

1 **Analysis of atmospheric ammonia over South and East Asia**
2 **based on the MOZART-4 model and its comparison with**
3 **satellite and surface observations**

4
5 Pooja V. Pawar^{1*}, Sachin D. Ghude¹, Chinmay Jena¹, Andrea Móring^{2,7}, Mark A. Sutton²,
6 Santosh Kulkarni³, Deen Mani Lal¹, Divya Surendran⁴, Martin Van Damme⁵, Lieven
7 Clarisse⁵, Pierre-François Coheur⁵, Xuejun Liu⁶, Gaurav Govardhan^{1,8}, Wen Xu⁶, Jize Jiang⁷,
8 and Tapan Kumar Adhya⁹

9
10 ¹Indian Institute of Tropical Meteorology (IITM), Ministry of Earth Sciences, Pune-411008, India

11 ²Centre for Ecology & Hydrology (CEH), Edinburgh, EH26 0QB, UK

12 ³Centre for Development of Advanced Computing, Pune-411008, India

13 ⁴Indian Meteorological Department (IMD), Ministry of Earth Sciences, Pune-411005, India

14 ⁵Université libre de Bruxelles (ULB), Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing
15 (SQUARES), Brussels, B-1050, Belgium

16 ⁶College of Resources and Environmental Sciences, National Academy of Agriculture Green
17 Development, China Agricultural University, Beijing 100193, China

18 ⁷The University of Edinburgh, Scotland, EH8 9AB, UK

19 ⁸National Centre for Medium Range Weather Forecasting, Noida, Uttar Pradesh, India

20 ⁹Kalinga Institute of Industrial Technology, Bhubaneshwar, 751016, India

21 *Correspondence to:* Sachin D. Ghude (sachinghude@tropmet.res.in)

22 **Abstract.** Limited availability of atmospheric ammonia (NH_3) observations, limits our understanding of
23 controls on its spatial and temporal variability and its interactions with ecosystems. Here we used the Model for
24 Ozone and Related chemical Tracers (MOZART-4) global chemistry transport model and the Hemispheric
25 Transport of Air Pollution version-2 (HTAP-v2) emission inventory to simulate global NH_3 distribution for the
26 year 2010. We presented a first comparison of the model with monthly averaged satellite distributions and
27 limited ground-based observations available across South Asia. The MOZART-4 simulations over South Asia
28 and East Asia were evaluated with the NH_3 retrievals obtained from the Infrared Atmospheric Sounding
29 Interferometer (IASI) satellite and 69 ground based monitoring stations for air quality across South Asia, and 32
30 ground based monitoring stations from the Nationwide Nitrogen Deposition Monitoring Network (NNDMN) of
31 China. We identified the northern region of India (Indo-Gangetic Plain, IGP) as a hotspot for NH_3 in Asia, both
32 using the model and satellite observations. In general, a close agreement was found between yearly-averaged
33 NH_3 total columns simulated by the model and IASI satellite measurements over the IGP, South Asia ($r = 0.81$)
34 and North China Plain (NCP), of East Asia ($r = 0.90$). However, the MOZART-4 simulated NH_3 column was
35 substantially higher over South Asia than East Asia, as compared with the IASI retrievals, which show smaller
36 differences. Model simulated surface NH_3 concentrations indicated smaller concentrations in all seasons than
37 surface NH_3 measured by the ground based observations over South and East Asia, although uncertainties
38 remain in the available surface NH_3 measurements. Overall, the comparison of East Asia and South Asia using
39 both MOZART-4 model and satellite observations showed smaller NH_3 columns in East Asia compared with
40 South Asia for comparable emissions, indicating rapid dissipation of NH_3 due to secondary aerosol formation,
41 which can be explained by larger emissions of acidic precursor gases in East Asia.

42 **1. Introduction**

43 Gaseous pollution due to various forms of nitrogen emissions plays an important role in environmental
44 processes. Specifically, ammonia (NH_3) emitted from various agricultural activities, such as use of synthetic
45 fertilizers, animal farming, etc., together with nitrogen oxides (NO_x) is one of the largest sources of reactive
46 nitrogen (Nr) emission to the atmosphere. Ammonia has great environmental implications due to its substantial
47 influence on the global nitrogen cycle and associated air pollution, ecosystem and on public health (Behera et
48 al., 2013; Liu et al., 2017b; Zhou et al., 2016). Emission estimates provided by latest EDGAR v4.3.2 emission
49 inventory suggests that globally about 59 Tg of NH_3 was emitted in the atmosphere in 2012 out of which direct
50 soil emissions contributed about 56 %, manure management (on farm) contributed about 19 %, and agricultural
51 burning contributed about 1.5 % while biomass burning contribution is not included in emission estimate.
52 Furthermore, due to lack of observed emission factors and high uncertainty of agricultural statistics, the
53 uncertainty of NH_3 is the largest among all other pollutants in EDGAR v4.3.2 (Crippa et al., 2018). Ammonia is
54 a key precursor in aerosol formation, as the reactions in the atmosphere lead to an increase in different forms of
55 sulphates and nitrates that contribute in secondary aerosol formation (Pinder et al., 2007, 2008). India and China
56 together accounted for an estimated 64 % of the total amount of NH_3 emissions in Southern Asia during 2000-
57 2014 (Xu et al., 2018). Emissions of NO_x and NH_3 are increasing substantially over South Asia (Sutton et al.,
58 2017b, 2017a), which contributes to increase in particulate mass loading, visibility degradation, acidification
59 and eutrophication (Behera et al., 2013; Ghude et al., 2008, 2013, 2016). Asia is responsible for the largest share
60 of global NH_3 emissions (Janssens-Maenhout et al., 2012). Further increase in NH_3 emission will increase its
61 negative impacts and societal cost (Sutton et al., 2017b).

62 In India, around 50 % of total NH_3 emissions is estimated from the fertilizer application and remaining
63 from livestock and other NH_3 sources (Aneja et al., 2011; Behera et al., 2013). However, there are large
64 uncertainties in emissions of ammonia, its deposition to surface, chemistry and transport (Sutton et al., 2013;
65 Zhu et al., 2015). Urea is mostly used as a fertilizer (Fertilizer Association of India annual report 2018-19) and
66 alone contributes more than 90% of total fertilizer used for the agricultural activities (Sharma et al., 2008). India
67 is currently the second largest consumer of fertilizers after China, and fertilizer usage is bound to increase with
68 further intensification of agriculture and the fertilizer input of India is expected to be doubled by 2050
69 (Alexandratos and Bruinsma, 2012).

70 Recent study based on Infrared Atmospheric Sounding Interferometer (IASI) satellite measurements
71 show very high concentration of NH_3 over Indo-Gangetic Plain (IGP) and North China Plain (NCP) which were
72 mainly related to agricultural (Van Damme et al., 2014a, 2014b, 2015b) and industrial activity (Clarisso et al.,
73 2019; Van Damme et al., 2018). The seasonality was shown to be more pronounced in the northern hemisphere,
74 with peak columns in spring and summer season (Van Damme et al., 2014a). Van Damme et al.,
75 (2015a) attempted first to validate IASI- NH_3 measurements using existing independent ground-based and
76 airborne data sets. This study doesn't include comparison of ground-based NH_3 data sets with IASI
77 measurements particularly over South Asia (India) due to limited availability of NH_3 measurements. Liu et al.
78 (2017a) estimated the ground-based NH_3 concentrations over East Asia, combining IASI- NH_3 columns and NH_3
79 profiles from MOZART-4 and validated it with forty four sites of Chinese Nationwide Nitrogen Deposition
80 Monitoring Network (NNDMN). In one of the recent study over South Asia, interannual variability of
81 atmospheric NH_3 using IASI observations revealed large seasonal variability in atmospheric NH_3 concentrations

82 which were equivalent with highest number of urea fertilizer plants. This study highlights the importance of role
83 of agriculture statistics and fertilizer consumption/application in determining ammonia concentration in South
84 Asia (Kuttippurath et al., 2020). Available global ammonia emission inventory does not include a
85 comprehensive bottom up NH_3 emissions for South Asia compared to East Asia to be suitable for input to
86 atmospheric models by taking into consideration actual statistical data of various NH_3 sources such as livestock
87 excreta, fertilizer application, agricultural soil, nitrogen-fixing plants, crop residue compost, biomass burning,
88 urine from rural populations, chemical industry, waste disposal, traffic, etc which is currently missing (Behera et
89 al., 2013; Huang et al., 2012; Janssens-Maenhout et al., 2015; Li et al., 2017; Zhang et al., 2010). Han et al.
90 (2020) suggested that updated emission inventory as per the source activity is essential for south Asia to reduce
91 the uncertainties simulated NH_3 over this region. A recent study by Wang et al. (2020) examined the NH_3
92 column observed over the IGP during summer using regional model driven with MIX emission inventory. The
93 study suggested that large agriculture activity and high summer temperature contributes to high NH_3 emission
94 fluxes over IGP which leads to large total columns. Summer time increase in NH_3 concentration at surface over
95 certain sites in the IGP regions are also observed from the ground based monitoring network (Datta et al., 2012;
96 Mandal et al., 2013; Saraswati et al., 2019; Sharma et al., 2012, 2014b).

97 In this study, we examined the spatio-temporal variability of atmospheric NH_3 over Asia (South and
98 East Asia) and focus on two hotspots regions of ammonia, the Indo-Gangetic Plain (IGP) and the North China
99 Plain (NCP). The approach for this study is a combination of simulations using chemical transport modelling,
100 satellite observations and *in-situ* ammonia measurements over South Asia (69 stations) and East Asia (32
101 stations). The analysis applies the Model for Ozone and Related chemical tracers (MOZART-4) driven by priori
102 ammonia emissions based on Hemispheric Transport of Air Pollution version-2 (HTAP-v2) emission inventory.
103 It applies HTAP-v2 data for emissions to produce estimated total columns of NH_3 and aerosol species for the
104 year 2010 over Asia. Model simulations were evaluated and compared with NH_3 data from IASI (over South
105 and East Asia) and selected ground-based observations (noted above). In addition to the regional comparison,
106 we examine why certain emission hotspot regions in East Asia show lower NH_3 total columns compared with
107 similar hotspot regions in South Asia, when analyzed with both model and satellite observations.

108 2. Data and methodology

109 2.1 MOZART-4 model

110 The global chemical transport model MOZART-4 has been employed in this study to conduct a year-
111 long (2010) simulation of atmospheric trace gases and aerosols over Asia using the updated HTAP-v2 emission
112 inventory (Janssens-Maenhout et al., 2015). These simulations were earlier performed to meet the objectives of
113 Task Force on Hemispheric Transport of Air Pollution, phase 2, multi-model experiments (Surendran et al.,
114 2015; Surendran et al., 2016). The model domain covers entire globe at a horizontal grid resolution of $1.9^\circ \times$
115 2.5° and 56 vertical levels from the surface upto 1hectopascal (hPa). The model has approximately 10 levels in
116 the boundary layer (below 850 hPa). MOZART-4 takes into account surface emissions, convection, advection,
117 boundary layer transport, photochemistry, and wet and dry deposition. The model simulations were driven by
118 the input meteorological data set of $1.9^\circ \times 2.5^\circ$ resolution from Modern Era Retrospective-analysis for Research
119 (MERRA) and Applications of the Goddard Earth Observing System Data Assimilation System (GEOS-DAS).

120 Model simulations were performed for the complete year of 2010 (1 January 2010 to 31 December 2010) and its
121 outputs were saved every 6h (4 time steps each day) with a spin up time of six months (1 July 2009 to 31
122 December 2009). MOZART-4 includes 157 gas-phase reactions, 85 gas-phase species, 39 photolysis and 12
123 bulk aerosol compounds (Emmons et al., 2010). Dry deposition of gases and aerosols were calculated online
124 according to the parameterization of Wesely (1989) and wet deposition of soluble gases were calculated as
125 described by the method of Emmons et al. (2010). Land use cover (LUC) maps used in MOZART-4 are based
126 on the Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging
127 Spectroradiometer (MODIS) data based on NCAR Community Land Model (CLM) (Oleson et al., 2010).
128 MOZART-4 represents the land surface as a hierarchy of sub-grid types: glacier, lake, wetland, urban and
129 vegetated land. The vegetated land is further divided into a mosaic of Plant Function Type (PFTs). These same
130 maps are used for the dry deposition calculations (Emmons et al., 2010; Oleson et al., 2010; Lawrence and
131 Chase, 2007). In MOZART-4 the tropospheric aerosol component is built on the extended work of Tie et al.
132 (2001 and 2005). Online fast Tropospheric Ultraviolet Visible (FTUV) scheme, based on the TUV model (Tie et
133 al., 2003) is used for the calculation of photolysis rates in MOZART-4. For long-lived species like CH_4 and H_2 ,
134 surface boundary conditions are constrained by observations from NOAA/ESRL/GMD (Dlugokencky et al.,
135 2005, 2008; Novelli et al., 1999) and as per Intergovernmental Panel N_2O concentrations are set to the value as
136 described in Intergovernmental Panel on Climate Change 2000 report (IPCC, 2000). Biogenic emissions of
137 isoprene and monoterpene are calculated online using the Model of Emissions of Gases and Aerosols from
138 Nature (MEGAN) (Guenther et al., 2006), using the implementation described by Pfister et al. (2008). Surface
139 moisture flux and all relevant physical parameters are used to calculate water vapor (H_2O) online. Biomass
140 burning emissions of a wide range of gaseous components, including NH_3 , SO_2 and individual volatile organic
141 compounds were provided from the Global Fire Emission Database (GFED-v3), determined by scaling the
142 GFED CO_2 emissions by the emission factors provided on $1.9^\circ \times 2.5^\circ$ grid resolution (Emmons et al., 2010).
143 In MOZART-4 the ammonium nitrate distribution is determined from NH_3 emissions and the parameterization
144 of gas/aerosol partitioning using equilibrium simplified aerosol model (EQSAM) by Metzger et al. (2002),
145 which is a set of approximations to the equilibrium constant calculation (Seinfeld et al., 1998), based on the
146 level of sulphate present. In Metzger et al. (2002) cations other than NH_4^+ , e.g., sodium (Na^+), potassium (K^+),
147 calcium (Ca^{2+}), and magnesium (Mg^{2+}) as well as organic acids have been neglected for the gas-aerosol
148 partitioning calculations. Metzger et al. (2006) found that the $\text{NH}_3/\text{NH}_4^+$ (calculated by account for ammonium-
149 sulfate-nitrate-sodium-chloride-water system (updated-EQSAM2 parameterization considering organic acids)
150 was 15 % lower than that calculated from the parameterization similar to EQSAM. Ammonia has stronger
151 affinity towards neutralization of sulphuric acid (H_2SO_4) than nitric acid (HNO_3) whereas formation of
152 ammonium chloride (NH_4Cl (s) or (aq)) in atmosphere is unstable and can dissociate reversibly to NH_3 and HCl.
153 These aerosols in both dry and aqueous phase evaporate faster than the corresponding ammonium nitrate
154 (NH_4NO_3) aerosols (Seinfeld and Pandis, 2012). In current modelling setup $\text{NH}_3/\text{NH}_4^+$ partitioning is mainly
155 controlled by sulfate and subsequently by nitrate. Recent study (Acharja et al., 2020) based on analysis of water
156 soluble inorganic chemical ions of PM_{1} , $\text{PM}_{2.5}$ and atmospheric trace gases over IGP revealed that NH_4^+ was one
157 of the dominant ions, collectively with Cl^- , NO_3^- and SO_4^{2-} constituted more than 95 % of the measured ionic
158 mass in both PM_1 and $\text{PM}_{2.5}$. Remaining ionic species (i.e., Na^+ , K^+ , Ca^{2+} and Mg^{2+}) formed constituted only
159 about 3% of the total measured ions. Although major mineral cations (i.e., Na^+ , K^+ , Ca^{2+} and Mg^{2+}) contribute

160 actively in neutralization reaction, but their concentration in IGP was found to be very low. Also over NCP,
161 mineral cations contributed less than 5 % in both PM₁ and PM_{2.5} (Dao et al., 2014). Furthermore, recent study by
162 Xu et al. (2017) over East Asia revealed that NH₄⁺ was the predominant neutralizing cation with the highest
163 neutralization factor (NF) (above 1), whereas Na⁺, K⁺, Ca²⁺ and Mg²⁺ contributed relatively low (below 0.2).
164 Therefore, consideration of mineral cations and organic acids on the NH₃/NH₄⁺ partitioning might be limited
165 and will not have significant impact on the results of this study.

166 **2.2 Emission inventory (HTAP-v2)**

167 The HTAP-v2 bottom-up database is used in this study as an input for anthropogenic emissions of NH₃ for the
168 year 2010 (Janssens-Maenhout et al., 2015). HTAP-v2 dataset is embedded with the activity data as per
169 harmonized emission factors, international standards, and gridded emissions with global proxy data. It includes
170 important point sources providing high spatial resolution and emission grid maps with global coverage. This
171 dataset consists of monthly mean NH₃ emission maps with 0.1° × 0.1° grid resolution for the year 2010. The
172 HTAP-v2 dataset is compiled using various regional gridded emission inventories by Environmental Protection
173 Agency (EPA) for USA and Environment Canada for Canada, European Monitoring Evaluation Programme
174 (EMEP) and Netherlands Organisation for Applied Scientific Research for Europe, and Model Inter comparison
175 Study in Asia (MICS Asia) for China, India and other Asian countries. The emissions Database for Global
176 Atmospheric Research (EDGARv4.3) is used for the rest of the world (mainly South-America, Africa, Russia
177 and Oceania). The 'MICS Asia' dataset incorporated into the HTAP-v2 dataset includes an anthropogenic
178 emission inventory developed in 2010 (Li et al., 2015), which incorporates several local emission inventories,
179 including the Multi-resolution Emission Inventory for China (MEIC), NH₃ emission inventory from Peking
180 University (Huang et al., 2012) and Regional Emission inventory in Asia version 2.1 (REAS2.1) (Kurokawa et
181 al., 2013) for areas where local emission data are not available. A detailed description on HTAP-v2 datasets can
182 be found in Janssens-Maenhout et al. (2015).

183 For this study, we used emissions from five important sectors, such as, agricultural, residential (heating/cooling
184 of buildings and equipment/lighting of buildings and waste treatment), energy (power industry), transport
185 (ground transport) and industries (manufacturing, mining, metal, cement, chemical, solvent industry) for the
186 year 2010. The aircraft and international shipping is not considered for NH₃ emissions in the HTAP-v2 bottom-
187 up database. These emissions also includes natural emissions such as soil from the Community Earth System
188 Model (CESM), and biomass burning from the Global Fire Emission Database (GFED-v3) (Randerson et al.,
189 2013). All these emissions are re-gridded to 1.9° × 2.5° to match the model resolution.

190 The spatial distribution of the total NH₃ emissions over Asian region is shown in Fig. 1. It shows the highest
191 emissions over both South and East Asia, especially over the IGP and NCP region (shown with black box in
192 Fig. 1). Agricultural sector is the main contributor to NH₃ emission, including management of manure and
193 agricultural soils (application of nitrogen fertilizers, including animal waste). It also includes emissions from
194 livestock, crop cultivation excluding emissions from agricultural waste burning and savannah burning (Janssens-
195 Maenhout et al., 2015). Minor contributions from the residential sector are also observed for the Asian countries
196 due to use of biomass combustion and coal burning which is also included in the emissions. Spatial proxies such
197 as population density, road networks, and land use information have been used to allocate area of emission
198 sources. For the REAS2 emission inventory over India, the agricultural sector follows spatial proxy of total

199 population (Li et al., 2017). The use of this approach is expected to be the main source of spatial uncertainty in
200 the estimated NH_3 emissions to the extent that total human population is only approximately correlated with
201 spatial distribution of fertilizer use and livestock numbers. Seasonal variation of average NH_3 emission over the
202 IGP and NCP region for Anthropogenic (HTAP-v2), biomass burning (GFED-v3) and Soil emission (CESM) is
203 shown in Fig. 2. Anthropogenic NH_3 emissions do not show any strong seasonal variability over the IGP region
204 however over the NCP region, NH_3 emissions show strong seasonality with peak emissions between May-
205 September months. It can be seen that the magnitude of peak emissions is two times more over the NCP region
206 than IGP region. On the other hand, seasonality in biomass burning NH_3 emissions is strong over the IGP
207 region, which shows highest emissions in the spring season (MAM). Also, contribution of NH_3 emissions from
208 the IGP region is significantly higher compared to NCP region during peak burning season, but the magnitude
209 of biomass burning emission is six times lower compared to the magnitude of anthropogenic emissions.

210 **2.3 Satellite NH_3 observations**

211 The NH_3 total columns data used in study are derived from the IASI space-borne remote sensing instrument on
212 board Metop-A, which was launched in 2006 in a polar sun-synchronous orbit. The IASI operates in the thermal
213 infrared spectral range ($645\text{--}2760\text{ cm}^{-1}$) with mean local solar overpass time of 9:30 am and 9:30 pm (Clerbaux
214 et al., 2009). It covers the globe twice a day with and each observation is composed of 4 pixels with a circular
215 footprint of 12 Kilometer (km) diameter at nadir and elliptical at the end of the swath ($20 \times 39\text{ km}$). IASI is a
216 suitable tool for evaluation of regional and global models due to its relatively high spatial and temporal
217 sampling and retrieval algorithms have been continuously improved (Whitburn et al., 2016). The NH_3 total
218 column retrievals show satisfactory agreement with monthly averaged integrated ground-based measurements
219 with FTIR column data (Van Damme et al., 2015a). IASI measurements are also found to be consistent with
220 other NH_3 satellite products (Clarisse et al., 2010; Someya et al., 2020; Viatte et al., 2020). In present study, we
221 have used ANNI- NH_3 -v2.2R-I dataset for the year 2010 which relies on ERA-Interim ECMWF meteorological
222 input data, along with surface temperature retrieved from a dedicated network (Van Damme et al., 2017). An
223 improved retrieval scheme for IASI spectra relies on the calculation of a dimensionless “Hyperspectral Range
224 Index,” which is successively converted to the total column and allow a better identification of weak point
225 sources of atmospheric NH_3 (Van Damme et al., 2017; Whitburn et al., 2016). More details about IASI satellite
226 and NH_3 data product is given in Clerbaux et al. (2009), Van Damme et al. (2017) and Whitburn et al.
227 (2016). We have considered the daily NH_3 cloud-free satellite total column data and compared with the modelled
228 daily NH_3 total column averaging paired observations across the months, seasons and year. We have used only
229 morning overpasses at 9:30 am measurements, as the relative errors due to the lower thermal contrast are larger
230 for the night-time measurements (9:30 pm overpass). For consistency with satellite retrievals, first the model
231 output (11:30 LT) at each day close to satellite overpass time (9:30 LT) is interpolated in space to the location of
232 valid satellite retrievals. Since IASI retrieval algorithm only provides total columns, in second step, we made
233 unweighted average distribution of the daily paired data to obtain a monthly, seasonal and annual mean value of
234 satellite and model total NH_3 columns at each horizontal resolution of the model ($1.9^\circ \times 2.5^\circ$).

235 **2.4 Ground based observations**

236 To evaluate model performance in South Asia, we used hourly NH_3 measurements from the air quality
237 monitoring station (AQMS) network operated by Central Pollution Control Board (CPCB) across India. CPCB
238 follows a national program for sampling of ambient air quality as well as weather parameters measurements. An
239 automatic analyzer (continuous) method is adopted at each monitoring location. NH_3 is measured by the
240 chemiluminescence method as NO_x following oxidation of NH_3 to NO_x . In this approach, NH_3 is determined
241 from the difference between NO_x concentration with and without inclusion of NH_3 oxidation (CPCB, 2011). The
242 quality assurance and control process followed for these air quality monitoring instruments is given in CPCB
243 (2014, 2020). Surface observations of NH_3 are taken from 69 different stations in South Asia. Most of the NH_3
244 monitoring stations from India used in the current study are situated in the cities representing the urban
245 environment. Sampling of ambient NH_3 is done through a sampling inlet of 1 meter (m) above the roof top of
246 container AQMS having height of 2.5 m (Technical specifications, 2019). The details of these monitoring
247 locations are given in Table S1 (in the Supplement) and the geographical locations are shown in Fig. 3. Out of
248 these stations thirty five locations in Delhi, six in Bangalore city, four in Hyderabad, and two in Jaipur city are
249 averaged to get single value for the same geographical location and the remaining 22 locations are considered
250 independently representing 26 respective cities. Hourly NH_3 concentrations (in $\mu\text{g m}^{-3}$) used in the study are for
251 the duration of 2016 to 2019. The quality control and assurance method, followed by Central Pollution Control
252 Board (CPCB) for these air quality monitoring stations, is given in the CPCB (2011 and 2020). The calibration
253 procedures for NH_3 analyzer conforms to United States Environmental Protection Agency (USEPA)
254 methodologies and include daily calibration checks, biweekly precision checks and linearity checks every six
255 weeks. All analyzers undergo full calibration every six weeks. For detail on calibration procedure refer to
256 Technical Specifications for Continuous Real Time Ambient Air Quality Monitoring Analyzers (2016) and
257 CPCB (2020). Furthermore, we take the following steps to reassure the quality of NH_3 observations from the
258 CPCB network stations. For data quality, we rejected all the observations values below the lowest detection
259 limit of the instrument ($1 \mu\text{g m}^{-3}$) (Technical specifications for CAAQM station, 2019) because most of the sites
260 are situated in the urban environment. For cities where more than one monitoring station is available, we
261 rejected all the observations above $250 \mu\text{g m}^{-3}$ at a given site if other sites in the network do not show values
262 outside this range. This step aims to eliminate any short-term local influence that cannot be captured in the
263 models and retain the regional-scale variability. Second, we removed single peaks characterized by a change of
264 more than $100 \mu\text{g m}^{-3}$ in just one hour for all the data in CPCB monitoring stations. This step filters random
265 fluctuations in the observations. Third, we removed some very high NH_3 values that appeared in the time series
266 right after the missing values. For any given day, we removed the sites from the consideration that either
267 experience instrument malfunction, or appear to be very heavily influenced by strong local sources. In order to
268 verify the data quality of CPCB monitoring site, we have inter compared the NH_3 measurement at CPCB
269 monitoring station (R.K. Puram) in Delhi with the NH_3 measurements at Indira Gandhi International (IGI)
270 Airport taken during Winter Fog Experiment (WiFEX) (Ghude et al., 2017) using Measurement of Aerosols and
271 Gases (MARGA) instrument during winter season of 2017-2018. More details on the NH_3 measurements using
272 MARGA is available with Acharja et al.(2020). Both sites were situated in the same area of Delhi (less than
273 1km). Our inter-comparison show that NH_3 measured at CPCB monitoring station by chemiluminescence
274 method are slightly (on an average $9.8 \mu\text{g m}^{-3}$) on higher side than NH_3 measured by ion chromatography (IC)

275 using MARGA (Fig. S1 in the Supplement). The differences that were observed could partly be related to the
276 different NH_3 measurement techniques and partly to the locations of the two monitoring sites which were not
277 place exactly at same location. Apparently, the difference of $9.8 \text{ }\mu\text{g m}^{-3}$ indicates that the NH_3 measurements
278 from the CPCB do not suffer from the calibration issue. However, rigorous validation is required in the future
279 with more data sets. Given the presence of relatively high NO_x concentrations, especially at urban locations, it
280 is recognized that the measurement of NH_3 by difference (i.e., between NO_x and NO_x plus oxidized NH_3), is a
281 potentially significant source of uncertainty. Future measurement inter-comparisons are planned (rescheduled
282 from 2020 to 2021 because of COVID-19) to allow the chemiluminescence method as used in the Indian
283 network to be compared with a range of other NH_3 measurement methods (Möring et al., 2021; The Global
284 Challenges Research Fund (GCRF) South Asia Nitrogen hub).

285 To further evaluate model performance over East Asia, we used monthly mean NH_3 measurements from the 32
286 stations of the Nationwide Nitrogen Deposition Monitoring Network (NNDMN) of China, operated by China
287 Agricultural University. The details of these monitoring locations are given in Table S2 (in the Supplement) and
288 the geographical locations are shown in Fig. 3. Monthly mean NH_3 concentrations (in $\text{ }\mu\text{g m}^{-3}$) used in the study
289 are for the duration of 2010 to 2015. Ambient concentrations of gaseous NH_3 were measured using an active
290 Denuder for Long-Term Atmospheric sampling (DELTa) system. More detail about the data product is given
291 by Xu et al. (2019). To compare the model with observation, simulated NH_3 from the model are compared with
292 the surface-based observations by using bi-linear interpolation of model output to the geographical location and
293 elevation of the observational sites.

294 3. Results and Discussion

295 3.1 Annual mean NH_3 total columns over South Asia

296 Yearly-averaged 2010 distribution of NH_3 total columns over Asia simulated by MOZART-4 model and also
297 retrieved with IASI instrument are shown in Fig. 4a and 4b. The total NH_3 columns simulated by the model
298 show high Tropospheric Vertical Column Densities (TVCDs) of about $0.5\text{--}7 \times 10^{16}$ molecules cm^{-2} over IGP
299 region of India compared to any other regions of Asia. This may reflect the larger range of NH_3 column values
300 for the South Asian model domain, with both more polluted and cleaner conditions. These high TVCDs values
301 coincide with the high fertilizer-N and livestock numbers, as scaled according to human population density in
302 Fig. 1.

303 Spatial differences between model simulated data and satellite data for NH_3 total column distribution are shown
304 in Fig. 4c. On a quantitative level, the MOZART-4 model is found to overestimates the NH_3 total column
305 compared with IASI by $1\text{--}4 \times 10^{16}$ molecules cm^{-2} over South Asia, especially over northeast India and
306 Bangladesh. Conversely, the MOZART-4 model underestimates NH_3 in comparison with IASI over the arid
307 region of north western India (state of Rajasthan adjacent to Pakistan) and centering on Pakistan. There are
308 several possible reasons for the spatial differences shown in Fig. 4c, including: a) uncertainties in the mapped
309 NH_3 emissions data (e.g., between Afghanistan, Bangladesh, India and Pakistan, due to different relationships
310 between human population and livestock/fertilizer activities); b) uncertainties related to turbulent mixing and
311 dispersion (this may affect both the simulations in MOZART-4 and the assumed vertical profiles for the IASI

312 retrievals); and c) uncertainties related to precipitation scavenging of ammonia and ammonium, noting that the
313 eastern part of the IGP is substantially wetter than the western part.

314 According to Fig. 1, the magnitude of NH_3 emissions over NCP is similar to IGP. By contrast, much smaller
315 TVCDs of the NH_3 columns are estimated by MOZART-4 and IASI over NCP compared with IGP. The
316 MOZART-4 and IASI estimates are found to be in close agreement, with slightly smaller values estimated by
317 MOZART-4. The possible reasons for the difference in NH_3 concentrations in IGP and NCP are discussed in
318 Sect. 3.4. The relationship between modelled and IASI retrieved NH_3 total columns are further analysed in terms
319 of scatter plots in Fig. 5a and 5b, over IGP region of South Asia (20°N-32°N, 70°E-95°E) and NCP region of
320 East Asia (30°N-40°N, 110°E-120°E) (rectangular areas shown in Fig. 1). Correlation coefficients (r) between
321 model and satellite observed annual mean total columns over IGP and NCP are found to be 0.81 and 0.90
322 respectively for 2010. This indicates that spatial variability in simulated NH_3 by the model and satellite
323 observation is in closer agreement, both over IGP and NCP region. The Model simulated annual mean total NH_3
324 columns gives larger values over IGP region (Normalised Mean Bias (NMB) = 38 %) as well as over entire
325 South Asia (NMB = 44 %). Whereas over the NCP region (NMB = -35 %) and entire East Asia (NMB = -32 %),
326 the model gives values which are smaller than IASI. Other statistical indicators are summarised in Table 1.
327 Larger estimates of NH_3 columns from an atmospheric Chemistry Transport Model (CTM) compared with IASI
328 was also found in an earlier study for South Asia (Clarisse et al., 2009).

329 The overall higher value of the model simulated NH_3 over South Asia compared with IASI could be due to the
330 combination of the uncertainties in both approaches. This includes uncertainties in emissions from the HTAP-v2
331 datasets used for the model simulations, inaccurate modelling of the chemistry in MOZART-4, errors in dry and
332 wet deposition schemes used in the model, and biases inherent to infrared satellite remote sensing. For IASI,
333 firstly, only cloud-free satellite scenes are processed, which could result in missing partly some of the NH_3
334 values during cloudy periods and biomass burning events. Secondly, NH_3 vertical columns retrieved from the
335 IASI observations are actually sampled around 9:30 local time while the MOZART-4 simulated model output
336 close to overpass time (11:30 LTC) was used. Finally, the retrieval of NH_3 from infrared satellites is sensitive to
337 inaccuracies in the temperature profile, and biases in the IASI L2 temperature profiles can result in biases in the
338 retrieved NH_3 (Whitburn et al., 2016). The HTAP-v2 dataset use proxy values for agricultural activities (i.e.,
339 distributed by human population) instead of actual values for field fertilizer application and livestock excretion
340 over the South Asia. This could also result in additional uncertainty of NH_3 emissions from the agricultural
341 activities. Further work is on-going to integrate NH_3 emissions inventories for different countries in South Asia
342 based on national datasets, which should allow the emissions related uncertainties to be reduced in future.
343 Similarly, slight underestimation over East Asia might originates from the country specific emission inventory
344 used for China (Huang et al., 2012) in MOSAIC HTAP-v2 emission inventory and the limitations discussed
345 above. The application of any equilibrium models (EQMs) in global atmospheric studies is associated with
346 considerable uncertainties. In MOZART-4 chemistry, the ammonium nitrate distribution is determined from
347 NH_3 emissions and the parameterization of gas/aerosol partitioning by Metzger et al. (2002), based on the level
348 of sulphate present. The emission fluxes of SO_2 and NO_x in HTAP-v2 data set also has large uncertainties over
349 the IGP (Jena et al., 2015b; Wang et al., 2020), which can introduce additional uncertainty in
350 $\text{NH}_3/\text{NH}_4^+$ gas/aerosol partitioning. In MOZART-4 chemistry, uncertainty can be also associated in dry and wet
351 deposition scheme which can result in overestimation (Emmons et al., 2010).

352 **3.2 Seasonal variability of NH₃ total columns**

353 Figure 6 shows the model (left) and IASI satellite (middle) seasonal distributions of NH₃ total columns over
354 Asia. These seasons are represented as 3-month periods: Winter, December-January-February (DJF, first row),
355 Spring, March-April-May (MAM, second row), Summer, June-July-August (JJA, third row), and Autumn,
356 September-October-November (SON, fourth row). It can be seen in Fig. 6, that there is larger seasonal variation
357 in IASI NH₃ total columns while MOZART-4 presents limited seasonality as in South Asia compare to better
358 seasonal variation estimated in East Asia, as shown by both IASI and the MOZART-4 model. In general, during
359 autumn, spring, summer and winter seasons MOZART-4 shows higher NH₃ total column compared with IASI
360 estimates over most of South Asia. However, this difference is more pronounced during autumn (SON) and
361 winter (DJF) seasons (Fig. 6; Right). We have seen that (Fig. 2) anthropogenic emission of NH₃ is nearly same
362 in all months and biomass burning has peak during MAM over South Asia in the MOZART-4 model. Whereas,
363 seasonality is better represented in NH₃ emission for East Asia.

364 Major drivers in anthropogenic NH₃ seasonal variation include differences in management and timing of
365 fertilizer, which is not well represented in the emission over South Asia (Janssens-Maenhout et al., 2012). This
366 can be expected to have the direct effect on NH₃ total column over South Asia. It is recognized that NH₃
367 emission can be strongly affected by both short term meteorological variation and longer term climatic
368 differences (Sutton et al., 2013). This means that NH₃ emissions may be expected to increase in warm summer
369 conditions than in winter (Battye and Barrows, 2004). However, magnitude of these emissions is expected to be
370 smaller in comparison with anthropogenic emissions and may not contribute significantly to larger summertime
371 NH₃ columns observed from IASI retrievals over South Asia and East Asia than MOZART-4. Additional driver
372 in NH₃ seasonal variation include meteorological variation. For example, strong subsidence, lower temperature
373 and lighter winds over South Asia in the autumn and winter months prevent venting of low altitude pollution to
374 the higher altitudes. This means that emitted air pollutants tend to accumulate close to the source region in
375 winter time conditions (Ghude et al., 2010, 2011). Considering the comparison of IGP with NCP, accumulation
376 of pollutants in the boundary layer is more pronounced over IGP region due to flat land topography, and it is
377 more during winter than the autumn months (Surendran et al., 2016). We saw that simulated mean Planetary
378 boundary layer height (PBLH) is lower (approximately 400 m, Fig. S2 in the Supplement), and winds are lighter
379 in winter months, compared to summer months, over South Asia, and particularly over IGP region (Surendran et
380 al., 2016). Figure 7 (left) and 7 (right) shows the time-height distribution of NH₃ and mean PBLH averaged over
381 the IGP region, respectively. It can be seen that during winter months higher atmospheric stability prevents
382 mixing of boundary layer NH₃ to the free troposphere over IGP (Fig. 7 (left)), which is reflected in the higher
383 wintertime values of MOZART-4 NH₃ columns. Similarly, higher NH₃/NH₄ ratio (Fig. S3 in the Supplement) and
384 lower dry and wet deposition (Fig. S4 and S5 in the Supplement) of NH₃ over IGP in winter month enhances the
385 accumulation of NH₃ in the boundary layer compared to summer months. On the other hand, much less NH₃
386 gets detected by the satellite at the higher altitudes where detection sensitivity of the satellite is more than that at
387 the surface (Claris et al., 2010). Limited sensitivity of IASI measurements to detect boundary layer NH₃ (Van
388 Damme et al., 2014a) could be one of the reasons for large differences ($1-4 \times 10^{16}$ molecules cm⁻²) between
389 MOZART-4 and IASI in winter seasons. Also, sowing of wheat crop over IGP involves higher rate of fertilizer
390 application during peak winter month (Sharma et al., 2014) that release significant quantity of NH₃ into the

391 atmosphere. However, this seasonality is largely missing in the emissions (Fig. 2 (top, left)) indicating that
392 higher MOZART-4 NH_3 is largely driven by the winter-time meteorology over this region.
393 It is interesting to note from Fig. 6 (right) that during spring the difference between modelled and observed
394 column NH_3 is smaller over the IGP region compared with the winter season. Heating of the landmass due to
395 large solar incidence suppresses the wintertime subsidence over the IGP and leads to deeper boundary layer
396 during spring and early summer. It can be seen that (Fig. 7 (right) and Fig. S2 in the Supplement) the average
397 PBLH is about 1100 m and 600 m deeper during spring and summer compared to winter over IGP. During this
398 season, significant transport of the boundary pollution in the mid and upper troposphere due to enhanced
399 convective activities and large scale vertical motion can be noticed in Fig. 7 (left) and is consistent with the
400 earlier studies over this region (Lal et al., 2014; Surendran et al., 2016). Vertical motion associated with the
401 convective activities is expected to redistribute the NH_3 concentration in the column, which leads to more NH_3
402 at the higher altitudes where detection sensitivity of the satellite is more than that at the surface (Clarisso et al.,
403 2010). As a result, more NH_3 gets detected by the satellite and we see less difference between observations and
404 model over the IGP. This may also partly explain the higher IASI estimates of NH_3 column for summertime
405 prior to the monsoon season. However, this hypothesis needs to be tested with higher sensitivity experiments as
406 a part of future work. During spring season, MOZART-4 reflects widespread NH_3 total column from the entire
407 Indian land mass and IASI observations does capture increase in NH_3 total column at least for seasonal mean
408 cycle (Fig. 8a). This seasonal maximum in NH_3 total column identified both in IASI and MOZART-4 over
409 South Asia can be explained by the two factors: Meteorology factor and biomass burning emissions.
410 Volatilization of NH_3 enhances with increase in temperature (Sutton et al., 2013), hence higher temperature
411 during this drier periods over IGP partly enhances NH_3 emission to the environment which is also evident from
412 the soil NH_3 emissions in Fig. 2 (bottom). However, magnitude of these emissions is expected to be smaller in
413 comparison with anthropogenic emissions. In the Indian region, emissions from the biomass burning (crop-
414 residue burning) peaks in March to May (Jena et al., 2015a) and emission of NH_3 from biomass burning is
415 maximum during this period (Fig. 2 (middle)). However, MOZART-4 estimates smaller NH_3 total columns
416 compared with IASI over Myanmar, Laos and Thailand during the period March-May (Fig. 6 (right)). This
417 period is estimated to be associated with large scale forest fires (and open crop burning) (Chan, 2017; Wu et al.,
418 2018; Zheng et al., 2017), the effect of which appears to be underestimated in the MOZART-4 simulations. It
419 suggests that the Global Fire Emissions Database (GFED-v3) used in this study is low over this region agreeing
420 with Zhang et al. (2020) and Huang et al. (2013). During the monsoon season (JJA) (Fig. 6 (right)) and summer,
421 IASI- NH_3 total columns are larger than the MOZART-4 estimates over north-western arid region of South Asia,
422 where monsoon rainfall is lowest (less than 30 cm). On the other hand, NH_3 columns estimated by IASI are
423 lower in the North-western IGP than the MOZART-4 simulations.

424 Figure 8 shows the comparison between IASI and modelled monthly time series of NH_3 total columns over IGP
425 (20°N - 32°N , 70°E - 95°E) and NCP (30°N - 40°N , 110°E - 120°E), respectively (rectangular areas shown on Fig.
426 1). We found a better consistency between modelled and measured seasonal NH_3 total column over NCP than
427 IGP. Monthly NH_3 columns over the IGP show bimodal distribution in the model. However, IASI does not
428 show such bimodal variation. Seasonal statistics show large normalised mean bias (38 %) and poor correlation (r
429 = 0.41) between model and IASI. The bimodal distribution in NH_3 total columns is partly driven by the biomass
430 burning emissions, which show major peak in spring and another small peak in autumn (Fig. 2 (middle)), and

431 partly by the meteorology as discussed in the previous section. During monsoon months (JJA), when South Asia
432 receives significant rainfall all over, model simulations present lower NH_3 total column, which is not seen in the
433 IASI observations and also in the surface observations (Fig. 8a and 9b) over IGP. The reason for this
434 discrepancy may be related with the flat NH_3 emission over South Asia (Fig. 2). Usually large amount of
435 fertilization application is expected during the warm month of June and July in the IGP which is not represented
436 in the HTAP-v2 emissions and therefore lower values in the model during monsoon month is mostly driven by
437 the model meteorology. Lower values observed during monsoon season in general are attributed to increase wet
438 scavenging of NH_3 due to monsoon rain (Fig. S5 (left) in the Supplement) and influx of cleaner marine air from
439 the Bay of Bengal and Arabian Sea through south-easterly and south-westerly wind (Ghude et al., 2008). On the
440 other hand, monthly variation in IASI NH_3 total columns over East Asia is found to be captured well by the
441 model (Fig. 8b) and seems to follow the variation observed in the anthropogenic NH_3 emission (Fig. 2), except
442 for the month of July where IASI estimates substantially higher NH_3 total columns than the model. The reason
443 for this peak in the IASI data for July may be related to urea fertilizer application in warm July conditions (see
444 temporal course of Enhanced Vegetation Index (Li et al., 2014)), which seems to be not represented well in the
445 HTAP-v2 emissions. The overall statistics show slight good correlation ($r = 0.61$) between observed and
446 simulated NH_3 columns and negative normalised mean bias ($\text{NMB} = -41\%$).

447 **3.3 Comparison between surface NH_3 measurements and simulated NH_3 concentrations in South and East
448 Asia**

449 To evaluate modelled surface NH_3 concentrations in South Asia, we have used NH_3 surface measurements from
450 69 monitoring locations over India for the years from 2016 to 2019. As 2010 data was not available, we make
451 the hypothesis that measurement from 2016-2019 can be considered as representative from what have been
452 measured in 2010. Out of these stations thirty five locations in Delhi, six in Bangalore city, four in Hyderabad,
453 and two in Jaipur city are averaged to get single value for the same geographical location and the remaining 22
454 locations are considered independently representing 26 respective cities. Due to the lack of ground-based
455 measurements performed in 2010, the following comparison will mainly be qualitative, although it is estimated
456 that the main spatial features of Indian agriculture and NH_3 emissions will be consistent between 2010 and
457 2016-2019. As per the RCP 8.5 (Kumar et al., 2018) NH_3 emission from South Asia is expected to increase by
458 less than 20 % from 2010 to 2020. Assuming a linear relationship between emission and surface concentration,
459 it is expected that NH_3 concentrations could be higher by about 10-15 % in 2016 to 2019.

460 It is interesting to note that the correlation between annual and monthly mean MOZART-4 simulated and
461 measured NH_3 concentration ($r = 0.82$ and $r = 0.62$) is better than the comparison between MOZART-4 and
462 IASI for South Asia (Fig. 9). However, the MOZART-4 has systematically smaller estimated NH_3
463 concentrations compared with the ground based measurement network ($\text{NMB} = -47\%$). It should be noted that
464 most of the monitoring stations are situated in urban regions(cities) of India and therefore represents the urban
465 environment, which may have locally higher NH_3 concentrations due to traffic and human activities (Sharma et
466 al., 2014). Since the MOZART-4 model is run relatively at coarse ($1.9^\circ \times 2.5^\circ$) grid resolution the emissions
467 may not capture the true variability in emissions at city scale. These surface NH_3 sites are influenced by local
468 emissions that are therefore not resolved by the MOZART-4 model. Therefore, when comparing coarse-scale
469 models to observations, the model may have difficulties in resolving local scales effects (Surendran et al., 2015).
470 Until the planned further evaluation of the chemiluminescence monitoring method for ammonia (measured by

471 difference with NO_x) is evaluated (as noted in Sect. 2.4), it is not possible to be certain the extent to which
472 possible uncertainties in the measurement method contribute to the differences shown in Fig. 9b. While noting
473 these uncertainties, it is worth noting that the ground based NH₃ observation network confirms the occurrence of
474 higher ground-level NH₃ concentrations in autumn and winter, as simulated using MOZART-4 using the HTAP-
475 v2 emissions inventory (Fig. 9b).

476 Comparison of Fig. 8a and 9b shows that the time course of ground level NH₃ concentrations (as estimated by
477 MOZART-4) is significantly different to the time course of total NH₃ column (as also estimated by MOZART-
478 4). Whereas the total column is largest in the summer (reflective of deeper atmospheric mixing and
479 recirculation), and the ground level concentrations are largest during winter. Although it is not easy to use the
480 IASI data to infer ground level NH₃ concentrations, the stronger summer maximum of IASI (Fig. 8a) compared
481 with MOZART-4, suggests that IASI would be in less close agreement with the ground based measurement
482 network than MOZART-4 (Fig. 9b). While recognizing uncertainties in this interpretation, the key point is that
483 large NH₃ columns estimated by IASI for May-July are not reflected in the ground-based NH₃ measurements
484 from the Indian monitoring network.

485 Figure 10 shows the comparison between monthly mean (from 2010 to 2015 observations) NH₃ surface
486 measurements from 32 monitoring locations over China and modelled surface NH₃ concentrations from the
487 same location over East. Similar to South Asia the MOZART-4 has systematically smaller estimated NH₃
488 concentrations compared with the ground based measurement network (NMB = -44 %) over East Asia. Figure
489 10b shows maximum NH₃ concentration occurred in summer (JJA) denotes agreement with IASI measurements.
490 Other statistical indicators are summarised in Table 2. Furthermore, high NH₃ concentration from ground based
491 measurements during JJA is consistent with the higher HTAP-v2 emissions (Fig. 2) (Huang et al., 2012) and
492 higher NH₄NO₃ concentration (Fig. S6 in the Supplement). Higher concentration of NH₄NO₃ and can also lead
493 to higher NH₃ concentrations especially during summer due to its semi-volatile and unstable character at higher
494 temperatures, as it is observed in East Asia. This implies that the NH₃ emissions may play a vital role in
495 determining the seasonal pattern of the ground NH₃ concentrations. Summer peak may originate from fertilizer
496 application, livestock emissions and volatilization of NH₃ which is enhanced in higher temperature (Liu et al.,
497 2017a).

498 **3.4 Why were NH₃ total columns low over high NH₃ emission over East Asia compared to high NH₃ 499 emission region of South Asia?**

500 Fine-scale details of the NH₃ emissions over Asia in Fig. 1 and 2 clearly revealed larger emission values in areas
501 where there is intensive agricultural management. This is the case especially in the NCP and IGP (Fig. 1, shown
502 with box). Earlier emission estimates suggest that fertilizer application and livestock contribute 2.6 Tg per year
503 (yr⁻¹) and 1.7 Tg yr⁻¹ NH₃ emissions respectively from South Asia (Aneja et al., 2011). Over South Asia, urea
504 accounts for emissions of 2.5 Tg yr⁻¹ which contributes to 95 % of the fertilizer emission, and 58 % of total
505 estimated agricultural emissions (Fertilizer Association of India annual report 2018-19). For East Asia, livestock
506 manure management accounts for approximately 54 % (5.3 Tg yr⁻¹) of the total emissions and fertilizer
507 application accounts for 33 % (3.2 Tg yr⁻¹) emissions, with 13 % of emissions from other sources. Combined the
508 model areas for NCP and IGP (as shown in Fig. 1) accounts for ~45 % of the NH₃ emitted from fertilization in
509 East Asia and South Asia (Huang et al., 2012).

510 We find that satellite observations show larger NH_3 columns over IGP than over similar higher emission regions
511 of NCP. However, in addition, we also find that the MOZART-4 model is able to capture this contrasting
512 columnar NH_3 levels between IGP and NCP. This indicates that the difference between IGP and NCP is
513 unrelated to differences between the mosaic of emissions over South Asia and East Asia in HTAP-v2 and
514 similarly not related to uncertainties in satellite retrievals. Instead, the analysis from MOZART-4 demonstrates
515 that the difference can be explained by differences in atmospheric chemistry between the two regions, linked to
516 higher SO_2 and NO_x emissions in the NCP than in the IGP. Recent study by Wang et al. (2020), shows that
517 emission fluxes of SO_2 and NO_x over IGP are only one-fourth of that over NCP.

518 As ammonia is a highly alkaline gas with an atmospheric lifetime usually of few hours (and rarely a few days)
519 (Dammers et al., 2019), it readily reacts with acid present in the atmosphere to form aerosols, which are
520 eventually deposited to the earth's surface by either dry or wet deposition processes (Fig. S4 and S5 in the
521 Supplement). In the atmosphere, ammonia therefore reacts rapidly with atmospheric sulphuric acid (H_2SO_4),
522 nitric acids (HNO_3) and hydrochloric acid (HCl) to contribute to ambient levels of fine particles, forming
523 ammonium sulphate, ammonium nitrate and ammonium chloride. Following reaction (R1) and (R2)

526

527 In the atmosphere, ammonium ion (NH_4^+) as an aerosol is estimated to have a lifetime of about 1–15 days
528 (Aneja et al., 1998), though this is obviously dependent on the amount of atmospheric acids (Seinfeld and
529 Pandis, 2012). In addition to the large fertilizer application and livestock management activities which are
530 characteristic of both IGP and NCP, industrial and transportation activities are higher over the NCP (China)
531 which also results in higher emission of NO_x and SO_2 over NCP compared with IGP (Zhao et al., 2013).
532 Ammonia has greater affinity towards oxides of sulphur, hence it first reacts to form ammonium sulphate, and
533 then the remaining ammonia further reacts to form ammonium nitrate (Seinfeld et al., 1998). The differences in
534 the secondary aerosol formation over NCP and IGP are compared by considering the MOZART-4 model
535 estimates of volume mixing ratio (VMR) in parts per billion ($\times 10^9$ ppb) of total sulphate, ammonium,
536 ammonium nitrate at surface and total column of NO_x (Fig. 11). Although vertical profiles of the aerosol
537 components are small, there are strong vertical gradients in NO_x concentrations, and for this reason we consider
538 the comparison with the total NO_x column more reflective of overall NO_x chemistry than the ground level NO_x
539 VMR.

540 Figure 11 shows that total sulphate VMR (Fig. 11a) and NO_x total column (Fig. 11c) are significantly higher
541 over NCP region than IGP. Similarly, total ammonium VMR (Fig. 11b) is significantly larger over NCP than
542 IGP indicating how a higher fraction of the gaseous ammonia is transformed to form ammonium over NCP
543 region. In addition, Fig. 11d shows higher estimated levels of ammonium nitrate in MOZART-4 over NCP,
544 reflective of the higher NO_x emissions in this region. As a consequence of the different SO_2 and NO_x sources,
545 gaseous NH_3 is more quickly removed from atmosphere over East Asia with residence time of approximately 6
546 hours (Fig. S7 in the Supplement) (higher values indicates lower mean residence time), which is reflected in the
547 higher VMR of ammonium, sulphate and ammonium nitrate (Fig. 11a, b and d). It can be seen that $\text{NH}_3/\text{NH}_4^+$
548 ratio denotes lower values 0–1 (Fig. S3 in the Supplement) over East Asia than South Asia suggesting NH_4^+

partitioning is more over East Asia. As a result the NH_3 total columns over NCP are much smaller than over IGP, even though magnitude of NH_3 emission fluxes is greater over NCP than IGP. This difference indicates that the high NH_3 loading over the IGP is partly coming from the low gas-to-particle partitioning of NH_3 caused by low SO_2 and NO_x emission over South Asia. In contrast high SO_2 and NO_x emissions promote the conversion of gaseous NH_3 into particulate ammonium in NCP. However, rapid decline of acidic (SO_2) emissions over China after 2000, which may not be reflected correctly in HTAP_v2 (Mortier et al., 2020; Tong et al., 2020; Zheng et al., 2018) will lead to higher NH_3 loading due to less partitioning of NH_3 .

4. Conclusion

In this work, we have compared NH_3 total columns simulated by the MOZART-4 model with IASI NH_3 satellite observations over South and East Asia. The annual mean distribution reveals a consistent spatial pattern between MOZART-4 and IASI, but MOZART-4 tends to show larger NH_3 columns over South Asia than IASI, particularly over the Indo-Gangetic Plain (IGP), whereas it is in close agreement over East Asia (including the North China Plain, NCP), with the exception of a July peak seen in the IASI dataset, which may be related to specific timing of fertilizer-related NH_3 emissions. Comparison for seasonally and monthly resolved IASI total column with the MOZART-4 simulations shows inconsistencies in spatial and temporal pattern over South Asia. This inconsistency is due to the uncertainties in emission estimate which doesn't include seasonality pattern in HTAP-v2 over South Asia, as well as uncertainties in the processing of the IASI data. Both the MOZART-4 results and IASI estimates involve assumptions that could considerably affect the comparison between total columns of NH_3 .

Comparison with estimates from a ground based NH_3 monitoring network for both South and East Asia, our results showed that MOZART-4 systematically gives smaller NH_3 concentration estimates than the monitoring network. The NH_3 measurement sites used in present study mostly represent urban locations and model may not be able to capture actual concentration at point location due to coarser grid resolution over India. In addition, further assessment is needed to demonstrate the reliability of the NH_3 measurement technique used in the monitoring network, where NH_3 is measured by difference with NO_x concentrations, which may be uncertain in urban areas with high NO_x concentrations.

Despite the high NH_3 emission over both South and East Asia, a larger NH_3 total column is observed over South Asia in both the IASI and MOZART-4 estimates. This difference is explained by the MOZART-4 simulation, which treat the full atmospheric chemistry interaction with SO_2 and NO_x emissions, leading to aerosol formation. The MOZART-4 model showed higher sulphate volume mixing ratio and NO_x total column over East Asia, especially in the NCP, which is reflected in ammonium aerosol volume mixing ratio (VMR) over East Asia. This suggests that the formation of ammonium aerosols (dominated by ammonium, sulphate and ammonium nitrate) is quicker over East Asia than in South Asia, leading to lower NH_3 total columns in East Asia.

To examine the present findings future studies should investigate the effect of changing emissions of NO_x and SO_2 on NH_3 columns, for example by using perturbation of these emissions through counterfactual modeling scenarios. The comparison between model simulations using MOZART-4, satellite derived estimates from IASI and ground-based monitoring of NH_3 concentrations has highlighted the known uncertainties in emissions, satellite retrievals and measurements at point locations. In order to reduce the uncertainties in ammonia

588 emission, it would be a key to create an NH₃ emission inventory specifically over South Asia, which is now
589 currently under development as part of the GCRF South Asian Nitrogen Hub. This includes work to improve the
590 bottom-up NH₃ emission inventory, taking into account primary agricultural statistics on fertilizer use and
591 animal number distributions. There is also potential for top-down (inverse modelling) for NH₃ and NO_x by
592 taking inference from the model, satellite and ground-based evidence. Here it is essential to recognize the need
593 for more ground-based observational sites to measure NH₃ air concentrations in rural areas where agriculture
594 activity is predominant. Such measurements at present are currently very few for South Asia. Coarser global
595 models fail to resolve the local-scale emissions, hence higher resolution regional models with advance chemistry
596 are also needed to resolve the sources and chemical processes on urban and rural scales.

597 **Data availability**

598 The 0.1° × 0.1° emission grid maps can be downloaded from the EDGAR website on
599 https://edgar.jrc.ec.europa.eu/htap_v2/index.php?SECURE=_123 per year per sector. The model data can be
600 downloaded upon request from the AeroCom database (<http://www.htap.org/>, last accessed June 22, 2020) (TF
601 HTAP, 2018). The model data is available at Prithvi (IITM) super-computer and can be provided upon request
602 to corresponding author. The morning overpass NH₃ total columns measured through IASI can be accessed from
603 data center at <http://cds-espri.ipsl.upmc.fr/etherTypo/index.php?id=1700&L=1>. For India, ground based hourly
604 NH₃ measurements can be obtained from CPCB website on <https://app.cpcbCCR.com/CCR>. For China, ground
605 based monthly mean NH₃ datasets can be downloaded from
606 https://figshare.com/articles/Data_Descriptor_Xu_et_al_20181211_Scientific_data_docx/7451357.

607 **Author contributions**

608 All authors contributed to the research; SDG designed the research; PVP conducted the research; PVP and SDG
609 wrote the paper; CJ and DS performed the MOZART model simulations; AM and MAS formulated the
610 research; MVD, LC and PFC performed the IASI experiments; SK, DML, GG, XL, WU, JJ and TKA
611 contributed to writing.

612 **Competing interests**

613 The authors declare that they have no conflict of interest.

614 **Acknowledgments**

615 We wish to thank the National Centre for Atmospheric Research (NCAR), funded by the U.S. National Science
616 Foundation and operated by the University Corporation for Atmospheric Research, for access to the MOZART-
617 4. All model runs were carried out on a Prithvi IBM High Performance Computing system at the Indian Institute
618 of Tropical Meteorology (IITM), Pune India. We thank the Director, IITM for providing all the essential
619 facilities required to complete the work. We wish to acknowledge the availability of CPCB data from CPCB
620 webportal (<https://app.cpcbCCR.com/CCR>). Research at ULB has been supported by the Belgian State Federal

621 Office for Scientific, Technical and Cultural Affairs (Prodex arrangement IASI.FLOW). L.C. and M.V.D are
622 respectively research associate and postdoctoral researcher with the Belgian F.R.S-FNRS. Cooperation between
623 IITM and CEH has been facilitated through the NEWS India-UK Virtual Joint Centre, supported at CEH by the
624 Biotechnological and Biological Sciences Research Council, and the Natural Environment Research Council of
625 UK Research and Innovation (UKRI), and through the UKRI Global Challenges Research Fund (GCRF) South
626 Asian Nitrogen Hub. The Nationwide Nitrogen Deposition Monitoring Network (NNDMN) of China was
627 supported by the Chinese National Natural Science Foundation (41425007) and the Chinese National Research
628 Program for Key Issues in Air Pollution Control (DQGG0208). We thank anonymous reviewers and the editor
629 for their constructive comments that helped in improving quality of this manuscript.

630 **Financial support**

631 This research has been supported by “Urban modeling C-DAC” sponsored project.

632 **References**

633 Acharja, P., Ali, K., Trivedi, D. K., Safai, P. D., Ghude, S., Prabhakaran, T. and Rajeevan, M.: Characterization
634 of atmospheric trace gases and water soluble inorganic chemical ions of PM_1 and $PM_{2.5}$ at Indira Gandhi
635 International Airport, New Delhi during 2017–18 winter, *Sci. Total Environ.*, 729, 138800,
636 doi:10.1016/j.scitotenv.2020.138800, 2020.

637 Alexandratos, N. and Bruinsma, J.: World Agriculture Towards 2030 / 2050 The 2012 Revision. Global
638 Perspective Studies Team, FAO Agricultural Development Economics Division. ESA Working Paper No. 12-
639 03, , (12) [online] Available from: <http://www.fao.org/docrep/016/ap106e/ap106e.pdf>, 2012.

640 Aneja, V. P., Murray, G. C. and Southerland, J.: Atmospheric nitrogen compounds: Emissions, transport,
641 transformation, deposition, and assessment, *EM Air Waste Manag. Assoc. Mag. Environ. Manag.*, 22–25, 1998.

642 Aneja, V. P., Battye, W., Behera, S. N., Erisman, J. W., Schlesinger, W. H. and Sharma, M.: Reactive nitrogen
643 emissions from crop and livestock farming in India, *Atmos. Environ.*, 47, 92–103,
644 doi:10.1016/j.atmosenv.2011.11.026, 2011.

645 Battye, W. and B. R.: Review of Ammonia Emission Modeling Techniques for Natural Landscapes and
646 Fertilized Soils, *Work Assign. No. 2-09*, 27517(68), 2004.

647 Behera, S. N., Sharma, M., Aneja, V. P. and Balasubramanian, R.: Ammonia in the atmosphere: a review on
648 emission sources, atmospheric chemistry and deposition on terrestrial bodies, *Environ. Sci. Pollut. Res.*, 20(11),
649 8092–8131, doi:10.1007/s11356-013-2051-9, 2013.

650 Chan, K. L.: Biomass burning sources and their contributions to the local air quality in Hong Kong, *Sci. Total
651 Environ.*, 596–597, 212–221, doi:10.1016/j.scitotenv.2017.04.091, 2017.

652 Clarisse, L., Clerbaux, C., Dentener, F., Hurtmans, D. and Coheur, P. F.: Global ammonia distribution derived
653 from infrared satellite observations, *Nat. Geosci.*, 2(7), 479–483, doi:10.1038/ngeo551, 2009.

654 Clarisse, L., Shephard, M. W., Dentener, F., Hurtmans, D., Cady-Pereira, K., Karagulian, F., Van Damme, M.,
655 Clerbaux, C. and Coheur, P. F.: Satellite monitoring of ammonia: A case study of the San Joaquin Valley, *J. Geophys. Res. Atmos.*, 115(13), 1–15, doi:10.1029/2009JD013291, 2010.

657 Clarisse, L., Van Damme, M., Clerbaux, C. and Coheur, P. F.: Tracking down global NH_3 point sources with
658 wind-adjusted superresolution, *Atmos. Meas. Tech.*, 12(10), 5457–5473, doi:10.5194/amt-12-5457-2019, 2019.

659 Clerbaux, C., Boynard, A., Clarisse, L., George, M., Hadji-Lazaro, J., Herbin, H., Hurtmans, D., Pommier, M.,
660 Razavi, A., Turquety, S., Wespes, C. and Coheur, P. F.: Monitoring of atmospheric composition using the
661 thermal infrared IASI/MetOp sounder, *Atmos. Chem. Phys.*, 9(16), 6041–6054, doi:10.5194/acp-9-6041-2009,
662 2009.

663 CPCB: Guidelines for Real Time Sampling & Analyses. [online] Available from:
664 <http://www.indiaenvironmentportal.org.in/files/NAAQSManualVolumeII.pdf>, 2011.

665 CPCB: Annual Report 2014-15., 2014.

666 CPCB: Central Pollution Control Board (2020), [online] Available from: <https://cpcb.nic.in/quality-assurance-quality-control/> (Accessed 26 May 2020), 2020.

667

668 Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., Van Aardenne, J. A., Monni, S., Doering, U.,
669 Olivier, J. G. J., Pagliari, V. and Janssens-Maenhout, G.: Gridded emissions of air pollutants for the period
670 1970-2012 within EDGAR v4.3.2, *Earth Syst. Sci. Data*, 10(4), 1987–2013, doi:10.5194/essd-10-1987-2018,
671 2018.

672 Van Damme, M., Whitburn, S., Clarisse, L., Clerbaux, C., Hurtmans, D. and Coheur, P.-F.: Version 2 of the
673 IASI NH₃ neural network retrieval algorithm; near-real time and reanalysed datasets, *Atmos. Meas. Tech.*
674 Discuss., 1–14, doi:10.5194/amt-2017-239, 2017.

675 Van Damme, M., Clarisse, L., Whitburn, S., Hadji-Lazaro, J., Hurtmans, D., Clerbaux, C. and Coheur, P. F.:
676 Industrial and agricultural ammonia point sources exposed, *Nature*, 564(7734), 99–103, doi:10.1038/s41586-
677 018-0747-1, 2018.

678 Van Damme, Wichink Kruit, R. J., Schaap, M., Clarisse, L., Clerbaux, C., Coheur, P. F., Dammers, E., Dolman,
679 A. J. and Erisman, J. W.: Evaluating 4 years of atmospheric ammonia (NH₃) over Europe using IASI satellite
680 observations and LOTOS-EUROS model results, *J. Geophys. Res.*, 119(15), 9549–9566,
681 doi:10.1002/2014JD021911, 2014a.

682 Van Damme, M. Hurtmans, D., Coheur, P. F., Clerbaux, C., Dolman, A. J., Erisman, J. W., Clarisse, L., Ngadi,
683 Y. and Heald, C. L.: Global distributions, time series and error characterization of atmospheric ammonia (NH₃)
684 from IASI satellite observations, *Atmos. Chem. Phys.*, 14(6), 2905–2922, doi:10.5194/acp-14-2905-2014,
685 2014b.

686 Van Damme, Dammers, E., Flechard, C. R., Coheur, P. F., Xu, W., Erisman, J. W., Galy-Lacaux, C., Neuman,
687 J. A., Clerbaux, C., Van Damme, M. Tang, Y. S., Liu, X., Sutton, M. A., Nowak, J. B. and Clarisse, L.: Towards
688 validation of ammonia (NH₃) measurements from the IASI satellite, *Atmos. Meas. Tech.*, 8(3), 1575–1591,
689 doi:10.5194/amt-8-1575-2015, 2015a.

690 Van Damme, Erisman, J. W., Clarisse, L., Dammers, E., Whitburn, S., Clerbaux, C., Dolman, A. J. and Coheur,
691 P.: Worldwide spatiotemporal atmospheric ammonia (NH₃), *Geophys. Res. Lett.*, 1–9,
692 doi:10.1002/2015GL065496.We, 2015b.

693 Dammers, E., McLinden, C. A., Griffin, D., Shephard, M. W., Van Der Graaf, S., Lutsch, E., Schaap, M.,
694 Gainairu-Matz, Y., Fioletov, V., Van Damme, M., Whitburn, S., Clarisse, L., Cady-Pereira, K., Clerbaux, C.,
695 Francois Coheur, P. and Erisman, J. W.: NH₃ emissions from large point sources derived from CrIS and IASI
696 satellite observations, *Atmos. Chem. Phys.*, 19(19), 12261–12293, doi:10.5194/acp-19-12261-2019, 2019.

697 Dao, X., Wang, Z., Lv, Y., Teng, E., Zhang, L. and Wang, C.: Chemical characteristics of water-soluble ions in
698 particulate matter in three metropolitan areas in the North China Plain, *PLoS One*, 9(12), 1–16,
699 doi:10.1371/journal.pone.0113831, 2014.

700 Datta, A., Sharma, S. K., Harit, R. C., Kumar, V., Mandal, T. K. and Pathak, H.: Ammonia emission from
701 subtropical crop land area in india, *Asia-Pacific J. Atmos. Sci.*, 48(3), 275–281, doi:10.1007/s13143-012-0027-
702 1, 2012.

703 Dlugokencky, E. J., Myers, R. C., Lang, P. M., Masarie, K. A., Crotwell, A. M., Thoning, K. W., Hall, B. D.,
704 Elkins, J. W. and Steele, L. P.: Conversion of NOAA atmospheric dry air CH₄ mole fractions to a

705 gravimetrically prepared standard scale, *J. Geophys. Res. D Atmos.*, 110(18), 1–8, doi:10.1029/2005JD006035,
706 2005.

707 Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J. F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A.,
708 Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baugcum, S. L. and Kloster, S.:
709 Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4),
710 *Geosci. Model Dev.*, 3(1), 43–67, doi:10.5194/gmd-3-43-2010, 2010.

711 Fertilizer Association of India annual report 2018-19: Fertilizer Association of India annual report 2018-19.,
712 2018.

713 Ghude, S. D., Fadnavis, S., Beig, G., Polade, S. D. and van der A, R. J.: Detection of surface emission hot spots,
714 trends, and seasonal cycle from satellite-retrieved NO₂ over India, *J. Geophys. Res.*, 113(D20), D20305,
715 doi:10.1029/2007JD009615, 2008.

716 Ghude, S. D., Lal, D. M., Beig, G., van der A, R. and Sable, D.: Rain-Induced Soil NO_x Emission From India
717 During the Onset of the Summer Monsoon: A Satellite Perspective, *J. Geophys. Res.*, 115(D16), D16304,
718 doi:10.1029/2009JD013367, 2010.

719 Ghude, S. D., Beig, G., Kulkarni, P. S., Kanawade, V. P., Fadnavis, S., Remedios, J. J. and Kulkarni, S. H.:
720 Regional co pollution over the Indian-subcontinent and various transport pathways as observed by mopitt, *Int. J.*
721 *Remote Sens.*, 32(21), 6133–6148, doi:10.1080/01431161.2010.507796, 2011.

722 Ghude, S. D., Kulkarni, S. H., Jena, C., Pfister, G. G., Beig, G., Fadnavis, S. and Van Der, R. J.: Application of
723 satellite observations for identifying regions of dominant sources of nitrogen oxides over the indian
724 subcontinent, *J. Geophys. Res. Atmos.*, 118(2), 1075–1089, doi:10.1029/2012JD017811, 2013.

725 Ghude, S. D., Chate, D. M., Jena, C., Beig, G., Kumar, R., Barth, M. C., Pfister, G. G., Fadnavis, S. and Pithani,
726 P.: Premature mortality in India due to PM_{2.5} and ozone exposure, *Geophys. Res. Lett.*, 43(9), 4650–4658,
727 doi:10.1002/2016GL068949, 2016.

728 Ghude, S. D., Bhat, G. S., Prabhakaran, T., Jenamani, R. K., Chate, D. M., Safai, P. D., Karipot, A. K., Konwar,
729 M., Pithani, P., Sinha, V., Rao, P. S. P., Dixit, S. A., Tiwari, S., Todekar, K., Varpe, S., Srivastava, A. K., Bisht,
730 D. S., Murugavel, P., Ali, K., Mina, U., Dharua, M., Rao, Y. J., Padmakumari, B., Hazra, A., Nigam, N.,
731 Shende, U., Lal, D. M., Chandra, B. P., Mishra, A. K., Kumar, A., Hakkim, H., Pawar, H., Acharja, P.,
732 Kulkarni, R., Subharthi, C., Balaji, B., Varghese, M., Bera, S. and Rajeevan, M.: Winter fog experiment over the
733 Indo-Gangetic plains of India, *Curr. Sci.*, 112(4), doi:10.18520/cs/v112/i04/767-784, 2017.

734 Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I. and Geron, C.: Estimates of global terrestrial
735 isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), *Atmos. Chem. Phys.*,
736 6(11), 3181–3210, doi:10.5194/acp-6-3181-2006, 2006.

737 Han, X., Zhu, L., Liu, M., Song, Y. and Zhang, M.: Numerical analysis of the impact of agricultural emissions
738 on PM2.5 in China using a high-resolution ammonia emissions inventory, *Atmos. Chem. Phys.*, (March), 1–31,
739 doi:10.5194/acp-2019-1128, 2020.

740 Huang, K., Fu, J. S., Hsu, N. C., Gao, Y., Dong, X., Tsay, S. C. and Lam, Y. F.: Impact assessment of biomass
741 burning on air quality in Southeast and East Asia during BASE-ASIA, *Atmos. Environ.*, 78(2012), 291–302,
742 doi:10.1016/j.atmosenv.2012.03.048, 2013.

743 Huang, X., Song, Y., Li, M., Li, J., Huo, Q., Cai, X., Zhu, T., Hu, M. and Zhang, H.: A high-resolution
744 ammonia emission inventory in China, *Global Biogeochem. Cycles*, 26(1), 1–14, doi:10.1029/2011GB004161,
745 2012.

746 Janssens-Maenhout G., Dentener F., Van Aardenne J., Monni S., Pagliari V., Orlandini L., Klimont Z.,
747 Kurokawa J., Akimoto H., Ohara T., Wankmüller R., Battye B., Grano D., Zuber A., K. T. : EDGAR-HTAP: a
748 Harmonized Gridded Air Pollution Emission Dataset Based on National Inventories, Ispra (Italy): European
749 Commission Publications Office, , (February), 1–18, doi:ISBN 978-92-79-23122-0, ISSN 1831-9424, 2012.

750 Janssens-Maenhout, G., Dentener, F. J., Aardenne, J. Van, Monni, S., Pagliari, V., Orlandini, L., Klimont, Z.,

751 Kurokawa, J., Akimoto, H., Ohara, T., Wankmüller, R., Battye, B., Grano, D., Zuber, A. and Keating, T.:
752 EDGAR-HTAP: a harmonized gridded air pollution emission dataset based on national inventories., 2012.

753 Janssens-Maenhout, G., Koffi, B., Crippa, M., Pouliot, G., Zhang, Q., Wankmüller, R., Frost, G., Dentener, F.,
754 Li, M., Guizzardi, D., Denier van der Gon, H., Darras, S., Kuenen, J. J. P., Keating, T., Klimont, Z., Kurokawa,
755 J. and Muntean, M.: HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to
756 study hemispheric transport of air pollution, *Atmos. Chem. Phys.*, 15(19), 11411–11432, doi:10.5194/acp-15-
757 11411-2015, 2015.

758 Jena, C., Ghude, S. D., Pfister, G. G., Chate, D. M., Kumar, R., Beig, G., Surendran, D. E., Fadnavis, S. and Lal,
759 D. M.: Influence of springtime biomass burning in South Asia on regional ozone (O_3): A model based case
760 study, *Atmos. Environ.*, 100, 37–47, doi:10.1016/j.atmosenv.2014.10.027, 2015a.

761 Jena, C., Ghude, S. D., Beig, G., Chate, D. M., Kumar, R., Pfister, G. G., Lal, D. M., Surendran, D. E.,
762 Fadnavis, S. and van der A, R. J.: Inter-comparison of different NOX emission inventories and associated
763 variation in simulated surface ozone in Indian region, *Atmos. Environ.*, 117, 61–73,
764 doi:10.1016/j.atmosenv.2015.06.057, 2015b.

765 Kumar, R., Barth, M. C., Pfister, G. G., Delle Monache, L., Lamarque, J. F., Archer-Nicholls, S., Tilmes, S.,
766 Ghude, S. D., Wiedinmyer, C., Naja, M. and Walters, S.: How Will Air Quality Change in South Asia by 2050?,
767 *J. Geophys. Res. Atmos.*, 123(3), 1840–1864, doi:10.1002/2017JD027357, 2018.

768 Kurokawa, J., Ohara, T., Morikawa, T., Hanayama, S., Janssens-Maenhout, G., Fukui, T., Kawashima, K. and
769 Akimoto, H.: Emissions of air pollutants and greenhouse gases over Asian regions during 2000-2008: Regional
770 Emission inventory in ASia (REAS) version 2, *Atmos. Chem. Phys.*, 13(21), 11019–11058, doi:10.5194/acp-13-
771 11019-2013, 2013.

772 Kuttippurath, J., Singh, A., Dash, S. P., Mallick, N., Clerbaux, C., Van Damme, M., Clarisse, L., Coheur, P. F.,
773 Raj, S., Abhishek, K. and Varikoden, H.: Record high levels of atmospheric ammonia over India: Spatial and
774 temporal analyses, *Sci. Total Environ.*, 740, 139986, doi:10.1016/j.scitotenv.2020.139986, 2020.

775 Lal, D. M., Ghude, S. D., Singh, J. and Tiwari, S.: Relationship between Size of Cloud Ice and Lightning in the
776 Tropics, , doi:10.1155/2014/471864, 2014.

777 Lawrence, P. J. and Chase, T. N.: Representing a new MODIS consistent land surface in the Community Land
778 Model (CLM 3.0), *J. Geophys. Res. Biogeosciences*, 112(1), doi:10.1029/2006JG000168, 2007.

779 Li, L., Friedl, M. A., Xin, Q., Gray, J., Pan, Y. and Frolking, S.: Mapping Crop Cycles in China Using MODIS-
780 EVI Time Series, , (September), doi:10.3390/rs6032473, 2014.

781 Li, M., Zhang, Q., Kurokawa, J., Woo, J., He, K. B., Lu, Z. and Ohara, T.: MIX : a mosaic Asian anthropogenic
782 emission inventory for the MICS-Asia and the HTAP projects, , 34813–34869, doi:10.5194/acpd-15-34813-
783 2015, 2015.

784 Li, M., Zhang, Q., Kurokawa, J. I., Woo, J. H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael,
785 G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H. and Zheng, B.: MIX: A mosaic Asian
786 anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and
787 HTAP, *Atmos. Chem. Phys.*, 17(2), 935–963, doi:10.5194/acp-17-935-2017, 2017.

788 Liu, L., Zhang, X., Xu, W., Liu, X., Li, Y., Lu, X., Zhang, Y. and Zhang, W.: Temporal characteristics of
789 atmospheric ammonia and nitrogen dioxide over China based on emission data, satellite observations and
790 atmospheric transport modeling since 1980, *Atmos. Chem. Phys.*, 17(15), 9365–9378, doi:10.5194/acp-17-
791 9365-2017, 2017a.

792 Liu, X., Xu, W., Duan, L., Du, E., Pan, Y., Lu, X., Zhang, L., Wu, Z., Wang, X., Zhang, Y., Shen, J., Song, L.,
793 Feng, Z., Liu, X., Song, W., Tang, A., Zhang, Y., Zhang, X. and Collett, J. L.: Atmospheric Nitrogen Emission,
794 Deposition, and Air Quality Impacts in China: an Overview, *Curr. Pollut. Reports*, 3(2), 65–77,
795 doi:10.1007/s40726-017-0053-9, 2017b.

796 Mandal, T. K., Saxena, M., Rohtash, Sharma, S. K., Gupta, N. C., Kumar, M. and Saraswati: Characteristics of

797 ambient ammonia over Delhi, India, *Meteorol. Atmos. Phys.*, 124(1–2), 67–82, doi:10.1007/s00703-013-0299-
798 8, 2013.

799 Metzger, S., Dentener, F., Pandis, S. and Lelieveld, J.: Gas/aerosol partitioning: 1. A computationally efficient
800 model, *J. Geophys. Res. Atmos.*, 107(16), doi:10.1029/2001JD001102, 2002.

801 Metzger, S., Mihalopoulos, N. and Lelieveld, J.: Importance of mineral cations and organics in gas-aerosol
802 partitioning of reactive nitrogen compounds: Case study based on MINOS results, *Atmos. Chem. Phys.*, 6(9),
803 2549–2567, doi:10.5194/acp-6-2549-2006, 2006.

804 Möring, A., Hooda, S., Raghuram, N., Adhya, T. K., Ahmad, A., Bandyopadhyay, S. K., Barsby, T., Beig, G.,
805 Bentley, A. R., Bhatia, A., Dragosits, U., Dreher, J., Foulkes, J., Ghude, S. D., Gupta, R., Jain, N., Kumar, D.,
806 Kumar, R. M., Ladha, J. K., Mandal, P. K., Neeraja, C. N., Pandey, R., Pathak, H., Pawar, P., Pellny, T. K.,
807 Poole, P., Price, A., Rao, D. L. N., Reay, D. S., Singh, N. K., Sinha, S. K., Srivastava, R. K., Shewry, P., Smith,
808 J., Steadman, C. E., Subrahmanyam, D., Surekha, K., Venkatesh, K., Varinderpal-Singh, Uwizeye, A., Vieno,
809 M. and Sutton, M. A.: Nitrogen Challenges and Opportunities for Agricultural and Environmental Science in
810 India, *Front. Sustain. Food Syst.*, 5, 13, doi:10.3389/fsufs.2021.505347, 2021.

811 Mortier, A., Gliß, J., Schulz, M., Aas, W., Andrews, E., Bian, H., Chin, M., Ginoux, P., Hand, J., Holben, B.,
812 Zhang, H., Kipling, Z., Kirkevåg, A., Laj, P., Lurton, T., Myhre, G., Neubauer, D., Olivie, D., von Salzen, K.,
813 Skeie, R. B., Takemura, T. and Tilmes, S.: Evaluation of climate model aerosol trends with ground-based
814 observations over the last 2~decades -- an AeroCom and CMIP6 analysis, *Atmos. Chem. Phys.*, 20(21), 13355–
815 13378, doi:10.5194/acp-20-13355-2020, 2020.

816 Oleson, K. W., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek, E., Lawrence, P. J., ... Zeng, X.
817 (2010).: Technical Description of version 4.0 of the Community Land Model (CLM)., 2010.

818 Pfister, G. G., Emmons, L. K., Hess, P. G., Lamarque, J. F., Orlando, J. J., Walters, S., Guenther, A., Palmer, P.
819 I. and Lawrence, P. J.: Contribution of isoprene to chemical budgets: A model tracer study with the NCAR
820 CTM MOZART-4, *J. Geophys. Res. Atmos.*, 113(5), doi:10.1029/2007JD008948, 2008.

821 Pinder, R. W., Adams, P. J. and Pandis, S. N.: Ammonia Emission Controls as a Cost-Effective Strategy for
822 Reducing Atmospheric Particulate Matter in the Eastern United States, *Environ. Sci. Technol.*, 41(2), 380–386,
823 doi:10.1021/es060379a, 2007.

824 Pinder, R. W., Gilliland, A. B. and Dennis, R. L.: Environmental impact of atmospheric NH₃ emissions under
825 present and future conditions in the eastern United States, *Geophys. Res. Lett.*, 35(12),
826 doi:10.1029/2008GL033732, 2008.

827 Pollution, C. and Board, C.: Guidelines for Manual Sampling & Analyses., 2011.

828 Randerson, J., Werf, G. Van Der, Giglio, L., DAAC, G. C.-O. and 2015, undefined: Global Fire Emissions
829 Database, Version 4.1 (GFEDv4), daac.ornl.gov [online] Available from: https://daac.ornl.gov/cgi-bin/download.pl?ds_id=1293&source= schema_org_metadata (Accessed 26 May 2020), n.d.

831 Saraswati, George, M. P., Sharma, S. K., Mandal, T. K. and Kotnala, R. K.: Simultaneous Measurements of
832 Ambient NH₃ and Its Relationship with Other Trace Gases, PM 2.5 and Meteorological Parameters over Delhi,
833 India, *Mapan - J. Metrol. Soc. India*, 34(1), 55–69, doi:10.1007/s12647-018-0286-0, 2019.

834 Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change,
835 Wiley. [online] Available from: https://books.google.co.in/books?id=J3s30hwn_K0C, 2012.

836 Seinfeld, J. H., Pandis, S. N. and Noone, K.: Atmospheric Chemistry and Physics: From Air Pollution to
837 Climate Change, *Phys. Today*, 51(10), 88–90, doi:10.1063/1.882420, 1998.

838 Sharma, S. K., Saxena, M., Saud, T., Korpole, S. and Mandal, T. K.: Measurement of NH₃, NO, NO₂ and
839 related particulates at urban sites of indo gangetic plain (IGP) of India, *J. Sci. Ind. Res. (India)*, 71(5), 360–362,
840 2012.

841 Sharma, S. K., Harit, R. C., Kumar, V., Mandal, T. K. and Pathak, H.: Ammonia Emission from Rice-Wheat

842 Cropping System in Subtropical Soil of India, Agric. Res., 3(2), 175–180, doi:10.1007/s40003-014-0107-9,
843 2014a.

844 Sharma, S. K., Kumar, M., Rohtash, Gupta, N. C., Saraswati, Saxena, M. and Mandal, T. K.: Characteristics of
845 ambient ammonia over Delhi, India., 2014b.

846 Someya, Y., Imasu, R., Shiomi, K. and Saitoh, N.: Atmospheric ammonia retrieval from the TANSO-
847 FTS/GOSAT thermal infrared sounder, Atmos. Meas. Tech., 13(1), 309–321, doi:10.5194/amt-13-309-2020,
848 2020.

849 Surendran, D., Jena, C., Beig, G., Chate, D. M. and Ghude, S. D.: Quantifying the sectoral contribution of
850 pollution transport from South Asia during summer and winter monsoon seasons in support of HTAP-2
851 experiment, Atmos. Environ., 145, 60–71, doi:10.1016/j.atmosenv.2016.09.011, 2016.

852 Surendran, D. E., Ghude, S. D., Beig, G., Emmons, L. K., Jena, C., Kumar, R., Pfister, G. G. and Chate, D. M.:
853 Air quality simulation over South Asia using Hemispheric Transport of Air Pollution version-2 (HTAP-v2)
854 emission inventory and Model for Ozone and Related chemical Tracers (MOZART-4), Atmos. Environ., 122,
855 357–372, doi:10.1016/j.atmosenv.2015.08.023, 2015.

856 Sutton, M. A., Reis, S., Riddick, S. N., Dragosits, U., Nemitz, E., Theobald, M. R., Tang, Y. S., Braban, C. F.,
857 Vieno, M., Dore, A. J., Mitchell, R. F., Wanless, S., Daunt, F., Fowler, D., Blackall, T. D., Milford, C.,
858 Flechard, C. R., Loubet, B., Massad, R., Cellier, P., Personne, E., Coheur, P. F., Clarisse, L., Van Damme, M.,
859 Ngadi, Y., Clerbaux, C., Skjøth, C. A., Geels, C., Hertel, O., Kruit, R. J. W., Pinder, R. W., Bash, J. O., Walker,
860 J. T., Simpson, D., Horváth, L., Misselbrook, T. H., Bleeker, A., Dentener, F. and de Vries, W.: Towards a
861 climate-dependent paradigm of ammonia emission and deposition, Philos. Trans. R. Soc. B Biol. Sci.,
862 368(1621), 20130166–20130166, doi:10.1098/rstb.2013.0166, 2013.

863 Sutton, M. A., Dreher, J., Moring, A., Adhya, T. K., Ahmed, A., Bhatia, A., Brownlie, W., Dragosits, U.,
864 Ghude, S. D., Hillier, J., Hooda, S., Howard, C. M., Jain, N., Kumar, D., Kumar, R. M., Nayak, D. R., Neeraja,
865 C. N., Prasanna, R., Price, A., Ramakrishnan, B., Reay, D. S., Singh, R., Skiba, U., Smith, J. U., Sohi, S.,
866 Subrahmanyam, D., Surekha, K., van Grinsven, H. J. M., Vieno, M., Voleti, S. R., Pathak, H. and Raghuram, N.:
867 2 - The Indian Nitrogen Challenge in a Global Perspective, in The Indian Nitrogen Assessment, edited by Y. P.
868 Abrol, T. K. Adhya, V. P. Aneja, N. Raghuram, H. Pathak, U. Kulshrestha, C. Sharma, and B. Singh, pp. 9–28,
869 Elsevier., 2017a.

870 Sutton, M. A., J. Dreher, A. Moring, T.K Adhya, A. Ahmed and A. Bhatia: The Indian nitrogen assessment :
871 sources of reactive nitrogen, environmental and climate effects, management options, and policies, in The
872 Indian Nitrogen Assessment, edited by Y. P. Abrol, T. K. Adhya, V. P. Aneja, N. Raghuram, H. Pathak, U.
873 Kulshrestha, C. Sharma, and B. Singh, pp. 9–25, Elsevier., 2017b.

874 Technical specifications for CAAQM station: Technical Specifications For Continuous Ambient Air Quality
875 Monitoring (CAAQM) Station (Real Time) Central Pollution Control Board East Arjun Nagar, Shahdara., 2019.

876 Technical Specifications for Continuous Real Time Ambient Air Quality Monitoring Analysers: Technical
877 Specifications for Continuous Real Time Ambient Air Quality Monitoring Analysers / Station Volume – II.,
878 2016.

879 The Global Challenges Research Fund (GCRF) South Asia Nitrogen hub: The Global Challenges Research
880 Fund (GCRF) project, [online] Available from: <https://gtr.ukri.org/projects?ref=NE/S009019/1>, n.d.

881 Tie, X., Brasseur, G., Emmons, L., Horowitz, L. and Kinnison, D.: Effects of aerosols on tropospheric oxidants:
882 A global model study, J. Geophys. Res. Atmos., 106(D19), 22931–22964, doi:10.1029/2001JD900206, 2001.

883 Tie, X., Madronich, S., Walters, S., Zhang, R., Rasch, P. and Collins, W.: Effect of clouds on photolysis and
884 oxidants in the troposphere, , 108, doi:10.1029/2003JD003659, 2003.

885 Tie, X., Madronich, S., Walters, S., Edwards, D. P., Ginoux, P., Mahowald, N., Zhang, R. Y., Lou, C. and
886 Brasseur, G.: Assessment of the global impact of aerosols on tropospheric oxidants, J. Geophys. Res. D Atmos.,
887 110(3), 1–32, doi:10.1029/2004JD005359, 2005.

888 Tong, D., Cheng, J., Liu, Y., Yu, S., Yan, L., Hong, C., Qin, Y., Zhao, H., Zheng, Y., Geng, G., Li, M., Liu, F.,
889 Zhang, Y., Zheng, B., Clarke, L. and Zhang, Q.: Dynamic projection of anthropogenic emissions in China:
890 methodology and 2015–2050 emission pathways under a range of socio-economic, climate policy, and pollution
891 control scenarios, *Atmos. Chem. Phys.*, 20(9), 5729–5757, doi:10.5194/acp-20-5729-2020, 2020.

892 Viatte, C., Wang, T., Van Damme, M., Dammers, E., Meleux, F., Clarisse, L., Shephard, M. W., Whitburn, S.,
893 Coheur, P. F., Cady-Pereira, K. E. and Clerbaux, C.: Atmospheric ammonia variability and link with particulate
894 matter formation: a case study over the Paris area, *Atmos. Chem. Phys.*, 20(1), 577–596, doi:10.5194/acp-20-
895 577-2020, 2020.

896 Wang, T., Song, Y., Xu, Z., Liu, M., Xu, T., Liao, W., Yin, L., Cai, X., Kang, L., Zhang, H. and Zhu, T.: Why is
897 the Indo-Gangetic Plain the region with the largest NH_3 column in the globe during pre-monsoon and monsoon
898 seasons?, *Atmos. Chem. Phys.*, 20(14), 8727–8736, doi:10.5194/acp-20-8727-2020, 2020.

899 Wesely, M. L.: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical
900 models, *Atmos. Environ.*, 23(6), 1293–1304, doi:10.1016/0004-6981(89)90153-4, 1989.

901 Whitburn, S., Damme, M. Van, Clarisse, L., Bauduin, S., Heald, C. L., Hurtmans, D., Zondlo, M. A., Clerbaux,
902 C. and Coheur, P.: A flexible and robust neural network IASI- NH_3 , 6581–6599,
903 doi:10.1002/2016JD024828. Received, 2016.

904 Wu, J., Kong, S., Wu, F., Cheng, Y., Zheng, S., Yan, Q., Zheng, H., Yang, G., Zheng, M., Liu, D., Zhao, D. and
905 Qi, S.: Estimating the open biomass burning emissions in central and eastern China from 2003 to 2015 based on
906 satellite observation, *Atmos. Chem. Phys.*, 18(16), 11623–11646, doi:10.5194/acp-18-11623-2018, 2018.

907 Xu, J. S., He, J., Behera, S. N., Xu, H. H., Ji, D. S., Wang, C. J., Yu, H., Xiao, H., Jiang, Y. J., Qi, B. and Du, R.
908 G.: Temporal and spatial variation in major ion chemistry and source identification of secondary inorganic
909 aerosols in Northern Zhejiang Province, China, *Chemosphere*, 179(December 2014), 316–330,
910 doi:10.1016/j.chemosphere.2017.03.119, 2017.

911 Xu, R. T., Pan, S. F., Chen, J., Chen, G. S., Yang, J., Dangal, S. R. S., Shepard, J. P. and Tian, H. Q.: Half-
912 Century Ammonia Emissions From Agricultural Systems in Southern Asia: Magnitude, Spatiotemporal
913 Patterns, and Implications for Human Health, *GeoHealth*, 2(1), 40–53, doi:10.1002/2017gh000098, 2018.

914 Xu, W., Zhang, L. and Liu, X.: A database of atmospheric nitrogen concentration and deposition from the
915 nationwide monitoring network in China, , (December 2018), 2–7, 2019.

916 Zhang, X., Liu, J., Han, H., Zhang, Y., Jiang, Z., Wang, H., Meng, L., Li, Y. C. and Liu, Y.: Satellite-Observed
917 Variations and Trends in Carbon Monoxide over Asia and Their Sensitivities to Biomass Burning, *Remote
918 Sens.*, 12(5), 830, doi:10.3390/rs12050830, 2020.

919 Zhang, Y., Dore, A. J., Ma, L., Liu, X. J., Ma, W. Q., Cape, J. N. and Zhang, F. S.: Agricultural ammonia
920 emissions inventory and spatial distribution in the North China Plain, *Environ. Pollut.*, 158(2), 490–501,
921 doi:10.1016/j.envpol.2009.08.033, 2010.

922 Zhao, B., Wang, S. X., Liu, H., Xu, J. Y., Fu, K., Klimont, Z., Hao, J. M., He, K. B., Cofala, J. and Amann, M.:
923 NO_x emissions in China: Historical trends and future perspectives, *Atmos. Chem. Phys.*, 13(19), 9869–9897,
924 doi:10.5194/acp-13-9869-2013, 2013.

925 Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y.,
926 Zhao, H., Zheng, Y., He, K. and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the
927 consequence of clean air actions, *Atmos. Chem. Phys.*, 18(19), 14095–14111, doi:10.5194/acp-18-14095-2018,
928 2018.

929 Zheng, J., Hu, M., Du, Z., Shang, D., Gong, Z., Qin, Y., Fang, J., Gu, F., Li, M., Peng, J., Li, J., Zhang, Y.,
930 Huang, X., He, L., Wu, Y. and Guo, S.: Influence of biomass burning from South Asia at a high-altitude
931 mountain receptor site in China, *Atmos. Chem. Phys.*, 17(11), 6853–6864, doi:10.5194/acp-17-6853-2017,
932 2017.

933 Zhou, Y., Zhang, Y., Tian, D. and Mu, Y.: Impact of dicyandiamide on emissions of nitrous oxide, nitric oxide

934 and ammonia from agricultural field in the North China Plain, *J. Environ. Sci. (China)*, 40, 20–27,
935 doi:10.1016/j.jes.2015.08.016, 2016.

936 Zhu, L., Henze, D. K., Bash, J. O., Cady-Pereira, K. E., Shephard, M. W., Luo, M. and Capps, S. L.: Sources
937 and Impacts of Atmospheric NH₃: Current Understanding and Frontiers for Modeling, Measurements, and
938 Remote Sensing in North America, *Curr. Pollut. Reports*, 1(2), 95–116, doi:10.1007/s40726-015-0010-4, 2015.

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965 **FIGURE CAPTIONS**

966 **Figure 1.** Spatial distribution of total NH_3 emissions ($\times 10^{-10} \text{ kg m}^{-2} \text{s}^{-1}$) over Asia. Data are shown at $0.1^\circ \times$
967 0.1° grid resolution from Hemispheric Transport of Air Pollution version-2 (HTAP-v2) emission
968 inventory. The solid rectangles indicate the Indo-Gangetic plain, IGP ($20^\circ\text{N}-32^\circ\text{N}$, $70^\circ\text{E}-95^\circ\text{E}$) and the
969 North China Plain, NCP ($30^\circ\text{N}-40^\circ\text{N}$, $110^\circ\text{E}-120^\circ\text{E}$).

970
971 **Figure 2.** Monthly variation of anthropogenic (HTAP-v2) (molecules $\text{cm}^{-2} \text{s}^{-1}$) (top), Biomass Burning
972 (GEFED-v3) (molecules $\text{cm}^{-2} \text{s}^{-1}$) (middle) and Soil (CESM) (molecules $\text{cm}^{-2} \text{s}^{-1}$) (bottom) NH_3 emission
973 averaged from Indo-Gangetic plain ($20^\circ\text{N}-32^\circ\text{N}$, $70^\circ\text{E}-95^\circ\text{E}$) and the North China Plain ($30^\circ\text{N}-40^\circ\text{N}$,
974 $110^\circ\text{E}-120^\circ\text{E}$).

975
976 **Figure 3.** Geographical locations of surface NH_3 observational sites (69 locations) from the air quality
977 automatic monitoring network operated by the Central Pollution Control Board (CPCB, 2020), India and
978 observational sites (32 locations) from Nationwide Nitrogen Deposition Monitoring Network (NNDMN)
979 operated by China Agricultural University, China.

980
981 **Figure 4.** Spatial distributions of annual mean NH_3 ($\times 10^{16}$ molecules cm^{-2}) total columns over Asia for the
982 year 2010. (a) Simulated by MOZART-4, (b) from the IASI satellite observations and (c) spatial
983 difference between MOZART-4 and IASI.

984
985 **Figure 5.** (a) Scatter plot between annual averaged IASI and MOZART-4 simulated NH_3 ($\times 10^{16}$ molecules
986 cm^{-2}) total columns over IGP, South Asia (rectangle: $20^\circ\text{N}-32^\circ\text{N}$, $70^\circ\text{E}-95^\circ\text{E}$) and (b) Scatter plot between
987 annual averaged IASI and MOZART-4 simulated NH_3 ($\times 10^{16}$ molecules cm^{-2}) total columns over NCP,
988 East Asia (rectangle: $30^\circ\text{N}-40^\circ\text{N}$, $110^\circ\text{E}-120^\circ\text{E}$).

989
990 **Figure 6.** Seasonal NH_3 total columns distribution ($\times 10^{16}$ molecules cm^{-2}) in 2010 (left) simulated by
991 MOZART-4, (middle) measured by IASI satellite and (right) spatial differences between MOZART-4 and
992 IASI during (top to bottom) winter (DJF) spring (MAM) summer (JJA) and autumn (SON) seasons.

993
994 **Figure 7.** Daily vertical distribution of NH_3 (ppb) averaged over IGP South Asia ($20^\circ\text{N}-32^\circ\text{N}$, $70^\circ\text{E}-95^\circ\text{E}$)
995 (left) and daily mean Planetary Boundary Layer height (PBLH in meters) averaged over IGP South Asia
996 ($20^\circ\text{N}-32^\circ\text{N}$, $70^\circ\text{E}-95^\circ\text{E}$) (right).

997
998 **Figure 8.** (a) Comparison between monthly averaged IASI and MOZART-4 simulated NH_3
999 ($\times 10^{16}$ molecules cm^{-2}) total columns over IGP South Asia ($20^\circ\text{N}-32^\circ\text{N}$, $70^\circ\text{E}-95^\circ\text{E}$), (b) Comparison of
1000 monthly averaged IASI and MOZART-4 simulated NH_3 ($\times 10^{16}$ molecules cm^{-2}) total columns over NCP
1001 East Asia ($30^\circ\text{N}-40^\circ\text{N}$, $110^\circ\text{E}-120^\circ\text{E}$) (bar indicates standard error of 88 and 35 pixels in IGP and NCP
1002 respectively).

1004 **Figure 9. (a) Scatter plot between annual averaged surface observations from 69 monitoring sites (Fig. 2)**
1005 **over South Asia and MOZART-4 simulated surface NH_3 ($\mu\text{g m}^{-3}$) (992 hPa) interpolated at the locations**
1006 **of 69 sites (b) Comparison between monthly mean surface observations from 69 monitoring sites and**
1007 **MOZART-4 simulated monthly mean NH_3 ($\mu\text{g m}^{-3}$) concentration interpolated at the locations of 69 sites**
1008 **over South Asia.**

1009
1010 **Figure 10. (a) Scatter plot between annual averaged surface observations from 32 monitoring sites (Fig. 2)**
1011 **over East Asia and MOZART-4 simulated surface NH_3 ($\mu\text{g m}^{-3}$) (992 hPa) interpolated at the locations of**
1012 **32 sites (b) Comparison between monthly mean surface observations from 32 monitoring sites and**
1013 **MOZART-4 simulated monthly mean NH_3 ($\mu\text{g m}^{-3}$) concentration interpolated at the locations of 32 sites**
1014 **over East Asia.**

1015
1016 **Figure 11. MOZART-4 simulated spatial distribution of annual averaged (a) total sulphate aerosol ($\times 10^9$**
1017 **ppb), (b) total Ammonium aerosol ($\times 10^9$ ppb), (c) NO_x total columns ($\times 10^{16}$ molecules cm^{-2}) and (d) total**
1018 **ammonium nitrate aerosol ($\times 10^9$ ppb) over Asia.**

1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035

1036 **TABLES**1037 **Table 1 Model performance statistics for NH₃ total columns over Asia from IASI and MOZART-4**
1038 **simulations for the year 2010**

1039

Statistics indicator	IGP, South Asia	NCP, East Asia
Mean (Model-IASI) ($\times 10^{16}$ molecules cm $^{-2}$)	0.68	-0.24
Normalized Mean Bias (NMB)	0.38	-0.35
Variance ($\times 10^{16}$ molecules cm $^{-2}$)	1.39	-0.83
Root Mean Square Error (RMSE) ($\times 10^{16}$ molecules cm $^{-2}$)	0.125	0.05
Correlation Coefficient (r)	0.81	0.90

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

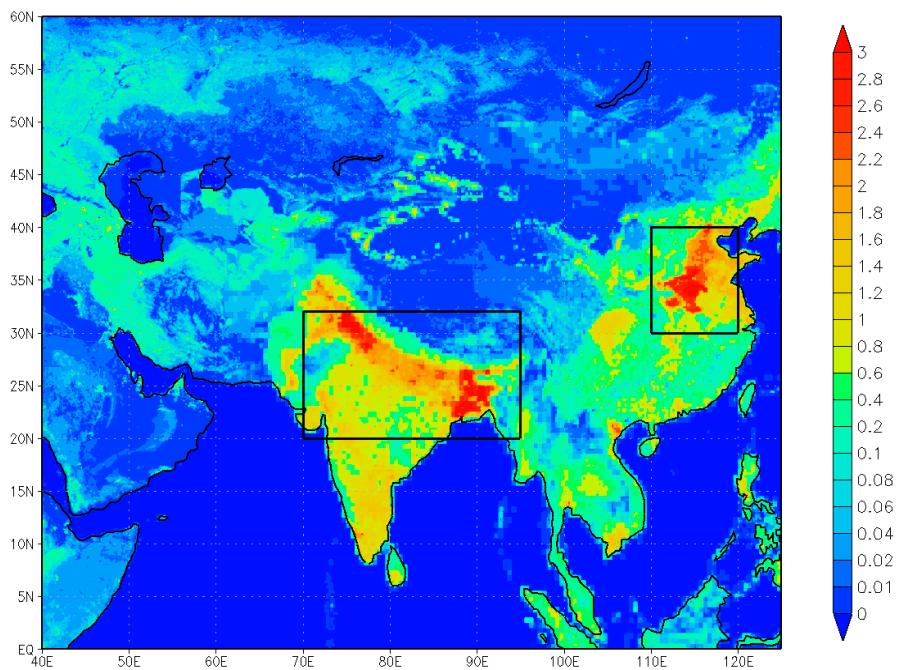
1063

1064

1065

1066 **Table 2 Model performance statistics for NH₃ concentration over East and South Asia from MOZART-4**
 1067 **simulations and observational network for the year 2010**

1068

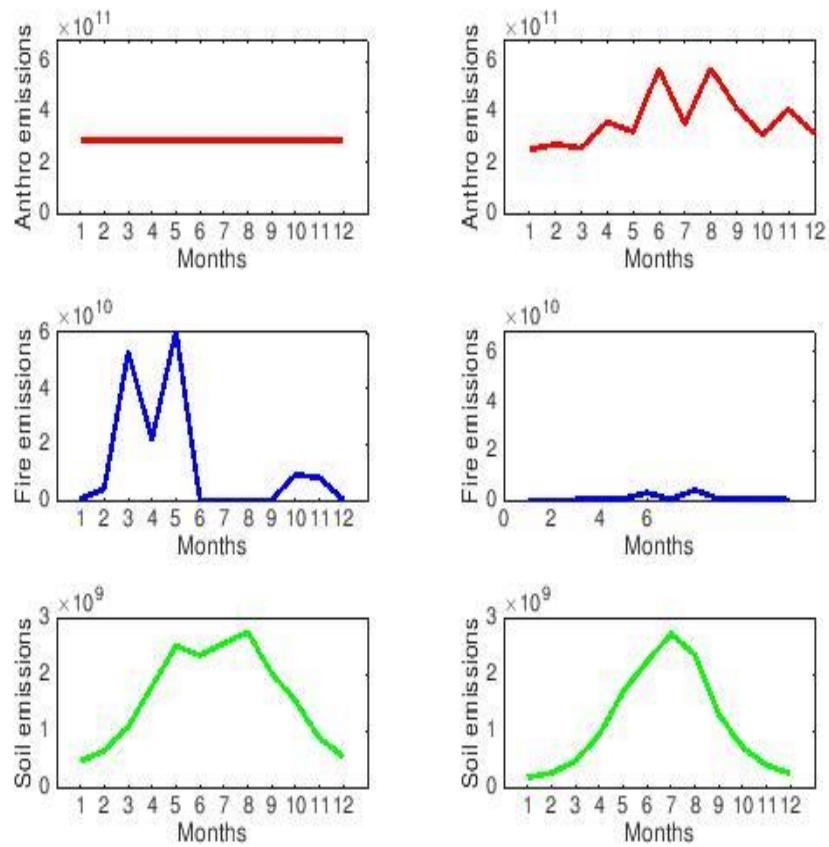

Statistics indicator	IGP, South Asia	NCP, East Asia
Mean (Model-Observations) ($\mu\text{g m}^{-3}$)	-13.47	3.1
Normalized Mean Bias (NMB)	0.44	-0.46
Variance ($\mu\text{g m}^{-3}$)	-0.629	-0.88
Root Mean Square Error (RMSE) ($\mu\text{g m}^{-3}$)	1.91	0.728
Correlation Coefficient (r)	0.82	0.65

1069

1070

1071 **Figure 1**

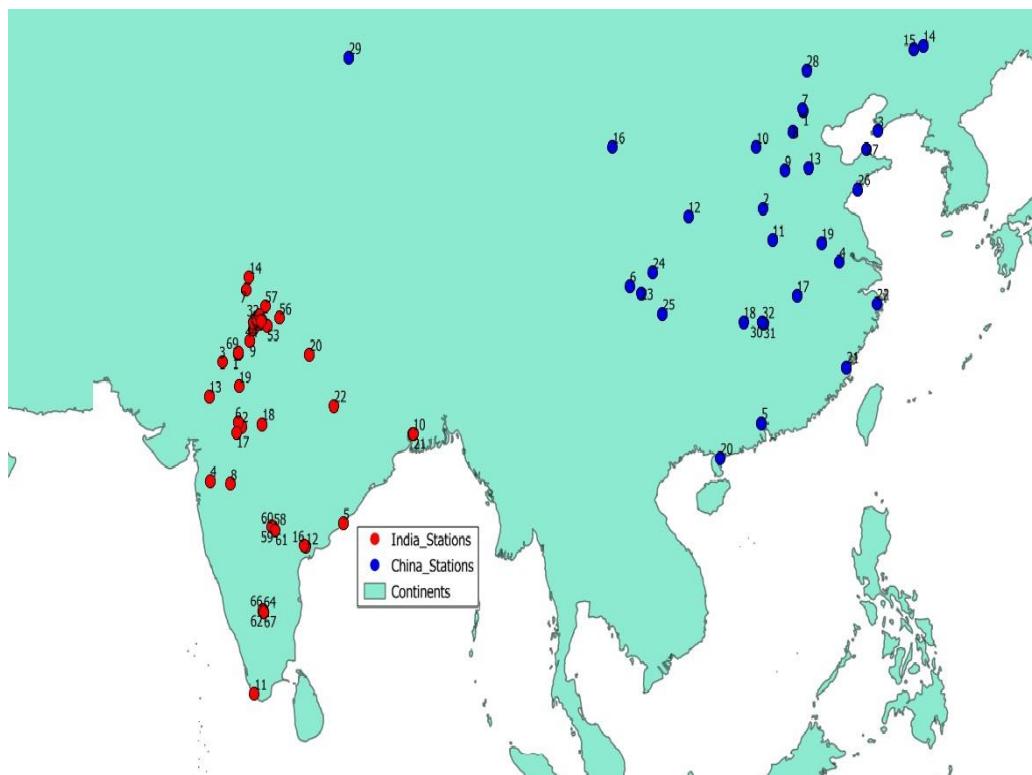
1072

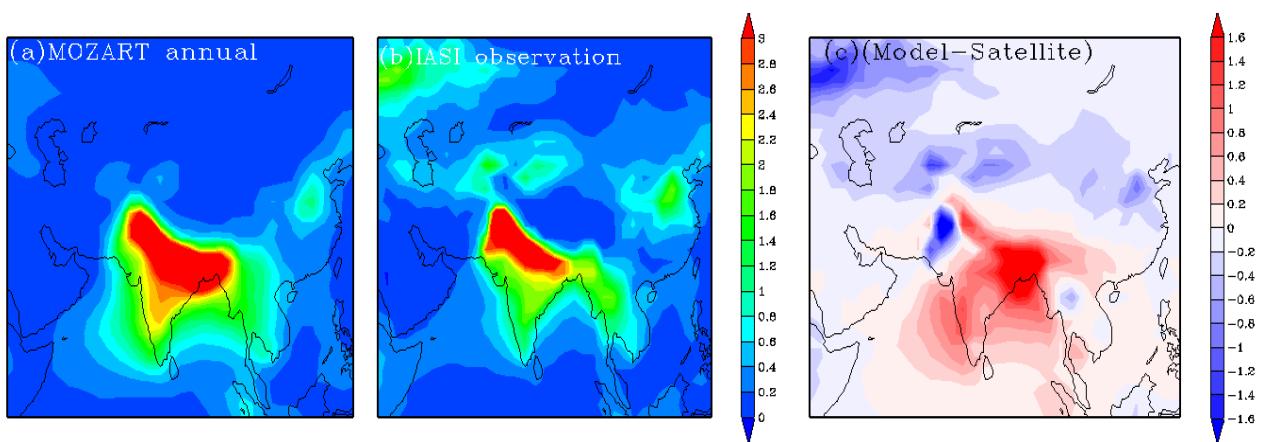

1073

1074

1075

1076


1077 **Figure 2**


1078

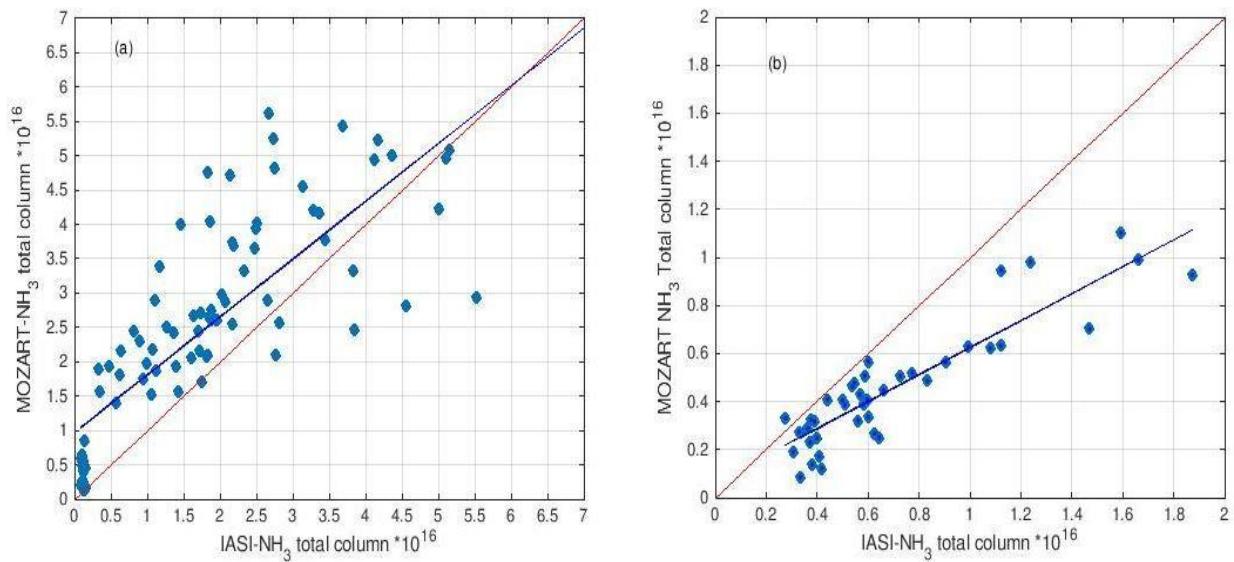
1079 **Figure 3**

1080

1099 **Figure 4**

1100

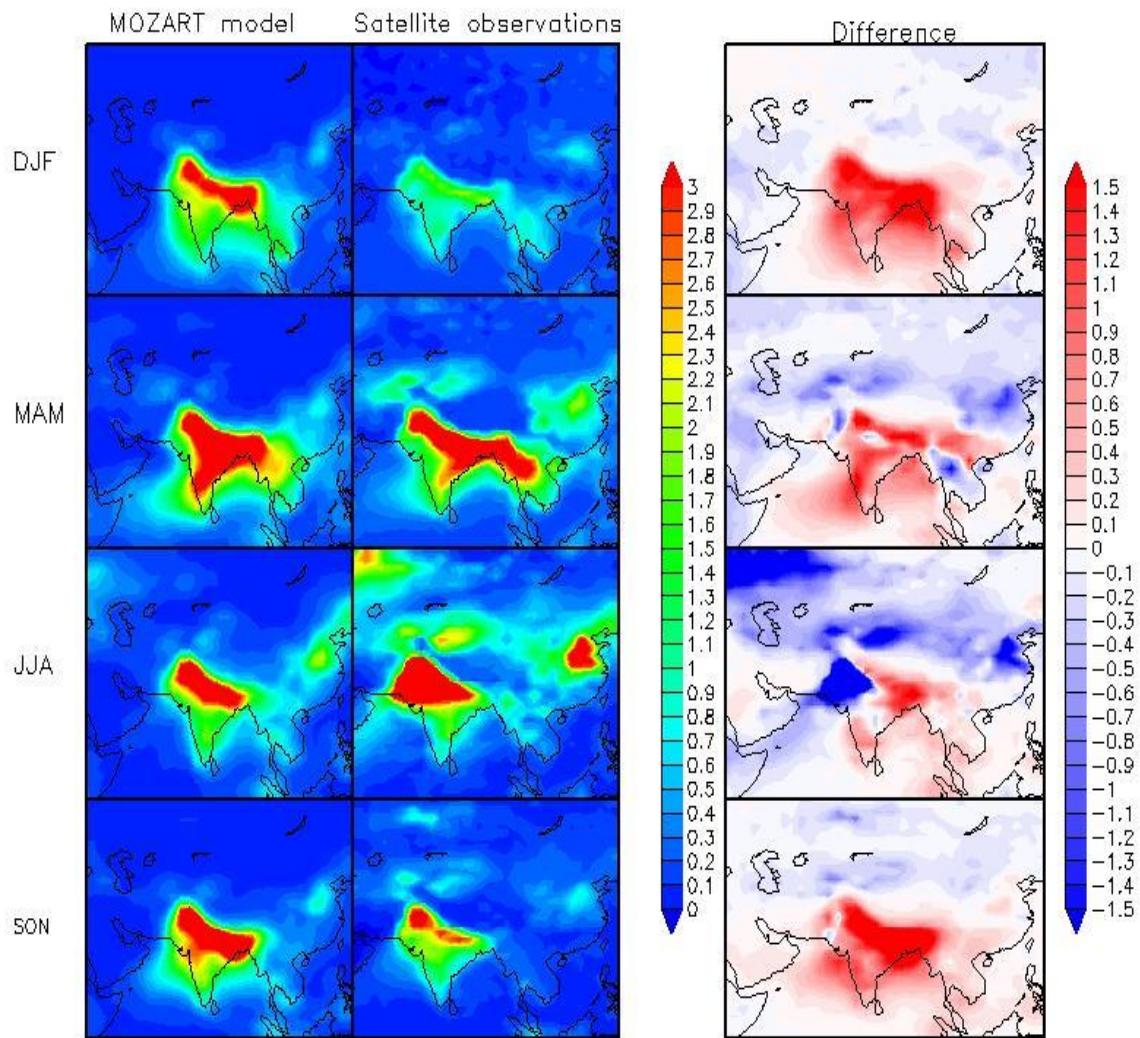
1101

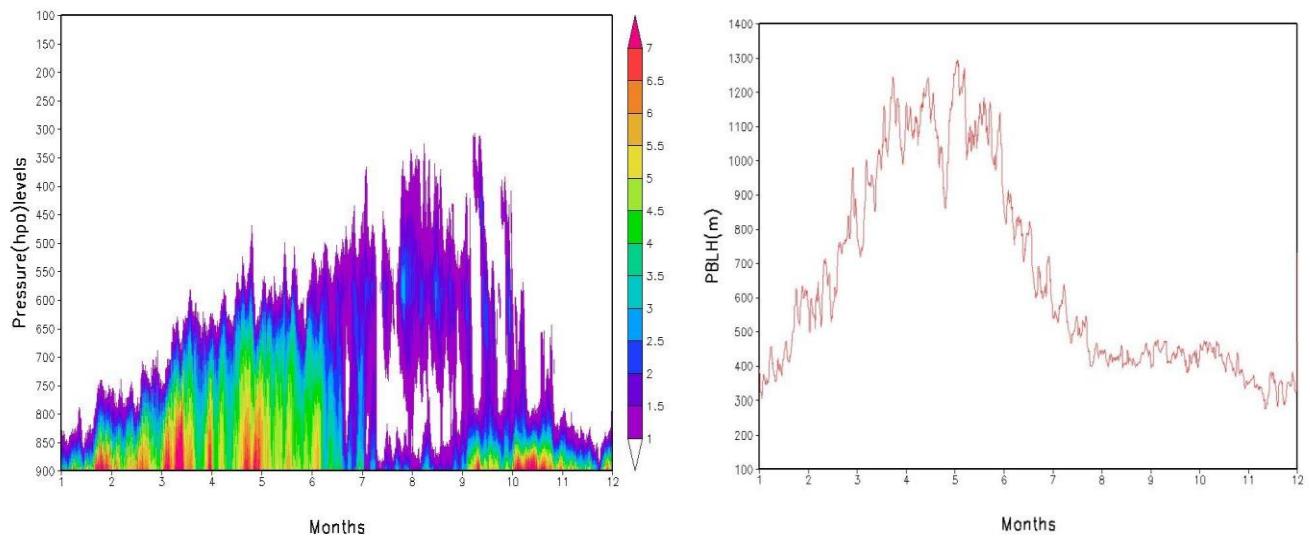

1102

1103

1104

1105 **Figure 5**

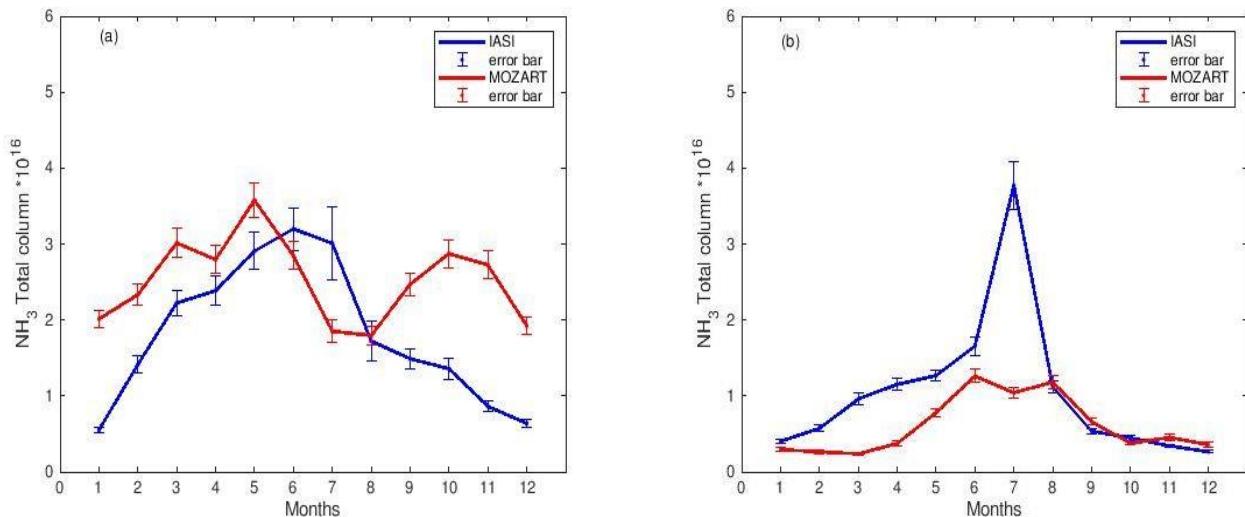

1106


1107

1108

1109

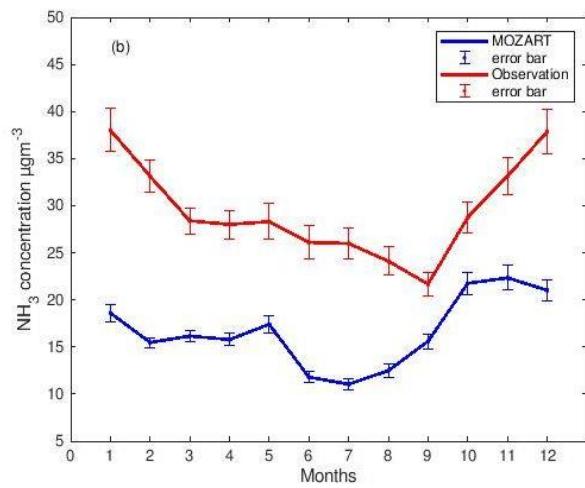
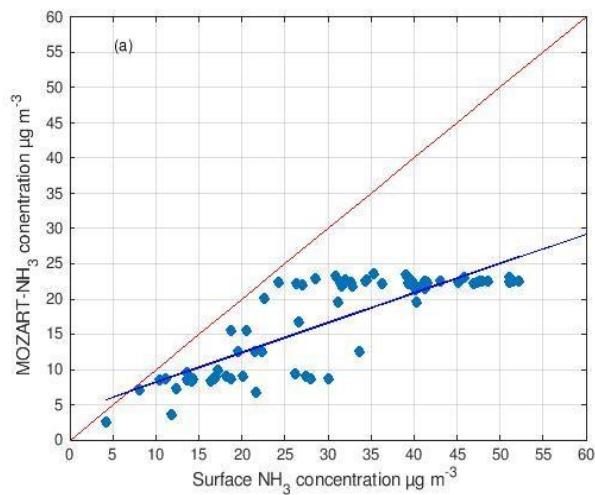
Figure 6


1120 **Figure 7**

1125

1130

Figure 8

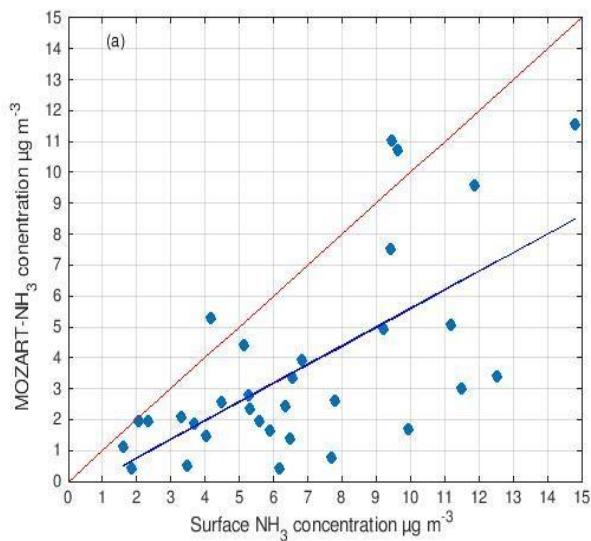



1135

1140

1145

1150 **Figure 9**

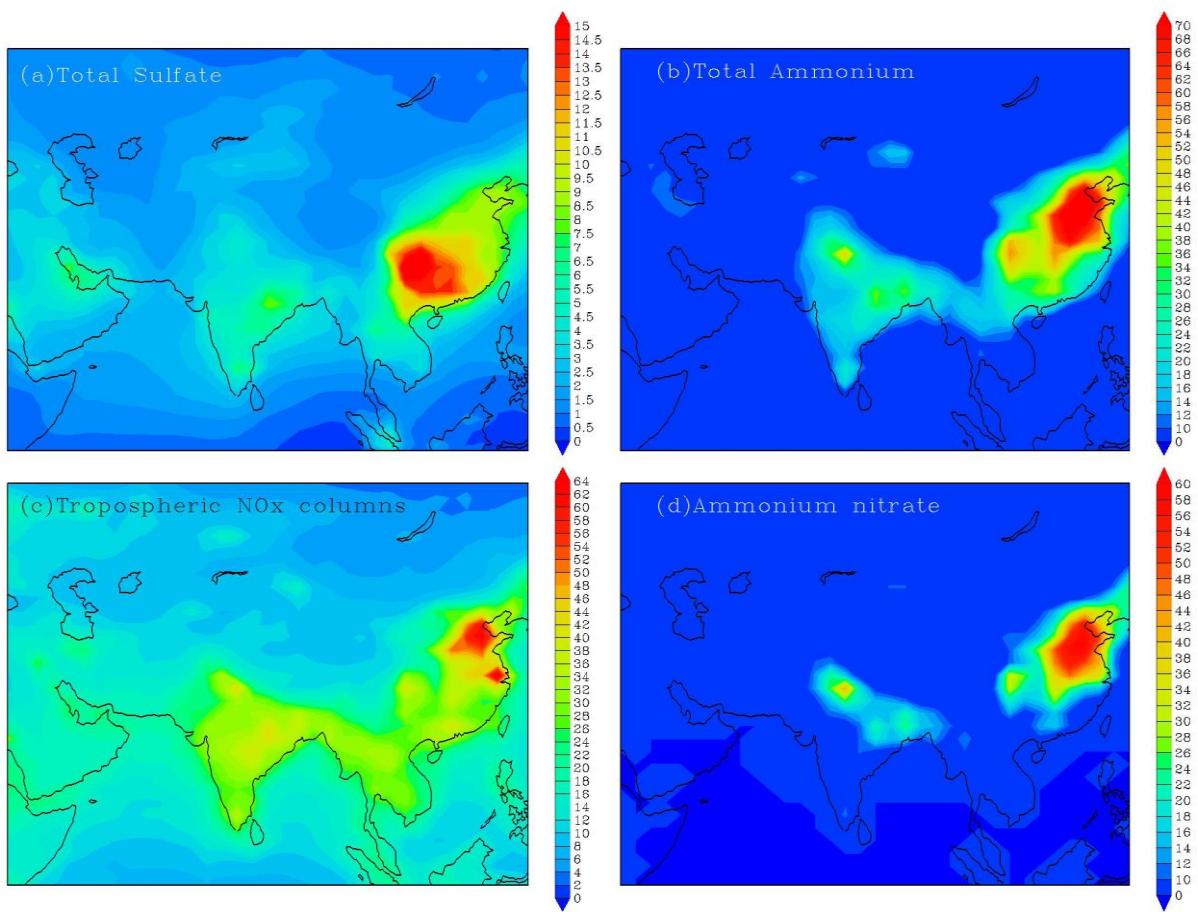



1155

1160

1165

Figure 10



1170

1175

1180

Figure 11

