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Abstract. Observations of winds in the planetary boundary layer remain sparse making it challenging to 
simulate and predict atmospheric conditions that are most important for describing and predicting urban 
air quality. Short-lived chemicals are observed as plumes whose location is affected by boundary layer 
winds and with a lifetime affected by boundary layer height and mixing. Here we investigate the 5 
application of data assimilation of NO2 columns as will be observed from geostationary orbit to improve 
predictions and retrospective analysis of wind fields in the boundary layer.  

 
1 Introduction 
Data assimilation methods are a fundamental tool for numerical weather prediction (NWP) with 10 
observations of temperature, pressure, winds, humidity, etc. used as constraints on initial conditions and 
time evolution of atmospheric energy and winds (e.g. Bauer et al., 2015). With the exception of water 
vapor and ozone, observations of atmospheric constituents are generally not used in current NWP, 
although the field is shifting focus to include these data (Xian et al., 2019). Importantly, the tools of data 
assimilation are increasingly the focus of a variety of off-line chemical transport models (CTM) that aim 15 
to improve regional air quality forecasts and to enhance understanding of emissions of gases and aerosol 
into the atmosphere (e.g. Lahoz et al., 2007; Zhang et al., 2012; Bocquet et al., 2015; Miyazaki et al. 
2014, 2017, 2020 ) and there is growing interest in on-line assimilation of other chemicals and aerosol 
(e.g. Gelaro et al. 2012; Inness et al., 2013; Baklana et al., 2014; Dee et al. 2014, Flemming et al., 2015; 
Inness et al., 2015; Inness et al., 2019). Meteorology and chemical constituents are not independent. 20 
Coupled chemistry meteorology models such as WRF-Chem include explicit feedback between chemical 
constituents and meteorological parameters (Grell and Baklanov, 2011). This development in numerical 
modeling offers the opportunity to study the interaction/feedback between atmospheric physics, dynamics 
and composition such as the impact of air constituents on incoming radiation, the modification of weather 
(cloud formation and precipitation) by natural and anthropogenic aerosol, and the impact of climate 25 
change on the frequency and strength of events with poor air quality (e.g. Grell et al., 2011; Fiore et al., 
2012). In parallel with this advance in modeling capability, observations of gases and aerosols from space 
based instruments are providing an unprecedented view of constituents from the surface to the 
mesosphere. Space observations of column NO2 have been applied in the verification of point-source 
emissions (e.g. Beirle et al., 2011; Russell et al. 2012), quantification of uncertain sources (such as 30 
biogenic and soil emissions) (e.g. Lin, 2012), and detection and characterizaton of episodic events, such 
as wildfire and lighting (e.g. Mebust et al., 2011; Miyazaki et al., 2014; Zhu et al. 2019).  
The combination of these two advances sets the stage for joint assimilation of both meteorology and 
chemistry where chemical observations can improve the representation of dynamical motions in the 
atmosphere. In concept, it is easy to see the potential benefit of assimilating composition observations. 35 
For example, modeled winds might be transporting material to the southwest while an observed plume is 
moving to the west. In this example, the chemical observations would cause the assimilated model to alter 
the wind direction and thus, aligning the predicted meteorology with the observed flow of chemicals. This 
is just one example. Chemical observations are also sensitive to wind speed (Valin et al., 2013; Laughner, 
et al. 2016) and PBL dynamics. Examples of the beneficial information flow across the two sub-systems 40 
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include the improvement in cloud distributions after assimilating aerosols (Saide et al., 2012) and the 
potential for improvement in temperature, winds and cyclone development during dust storms via 
assimilation of aerosol optical depth (AOD) (Reale et al., 2011, 2014). Improvement in stratospheric 
winds by assimilating chemical tracers has also been demonstrated ( Peuch et al., 2000; Semane et al., 
2009; Milewski and Bourqui, 2011; Allen et al., 2013; Chu et al., 2013). Examples of joint chemistry-5 
meteorology assimilation in simpler models include studies by Allen et al., (2014, 2015); Haussaire and 
Bocquet, (2015), Emili et al., 2016; Menard et al., 2019; Tondeur et al., 2020. Among the challenges that 
must be addressed as we begin to understand the potential benefits of joint assimilation of physical state 
variables and composition are the aspects of two linked sub-systems (meteorology and chemistry) that 
can be most efficiently improved by linking them to observed chemical fields. 10 

Aerosols, CO and CO2 have been the focus of most prior chemical assimilation ( Liu et al., 2012; Saide 
et al., 2014; Mizzi et al., 2016). In our first analysis of NO2 assimilation (Liu et al., 2017) we examined 
the potential for assimilation of high spatial (~ 3 km) and temporal (hourly) resolution NO2 columns as 
will be provided by future geostationary observations to improve the representation of NOx emissions. 
NOx has a lifetime of order five hours within the boundary layer and thus exhibits variation of 15 
concentrations at the spatial scales on the order of 50-75 km downwind of emissions. Those fine temporal 
and spatial scales make NOx variations more strongly coupled to short-timescale meteorological 
parameters than other more long-lived chemical tracers such as aerosol or CO. In our initial research (Liu 
et al., 2017), we focused on the retrieval of the NOx emissions. We found that using the column NO2 to 
constrain emissions accurately, required simultaneous meteorology and chemical assimilation. The 20 
strongest constraints were found in regions with high emissions and using hourly assimilation of 
meteorological observations.  
Our assimilation anticipates the launch of a Geostationary satellite for column NO2 observations, 
Tropospheric Emissions: Monitoring of Pollution (TEMPO) scheduled for launch in 2022. Related 
instruments include The Korean GEMS instrument launched in early 2020 and the ESA Sentinel 4 25 
instrument to be launched in in the near future. The TEMPO observations will have two features that will 
make them a significant advance compared to current instruments in low earth orbit. First, the instrument 
will make measurements with hourly repeats during the sunlit portion of the day. Second the instrument 
will have approximately 3×3 km pixels, a substantial increase in spatial resolution compared to the OMI 
instrument and an improvement over the TROPOMI instrument (Zoogman et al. 2017).  That spatial 30 
resolution is also sufficient to quantify gradients in NO2 that result from the combined effects of 
emissions, chemistry and transport. 
Here we focus on winds. We expect the influence of NO2 column assimilation on wind fields to be at the 
spatial scale of 75 km set by the NO2 chemical lifetime and the average wind speed (e.g. Laughner and 
Cohen 2019). We begin by describing the data assimilation tools and a simulator for future geostationary 35 
satellite observations of NO2 columns (section 2). In section 3 we describe assimilation experiments that 
provide insight into the constraints that the column NO2 observations will have on winds.  In section 4, 
we discuss the improvements to the accuracy of the modelled winds and assess the potential benefits of 
this approach to data assimilation. We conclude in section 5. 
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2 Methodology 
The data assimilation system is comprised of the forecast model WRF-Chem and the Data Assimilation 
Research Testbed (DART) as described in Mizzi et al., (2016) and Liu et al., (2017). The WRF-
Chem/DART setup, TEMPO simulator and meteorological observations are described in more detail in 
Liu et al., (2017). Here we briefly describe the updated data assimilation system that allows NO2 5 
observations to influence winds.  
2.1 WRF-Chem model 
We use WRF-Chem version 3.7 with a one-way nested domain (Figure 1). The outer domain of 12 km 
resolution covers the western United States and the inner domain of 3 km resolution covers Denver and 
the mountain region on its west. On the outer domain the initial and boundary conditions are driven by 10 
weather reanalysis data (the North American Mesoscale Forecast System NAM or the North American 
Regional Reanalysis, NARR) for meteorology and by the Model for OZone And Related chemical Tracers 
(MOZART) for chemistry (Emmons et al. 2010). After a one-month simulation on the outer domain, the 
inner domain is initialized with the initial and boundary conditions taken from the outer domain 
simulations.  15 

The anthropogenic emissions are taken from the National Emission Inventory (NEI) 2011, which 
describes the hourly emissions for a typical summertime weekday. Biogenic emissions are parameterized 
using Model of Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther et al. 2006). Gas 
phase reactions are simulated using regional acid deposition model version 2 (RADM2).  

 20 

2.2 DART assimilation system 
WRF-Chem-DART is a regional multivariate data assimilation system developed by the National Center 
for Atmospheric Research (NCAR) to analyse meteorological and chemical states simultaneously 
(Anderson and Collins 2007, Anderson et al. 2009). In this study we use the DART toolkit configured as 
the ensemble adjustment Kalman filter (EAKF) (Anderson 2001). We apply adaptive spatially and 25 
temporally varying inflation to the prior state to maintain the ensemble spread (Anderson et al. 2009). We 
use horizontal localization to reduce influence from spurious correlations (Anderson 2012). A Gaspari 
and Cohn (Gaspari, G. and Cohn, S.E. 1999) weighting function is applied with weights diminishing to 
zero 20 km away from the observation location. As in Liu et al. (2017), sensitivity tests show that NO2 
data assimilation with an hour assimilation window performs the best using the weighting function with 30 
a width of 20 km. The analysed chemical states are NO2 concentrations. The analysed meteorological 
states include winds (U, V, W), temperature (T), cloud and cloud water properties (QVAPOR, QCLOUD, 
QRAIN, QICE, QSNOW), and other variables as described in Romine 2013 Table 2. The analysis is 
updated using DART from continuously cycled one-hour 30 member ensemble WRF-Chem forecasts. 
The DART configuration details are provided in Liu et al. (2017). 35 

Previous studies that assimilate chemistry and meteorology simultaneously apply the variable localization 
approach (Arellano 2007, Kang 2011, Liu 2017) which zeroes out the covariance between chemistry and 
some of the meteorology variables without taking advantage of the information related to meteorology 
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carried by the chemical tracers. In this study, we partially turn off the variable localization and allow the 
assimilated NO2 observations to influence horizontal wind (U and V). With this setup, the advection 
scheme in the WRF-Chem model predicts downwind NO2 evolution based on the wind fields. The EAKF 
computes the covariances between the predicted NO2 distribution and wind variables. These sensitivities 
are utilized to refine the model state toward one that best fits the NO2 observations considering the 5 
confidence in both the observations and model prediction. 
 

2.3 Initial and boundary condition ensembles 
We add random perturbations to the temperature field of a single initial state to produce an ensemble of 
perturbed meteorological initial conditions. The perturbations were generated by sampling the Global 10 
Forecast System (GFS) background error covariance using the WRF Data Assimilation System 
(WRFDA) (Barker 2012). (For those trying to repeat exactly, we used cv_option=3). The statistics are 
estimated with the differences of 24 and 48-hour GFS forecasts with T170 (~75km) resolution, valid at 
the same time for 357 cases, distributed over a period of one year. The ensemble member lateral boundary 
conditions perturbations are generated based on random variations within the initial ensemble (using the 15 
DART pert_wrf_bc program). Updating the boundary conditions so that the analysis time matches the 
analysis states from DART requires care in labelling (the DART update_wrf_bc program is used).  

2.4 Synthetic Observations  
To generate synthetic TEMPO NO2 retrievals, we use the TEMPO NO2 simulator developed in Liu et al. 
(2017) as the observation operator to compute the observed column from a model prediction. It includes 20 
a layer dependent Box-Air Mass Factor (BAMF) for each observation pixel. BAMF is atmospheric 
scattering weights that depend on parameters including viewing geometry, surface (terrain or cloud) 
pressure, and surface reflectivity. The parameters used to compute BAMFs are sampled from a model run 
with hourly frequency and clear sky conditions. Details for the TEMPO simulator and observation error 
generation are described in (Liu et al., 2017). Note that we developed this simulator prior to the TEMPO 25 
science team creating its own product. 
 
3 Assimilation experiments 
We perform observing system simulation experiments (OSSE) to analyze the wind constraints from 
synthetic NO2 observations. We initialized the WRF-Chem nature run (NR) on a 12 km resolution domain 30 
(d01) on June 1, 2014 00UTC. The meteorological initial and boundary conditions are taken from the 
NAM, and the chemistry simulation is constrained by MOZART output (see 
https://www.acom.ucar.edu/wrf-chem/mozart.shtml to download MOZART data). After one-month 
simulation on d01, the NR on the 3 km domain (d02) is initialized from the d01 model simulation on July 
2, 2014 15UTC. Its meteorological and chemical boundary conditions are provided by NAM reanalysis 35 
data and the d01 simulation respectively. We have a parallel model simulation labelled control run (CR), 
which is performed in the same way as the NR except its meteorological simulation is initialized and 
constrained by a different forecast model, the NARR. Constrained by different reanalysis data, the NR- 
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and CR- simulated winds in the boundary layer differ and thus show the discrepancy in the NO2 transport 
processes. We perform data assimilation on d02 from 2014070313 to 2014070600 with an hourly 
assimilation window. This timing allows analyses of 3 complete daytime cycles. In our OSSE, the NR 
simulations are considered as the “true atmosphere” from which synthetic NO2 observations are generated 
using the TEMPO simulator. After a one-hour forecast the prior ensemble is combined with synthetic 5 
NO2 observations to produce the posterior ensemble. The difference in wind and NO2 simulations between 
the NR and the ensemble mean results from the utilization of two different reanalysis data as 
meteorological constraints and from the assimilation while we apply the same forecast model, emission 
input and model physics/chemistry scheme. The posterior ensemble will be used as the initial conditions 
to forecast the next hour. We evaluate the data assimilation performance by comparing the mean of the 10 
posterior estimate with the NR simulations. 
We designed a series of six experiments to evaluate the potential of geostationary observations of column 
NO2 to improve wind fields. First, we conduct a free model run (FREE) with 30 ensemble members 
derived from the CR without data assimilation. This will set the baseline performance and will be 
compared with cases that assimilate observations to evaluate the benefit of data assimilation to improve 15 
the winds. In the second experiment (CHEM), we assimilate synthetic TEMPO NO2 observations over 
the 12-hour daytime to constrain the winds in the ensemble. By comparing with FREE, we can evaluate 
the improvement in wind simulations as a result of assimilating NO2 observations. In experiment (T, RH), 
we assimilate hourly observations of temperature and humidity which can indirectly update winds via the 
covariances of temperature and humidity against wind states. In experiment (T, RH, CHEM) we 20 
assimilate synthetic TEMPO NO2 observations together with temperature and humidity observations. In 
this case, wind analyses are constrained by the multiple indirect observations via covariances with 
temperature, humidity and NO2. In the experiment (MET), we assimilate all meteorological observations 
including wind, temperature and humidity. This is representative of the current weather observing systems 
representation of boundary layer winds. Finally, we assimilate synthetic TEMPO NO2 observations in 25 
addition to the meteorological observations in the experiment (MET, CHEM) to assess the influence of 
NO2 observations on winds under the circumstances of a full meteorology assimilation.  
4 Results and discussion  
We compare the assimilation results with the NR states to evaluate the assimilation performance. The 
RMSE of the observed quantities are calculated as !∑ (𝑦%& − 𝑦%()*+

% 𝑛 − 1⁄ , where 𝑦%&  and 𝑦%(  are the 30 
model and true values for the ith observation, respectively, and n is the total number of observations 
located within a sub-model space in Figure 2. The RMSE of the model states are calculated as 

/∑ (𝑥%& − 𝑥%()*1
% 𝑙 − 1⁄ , where 𝑥%&  and 𝑥%(  are the model and true values at the ith model grid point, 

respectively, and l is the total number of grid points of interest. For the analysed wind variables, the grid 
points of interest are all the points located within a model sub-domain as shown in Figure 2, containing 35 
the lowest 5 model levels vertically (~250m). We find that the horizontal transport of urban NO2 is most 
sensitive to the winds in the lowest 5 model levels, and the top of the shallow boundary layer in the 
morning is as low as the 5th model level. The likely scenario that power plant stacks result in emissions 
outside this vertical window was not explored in this study. We also analyse the uncertainty (spread) of 
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the prior and posterior estimates. The uncertainty is calculated as the 1-σ standard deviation of the 
ensemble. 
4.1 NO2 assimilation 
The performance of ensemble-based assimilation is determined by the representation of the ensemble 
uncertainty. In OSSEs we test how well the ensemble system represents the uncertainty by comparing the 5 
ensemble spread with the RMSE computed with respect to the true observations. Figure 3 shows the 
temporal evolution of the RMSE and the spread for synthetic TEMPO NO2 column observations in FREE 
and the three experiments with synthetic TEMPO observations assimilated. We find that in all 
experiments the variation of prior ensemble spread follows the fluctuations of the prior RMSE with 
similar magnitude after the first day of assimilation. This indicates that the ensemble system develops a 10 
good amount of spread for NO2 states and wind states as well, because the NO2 spread results from the 
wind differences among ensemble members. 
For all the experiments assimilating synthetic TEMPO NO2 observations, the diurnal variation of the prior 
RMSE and spread is related to the NO2 column variation with the peaks in the morning and evening rush 
hours and local minima in the early afternoon. The errors in the comparison to the synthetic TEMPO NO2 15 
columns are reduced by 78 % on average from the prior to the posterior estimates. The temporal average 
of the posterior RMSE varies from 2.6 to 2.9×1014 molecules/cm3, which is very similar to the NO2 
assimilation results in our previous experiment ENS.1 (Liu, et al. 2017, Figure 4). Experiment CHEM 
shows lower prior RMSE of TEMPO NO2 than the FREE for two reasons. First, assimilation of TEMPO 
in CHEM reduces the errors in the posterior NO2 of the last cycle, which results in better forecast prior 20 
NO2. Second, assimilation of NO2 improves the wind forecast in models (as shown in Section 4.2) and 
thus reduces the NO2 transport errors. This demonstrates that in places without wind observations, 
assimilating synthetic TEMPO NO2 observations can reduce the errors in the NO2 forecast by allowing 
NO2 observations to improve wind simulations in models.  
 25 

4.2 Using synthetic TEMPO NO2 observations to constrain the winds 
Errors of the winds in models affect horizontal advection of NO2 and result in differences between 
observed and modeled NO2 vertical column density that can be used to correct the winds. In this ensemble 
assimilation system, we examine the impact of assimilating synthetic TEMPO NO2 observations on the 
winds in the boundary layer when different sets of meteorological observations are assimilated. Figure 4 30 
shows the hourly evolution of the posterior RMSE of wind state variable U for all 6 experiments. Results 
for V are similar. We exclude the first daytime point in our analysis because it takes time for the 
assimilation system to equilibrate. Without any constraint on winds, FREE shows varying wind RMSE 
with higher values in the night than the daytime. With the assimilation of TEMPO only, CHEM shows 
error reduction in the posterior wind analysis in each daytime cycle (Figure 4 top panel). Table 1 compares 35 
the temporal average of the posterior wind RMSE for the 6 runs during daytime. The daytime average 
posterior RMSE is reduced by 0.44 m/s (15.70 %) and 0.41 m/s (15.45 %) for U and V wind from FREE 
to CHEM. We find that the reduction in wind RMSE resulting from daytime assimilation disappears after 
the first night cycle (Figure 4). This is because the daytime error reduction is only observed in regions 



8 
 

with abundant NO2 concentrations; wind error in regions with little NO2 remain high during the day, and 
quickly propagates into the regions with high daytime NO2 during the night once there is no longer any 
NO2 assimilation to constrain the error. As a result, the night time average RMSE of CHEM is very close 
to that of FREE, independent of the improvement of wind simulations from daytime. In the transition 
from night to the daytime, the influence of assimilating NO2 observations on winds begins with the first 5 
daytime cycle. This demonstrates that the covariance of wind and NO2 develops and remains during the 
night. 

 
Figure 2a and b show the difference in U wind between the CHEM run and the truth at 13:00 MST on 
July 4 before and after assimilation. The incremental change in U wind after assimilation is plotted in 10 
Figure 2c. The difference between the truth and the prior NO2 column amounts viewed by the TEMPO 
simulator is also shown in Figure 2d. Because the U wind is underestimated in the prior, the modelled 
NO2 plume in the prior is more concentrated at the source and more dispersed to the east than in the truth. 
After assimilation of the synthetic TEMPO NO2 columns, we observe that the wind increases at the top 
and middle of the domain, where it was most underestimated prior to assimilation (Figure 4). Averaged 15 
over the domain, the U wind RMSE is reduced from 2.32 to 1.56 m/s from the prior to the posterior. 
 
In the next two experiments (hereafter, T and RH, respectively) we assimilate observations of temperature 
and humidity in T,RH run to adjust the wind variables. As shown in Table 1, (T,RH) shows 13.91% and 
15.10% error reduction in posterior U and V winds during daytime compared to the unconstrained run 20 
FREE.  These are improvements to winds from assimilating temperature and humidity observations using 
the covariances between meteorological variables. In addition, we find the averaged daytime posterior 
wind RMSE of (T,RH) is very close to that of CHEM run. This demonstrates that TEMPO NO2 columns, 
as indirect chemical observations of winds, can be used to constrain winds as well as temperature and 
humidity observations which are also indirect observations of winds. However, the temporal variation of 25 
the daytime posterior wind RMSE between the two runs are different (Figure 4, center).  At the beginning 
of the daytime cycles, the T,RH run shows lower posterior wind RMSE than CHEM as temperature and 
humidity observations are assimilated during the night, resulting in lower night time wind errors whereas 
no night time NO2 TEMPO observations are available to be assimilated. In the later daytime cycles, the 
posterior wind RMSE in CHEM becomes lower than that in (T,RH) due to the assimilations of TEMPO 30 
NO2.  
When we assimilate TEMPO NO2 together with temperature and humidity observations in T,RH,CHEM, 
we find further error reductions in posterior wind during the third day compared with T,RH (Figure 4, 
center). This is because “T,RH” shows no error reductions in posterior winds in the afternoon of the third 
day while assimilation of TEMPO NO2 alone can successfully reduce wind errors (Figure 4 top). There 35 
are only minor differences between the T,RH and T,RH,CHEM runs during the second daytime. This is 
because assimilating temperature and humidity observations alone has reduced the wind errors to the 
extent that assimilations of additional NO2 observations can’t provide further improvements. 
Furthermore, Figure 5 shows the wind speed in the afternoon is mostly between 2 to 4 m/s on the second 
day (July 4) and 4 ~ 6 m/s on the third day (July 5). When the wind is stagnant, we don’t expect strong 40 
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covariances between winds and NO2 because the horizontal transport of NO2 due to wind is not strong. 
When wind speed is higher on the third day, it increases the ensemble covariances between wind and NO2 
to achieve further improvement on wind. 
The MET experiment has the lowest RMSE in the prior estimates of NO2 because it has the lowest wind 
errors, and thus NO2 transport errors, as a result of the assimilation of direct wind observations (Figure 4 5 
bottom and 5). Nevertheless, even in this run there is a small benefit to assimilating NO2 columns as can 
be seen in the reduced RMSE of the wind on the third day. 

 
5 Conclusions 
Assimilation of column NO2 is explored as a constraint on boundary layer winds. Compared with 10 
assimilations of temperature and humidity, assimilations of column NO2 is as effective as a constraint on 
winds during the daytime. Column NO2 which is only available in sunlight is less effective than T and 
RH in the morning but more effective in the afternoon. In addition, we find that assimilating column NO2 
as will be provided by the TEMPO satellite instrument does not degrade the results of assimilating 
temperature and humidity observations to constrain winds, improves on wind reanalysis, especially when 15 
wind speeds are above 4 m/s. Including all available data, T, RH, winds and column NO2 makes it more 
difficult to discern the improvement from the NO2 column assimilation. Nevertheless, we observe 
improvements in wind reanalysis even under these circumstances (Table 1). This initial experiment covers 
a small domain surrounding the city of Denver and only a few days. With this initial study suggesting the 
method has promise, a larger scale experiment should be now be evaluated. We hope this study will 20 
inspire such research.  
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