observation, respectively, and n is the total number of observations located 

within a sub-model space in Figure 2. The RMSE of the model states are calculated as .∑ (𝑥%& − 𝑥%()*0
% 𝑙⁄ , 

where 𝑥%& and 𝑥%( are the model and true values at the ith model grid point, respectively, and l is the total 
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number of grid points of interest. For the analysed wind variables, the grid points of interest are all the 
points located within a model sub-domain as shown in Fig. 2, containing the lowest 5 model levels 
vertically. We find that the horizontal transport of NO2 is most sensitive to the winds in the lowest 5 
model levels, and the top of the shallow boundary layer in the morning is as low as the 5th model level. 
We also analyse the uncertainty (spread) of the prior and posterior estimates. The uncertainty is calculated 5 
as the 1-σ standard deviation of the ensemble. 
 

 
4.1 NO2 assimilation 
The performance of ensemble-based assimilation is determined by the representation of the ensemble 10 
uncertainty. In OSSEs we test how well the ensemble system represents the uncertainty by comparing the 
ensemble spread with the RMSE computed with respect to the true observations. Figure 3 shows the 
temporal evolution of the RMSE and the spread for TEMPO NO2 column observations in FREE and the 
three experiments with TEMPO observations assimilated. We find that in all experiments the variation of 
prior ensemble spread follows the fluctuations of the prior RMSE with similar magnitude after the first 15 
day of assimilation. This indicates that the ensemble system develops a good amount of spread for NO2 
states and wind states as well, because the NO2 spread results from the wind differences among ensemble 
members. 
For all the experiments assimilating TEMPO NO2 observations, the diurnal variation of the prior RMSE 
and spread is related to the NO2 column variation with the peaks in the morning and evening rush hours 20 
and local minima in the early afternoon. The errors in the comparison to the TEMPO NO2 columns are 
reduced by 78 % on average from the prior to the posterior estimates. The temporal average of the 
posterior RMSE varies from 2.6 to 2.9×1014 molecules/cm3, which is very similar to the NO2 assimilation 
results in our previous experiment ENS.1 (Liu, et al. 2017, Figure 4). Experiment CHEM shows lower 
prior RMSE of TEMPO NO2 than the FREE for two reasons. First, assimilation of TEMPO in CHEM 25 

          a         b        c            d 

 
 

Figure 2: The U wind state variable at 13:00 MST on July 4th a. prior minus truth  b. posterior – truth c. posterior 
minus prior and d. the difference between the prior TEMPO NO2 column and the truth. 
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reduces the errors in the posterior NO2 of the last cycle, which results in better forecast prior NO2. Second, 
assimilation of NO2 improves the wind forecast in models (as shown in Section 4.2) and thus reduces the 
NO2 transport errors. This demonstrates that in places without wind observations, assimilating TEMPO 
NO2 observations can reduce the errors in the NO2 forecast by allowing NO2 observations to improve 
wind simulations in models.  5 

 

 

 
 

 
 
 
Figure 3a. Evaluation of the time evolution of TEMPO column NO2 observations in Denver from 2 July 10:00 to 5 
July 18:00 for the CHEM experiment Prior (black) and posterior (red). Top RMSE Bottom Spread. 
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Figure 3a. Evaluation of the time evolution of TEMPO column NO2 observations in Denver from 2 July 10:00 to 5 
July 18:00 for the CHEM experiment Prior (black) and posterior (red). Top RMSE Bottom Spread. 

 
 
Figure 3b. Evaluation of the Time evolution of pseudo TEMPO NO2 observations in Denver from 2 July 10:00 to 5 
July 18:00 for T,H + CHEM experiment. Prior (black) and posterior (red). Top RMSE Bottom Spread. 
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Figure 3b. Evaluation of the Time evolution of pseudo TEMPO NO2 observations in Denver from 2 July 10:00 to 5 
July 18:00 for T,H + CHEM experiment. Prior (black) and posterior (red). Top RMSE Bottom Spread. 
 

 
 

 

 
Figure 3c. Evaluation of the Time evolution of pseudo TEMPO NO2 observations in Denver from 2 July 10:00 to 5 
July 18:00 for  MET+CHEM experiment. Prior (black) and posterior (red). Top RMSE Bottom Spread. 
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4.2 Using TEMPO NO2 observations to constrain the winds 
Errors of the winds in models affect horizontal advection of NO2 and result in differences between 
observed and modeled NO2 vertical column density that can be used to correct the winds. In this ensemble 
assimilation system, we examine the impact of assimilating TEMPO NO2 observations on the winds in 
the boundary layer when different sets of meteorological observations are assimilated. Figure 4 shows the 5 
hourly evolution of the posterior RMSE of wind state variable U for all 6 experiments. Results for V are 
similar. We exclude the first daytime point in our analysis because it takes time for the assimilation system 
to equilibrate. Without any constraint on winds, FREE shows varying wind RMSE with higher values in 
the night than the daytime. With the assimilation of TEMPO only, CHEM shows error reduction in the 
posterior wind analysis in each daytime cycle. Figure 5 compares the temporal average of the posterior 10 
wind RMSE for the 6 runs during daytime. The daytime average posterior RMSE is reduced by 0.44 m/s 
(15.70 %) and 0.41 m/s (15.45 %) for U and V wind from FREE to CHEM. We find that the reduction in 
wind RMSE resulting from daytime assimilation disappears after the first night cycle (Figure 4). This is 
because the daytime error reduction is only observed in regions with abundant NO2 concentrations; wind 
error in regions with little NO2 remain high during the day, and quickly propagates into the regions with 15 
high daytime NO2 during the night once there is no longer any NO2 assimilation to constrain the error. As 
a result, the night time average RMSE of CHEM is very close to that of FREE, independent of the 
improvement of wind simulations from daytime. In the transition from night to the daytime, the influence 
of assimilating NO2 observations on winds begins with the first daytime cycle. This demonstrates that the 
covariance of wind and NO2 develops and remains during the night. 20 
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 Figure 4: RMSE for the U winds in the urban assimilation domain. Top: Free (Black) vs. CHEM (Red). Center: 

T,H (Black), T,H, CHEM (Red). Bottom: MET (Black), Met, CHEM (Red). Note the change in scale. 
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Figure 2a and b show the difference in U wind between the CHEM run and the truth at 13:00 MST on 
July 4 before and after assimilation. The incremental change in U wind after assimilation is plotted in 
Figure 2c. The difference between the truth and the prior NO2 column amounts viewed by the TEMPO 
simulator is also shown in Figure 2d. Because the U wind is underestimated in the prior, the modeled NO2 
plume in the prior is more concentrated at the source and more dispersed to the east than in the truth. After 5 
assimilation of the TEMPO NO2 columns, we observe that the wind increases at the top and middle of 
the domain, where it was most underestimated prior to assimilation. Averaged over the domain, the U 
wind RMSE is reduced from 2.32 to 1.56 m/s from the prior to the posterior. 
 
We assimilate observations of temperature and humidity in T,H run to adjust the wind variables. As shown 10 
in Figure 5, (T,H) shows 13.91% and 15.10% error reduction in posterior U and V winds during daytime 
compared to the unconstrained run FREE.  These are improvements to winds from assimilating 
temperature and humidity observations using the covariances between meteorological variables. In 
addition, we find the averaged daytime posterior wind RMSE of (T,H) is very close to that of CHEM run. 
This demonstrates that TEMPO NO2 columns, as indirect chemical observations of winds, can be used to 15 
constrain winds as well as temperature and humidity observations which are also indirect observations of 
winds. However, the temporal variation of the daytime posterior wind RMSE between the two runs are 
different (Figure 4 center).  At the beginning of the daytime cycles, the T,H run shows lower posterior 
wind RMSE than CHEM as temperature and humidity observations are assimilated during the night, 
resulting in lower night time wind errors whereas no night time NO2 TEMPO observations are available 20 
to be assimilated. In the later daytime cycles, the posterior wind RMSE in CHEM becomes lower than 
that in (T,H) due to the assimilations of TEMPO NO2.  
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When we assimilate TEMPO NO2 together with temperature and humidity observations in T,H,CHEM, 
we find further error reductions in posterior wind during the third day compared with T,H (Figure 5 
4center). This is because “T,H” shows no error reductions in posterior winds in the afternoon of the third 
day while assimilation of TEMPO NO2 alone can successfully reduce wind errors (Figure 4 top). There 
are only minor differences between the T,H and T,H,CHEM runs during the second daytime. This is 
because assimilating temperature and humidity observations alone has reduced the wind errors to the 
extent that assimilations of additional NO2 observations can’t provide further improvements. 10 
Furthermore, Figure 6 shows the wind speed in the afternoon is mostly between 2 to 4 m/s on the second 
day (July 4) and 4 ~ 6 m/s on the third day (July 5). When the wind is stagnant, we don’t expect strong 
covariances between winds and NO2 because the horizontal transport of NO2 due to wind is not strong. 
When wind speed is higher on the third day, it increases the ensemble covariances between wind and NO2 
to achieve further improvement on wind. 15 

The experiments MET, has the lowest RMSE in the prior estimates of NO2 because it has the lowest wind 
errors and thus NO2 transport errors as a result of the assimilation of direct wind observations (Figure 4 

Figure 5. RMSE of assimilated U (left) and V (right) daytime winds. Black without, red with assimilated chemistry. 
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bottom and 5). Nevertheless, even in this run there is a small benefit to assimilating NO2 columns as can 
be seen in the reduced RMSE of the wind on the third day. 
 

 

5 Conclusions 5 

Assimilation of column NO2 is explored as a constraint on boundary layer winds. Compared with 
assimilations of temperature and humidity, assimilations of column NO2 is as effective as a constraint on 
winds during the daytime. Column NO2 which is only available in sunlight is less effective than T and H 
in the morning but more effective in the afternoon. In addition, we find that assimilating column NO2 as 
will be provided by the TEMPO satellite instrument does not degrade the results of assimilating 10 
temperature and humidity observations to constrain winds, improves on wind reanalysis, especially when 
wind speeds are above 4 m/s. Including all available data, T, H, winds and column NO2 makes it more 
difficult to discern the improvement from the NO2 column assimilation. Nevertheless, we observe 
improvements in wind reanalysis even under these circumstances (Figure 5) 
 Data Availability. The data referenced in this manuscript is available to the public by 15 
visiting https://behr.cchem.berkeley.edu/home 
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