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Abstract. Observations of winds in the planetary boundary layer remain sparse making it challenging to
simulate and predict atmospheric conditions that are most important for describing and predicting urban
air quality. Short-lived chemicals are observed as plumes whose location is affected by boundary layer
winds and with a lifetime affected by boundary layer height and mixing. Here we investigate the
application of data assimilation of NO2NO» columns as will be observed from geostationary orbit to
improve predictions and retrospective analysis of wind fields in the boundary layer.

1 Introduction

Data assimilation methods are a fundamental tool for numerical weather prediction (NWP) with
observations of temperature, pressure, winds, humidity, etc. used as constraints on initial conditions and
time evolution of atmospheric energy and winds (e.g. Bauer et al., 2015). With the exception of water
vapor and ozone—{e-g—tnness—et-al52019);, observations of atmospheric constituents are generally not
used in current NWP—Hewever, although the field is shifting focus to include these data (Xian et al.,
2019). Importantly, the tools of data assimilation are increasingly the focus of a variety of off-line
chemical transport models (CTM) that aim to improve regional air quality forecasts and to enhance
understanding of emissions of gases and aerosol into the atmosphere (e.g. Lahoz et al., 2007; Zhang et
al.. 2012; Bocquet et al., 2015; Miyazaki et al. 2014, 2017, 2020 Beequet-etal;2015; Zhangetal;2042;
Lahezetal52007) and there is growing interest in on-line assimilation of other chemicals and aerosol
(e.g. Dee—et-al—2014,-Gelaro et al. 2012; Inness et al., 2013; Baklana et al., 2014; Dee et al. 2014
Flemming et al., 2015; Inness et al., 2015; Inness et al., 2019). Meteorology and chemical constituents
are not independent. Coupled chemistry meteorology models such as WRF-Chem have-evolved-rapidly
inreeent-yearsinclude explicit feedback between chemical constituents and meteorological parameters
(Grell and Baklanov, 2011). This development in numerical modeling offers the opportunity to study the
interaction/feedback between atmospheric physics, dynamics and composition such as the impact of air
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constituents on incoming radiation, the modification of weather (cloud formation and precipitation) by
natural and anthropogenic aerosol, and the impact of climate change on the frequency and strength of
events with poor air quality (e.g. Grell et al., 2011 Fiore et al., 2012:-Grell-et-al520+}). In parallel with
this advance in modeling capability, observations of gases and aerosols from space based instruments are
providing an unprecedented view of constituents from the surface to the mesosphere. Space observations
of column NO; have been applied in the verification of point-source emissions (e.g. Russel-et-al2042:
Beirle et al., 2011; Russell et al. 2012), quantification of uncertain sources (ineladesuch as biogenic and
soil emissions) (e.g. Lin, 2012), and detection and characterizaton of episodic events, such as wildfire and
lighting (-Zhue.g. Mebust et al-2049., 201 1; Miyazaki et al., 2014; MebustZhu et al520+. 2019).

The combination of these two advances sets the stage for joint assimilation of both meteorology and
chemistry where chemical observations can improve the representation of dynamical motions in the
atmosphere. In concept, it is easy to see the potential benefit of assimilating composition observations.
For example, modeled winds might be transporting material to the southwest while an observed plume is
moving to the west. In this example, the chemical observations would cause the assimilated model to alter
the wind direction and thus, aligning the predicted meteorology with the observed flow of chemicals. This
is just one example. Chemical observations are also sensitive to wind speed (Valin et al., 2013 Laughner,
et al. 2016 Valinet-ak20643:)) and PBL dynamics. Examples of the beneficial information flow across
the two sub-systems include the improvement in cloud distributions after assimilating aerosols (Saide et
al., 2012) and the potential for improvement in temperature, winds and cyclone development during dust
storms via assimilation of aerosol optical depth (AOD) (Reale et al., 2011, 2014). Improvement in
stratospheric winds by assimilating chemical tracers has also been demonstrated (_Peuch et al., 2000;
Semane et al., 2009; Milewski and Bourqui, 2011; Allen et al., 2013; Chu et al., 2013;Milewski-and
B I} Examples of joint chemlstrv meteorology
assimilation in simpler models include studies by Allen et al., (2014, 2015:-and); Haussaire and Bocquet,
(2015<), Emili et al., 2016; Menard et al., 2019; Tondeur et al., 2020. Among the challenges that must be
addressed as we begin to understand the potential benefits of joint assimilation of physical state variables
and composition are the aspects of two linked sub-systems (meteorology and chemistry) that can be most
efficiently improved by linking them to observed chemical fields.

Aerosols, CO and CO; have been the focus of most prior chemical assimilation ( MizziLiu et al.,
20462012; Saide et al., 2014; LiuMizzi et al., 2042:)2016). In our first analysis of NO> assimilation (Liu
et al., 2017) we examined the potential for assimilation of high spatial (~ 3 km) and temporal (hourly)
resolution NO> columns as will be provided by future geostationary observations to improve the
representation of NOx emissions. NOx has a lifetime of order five hours within the boundary layer and
thus exhibits variation of concentrations at the spatial scales efon the order of 50~-75 km downwind of
emissions. Those fine temporal and spatial scales make NOy variations more strongly coupled to short-
timescale meteorological parameters than other more long-lived chemical tracers such as aerosol or CO.
In our initial research (Liu et al., 2017), we focused on the retrieval of the NOx emissions. We found that
using the column NO: to constrain emisstonemissions accurately, required simultaneous meteorology and
chemical assimilation. The strongest constraints were found in regions with high emissions and using
hourly assimilation of meteorological observations.
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Our assimilation anticipates the launch of a Geostationary satellite for column NO observations,
Tropospheric Emissions: Monitoring of Pollution (TEMPO) -scheduled for launch in 2022. Related
instruments include The Korean GEMS instrument launched in early 2020 and the ESA Sentinel 4
instrument to be launched in in the near future. The TEMPO observations will have two features that will
make them a significant advance compared to current instruments in low earth orbit. First, the instrument
will make measurements with hourly repeats during the sunlit portion of the day. Second the instrument
will have approximately 3x3 km pixels, a substantial increase in spatial resolution compared to the OMI
instrument and an improvement over the TROPOMI instrument (Zoogman et al. 2017). That spatial
resolution is also sufficient to quantify gradients in NO: that result from the combined effects of
emissions, chemistry and transport.

Here we focus on winds. We expect the influence of NO, column assimilation on wind fields to be at the
spatial scale of 75 km set by the NO> chemical lifetime (e-g—Eaughnerand-Cohen2049)-and the average
wind speed-_(e.g. Laughner and Cohen 2019). We begin by describing the data assimilation tools and a
simulator for future geostationary satellite observations of NO; columns (section 2). In section 3 we
describe assimilation experiments that provide insight into the constraints that the column NO;
observations will have on winds. In section 4, we discuss the improvements to the accuracy of the
modelled winds and assess the potential benefits of this approach to data assimilation. We conclude in
section 5.

2 Methodology

The data assimilation system is comprised of the forecast model WRF-Chem and the Data Assimilation
Research Testbed (DART) as described in Mizzi et al., (2016) and Liu et al., (2017). The WREF-
Chem/DART setup, TEMPO simulator and meteorological observations are described in more detail in
Liu et al., (2017). Here we briefly describe the updated data assimilation system that allows NO:
observations to influence winds.

2.1 WRF-Chem model

We use WRF-Chem version 3.7 with a one-way nested domain (Figure 1). The outer domain of 12 km
resolution covers the western United States and the inner domain of 3 km resolution covers Denver and
the mountain region on its west. On the outer domain the initial and boundary conditions are driven by
weather reanalysis data (the North American Mesoscale Forecast System NAM or the North American
Regional Reanalysis, NARR) for meteorology and by the Model for OZone And Related chemical Tracers
(MOZART) for chemistry (Emmons et al. 2010). After a one-month simulation on the outer domain, the
inner domain is initialized with the initial and boundary conditions taken from the outer domain
simulations.

The anthropogenic emissions are taken from the National Emission Inventory (NEI) 2011, which
describes the hourly emissions for a typical summertime weekday. Biogenic emissions are parameterized
using Model of Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther et al. 2006). Gas
phase reactions are simulated using regional acid deposition model version 2 (RADM?2).
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2.2 DART assimilation system

WRF-Chem-DART is a regional multivariate data assimilation system developed by the National Center
for Atmospheric Research (NCAR) to analyse meteorological and chemical states simultaneously
(Anderson and Collins 2007, Anderson et al. 2009). In this study we use the DART toolkit configured as
the ensemble adjustment Kalman filter (EAKF) (Anderson 2001). We apply adaptive spatially and
temporally varying inflation to the prior state to maintain the ensemble spread (Anderson et al. 2009). We
use horizontal localization to reduce influence from spurious correlations (Anderson 2012). A Gaspari
and Cohn_(Gaspari, G. and Cohn, S.E. 1999) weighting function is applied with weights diminishing to
zero 20 km away from the observation location. As in Liu et al. (2017), sensitivity tests show that NO2
data assimilation with an hour assimilation window performs the best using the weighting function with
a width of 20 km. The analysed chemical states are NO> concentrations. The analysed meteorological
states include winds (U, V, W;-), temperature (T;-), cloud and cloud water properties (QVAPOR,
QCLOUD, QRAIN, QICE, QSNOW-MU;PHF2-Q2, U190 V10), and PSECother variables as described
in Romine 2013 Table 2. The analysis is updated using DART from continuously cycled one-hour 30
member ensemble WRF-Chem forecasts. The DART configuration details are provided in Liu et al-.
(2017-).

Previous studies that assimilate chemistry and meteorology simultaneously apply the variable localization
approach (Arellano 2007, Kang 2011, Liu 2017) which zeroes out the covariance between chemistry and
some of the meteorology variables without taking advantage of the information related to meteorology
carried by the chemical tracers. In this study, we partially turn off the variable localization and allow the
assimilated NO; observations to influence horizontal wind (U and V). With this setup, the advection
scheme in the WRF-Chem model predicts downwind NO- evolution based on the wind fields. The EAKF
computes the covariances between the predicted NO: distribution and wind variables. These sensitivities
are utilized to refine the model state toward one that best fits the NO; observations considering the
confidence in both the observations and model prediction.

2.3 Initial and boundary condition ensembles

We add random perturbations to the temperature field of a single initial state to produce an ensemble of
perturbed meteorological initial conditions. The perturbations were generated by sampling the
NCEPGlobal Forecast System (GFS) background error covariance using the WRF Data Assimilation
System (WRFDA) (Barker 2012)-with). (For those trying to repeat exactly, we used cv_option=3-). The
statistics are estimated with the differences of 24 and 48-hour GFS forecasts with T170_(~75km)
resolution, valid at the same time for 357 cases, distributed over a period of one year. The ensemble
member lateral boundary conditions perturbations are generated based on random variations within the
initial ensemble (using the DART pert wrf bc program-based—on—the—initial-ensemble—The DART
update—wrfbeprogram—is—used—to—update). Updating the boundary eondition—inchadingthetendeney
ferconditions so that the analysis time te-matehmatches the analysis states from DART- requires care in
labelling (the DART update_wrf bc program is used).
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To generate synthetic TEMPO NO; retrievals, we use the TEMPO NO; simulator developed in Liu et al.
(2017) as the observation operator to compute the observed column from a model prediction. It includes
a layer dependent Box-Air Mass Factor (BAMF) for each observation pixel. BAMF is atmospheric
scattering weights that depend on parameters including viewing geometry, surface (terrain or cloud)
pressure, and surface reflectivity. The parameters used to compute BAMFs are sampled from a model run
with hourly frequency and clear sky conditions. Details for the TEMPO simulator and observation error
generation are described in (Liu et al., 2017). Note that we developed this simulator prior to the TEMPO
science team creating its own product.

3 Assimilation experiments

We perform observing system simulation experiments (OSSE) to analyze the wind constraints from
synthetic NO; observations. We initialized the WRF-Chem nature run (NR) on a 12 km resolution domain
(dO1) at2644660+06-0on June 1, 2014 00UTC. The meteorological initial and boundary conditions are

taken from the Nerth-AmericanMeseseale Forecast-System~(NAM);, and the chemistry simulation is_
constrained by MOZART output-_(see https://www.acom.ucar.edu/wrf-chem/mozart.shtml to download
MOZART data). After one-month simulation on dO1, the NR on the 3 km domain (d02) is initialized from
the dO1 model simulation at-2644076215.0on July 2, 2014 ISUTC. Its meteorological and chemical
boundary conditions are provided by NAM reanalysis data and the dO1 simulation respectively. We have
a parallel model simulation labelled control run (CR), which is performed in the same way as the NR
except its meteorological simulation is initialized and constrained by a different forecast model. the
NARR. Constrained by different reanalysis data, the NR- and CR- simulated winds in the boundary layer
differ and thus show the discrepancy in the NO> transport processes. We perform data assimilation on
d02 from 2014070313 to 2014070600 with an hourly assimilation window. This timing allows analyses
of 3 complete daytime cycles. In our OSSE, the naturerun{NR) simulations are considered as the “true
atmosphere” from which synthetic NO; observations are generated using the TEMPO simulator. After a
one-hour forecast the prior ensemble is combined with synthetic NO, observations to produce the
posterior ensemble. The difference in wind and NO; simulations between the NR and the ensemble mean
results from the utilization of two different reanalysis data as meteorological constraints and from the
assimilation while we apply the same forecast model, emission input and model physics/chemistry
scheme. The posterior ensemble will be used as the initial conditions to forecast the next hour. We
evaluate the data assimilation performance by comparing the mean of the posterior estimate with the NR
simulations.

We designed a series of six experiments to evaluate the potential of geostationary observations of column
NO:> to improve wind fields. First, we conduct a free model run (FREE) with 30 ensemble members
derived from the CR without data assimilation. This will set the baseline performance and will be
compared with cases that assimilate observations to evaluate the benefit of data assimilation to improve
the winds. In the second experiment (CHEM), we assimilate_synthetic TEMPO NO, observations over
the 12-hour daytime to constrain the winds in the ensemble. By comparing with FREE, we can evaluate
the improvement in wind simulations as a result of assimilating NO2 observations. In experiment (T,
HRH), we assimilate hourly observations of temperature and humidity which can indirectly update winds
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via the covariances of temperature and humidity against wind states. In experiment (T, HRH, CHEM) we
assimilate synthetic TEMPO NO; observations together with temperature and humidity observations. In
this case, wind analyses are constrained by the multiple indirect observations via covariances with
temperature, humidity and NO». In the experiment (MET), we assimilate all meteorological observations
including wind, temperature and humidity. This is representative of the current weather observing systems
representation of boundary layer winds. Finally, we assimilate synthetic TEMPO NO, observations in
addition to the meteorological observations in the experiment (MET, CHEM) to assess the influence of
NO:> observations on winds under the circumstances of a full meteorology assimilation.

4 Results and discussion

We compare the assimilation results with the NR states to evaluate the assimilation performance. The

RMSE of the observed quantities are calculated as ¢ orE - —352/n /¥ (y™ — yH)2/n — 1, where
y™ and y} are the model and true values for the ith observation, respectively, and 7 is the total number of
observations located within a sub-model space in Figure 2. The RMSE of the model states are calculated

tr,m

as TG

L2 \/Zﬁ(xim —xf)?2/1— 1, where x{" and x{ are the model and true values at the ith

model grid point, respectively, and / is the total number of grid points of interest. For the analysed wind
variables, the grid points of interest are all the points located within a model sub-domain as shown in
FEig-Figure 2, containing the lowest 5 model levels vertically= (~250m). We find that the horizontal
transport of urban NO; is most sensitive to the winds in the lowest 5 model levels, and the top of the
shallow boundary layer in the morning is as low as the 5% model level. The likely scenario that power
plant stacks result in emissions outside this vertical window was not explored in this study. We also
analyse the uncertainty (spread) of the prior and posterior estimates. The uncertainty is calculated as the
1-o standard deviation of the ensemble.

4.1 NO; assimilation

The performance of ensemble-based assimilation is determined by the representation of the ensemble
uncertainty. In OSSEs we test how well the ensemble system represents the uncertainty by comparing the
ensemble spread with the RMSE computed with respect to the true observations. Figure 3 shows the
temporal evolution of the RMSE and the spread for synthetic TEMPO NO; column observations in FREE
and the three experiments with synthetic TEMPO observations assimilated. We find that in all
experiments the variation of prior ensemble spread follows the fluctuations of the prior RMSE with
similar magnitude after the first day of assimilation. This indicates that the ensemble system develops a
good amount of spread for NO; states and wind states as well, because the NO; spread results from the
wind differences among ensemble members.

For all the experiments assimilating synthetic TEMPO NO; observations, the diurnal variation of the prior
RMSE and spread is related to the NO; column variation with the peaks in the morning and evening rush
hours and local minima in the early afternoon. The errors in the comparison to the synthetic TEMPO NO»
columns are reduced by 78 % on average from the prior to the posterior estimates. The temporal average
of the posterior RMSE varies from 2.6 to 2.9x10'* molecules/cm?, which is very similar to the NO2
assimilation results in our previous experiment ENS.1 (Liu, et al. 2017, Figure 4). Experiment CHEM
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shows lower prior RMSE of TEMPO NO; than the FREE for two reasons. First, assimilation of TEMPO
in CHEM reduces the errors in the posterior NO> of the last cycle, which results in better forecast prior
NOaz. Second, assimilation of NO2 improves the wind forecast in models (as shown in Section 4.2) and
thus reduces the NO; transport errors. This demonstrates that in places without wind observations,
assimilating synthetic TEMPO NO; observations can reduce the errors in the NO; forecast by allowing
NO; observations to improve wind simulations in models.

4.2 Using synthetic TEMPO NO: observations to constrain the winds

Errors of the winds in models affect horizontal advection of NO; and result in differences between
observed and modeled NO; vertical column density that can be used to correct the winds. In this ensemble
assimilation system, we examine the impact of assimilating synthetic TEMPO NO; observations on the
winds in the boundary layer when different sets of meteorological observations are assimilated. Figure 4
shows the hourly evolution of the posterior RMSE of wind state variable U for all 6 experiments. Results
for V are similar. We exclude the first daytime point in our analysis because it takes time for the
assimilation system to equilibrate. Without any constraint on winds, FREE shows varying wind RMSE
with higher values in the night than the daytime. With the assimilation of TEMPO only, CHEM shows
error reduction in the posterior wind analysis in each daytime cycle— (Figure 54 top panel). Table 1
compares the temporal average of the posterior wind RMSE for the 6 runs during daytime. The daytime
average posterior RMSE is reduced by 0.44 m/s (15.70 %) and 0.41 m/s (15.45 %) for U and V wind from
FREE to CHEM. We find that the reduction in wind RMSE resulting from daytime assimilation
disappears after the first night cycle (Figure 4). This is because the daytime error reduction is only
observed in regions with abundant NO; concentrations; wind error in regions with little NO> remain high
during the day, and quickly propagates into the regions with high daytime NO; during the night once
there is no longer any NO; assimilation to constrain the error. As a result, the night time average RMSE
of CHEM is very close to that of FREE, independent of the improvement of wind simulations from
daytime. In the transition from night to the daytime, the influence of assimilating NO, observations on
winds begins with the first daytime cycle. This demonstrates that the covariance of wind and NO;
develops and remains during the night.

Figure 2a and b show the difference in U wind between the CHEM run and the truth at 13:00 MST on
July 4 before and after assimilation. The incremental change in U wind after assimilation is plotted in
Figure 2c. The difference between the truth and the prior NO; column amounts viewed by the TEMPO
simulator is also shown in Figure 2d. Because the U wind is underestimated in the prior, the modelled
NO; plume in the prior is more concentrated at the source and more dispersed to the east than in the truth.
After assimilation of the_synthetic TEMPO NO> columns, we observe that the wind increases at the top
and middle of the domain, where it was most underestimated prior to assimilation- (Figure 4). Averaged
over the domain, the U wind RMSE is reduced from 2.32 to 1.56 m/s from the prior to the posterior.
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Weln the next two experiments (hereafter, T and RH, respectively) we assimilate observations of
temperature and humidity in T,HRH run to adjust the wind variables. As shown in FigureSTable 1,
(T,HRH) shows 13.91% and 15.10% error reduction in posterior U and V winds during daytime compared
to the unconstrained run FREE. These are improvements to winds from assimilating temperature and
humidity observations using the covariances between meteorological variables. In addition, we find the
averaged daytime posterior wind RMSE of (T,HRH) is very close to that of CHEM run. This demonstrates
that TEMPO NO; columns, as indirect chemical observations of winds, can be used to constrain winds as
well as temperature and humidity observations which are also indirect observations of winds. However,
the temporal variation of the daytime posterior wind RMSE between the two runs are different (Figure 4,
center). At the beginning of the daytime cycles, the T,HRH run shows lower posterior wind RMSE than
CHEM as temperature and humidity observations are assimilated during the night, resulting in lower night
time wind errors whereas no night time NO, TEMPO observations are available to be assimilated. In the
later daytime cycles, the posterior wind RMSE in CHEM becomes lower than that in (T,HRH) due to the
assimilations of TEMPO NOa.

When we assimilate TEMPO NO, together with temperature and humidity observations in
T,HRH,CHEM, we find further error reductions in posterior wind during the third day compared with
T,HRH (Figure 4eenter4, center). This is because “T,HRH” shows no error reductions in posterior winds
in the afternoon of the third day while assimilation of TEMPO NO; alone can successfully reduce wind
errors (Figure 4 top). There are only minor differences between the T,HRH and T,HRH,CHEM runs
during the second daytime. This is because assimilating temperature and humidity observations alone has
reduced the wind errors to the extent that assimilations of additional NO, observations can’t provide
further improvements. Furthermore, Figure 65 shows the wind speed in the afternoon is mostly between
2 to 4 m/s on the second day (July 4) and 4 ~ 6 m/s on the third day (July 5). When the wind is stagnant,
we don’t expect strong covariances between winds and NO; because the horizontal transport of NO2 due
to wind is not strong. When wind speed is higher on the third days, it increases the ensemble covariances
between wind and NO: to achieve further improvement on wind.

The experiments MET; experiment has the lowest RMSE in the prior estimates of NO: because it has the
lowest wind errors, and thus NO» transport errors, as a result of the assimilation of direct wind
observations (Figure 4 bottom and 5). Nevertheless, even in this run there is a small benefit to assimilating
NO:; columns as can be seen in the reduced RMSE of the wind on the third day.

5 Conclusions

Assimilation of column NO; is explored as a constraint on boundary layer winds. Compared with
assimilations of temperature and humidity, assimilations of column NO; is as effective as a constraint on
winds during the daytime. Column NO; which is only available in sunlight is less effective than T and
HRH in the morning but more effective in the afternoon. In addition, we find that assimilating column
NO:; as will be provided by the TEMPO satellite instrument does not degrade the results of assimilating
temperature and humidity observations to constrain winds, improves on wind reanalysis, especially when
wind speeds are above 4 m/s. Including all available data, T, HRH, winds and column NO> makes it more
difficult to discern the improvement from the NO, column assimilation. Nevertheless, we observe
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improvements in wind reanalysis even under these circumstances 9Figure—5)(Table 1). This initial
experiment covers a small domain surrounding the city of Denver and only a few days. With this initial
study suggesting the method has promise, a larger scale experiment should be now be evaluated. We hope
this study will inspire such research.
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