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Abstract: 37 

The atmospheric CO2 mixing ratio and its 𝜹13
C-CO2 composition contain important CO2 sink and source 38 

information spanning from ecosystem to global scales. The observation and simulation for both CO2 and 39 

its carbon isotope ratio (𝜹13
C-CO2) can be used to constrain regional emissions and better understand the 40 

anthropogenic and natural mechanisms that control δ
13

C-CO2 variations. Such work remains rare for 41 

urban environments, especially megacities. Here, we used near-continuous CO2 and 𝜹13
C-CO2 42 

measurements, from September 2013 to August 2015, and inverse modeling to constrain the CO2 budget 43 

and investigate the main factors that dominated 𝜹13
C-CO2 variations for the Yangtze River Delta (YRD) 44 

region, one of the largest anthropogenic CO2 hotspots and densely populated regions in China. We used 45 

the WRF-STILT model framework with category-specified EDGAR v432 CO2 inventories to simulate 46 

hourly CO2 mixing ratios and 𝜹13
C-CO2, evaluated these simulations with observations, and constrained 47 

the anthropogenic CO2 emission categories. Our study shows that: (1) Top-down and bottom-up estimates 48 

of anthropogenic CO2 emissions agreed well (bias < 6%) on an annual basis; (2) The WRF-STILT model 49 

performed well in reproducing the observed diel and seasonal atmospheric 𝜹13
C-CO2 variations; (3) 50 

Anthropogenic CO2 emissions played a much larger role than ecosystems in controlling the 𝜹13
C-CO2 51 

seasonality. When excluding ecosystem respiration and photosynthetic discrimination in the YRD area, 52 

𝜹13
C-CO2 seasonality increased from 1.53‰ to 1.66‰; (4) Atmospheric transport processes in summer 53 

amplified the cement CO2 enhancement proportions in the YRD area, which dominated monthly 𝜹s 54 

variations. These findings support that the combination of long-term atmospheric carbon isotope 55 

observations and inverse modeling can provide a powerful constraint on the carbon cycle of these 56 

complex megacities.    57 

Keywords: cements production, 
13

C/
12

C ratio, WRF-STILT model, plants photosynthetic discrimination 58 
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1. Introduction 71 

Urban landscapes account for 70% of global CO2 emissions and represent less than 1% of Earth’s land 72 

area (Seto et al., 2014). Such CO2 hotspots play a dominant role in controlling the rise in atmospheric CO2 73 

concentrations, which exceeded 412 ppm in December 2019 for global monthly average observations 74 

(https://www.esrl.noaa.gov/gmd/ccgg/trends/). Furthermore, the carbon isotope ratio of CO2 (i.e. 𝜹13
C = 75 

13
C/

12
C ratio in delta notation) at the representative Mauna Loa site, USA, has steadily decreased to 76 

around -8.5‰, in December 2019 (https://www.esrl.noaa.gov/). Anthropogenic CO2 emission is produced 77 

by fossil fuel burning and cement production. As the urban population is expected to increase by 2.5 to 6 78 

billion people in 2050, anthropogenic CO2 emissions are projected to increase dramatically, especially in 79 

developing regions and countries (Sargent et al., 2018; Ribeiro et al., 2019). Under such a scenario, the 80 

observations of atmospheric CO2 and 𝜹13
C-CO2 in urban landscapes are of great importance to monitoring 81 

these potential CO2 emissions hotspots (Lauvaux et al., 2016; Nathan et al., 2018; Graven et al., 2018; 82 

Pillai et al., 2016; Staufer et al., 2016).  83 

Countries are required to report their CO2 emissions according to the Intergovernmental Panel on Climate 84 

Change guidelines (IPCC; e.g. IPCC 2013), and many “bottom-up” methods have long been used to 85 

estimate CO2 emissions worldwide, but such methods have high uncertainties for CO2 emissions at 86 

regional (20%) to city (50 to 250%) scales (Gately & Hutyra, 2017; Gately et al., 2015). These significant 87 

uncertainties are propagated into the inversion of global biological CO2 flux (Zhang et al., 2014; Jiang et 88 

al., 2014; Thompson et al., 2016). By using CO2 observations, the “top-down” atmospheric inversion 89 

approach is a useful tool to evaluate “bottom-up” inventories (Graven et al., 2018; L. Hu et al., 2019; 90 

Lauvaux et al., 2016; Nathan et al., 2018). Previous research has shown that additional information, such 91 

as data on atmospheric 𝜟14
CO2-CO2, 𝜹

13
C-CO2, and CO, is needed to better distinguish CO2 emissions 92 

from different sources and to assess their uncertainties (Chen et al., 2017; Graven et al., 2018; Nathan et 93 

al., 2018; Cui et al., 2019). The use of hourly 𝜹13
C-CO2 observation in urban areas remains rare in 94 

inversion studies, yet such observations contain invaluable information of anthropogenic CO2 from 95 

different categories.   96 

Traditional estimates of 𝜹13
C-CO2 using isotope ratio mass spectrometry (IRMS) are very limited because 97 

flask air sample collection requires long preparation time and is expensive. Consequently, there is a lack 98 

of high temporal and long-term observations of 𝜹13
C-CO2 (Sturm et al., 2006). Isotope ratio infrared 99 

spectroscopy technology (IRIS) has overcome these limitations. As a result, in situ air sample analyses 100 

using IRIS analyzers are resulting in dense time series of 𝜹13
C-CO2. However, most of the established 101 
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long-term IRMS and IRIS 𝜹13
C-CO2 measurement sites are representative of “background” or natural 102 

ecosystem conditions at locations far away from urban landscapes (Chen et al., 2017; Griffis, 2013).  103 

To date, long-term (> 1 year) and continuous observations of both CO2 and 𝜹13
C-CO2 have been reported 104 

for only five cities, including Bern, Switzerland (Sturm et al., 2006); Boston, USA (McManus et al., 105 

2010); Salt Lake City, USA (Pataki et al., 2006); Beijing, China (Pang et al., 2016); and Nanjing, China 106 

(Xu et al., 2017). In these previous investigations, significant diel and seasonal variations of 𝜹13
C-CO2 107 

have been observed; these patterns were modulated by fossil fuel combustion, plant respiration and 108 

photosynthesis, and changes in the height of the atmospheric boundary layer (Sturm et al., 2006; Guha 109 

and Ghosh, 2010). No study has quantified the impact of each factor on the seasonal variation of 𝜹13
C-110 

CO2. This represents an important knowledge gap in understanding the underlying mechanisms of carbon 111 

cycling in complex urban ecosystems. 112 

The traditional 𝜹13
C-CO2 isotope partitioning methods (including Miller-Tans and the Keeling plot 113 

approaches) have be used to constrain different CO2 sources worldwide (Keeling, 1960; Vardag et al., 114 

2015; Newman et al., 2016; Pang et al., 2016; Xu et al., 2017). These methods are based on the 115 

assumption that partitioned atmospheric CO2 enhancement components from different sources can 116 

represent CO2 emissions at the “target area” (Miller and Tans, 2003; Ballantyne et al., 2011). Carbon 117 

dioxide emissions are highly inhomogeneous at the urban scale, with extremely strong point/line sources, 118 

and the final partitioning results are highly uncertain without considerations of source footprint 119 

characteristics (Gately & Hutyra, 2017; Cui et al., 2019; Martin et al., 2019). Atmospheric transport 120 

models can help to resolve such problems, and the coupling of atmospheric transport models with isotope 121 

observations have recently be applied in global and regional CO2 partitioning studies (Chen et al., 2017; 122 

Cui et al., 2019; Graven et al., 2018; C. Hu et al., 2018b). Although urban CO2 inversion has been applied 123 

successfully in several studies in Europe and the United States (Bréon et al., 2015; Turnbull et al., 2015; 124 

Pillai et al., 2016; Brioude et al., 2013; Turner et al., 2016),  urban CO2  inversions in China are rare 125 

(Berezin et al., 2013; C. Hu, 2018a; Worden et al., 2012), presumably because of the scarcity of high 126 

quality 𝜹13
C-CO2 and CO2 observations. 127 

The Yangtze River Delta (YRD) ranks as one of the most densely populated regions in the world and is 128 

an important anthropogenic CO2 hotspot. Major anthropogenic sources include power industry, oil 129 

refineries/transformation and cement productions. Having the largest source of cement-derived CO2 130 

production across China and the world (Cai et al., 2015), the YRD contributed 20% of national cement 131 

production, nearly 12% of world’s total cement output in 2014 (Xu et al., 2017; Yang et al., 2017). 132 

Besides the anthropogenic factors, natural ecosystems and croplands act as significant CO2 sinks and 133 

sources within the YRD. Independent quantification of the fossil and cement CO2 emission and 134 
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assessment of their impact on atmospheric 𝜹13
C-CO2 have potential to improve our understanding of 135 

urban CO2 cycling. Further, the observations and simulations of both atmospheric CO2 and 𝜹
13

C-CO2 can 136 

help us relate atmospheric CO2 dynamics with future emissions control strategies.  137 

Here, we combine long-term (>2 years) CO2 and 𝜹13
C-CO2 observations with atmospheric transport 138 

model simulations to study urban atmospheric CO2 and 𝜹13
C-CO2 variations. The objectives were to: (1) 139 

Constrain anthropogenic CO2 emissions and determine the main sources of uncertainty for 𝜹13
C-CO2 140 

simulations, and (2) Quantify the relative contributions of each factor (i.e. background, anthropogenic 141 

CO2 emissions especially for cement production, ecosystem photosynthesis and respiration) to seasonal 142 

variations of atmospheric 𝜹13
C-CO2. 143 

2. Materials and methods 144 

2.1 Observations of atmospheric CO2 mixing ratio, 𝜹13
C-CO2 and supporting variables 145 

The observation site is located on the Nanjing University of Information Science and Technology campus 146 

(hereafter NUIST, 32
o
12’N, 118

o
43’E, green dot in Figure 1a). Continuous atmospheric CO2 mixing 147 

ratios and 𝜹13
C-CO2 were measured at a height of 34 m above ground with an IRIS analyzer (model 148 

G1101-i, Picarro Inc., Sunnyvale, CA). The observation period extended from September 2013 to August 149 

2015. Calibrations for CO2 mixing ratio and 𝜹13
C-CO2 were conducted with standard gases traceable to 150 

NOAA-ESRL (National Oceanic and Atmospheric Administration, Earth System Research Laboratory) 151 

standards. Calibration details are provided by Xu et al. (2017). Based on Allan variance analyses, the 152 

hourly precisions of CO2 and 𝜹13
C-CO2 were 0.07 ppm and 0.05‰, respectively.  153 

We separated the two-year study period into seasons (autumn: September, October, November; winter: 154 

December, January, February; spring: March, April, May; summer: June, July, August). Further, for an 155 

annual comparison, we examined the period from September 2013 to August 2014 (Year 2014) versus 156 

September 2014 to August 2015 (Year 2015).  157 

The YRD is a cement production hotspot in China (Figure 1b). It had a total population of 190 million in 158 

2018 (Figure 2a) with 24.2 million in the city of Shanghai, 9.8 million in Hangzhou city (provincial 159 

capital of Zhejiang), 8.4 million in Nanjing city (provincial capital of Jiangsu), and 8.1 million in Hefei 160 

city (provincial capital of Anhui). The CO2 related production data (i.e. cement) and energy consumption 161 

data (i.e. coal and natural gas) were obtained from local official sources using the same method described 162 

in Shen et al. (2014). 163 

To examine the effects of plant photosynthesis on atmospheric CO2 variations, we used NDVI 164 

(Normalized Difference Vegetation Index), SIF (solar-induced chlorophyll fluorescence) and GPP (gross 165 
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primary productivity) information. These three products have a global distribution with spatial resolution 166 

of 0.05
o 

by 0.05
o
. The NDVI has a temporal resolution of 16 days and SIF and GPP products have a 167 

temporal resolution of 8 days (Li & Xiao, 2019;  http://globalecology.unh.edu/data/). Land-use and land-168 

cover classification in Yangtze River Delta for 2014 was applied by using NDVI data of MOD13A2. 169 

2.2 Simulation of atmospheric 𝜹13
C-CO2 170 

2.2.1 General equations  171 

The simulation of atmospheric 𝜹13
C-CO2 is based on mass conservation. First, we briefly describe the 172 

simulation of atmospheric CO2 mixing ratios (more details are provided in Section 2.2.2), following the 173 

previous work of Hu et al., (2018b), where CO2 was simulated as the sum of background (CO2_bg) and the 174 

contribution from all regional sources/sinks (𝜟CO2), as 175 

                                2_ 2_ 2ms bgCO CO CO 

                                           (1)
 

176 

Based on mass conservation, we estimated the 
13

CO2 composition by multiplying the left and right hands 177 

of equation (1) by 𝜹13
C, 

 
178 
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179 

where 𝜹13Ca and 𝜹13Cbg represent the atmospheric 𝜹13C-CO2 and background 𝜹13CO2, 𝜹i
13 is the 𝜹13C-CO2 

180 

for end-member i (including anthropogenic and biological source categories). The 𝜹13C-CO2 contributions 
181 

from all regional sources/sinks can be further reformatted as equation 3,  
182 

                 

13

2 2

1

[ ]
n

i i s

i

CO CO 


                                         (3) 
183 

where 𝜹s is the mixture of all regional end-members (Newman et al., 2008), which will be described in 
184 

detail in section 2.2.5, and 𝜟CO2 represents the sum of CO2 mixing ratio from all regional contributions 
185 

(hereafter  total CO2 enhancement). The product of 𝜹s×𝜟CO2 can be treated as the regional source term.  
186 

To date, there are no available global 𝜹13C-CO2 background products and the choice of 𝜹13Cbg is essential 
187 

to simulating 𝜹13Ca. Here, we apply three strategies. First, we used discrete 𝜹13C-CO2 flask observations 
188 

at Mount Waliguan (hereafter WLG, 36o17’N, 100o54’E; https://www.esrl.noaa.gov/gmd/dv/data/) to 
189 

represent the 𝜹13C-CO2 background signal at our site. These observations were measured at weekly 
190 

intervals to the end of 2015. A digital filtering curve fitting (CCGCRV) regression method was applied to 
191 
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derive hourly background values following Thoning et al. (1989). There are, however, reasons why WLG 
192 

may not be an ideal background site for our study domain. For example, based on the previous simulation 
193 

results for the CO2 background sources, background air masses should originate from the free atmosphere 
194 

at heights of 1000 m or higher above the ground (Hu et al., 2019). Here, the WLG observations were 
195 

made near the surface. Further, WLG is not located at the border of our simulation domain 1. Therefore, 
196 

the strong vertical 𝜹13C-CO2 gradients between the boundary layer and the free tropospheric atmosphere 
197 

(Chen et al., 2006; Guha et al., 2010; Sturm et al., 2013) can cause a high bias  in the 𝜹13C-CO2  
198 

background when using this approach.  
199 

In the second approach, the 𝜹13C-CO2 background signal was estimated with wintertime “clean” air CO2 
200 

and 𝜹13C-CO2 observations at the NUIST site, using the following equation  
201 

            

13 13

2 2
13 1

2_

[ ] [ ]
n

a i i

i
bg

bg

C CO CO

C
CO

 

 

   




                     (4) 

202 

where 𝜹13Ca and [CO2] represent atmospheric 𝜹13C-CO2 and CO2 observations at the NUIST site under 
203 

clean conditions. [𝜟CO2]i is the simulated category-specified CO2 enhancement. Here, we defined clean 
204 

conditions as the lowest 5% quintile wintertime CO2 observations to minimize simulated CO2 
205 

enhancement errors on 𝜹13C-CO2 background calculation. The CO2_bg is obtained from heights 1000 m 
206 

above ground level (see Section 2.2.3).   
207 

In the third approach, we avoid the use of modeled [𝜟CO2]i results and replaced the regional source term 
208 

in equation 4 with 𝜹s×𝜟CO2, as described in equations 3, and used the Miller-Tans regression method to 
209 

calculate monthly 𝜹s. This approach does not require simulation of [𝜟CO2]i or the corresponding 𝜹13C-
210 

CO2 signals. The hourly 𝜹13C-CO2 background value can be derived by using 𝜹s, CO2 background, 
211 

observed atmospheric 𝜹13Ca and CO2 (see details in Section 2.3 and supplement materials). Comparison of 
212 

these three strategies will be evaluated and discussed in Section 3.2.1. Similar methods used to derive 
213 

other background tracers have been used including CO2 (Alden et al., 2016; Verhulst et al., 2017), CO 
214 

(Wang et al., 2010; Ruckstuhl et al., 2012) and CH4 (Zhao et al., 2009; Verhulst et al., 2017; Hu et al., 
215 

2019). To analyze the controlling factors for the 𝜹13C-CO2 seasonality, the CCGCRV regression was 
216 

applied to the background, observations, and simulations. Finally, we derived CCGCRV curving fitting 
217 

lines and defined the difference between peak and trough in one year as the seasonality of 𝜹13C-CO2. 
218 

2.2.2 Simulation of atmospheric CO2 mixing ratios 
219 
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In equation 1, the CO2_bg is obtained from the Carbon Tracker 2016 product, which provides global CO2 220 

distributions from the ground level up to a height of 50 km. We used the concentration at a height of 1000 221 

m above ground where the air mass enters study domain 1 (Figure 1a). The variable 𝜟CO2 was derived by 222 

multiplying the simulated hourly footprint function with the CO2 fluxes (see details in Sect. 2.2.4). The 223 

CO2 fluxes contain anthropogenic CO2 emissions, biological CO2 flux and biomass burning. Here the 224 

anthropogenic CO2 emission sources include power industry, combustion for manufacturing, non-metallic 225 

minerals production (cement), oil refineries/transformation industry, energy for building and road 226 

transportation. Theoretically, 𝜟CO2 represents the CO2 changes contributed by every pixel within the 227 

simulated domain. As shown by Hu et al. (2018a), most of the 𝜟CO2  is contributed by sink/source 228 

activity within the YRD area. In order to quantify the relative contributions within the YRD area, we 229 

separated the study domain into 5 zones based on provincial administrative boundaries including Jiangsu, 230 

Anhui, Zhejiang, Shanghai, and the remaining area outside the YRD. The modeled CO2 was calculated as 231 

follows: 232 

                                  
2

1

n

i

i

CO flux footprint


  
                               (5) 

233 

where iflux corresponds to each CO2 flux category simulated for each domain, and footprint is the model 234 

simulated sensitivity of observed CO2 enhancement to flux changes in each pixel as described below.   235 

2.2.3 WRF-STILT model configuration 236 

The Stochastic Time-Inverted Lagrangian Transport (hereafter STILT) model was used to generate the 237 

above footprint, which is defined as the sensitivity of atmospheric CO2 enhancement to the upwind flux at 238 

the receptor site (observation site). The meteorological fields used to drive the STILT model were 239 

simulated with the Weather Research and Forecasting Model (WRF3.5) at high spatial and temporal 240 

resolutions. The innermost nested domain (D3, 3 km × 3 km, Figure 1) contains the YRD area, where the 241 

most sensitive footprint is located, and the intermediate domain (D2, 9 km × 9 km) and outermost (D1, 27 242 

km × 27 km) represent East China and Central and Eastern China, respectively. The WRF setup used 243 

physical schemes and parameters that have been used previously for inverse analyses (Hu et al., 2019). 244 

These previous studies at the NUIST observation site have shown very good performance in simulating 245 

the meteorological fields, which is essential for reliable STILT simulations. The hourly footprint was 246 

simulated by releasing 500 particles from the NUIST measurement site and tracking their locations every 247 

5 minutes for a period of 7 days. Particle numbers and their residence time within half of the planetary 248 

boundary layer (hereafter PBL) height were used to calculate the footprint over the 7 day period. For the 249 

CO2 background of each hour, we tracked the sources of air particles back trajectory at the end of 7 days 250 
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at the heights above 1000 m, and defined these CO2 mixing ratios in Carbon Tracker as the hourly CO2 251 

background values (Peters et al., 2007). 252 

2.2.4 A priori anthropogenic CO2 emissions and net ecosystem exchange  253 

The Emission Database for Global Atmospheric Research (EDGAR) inventory was selected as the a 254 

priori anthropogenic CO2 emissions (Figure 2a), which is based on the International Energy Agency’s 255 

(IEA) energy budget statistics and provides detailed CO2 source maps (19 categories, including both 256 

organic and fossil emissions, IEA, 2012)  with global coverage at high spatial resolution (0.1
o
 × 0.1

o
). The 257 

EDGAR CO2 emissions are the most up-to-date global inventory (Janssens-Maenhout et al., 2017; 258 

Schneising et al., 2013). Other inventories, including the Fossil Fuel Data Assimilation System (FFDAS, 259 

Rayner et al., 2010) and the Open-source Data Inventory for Anthropogenic CO2 (ODIAC, Oda et al., 260 

2018) also provide global CO2 emissions. However, these inventories only provide total CO2 emissions or 261 

have very limited emission categories, which limit our ability to provide isotope end-member information. 262 

EDGAR v432 provides emission estimates at a monthly time scale. Here, we applied hourly scaling 263 

factors for different categories following Hu et al., (2018a). EDGAR v432 is available only for 2010. We 264 

assume that each CO2 category changes linearly from its 2010 value (Peters et al., 2007) and apply an 265 

annual scaling factor of 1.145 to derive CO2 emissions for 2014 and 2015. This scaling factor is based on 266 

Carbon Tracker anthropogenic CO2 emissions for YRD.  267 

The biological flux or net ecosystem CO2 exchange (NEE) and biomass burning CO2 emissions come 268 

from Carbon Tracker posteriori flux at 3-hour intervals and at a spatial resolution of 1
o
 × 1

o
. Because 269 

NEE is much smaller than the anthropogenic CO2 emissions in such densely developed urban landscapes, 270 

we homogeneously distributed this flux at a spatial resolution of 0.1
o
 within each grid to match the 271 

footprint. 272 

2.2.5 The simulation of carbon isotope ratio of all sources (𝜹s)   273 

The carbon isotope ratio of all the surface sources was calculated as (Newman et al., 2008):
 

274 

                                                                      1

n

i i s

i

p 


 
                                              (6)

 275 

where i  is the 𝜹13
C-CO2 value from source category i, and pi is the corresponding enhancement 276 

proportion. Based on fossil fuel usage characteristics in YRD, we reassigned the EDGAR v432 categories 277 

according to fuel types. Coal was the fuel type for manufacturing, oil for oil refinery, natural gas for 278 

buildings, and diesel and gasoline for transportation. The power industry consumed 5% natural gas and 95% 279 
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coal based on local activity data in YRD (China statistical Yearbook, 2015). The non-metallic mineral 280 

production was mainly for cement. Chemical processes were mainly ammonia synthesis. Based on a 281 

literature review and our previous work (Xu et al., 2017), typical 𝜹13
C-CO2 values for natural gas (−39.06‰ 282 

± 1.07‰), coal (−25.46‰ ± 0.39‰), fuel oil (−29.32‰ ± 0.15‰), gasoline (−28.69‰ ± 0.50‰), 283 

ammonia synthesis (−28.18‰ ± 0.55‰), and diesel (−28.93‰ ± 0.26‰), pig iron (−24.90‰ ± 0.40‰), 284 

crude steel (−25.28‰ ± 0.40‰), cement (0‰ ± 0.30‰), biological and organic emissions (−28.20‰ ± 285 

1.00‰) were used in this study. We also applied a value of −28.20‰ for photosynthesis (Griffis et al., 286 

2008; Lai et al., 2014) because YRD is a region dominated by C3 plants.  287 

To evaluate the simulated 𝜹s, we applied the Miller-Tans and Keeling plot approaches to derive 𝜹s from 288 

the observed concentration and atmospheric 
13

CO2-CO2 (Xu et al. 2017). We then used the results to 289 

evaluate the calculations made with Equation (6).  290 

2.3 Independent IPCC method for anthropogenic CO2 emissions 291 

Large differences between different inventories have been previously found even for the same region 292 

(Berezin et al., 2013; Andrew, 2019). For comparison with the EDGAR v432 inventory results, we 293 

derived the anthropogenic CO2 emissions by using an independent IPCC method. Here, we illustrate the 294 

calculation for cement CO2 emissions. Note that the IPCC only recommended an EF for clinker, which is 295 

an intermediate product of cement. To calculate cement CO2 emissions, we need to calculate it based on 296 

clinker production, as shown in Equation (7), 297 

                      2[ ] cement clinker clinkerCO cement M C EF  
                  

(7)

 298 

where CO2[cement] is the chemical process CO2 emissions for cement production, Mcement is the 299 

production of cement, Cclinker represents the clinker to cement ratio (%), and EFclinker is the CO2 emission 300 

factor for clinker production. The IPCC recommended an EFclinker value of 0.52 ± 0.01 tonne CO2 per 301 

tonne clinker produced, where CaO content for clinker is assumed to be 65% with 100% CaO from 302 

calcium carbonate material (IPCC 2013). The EF appears to be well constrained, showing little variation 303 

among provinces with mean values ranging from 0.512 to 0.525 (Yang et al., 2017). For the Cclinker values, 304 

it generally showed a decreasing trend from 64.5% in 2004 to 56.9% in 2015 for all of China (Figure S1), 305 

with an average value of 57.0% during 2014 and 2015.  306 

2.4 Multiplicative scaling factor method 307 

To quantify anthropogenic CO2 emissions and to compare it with EDGAR products, we first derived the 308 

monthly scaling factors for anthropogenic CO2 emissions using a multiplicative scaling factor (hereafter 309 
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MSF) method (Hu et al., 2019; Sargent et al., 2018; He et al., 2020), and then obtained annual averages. 310 

The monthly scaling factors (SFs) were calculated as: 311 

                                   

2_ 2_ 2_ 2_

2_

obs bg bio fire

ms

CO CO CO CO
MSF

CO

  


                     (8) 

312 

where CO2_obs, 𝜟CO2_bio, 𝜟CO2_fire and 𝜟CO2_ms represent observed CO2 mixing ratios, simulated CO2 313 

enhancements contributed by biological flux, biomass burning and anthropogenic emissions, respectively.  314 

Uncertainties of all factors on the final MSFs were calculated based on Monte Carlo methods, where the 315 

normal sample probability distribution was applied and the upper 97.5% and lower 2.5% of the values 316 

was considered as the uncertainty for MSF (Cao et al., 2016).  317 

3. Results and Discussion 318 

3.1 Evaluation of hourly CO2 mixing ratios 319 

3.1.1 Hourly and monthly CO2 mixing ratio comparisons  320 

This section examines the general performance of simulating hourly CO2 mixing ratios. The two-year 321 

average hourly footprint is shown in Figure 2b where the source area (blue) indicates strong sensitivity of 322 

the CO2 observations to regional sources. This footprint shape is representative of the YRD area. To 323 

quantify the relative contributions from each province, we calculated CO2 enhancements contributed by 324 

Anhui, Jiangsu, Zhejiang, Shanghai, and the remaining area outside of the YRD, respectively. The results 325 

indicate that Jiangsu contributed approximately 80% of the total enhancement (discussed further in 326 

Section 3.1.2).  Comparisons between simulated and observed hourly CO2 mixing ratios are displayed in 327 

Figure 3a for both years. For all hourly data in each year, the model versus observation correlation 328 

coefficient (R) was R = 0.38 (n = 8204, P < 0.001) and RMSE = 29.44 ppm for 2014, and R = 0.35 (n = 329 

7262, P < 0.001) and RMSE = 30.22 ppm for 2015. These results indicate that the model can simulate the 330 

synoptic and diel CO2 variations over the two-year period. The model also performed well in simulating 331 

the monthly and seasonal variations of CO2 mixing ratios (daily averages are shown in Figure S2). The 332 

simulations captured the trend of rising CO2 mixing ratios after October and the drawdown of CO2 below 333 

the background value during the summer.  334 

Figures 3b-d illustrate the average monthly daily, nighttime, and daytime CO2 mixing ratios. These 335 

monthly values contain the effects including atmospheric transport, background fields and variations in 336 

CO2 emissions. The observed and simulated CO2 mixing ratios showed a significant increase from 337 

September 2013 to January 2014. Here, the CO2 mixing ratios increased by 16.0 ppm according to the 338 

model results and 17.2 ppm according to the observations. The background values increased by 8.1 ppm 339 

and accounted for 47% of the total CO2 increase, and the net CO2 flux (a priori) for YRD increased by 340 
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15%. We attributed the remaining 38% increase to changes in atmospheric transport processes including 341 

lower PBL heights in January 2014 than in September 2013. To quantify how variations in PBL height 342 

affected CO2 mixing ratios, we compared the simulated monthly anthropogenic CO2 enhancement 343 

differences in the same months of different years, to eliminate the influence of monthly emission 344 

variations on CO2 enhancements. Twelve monthly paired values were used and are shown in Figure 4a. 345 

This analysis indicates that atmospheric CO2 mixing ratios decreased by about 3.7 ppm for an increase of 346 

PBL height by 100 m. 347 

On an annual timescale, the simulated average CO2 mixing ratios were 436.63 ppm and 437.11 ppm for 348 

2014 and 2015, respectively. Since the anthropogenic CO2 emissions used in the model are the same for 349 

both years, the simulated annual average CO2 difference can be used to quantify the influence associated 350 

with meteorological factors and ecosystem carbon cycling. Between these two years, the CO2 background 351 

increased by 1.78 ppm, the biological enhancement decreased by 1.04 ppm from 2014 to 2015. The 352 

remaining 0.26 ppm change between 2014 and 2015 indicates a relatively small meteorological effect, 353 

such as a slight change in dominant wind direction or a PBL height difference.   354 

The simulated annual average NEE CO2 enhancements were 2.64 ppm and 1.60 ppm for the respective 355 

years. For comparison, the annual average anthropogenic enhancements were 36.20 ppm and 34.90 ppm 356 

for 2014 and 2015, respectively. The monthly NEE enhancement varied from -0.1 ppm in May 2015 to 357 

+6.0 ppm July 2014, indicating NEE contributes positively for enhancement in most months (Figure 5a), 358 

even though the sign of monthly averaged NEE flux in summer was negative (sinks). This positive 359 

contribution was mainly caused by diel PBL height variations between daytime (smaller negative 360 

enhancement) and nighttime (larger positive enhancement). To further evaluate the impact of plant 361 

photosynthetic activity on the regional CO2 cycle, we examined the NDVI, SIF and GPP seasonal patterns 362 

(Figures 4b-c). These three datasets revealed two peaks during each year, which is related to increased 363 

photosynthetic activity. The first peak occurred in May and the second in August-September, 364 

corresponding to the growing season of wheat and corn/rice, respectively (Deng et al., 2015). The land-365 

use classification in YRD for 2014 (Figure S3) shows that north YRD is dominated by agricultural land 366 

and south dominated by forest land, and our observation site was more surrounded by agricultural land 367 

which corresponded well with observed NDVI, SIF and GPP seasonal patterns. The peak SIF and GPP 368 

signals during the summer were about 20 times greater than during the winter. Consequently, we can 369 

ignore the potential influence of photosynthetic activity on the regional CO2 enhancements during the 370 

non-growing seasons.  371 

3.1.2 Components of urban CO2 enhancement  372 
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Here, we diagnose the source contributions to the urban CO2 enhancement. The observed anthropogenic 373 

CO2 enhancements, which were derived by subtracting CO2 background and simulated biological 374 

enhancement from CO2 concentration observations, were 38.36 ppm and 37.89 ppm for 2014 and 2015, 375 

respectively. The corresponding simulated anthropogenic CO2 enhancements were 36.20 ppm and 34.90 376 

ppm. In comparison with the simulated biological CO2 enhancements displayed in Figure 5a, both the 377 

observed and simulated CO2 enhancements are indicative of a large anthropogenic (fossil fuel and cement 378 

production) CO2 emission from the YRD.  379 

Previous studies have also investigated urban CO2 enhancements from a relatively broad range of 380 

developed environments worldwide.  Verhulst et al. (2017) measured CO2 mixing ratios at seven sites in 381 

Los Angeles, USA and concluded that the mean annual enhancement varied between 2.0 ppm and 30.8 382 

ppm, which is considerably lower than our findings. Another study in Washington, USA in February and 383 

July 2013 showed that the CO2 enhancement was less than 20 ppm (Mueller et al., 2018). The urban CO2 384 

observations and modeling study by Martin et al. (2019) at three urban sites in Eastern USA showed an 385 

enhancement of ~21 ppm in February 2013, substantially lower (by ~20 ppm) than our observations.  The 386 

measurements at an urban-industrial complex site in Rotterdam, Netherlands, indicated a CO2 387 

enhancement of only 11 ppm for October to December 2014 (Super et al., 2017). Our enhancements were 388 

significantly higher than all of these previous reports, indicating greater anthropogenic CO2 emissions 389 

than other urban areas. 390 

The anthropogenic components and source area contributions are displayed in Figure 5b-c. During the 391 

study period the average anthropogenic enhancements were 5.1%, 80.2%, 1.9%, 4.4%, and 8.5% for 392 

Anhui, Jiangsu, Zhejiang, Shanghai, and the remaining area outside the YRD, respectively. Although 393 

Shanghai’s area is the smallest within the YRD region and relatively distant (~300 km) from our 394 

observation site, its maximum source contribution at times exceeded 50% (i.e. on 19
th
 September 2013) 395 

via long-distance transport. In general, power industry, manufacturing, non-metallic mineral production, 396 

oil refinery, and other source categories contributed 41.0%, 21.9%, 9.3%, 11.5%, and 16.3% to the total 397 

anthropogenic CO2 enhancement, respectively. The proportions of corresponding CO2 emission 398 

categories to the total anthropogenic emissions of the YRD were 39.8%, 28.4%, 7.4%, 4.1%, and 24.4%, 399 

respectively. We found a relatively large difference between the enhancement proportion and the 400 

emission proportion for oil refinery (from 11.5% to 4.1%) as compared to other categories. This may be 401 

because power industry, manufacturing and non-metallic mineral production were more homogeneously 402 

distributed than oil refinery, and oil refinery activities were closer to our CO2 observation site.  403 

3.1.3 Constraints on monthly anthropogenic CO2 emissions 404 
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To provide a robust comparison of bottom-up CO2 emissions for YRD, we calculated anthropogenic CO2 405 

emissions from both EDGAR v432 and with activity data provided by local governments (Table 1) and 406 

the default IPCC emission factors (https://www.ipcc-nggip.iges.or.jp/EFDB/). The total anthropogenic 407 

CO2 emissions in 2014 were 2.44 × 10
12

 kg and 2.35 × 10
12

 kg according to our own inventory and 408 

EDGAR v432 CO2, respectively, indicating excellent agreement (within 4%) between these approaches. 409 

We constrained the monthly anthropogenic CO2 emissions by using the MSF method (equation 8) and 410 

computed the 12-month average to represent the years of 2014 and 2015. The posteriori results indicate 411 

that the annual scaling factors were 1.03 ± 0.10 for 2014 and 1.06 ± 0.09 for 2015. The anthropogenic 412 

CO2 emissions in year 2015 did not show a significant change compared to 2014, and the overall 413 

estimates were within the uncertainty of the estimates. After applying the average scaling factors for 2014 414 

and 2015, the posteriori anthropogenic CO2 emissions were 2.46 (± 0.24) × 10
12 

kg for YRD area. The 415 

application of the MSF method provides an overall constraint on the anthropogenic CO2 emissions. As 416 

noted, cement CO2 emissions in the YRD is the largest regional source for global cement production (also 417 

displayed in Table 1). 418 

3.2 Simulation of atmospheric 𝜹13
C-CO2  419 

3.2.1 Background atmospheric 𝜹13
C-CO2 420 

To obtain the best representative 𝜹13
C-CO2 background value for the study domain we examined the 421 

values from the three strategies described above (Figure 6). We also compared the 𝜹13
C-CO2 at the WLG 422 

background site with observations at NUIST during winters (Figure S4). This was performed to help 423 

simplify the comparison by removing the effects of plant photosynthetic discrimination. The 𝜹13
C-CO2 at 424 

the WLG site was relatively more depleted in the heavy carbon isotope (or negative, by up to 0.5‰) than 425 

that observed at NUIST for many periods. Theoretically, there are two key factors that can cause the 426 

urban atmospheric 𝜹13
C-CO2 to be relatively more enriched in the heavy carbon isotope (or positive) 427 

compared to the background values including: 1) Discrimination associated with ecosystem 428 

photosynthesis; and 2) Discrimination associated with the CO2 derived from cement production. As 429 

shown earlier, the biological CO2 enhancement was positive in winter, which implies a negligible role of 430 

plants photosynthesis. Further, sensitivity tests for cement CO2 sources showed its influence is much 431 

smaller than observed difference in Figure S4 (discussed in section 3.3.3). Based on the above analyses 432 

and methods introduced in Section 2.3, we concluded that WLG 𝜹13
C-CO2 is not an ideal choice for the 433 

domain. The wintertime 𝜹13
C-CO2 background values, based on strategy 2, were -7.78‰ and -7.61‰ for 434 

2013-2014 and 2014-2015, respectively. The corresponding values, based on strategy 3, were -7.70‰ and 435 

-7.53‰. These background values are more enriched compared to the WLG observations by 0.80‰ to 436 

1.01‰. These derived backgrounds agree well with the monthly PBL 𝜹13
C-CO2 simulation results of 437 
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Chen et al. (2006) who showed that 𝜹13
C-CO2 is 0.6‰ higher above the PBL than in the surface layer 438 

near the ground. Recently, Ghasemifard et al. (2019) showed that hourly 𝜹13
C-CO2 values at Mount 439 

Zugspitze, the highest (2650 m) mountain in Germany, were about -7‰ in the winter for 2013. During an 440 

especially clean air event (10 days in October) at Mount Zugspitze, the average 𝜹13
C-CO2 was 441 

approximately -7.5‰, which is consistent with our estimates using strategies 2 and 3. Based on the 442 

evidence presented above, we believe that strategy 3 is the most robust way to derive a background 𝜹13
C-443 

CO2 for the domain.   444 

3.2.2 Evaluation of 𝜹13
C-CO2 simulations 445 

Figure 7a shows the hourly 𝜹13
C-CO2 simulations over a two-year period. To the best of our knowledge, 446 

this is the first time that 𝜹13
C-CO2 has been simulated at an hourly time scale for an urban region. The 447 

simulations are consistent with the observations at daily, monthly and annual time scales, where the 448 

average value of observations (simulations) were -8.69‰ (-8.68‰) and -8.52‰ (-8.45‰) for 2014 and 449 

2015, respectively. The corresponding correlation was R = 0.54 (P < 0.001) and R = 0.52 (P < 0.001). 450 

The root mean square error between observations and simulations was 1.07‰ for 2014 and 1.10‰ for 451 

2015 (Table 2). Further, the observed and simulated 𝜹13
C-CO2 values showed seasonal variations that 452 

increased in summer and decreased in winter. This pattern mirrored the CO2 mixing ratios for both 453 

observations and simulations (Figures 3 and 7). Similar relations and seasonal variations of 𝜹13
C-CO2 454 

have been reported in other urban areas (Sturm et al., 2006; Guha & Ghosh, 2010; Moore & Jacobson, 455 

2015; Pang et al., 2016).
 
The simulated hourly NEE CO2 enhancement is also shown in Figure 7b. Note 456 

that negative values indicate net CO2 sinks and positive values indicate net CO2 sources. We can see large 457 

hourly variations in the growing seasons and positive enhancements during nighttime that are generally 458 

larger than negative enhancements during daytime. This shows the potential influence of NEE on 𝜹13
C-459 

CO2 seasonality. To date, no study has quantified the relative contributions to the 𝜹13
C-CO2 seasonality. 460 

Here, we re-evaluate and quantify the main factors contributing to its seasonality based on the 461 

combination of 𝜹13
C-CO2 observations and simulations in the following section.   462 

Here, we examine the comparisons for winter and summer in greater detail. The simulations showed that 463 

the model can generally capture the diel variations of observed hourly 𝜹13
C-CO2 variations (Figure 8). 464 

Statistics between observations and simulations for two seasons are shown in Table 2. The observed 465 

seasonal average significantly increased, by 1.18‰, from winter 2013-2014 (-9.27‰) to summer 2014 (-466 

8.09‰). The simulations showed a similar seasonal increase of 1.35‰. Some large discrepancies are 467 

evident and generally caused by the simulated total CO2 enhancement biases and the negative relationship 468 

between 𝜹13
C-CO2 and the CO2 enhancement.  469 
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Comparisons between observations and simulations for daily average CO2 mixing ratio and 𝜹13
C-CO2 are 470 

also shown in Figure 9. Although the data are distributed around the 1:1 line for both seasons, there is less 471 

scatter and higher correlation in the winter than in the summer. We attributed this to the more complex 472 

biological CO2 sinks in the summer, which are not adequately resolved by the relatively coarse model 473 

grid (1
o
 by 1

o
). 474 

3.2.3 Mechanisms controlling the 𝜹13
C-CO2 seasonality 475 

The mechanisms driving these seasonal variations are examined below. The peak and trough in the 476 

observed 𝜹13
C-CO2 signal was observed in December and July, respectively, yielding an amplitude of 477 

1.51‰. This was consistent with the simulated amplitude of 1.53‰. These results support that the 478 

simulated 𝜹13
C-CO2 seasonality agreed well with the observations (Figure 10), and can be used to further 479 

diagnose the mechanisms contributing to the 𝜹13
C-CO2 seasonality. According to equation 2, the 𝜹13

C-480 

CO2 seasonality can be attributed to four factors including: (1) A change in the background 𝜹13
C-CO2 481 

value from -7.64‰ in December to -6.66‰ in July; (2) A change in CO2 background from 399 ppm to 482 

398 ppm; (3) The total CO2 enhancement change from 45.7 ppm to 37.3 ppm; and (4) The change in the 483 

isotope composition of the CO2 enhancements causing 𝜹s to vary from -26.1‰ to -22.8‰. 484 

To quantify each mechanism’s contribution to the seasonality of atmospheric 𝜹13
C-CO2, we recalculated 485 

𝜹13
C-CO2 by using the monthly averages as described above. First, we calculated 𝜹13

C-CO2 in December 486 

and July, which were -9.54‰ and -8.04‰, respectively, with amplitude of 1.50‰. Next, we replaced the 487 

𝜹13
C-CO2 background value in December (-7.64‰) with July (-6.67‰). The recalculated 𝜹13

C-CO2 was -488 

8.66‰ in December, indicating that the change in 𝜹13
C-CO2 background value caused a change of 0.88‰ 489 

(9.54‰ minus -8.66‰) to the seasonality. By changing both the total CO2 enhancement and background 490 

values, the recalculated 𝜹13
C-CO2 was -8.32‰, contributing a 0.34‰ change in the seasonality (-8.66‰ 491 

minus -8.32‰). Finally, by changing 𝜹s from -26.1‰ to -22.8‰, together with the change in background 492 

value, the recalculated 𝜹13
C-CO2 was -8.32‰ –a change of 0.34‰ (i.e. -8.66‰ minus -8.32‰). This 493 

indicates that both the total CO2 enhancement and change in 𝜹s contributed equally to the regional source 494 

term, causing a variation of 0.62‰ (i.e. 1.50‰ minus 0.88‰). Based on the above analyses, we attributed 495 

59% and 41% of the 𝜹13
C-CO2 seasonality to the changing 𝜹13

C background term and regional source 496 

terms, respectively. Further, the total CO2 enhancement and CO2 enhancement components contributed 497 

equally (about 20%) to the 𝜹13
C-CO2 seasonality.  498 

To investigate how ecosystem photosynthetic discrimination and respiration affected atmospheric 𝜹13
C-499 

CO2 seasonality, we simulated the 𝜹13
C-CO2 again for two cases: (1) excluding photosynthetic 500 

discrimination, and (2) excluding both photosynthetic discrimination and respiration. Note that only NEE 501 
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was used in our study with no partitioning between photosynthesis and respiration in the daytime. 502 

Hereafter, we use negative NEE to define case 1 when photosynthesis exceeded respiration. The results 503 

are shown in Figure 10 b-c. Overall, the negative CO2 enhancement (i.e. photosynthesis > respiration) 504 

caused atmospheric 𝜹13
C-CO2 to become more enriched than the baseline simulations with maximum 505 

values around 1‰ between April and October (Figure 10b), and positive CO2 enhancement (i.e. via 506 

respiration) caused atmospheric 𝜹13
C-CO2 to become more depleted compared to the baseline simulations 507 

through the whole year (Figure 10c). By applying the CCGRCV fitting technique to the 𝜹13
C-CO2 for the 508 

above two cases, we found that the 𝜹13
C-CO2 seasonality decreased to 1.45‰ in case 1, indicating 509 

ecosystem photosynthetic discrimination explained only 0.08‰ of the seasonality (1.53‰ minus 1.45‰). 510 

For case 2, the 𝜹13
C-CO2 trough in winter slightly increased by 0.08‰ and peak in summer increased by 511 

0.20‰, these two factors finally lead the seasonality increase to 1.66‰, which were caused by much 512 

larger respiration CO2 enhancement in summer than in winter (Figure 7b).  These results indicate that 513 

biological respiration reduced the 𝜹13
C-CO2 seasonality by 0.20‰, and that negative NEE (photosynthetic 514 

discrimination) acted to increase the 𝜹13
C-CO2 seasonality by 0.08‰. Generally, ecosystem 515 

photosynthesis played a minor role in controlling the atmospheric 𝜹13
C-CO2 seasonality within this urban 516 

area. In other words, the anthropogenic CO2 emissions played a much larger role than the plants. 517 

As shown in Figure 5, CO2 sources from power industry, combustion for manufacturing, non-metallic 518 

mineral production and oil refineries and transformation industry were the top 4 contributors to the CO2 519 

enhancements. We simulated atmospheric 𝜹13
C-CO2 by assuming that no CO2 was emitted from each of 520 

these 4 categories. The simulations were performed by excluding one category at a time. The results 521 

indicated that atmospheric 𝜹13
C-CO2 seasonality was 1.30‰, 1.57‰, 1.30‰, and 1.47‰, if excluding 522 

power industry, combustion for manufacturing source, oil refineries/transformation industry, and non-523 

metallic mineral production sources, respectively. In other words, power industry and oil refineries/ 524 

transformation industry together contributed a 0.40‰ to the total regional source term of 0.62‰. The 525 

cement sources played a role in enriching (0.05‰ to 0.07‰) the atmospheric 𝜹13
C-CO2 in the heavy 526 

isotope, contrary to all other anthropogenic CO2 sources.   527 

3.3 Sensitivity analysis 528 

3.3.1 Comparison of 𝜹s·𝜟CO2 529 

Based on equation 2, the regional source term determines the hourly/daily variations of 𝜹13
C-CO2, which 530 

is treated as a signal added to the background signal. To evaluate the model simulated regional source 531 

term with respect to the observations we examined daily averages for winter to minimize the influence of 532 

photosynthesis. In Figure 11a, the observed daily 𝜹s·𝜟CO2 values are compared with the simulated values 533 
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using the a priori anthropogenic CO2 emissions. Here 𝜟CO2 represents the total CO2 enhancement for 534 

both observations and simulations. The product 𝜹s·𝜟CO2 can be interpreted as the regional source term.  535 

The average values were -1009.0 (and -841.9) ppm·‰ for observations and -1096.7 (and 1000.5) ppm·‰ 536 

for model results in 2014 (and 2015). The slope of the regression fit was 0.99 (±0.12) and the intercept 537 

was -151.7 (±130.1) for all data during the two winters. After applying the monthly scaling factors to 538 

constrain the anthropogenic CO2 emissions, the re-calculated results were closer to the 1:1 line with a 539 

slightly improved correlation (R increased from 0.47 to 0.50; Figure 11b). Note that the application of the 540 

monthly scaling factors only impacts the 𝜟CO2 but not 𝜹s. The uncertainty in 𝜹s will be discussed next.  541 

3.3.2 Comparison between ms and s   542 

To evaluate the 𝜹s simulations, we compared observed and simulated 𝜹s as displayed in Figure 12a for all-543 

day and nighttime conditions. Here, nighttime simulations were selected to minimize the effects of 544 

ecosystem photosynthesis and to focus on the anthropogenic CO2 sources. Two methods were used to 545 

calculate 𝜹s from the observations including the Miller-Tans and Keeling plot methods. Although 𝜹s 546 

differed between these two methods, both displayed similar seasonal variations with higher values (𝜹13
C 547 

enrichment) in summer and lower values in winter.  Such seasonal variations were also observed at other 548 

urban sites including Beijing, China (Pang et al., 2016), Bern, Switzerland (Sturm et al., 2006), Bangalore 549 

city, India (Guha and Ghosh, 2010),Wroclaw, Poland (Górka and Lewicka-szczebak, 2013). 550 

If the CO2 sources/sinks are homogeneously distributed and without monthly variations, the atmospheric 551 

CO2 enhancement components would remain unchanged, and there would be no seasonal changes in 𝜹s. 552 

In reality, variations in atmospheric transport processes interact with regional CO2 sink/source changes 553 

that cause monthly variations in 𝜹s. The comparison of 𝜹s between simulations and observations indicated 554 

that the model performed well in capturing the mixing and transport of CO2 from different sources. We 555 

can also infer from their difference that the proportions of some CO2 categories were biased in the a 556 

priori emission map. This can be caused by both the downscaling of EDGAR inventory distribution to 557 

0.1
o
 and the magnitude of some emissions categories. Among all anthropogenic sources, the most 558 

significant linear relations were found between the simulated anthropogenic 𝜹s and cement CO2 559 

proportions for these 24 months, with slopes of 0.33‰ for nighttime and 0.35‰ for all-day conditions (R
2
 560 

= 0.97, p < 0.001; Figure 12 b & c). These results strongly support our hypothesis that cement CO2 561 

emissions dominated monthly 𝜹s variations in the YRD region. 562 

3.3.3 Sensitivity of atmospheric 𝜹13
C-CO2 and 𝜹s to cement CO2 emissions 563 
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The discrepancy between simulated and observed 𝜹s highlights that some CO2 sources were biased in the 564 

a priori inventories. As discussed above, cement CO2 emissions had the most distinct 𝜹13
C-CO2 end-565 

member value of 0‰ ± 0.30‰. Combined with its large emission, it had a strong potential to influence 𝜹s 566 

and 𝜹13
C-CO2. YRD represents the largest cement producing region in the world. Its relative proportion 567 

to total national anthropogenic CO2 emissions is about 5.5% to 6.5% based on IPCC method and 7.3% for 568 

EDGAR. These proportions are 50% greater than the global average of 4% (Boden et al., 2016) and much 569 

larger than most countries (Andrew, 2018) and other large urbanized areas such as California (2%; Cui et 570 

al., 2019).  571 

The local activity data reveals that the cement production increased from 3.55 × 10
8 
tons in 2010 to 4.56 × 572 

10
8 

tons in 2014 in the YRD area. Our own calculation of the national clinker-to-cement indicated a 573 

decreasing trend from 64% in 2004 to around 56% in 2015. Here, we applied the value of 61.7% for 2010 574 

and the average value of 57.0% for 2014 to 2015. We then used the EF for clinker (0.52 ± 0.01 tonne CO2 575 

per tonne clinker; IPCC 2013). Finally, the calculated cement CO2 emissions were 1.14 (± 0.02) × 10
8
 576 

tonne for 2010 and 1.35 (±0.03) × 10
8
 tonne for 2014, indicating an 18.4% increase over this time period. 577 

This result is close to the scaling factor 1.145 for the total anthropogenic CO2 emissions for the same 578 

period.   579 

The cement CO2 emission was 1.45×10
8
 tonne for the EDGAR products in 2010. Applying the scaling 580 

factor of 1.184, based on our independent method, the EDGAR cement CO2 emissions was 1.72×10
8
 581 

tonne for the year of 2014. The 27% difference between the EDGAR inventory and our independent 582 

calculations probably resulted from large errors in the clinker-to-cement ratio and regional activity data. 583 

Ke et al. (2013) reported a much higher clinker-to-cement ratio of 73% to 70% for China during 2005 and 584 

2007 than the ratio of 57% in 2014 to 2015. If we applied a 70% ratio, the EDGAR cement CO2 emission 585 

would change to 1.28×10
8
 tonne for 2010.  586 

The monthly cement emission proportions varied from 6.21% to 8.98%, while its enhancement proportion 587 

was much larger and could reach 16.85%. In other words, favorable atmospheric transport processes 588 

amplified the cement CO2 enhancement proportion at our observational site (Table S2). To quantify the 589 

extent to which the cement CO2 enhancement components can affect 𝜹s and atmospheric 𝜹13
C-CO2 we 590 

conducted sensitivity tests by changing the cement enhancement proportions to 0.8, 1.2, 1.4, 1.6, 1.8, and 591 

2 times its original value. These sensitivity tests are based on two different assumptions for cement CO2 592 

enhancement changes: (1) There is no bias in the total anthropogenic CO2 enhancement such that a 593 

proportional increase/decrease in the cement component does not change the relative anthropogenic 594 

contributions; (2) Only the cement enhancement changes. From equation 2, these two assumptions will 595 

change both 𝜹s and 𝜹13
C-CO2 but with different amplitude. 596 
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Results for the first assumption are shown in Figure 13a-b for both nighttime and all-day 𝜹s simulations. 
597 

The simulated 𝜹s increased linearly with the increase of cement proportions, at a rate of 2.73‰ increase 
598 

per 10% increase of cement proportions in the nighttime and 2.72‰ for all-day. The result for the second 
599 

assumption is relatively similar with the first one, yielding a 2.32‰ increase for a 10% increase in the 
600 

cement proportion. As shown in Table S2, the cement CO2 enhancement proportions increased from 5.60% 
601 

- 6.77% (December) to 13.16% - 16.85% (June), which is the primary cause for the observed monthly 𝜹s 
602 

variations. The high sensitivity of 𝜹s to cement CO2 proportions can partly explain the relative difference 
603 

of modeled 𝜹s and indicates a potential advantage to constrain cement CO2 emissions by using 
604 

atmospheric 𝜹13
C-CO2 observations. Finally we calculated how cement CO2 can change atmospheric 

605 

𝜹13
C-CO2 (Figure 13c). These results show that atmospheric 𝜹13

C-CO2 is more sensitive to the first 
606 

assumption than the second assumption. These sensitivity analyses indicate that a cement CO2 
607 

enhancement relative change of 20% (or 1.57% increase) can cause a 0.013‰ - 0.038‰ change in the 
608 

atmospheric 𝜹13
C-CO2. These results indicate that 𝜹s is more sensitive to cement CO2 emissions compared 

609 

with other anthropogenic and biological CO2 sources/sinks.  
610 

4 Conclusions 611 

(1) Total annual anthropogenic CO2 emissions for the YRD showed high consistency between the top-612 

down and bottom-up approaches with a bias less than 6%. 613 

(2) Approximately 59% and 41% of the 𝜹13
C-CO2 seasonality were attributed to the change in 𝜹13

C 614 

background value and the regional CO2 source term, respectively.  615 

(3) Power industry and oil refineries/ transformation industry together contributed 0.40‰, accounting 616 

for 64.5% of all regional source terms (0.62‰). 617 

(4) If excluding all ecosystem respiration and photosynthetic discrimination in YRD area, 𝜹13
C-CO2 618 

seasonality will increase from 1.53‰ to 1.66‰.  619 

(5) Atmospheric transport processes in summer amplified the cement CO2 enhancement proportions in 620 

the YRD area, which dominated monthly 𝜹s variations. 𝜹s was shown to be a strong linear relation 621 

with cement CO2 proportion in the YRD area. 622 

Acknowledgements 623 

This research was partially supported by start-up foundation (163108094) from Nanjing Forestry 624 

University, Natural Science Foundation of Jiangsu Province (BK20181100), and  625 

Key Research Foundation of Jiangsu Meteorological Society (KZ201803).  626 

Code/Data availability 627 

https://doi.org/10.5194/acp-2020-627
Preprint. Discussion started: 11 August 2020
c© Author(s) 2020. CC BY 4.0 License.



21 
 

The data presented in this manuscript has been uploaded on our group website: 628 

https://yncenter.sites.yale.edu/data-access. 629 

Author contribution: Cheng Hu, Timothy J. Griffis and Xuhui Lee designed the study, Cheng 630 

Hu performed the model simulation, Cheng Hu write the original draft, Supervision: Timothy J. 631 

Griffis and Xuhui Lee, Data acquisition: Jiaping Xu, Wenjing Huang, Dong Yang, Yan Chen, 632 

Cheng Liu, Shoudong Liu, and Lichen Deng,  all co-authors contributed to the data analysis.  633 

Competing interests: The authors declare that they have no conflict of interest. 634 

 635 

References: 636 

Alden, C. B., Miller, J. B., and Gatti, L. V.: Regional atmospheric CO2 inversion reveals seasonal and geographic 637 
differences in Amazon net biome exchange, Global Change Biology, 22, 3427–3443, 638 
https://doi.org/10.1111/gcb.13305, 2016. 639 

Andrew, R. M.: Global CO2 emissions from cement production, Earth System Science Data, 10, 2213–2239. 640 
https://doi.org/10.5194/essd-2017-77, 2018. 641 
Ballantyne, A. P., Miller, J. B., Baker, I. T., Tans, P. P., and White, J. W. C.: Novel applications of carbon isotopes 642 
in atmospheric CO2: what can atmospheric measurements teach us about processes in the biosphere? Biogeosciences, 643 
8, 3093– 3106, https://doi.org/10.5194/bg-8-3093-2011, 2011. 644 

Boden, T., Andres, R., and Marland, G.: Global, Regional, and National Fossil-Fuel CO2 Emissions (1751 - 2013) 645 
(V. 2016) [Data set]. Environmental System Science Data Infrastructure for a Virtual Ecosystem; Carbon Dioxide 646 
Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States).  647 

Berezin, E. V., Konovalov, I. B., Ciais, P., Richter, A., Tao, S., Janssens-Maenhout, G., Beekmann, M., and Schulze, 648 
E.-D.: Multiannual changes of CO2 emissions in China: indirect estimates derived from satellite measurements of 649 
tropospheric NO2 columns, Atmos. Chem. Phys., 13, 9415–9438, https://doi.org/10.5194/acp-13-9415-2013, 2013.  650 

Brioude, J., Angevine, W. M., Ahmadov, R., Kim, S.-W., Evan, S., McKeen, S. A., Hsie, E.-Y., Frost, G. J., 651 
Neuman, J. A., Pollack, I. B., Peischl, J., Ryerson, T. B., Holloway, J., Brown, S. S., Nowak, J. B., Roberts, J. M., 652 
Wofsy, S. C., Santoni, G. W., Oda, T., and Trainer, M.: Top-down estimate of surface flux in the Los Angeles Basin 653 
using a mesoscale inverse modeling technique: assessing anthropogenic emissions of CO, NOx and CO2 and their 654 
impacts, Atmos. Chem. Phys., 13, 3661–3677, https://doi.org/10.5194/acp-13-3661-2013, 2013.  655 

Bréon, F. M., Broquet, G., Puygrenier, V., Chevallier, F., Xueref-Remy, I., Ramonet, M., Dieudonné, E., Lopez, M., 656 
Schmidt, M., Perrussel, O., and Ciais, P.: An attempt at estimating Paris area CO2 emissions from atmospheric 657 
concentration measurements, Atmos. Chem. Phys., 15, 1707–1724, https://doi.org/10.5194/acp-15-1707-2015, 2015.  658 

Cao, C., Lee, X., Liu, S., Schultz, N., Xiao, W., Zhang, M., and Zhao, L.: Urban heat islands in China enhanced by 659 
haze pollution. Nature Communications, 7(1), doi: 10.1038/ncomms12509, 2016.  660 

Chen, B., Chen J., Tans, P., and Huang L.: Simulating dynamics of δ
13

C of CO2 in the planetary boundary layer over 661 
a boreal forest region : covariation between surface fluxes and atmospheric mixing, Tellus, 537–549, 662 
https://doi.org/10.1111/j.1600-0889.2006.00213.x, 2006.  663 

Chen, J. M., Mo, G., and Deng, F.: A joint global carbon inversion system using both CO2 and 
13

CO2 atmospheric 664 
concentration data, Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-53, 2016. 665 

https://doi.org/10.5194/acp-2020-627
Preprint. Discussion started: 11 August 2020
c© Author(s) 2020. CC BY 4.0 License.



22 
 

Cai B., Wang J., He J., and Geng Y.: Evaluating CO2 emission performance in China’s cement industry: An 666 
enterprise perspective. Applied Energy, 2015.11.006, https://doi.org/10.1016/j.apenergy.2015.11.006, 2015.  667 

Cui, X., Newman, S., Xu, X., Andrews, A. E., Miller, J., Lehman, S.: Atmospheric observation-based estimation of 668 
fossil fuel CO2 emissions from regions of central and southern California. Science of the Total Environment, 664, 669 
381–391, https://doi.org/10.1016/j.scitotenv.2019.01.081, 2019.  670 

Deng L., Liu S., and Zhao X., Study on the change in land cover of Yangtze River Delta based on MOD13A2 data, 671 
China Science Paper, 000(015):1822-1827 (in Chinese). 672 

Gately, C. K., Hutyra, L. R., and Wing, I. S.: Cities, traffic, and CO2 : A multidecadal assessment of trends, drivers , 673 
and scaling relationships, Proceedings of the National Academy of Sciences of the United States of America, 112(16), 674 
4999–5004, https://doi.org/10.1073/pnas.1421723112, 2015.  675 

Gately, C. K., and Hutyra, L. R.: Large uncertainties in urban-scale carbon emissions. Journal of Geophysical 676 
Research: Atmospheres, 122, 11,242–11,260, https://doi.org/10.1002/2017JD027359, 2017. 677 

Graven, H. D., Fischer, M. L., Lueker, T., Jeong, S., Guilderson, T. P., Keeling, R.: Assessing fossil fuel CO2 678 
emissions in California using atmospheric observations and models. Environmental Research Letters, 13(2018) 679 
065007, https://doi.org/ 10.1088/1748-9326/aabd43, 2018.  680 

Griffis, T. J., Sargent, S., Baker, J., Lee, X., Tanner, B., Greene, J., Swiatek, E., and K. Billmark K.: Direct 681 
measurement of biosphere-atmosphere isotopic CO2 exchange using the eddy covariance technique, Journal of 682 
Geophysical Research: Atmospheres, 113, D08304, 2008.  683 

Griffis, Timothy J.: Agricultural and Forest Meteorology Tracing the flow of carbon dioxide and water vapor 684 
between the biosphere and atmosphere : A review of optical isotope techniques and their application. Agricultural 685 
and Forest Meteorology, 174–175, 85–109, 2013.  686 

Górka, M., and Lewicka-Szczebak, D.: One-year spatial and temporal monitoring of concentration and carbon 687 
isotopic composition of atmospheric CO2 in a Wroclaw (SW Poland) city area. Applied Geochemistry, 35:7-13, 688 
https://doi.org/10.1016/j.apgeochem.2013.05.010, 2013. 689 

Guha, T., and Ghosh, P.:  Diurnal variation of atmospheric CO2 concentration and δ
13

C in an urban atmosphere 690 
during winter-role of the Nocturnal Boundary Layer. Journal of Atmospheric Chemistry, 65(1), 1–12, https://doi.org/ 691 
10.1007/s10874-010-9178-6, 2010.  692 

Hu, C., Liu, S., Wang, Y., Zhang, M., Xiao, W., Wang, W., and Xu, J.: Anthropogenic CO2 emissions from a 693 
megacity in the Yangtze River Delta of China. Environmental Science and Pollution Research, 25(23), 23157–694 
23169, https://doi.org/10.1007/s11356-018-2325-3, 2018.  695 

Hu, C., Griffis, T. J., Liu, S., Xiao, W., Hu, N., Huang, W., Yang D., and Lee X.: Anthropogenic methane emission 696 
and its partitioning for the Yangtze River Delta region of China. Journal of Geophysical Research: Biogeosciences, 697 
124, https://doi.org/10.1029/2018JG004850, 2019. 698 

Hu, C., Griffis, T. J., Lee, X., Millet, D. B., Chen, Z., Baker, J. M., and Xiao, K.: Top-Down constraints on 699 
anthropogenic CO2 emissions within an agricultural-urban landscape. Journal of Geophysical Research: 700 
Atmospheres, 123(9), 4674–4694, https://doi.org/10.1029/2017JD027881, 2018b. 701 

Hu, L., Andrews, A. E., Thoning, K. W., Sweeney, C., Miller, J. B., Michalak, A. M.: Enhanced North American 702 
carbon uptake associated with El Niño. Science Advances, 5, eaaw0076, https://doi.org/10.1126/sciadv.aaw0076, 703 
2019. 704 

He, J., Naik, V., Horowitz, L. W., Dlugokencky, E., and Thoning, K.: Investigation of the global methane budget 705 
over 1980–2017 using GFDL-AM4.1, Atmos. Chem. Phys., 20, 805–827, https://doi.org/10.5194/acp-20-805-2020, 706 
2020. 707 

https://doi.org/10.5194/acp-2020-627
Preprint. Discussion started: 11 August 2020
c© Author(s) 2020. CC BY 4.0 License.



23 
 

Intergovernmental Panel on Climate Change (IPCC). Climate change: The physical science basis. In T. F. Stocker, 708 
D. Qin, G.-K. Plattner, et al. (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the 709 
Intergovernmental Panel on Climate Change (Chapter 6, Table 6.1, p. 22). Cambridge, United Kingdom and New 710 
York: Cambridge University Press, 2013. 711 

IEA, 2012. CO2 Emissions from Fuel Combustion 1971–2010, 2012 Edition. International Energy Agency (IEA), 712 
Paris 2012. 713 

Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F.: EDGAR v4.3.2 Global 714 
Atlas of the three major Greenhouse Gas Emissions for the period 1970-2012. Earth System Science Data 715 
Discussions, (August), 1–55. https://doi.org/10.5194/essd-2017-79, 2017. 716 

Jiang, F., Wang, H. M., Chen, J. M., Machida, T., Zhou, L. X., Ju, W. M., Matsueda, H., and Sawa, Y.: Carbon 717 
balance of China constrained by CONTRAIL aircraft CO2 measurements, Atmos. Chem. Phys., 14, 10133–10144, 718 
https://doi.org/10.5194/acp-14-10133-2014, 2014.  719 

Ke J., Mcneil M., Price L., and Zhou N.: Estimation of CO2 emissions from China's cement production: 720 
Methodologies and uncertainties[J]. Energy Policy, 57:172-181, https://doi.org/10.1016/j.enpol.2013.01.028, 2013. 721 

Keeling, C. D.: The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus, 12(2), 200–722 
203. Keeling, C. D. (1961). The concentration and isotopic abundances of carbon dioxide in rural and marine air. 723 
Geochimica et Cosmochimica Acta, 24(3-4), 277–298, https://doi.org/10.1111/j.2153-3490.1960.tb01300.x, 1960.  724 

Lai, C., Ehleringer, J. R., Tans, P., and Wofsy, S. C.: Estimating photosynthetic 
13

C discrimination in terrestrial CO2 725 
exchange from canopy to regional scales, Global Biogeochemical Cycles, 18, GB1041, 726 
https://doi.org/1010.1029/2003gb002148, 2014.  727 

Li, X., and Xiao, J.: A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, 728 
MODIS, and reanalysis data. Remote Sensing, 11, 517, https://doi.org/10.3390/rs11050517, 2019. 729 

Lauvaux, T., Miles, N. L., Deng, A., Richardson, S. J., Cambaliza, M. O., Davis, K. J., and Wu K.: High-resolution 730 
atmospheric inversion of urban CO2 emissions during the dormant season of the Indianapolis flux experiment 731 
(INFLUX). Journal of Geophysical Research: Atmospheres, 121(10), 5213–5236, 732 
https://doi.org/10.1002/2015JD024473, 2016.  733 

Martin, C. R., Zeng, N., Karion, A., Mueller, K., Ghosh, S., Lopez-coto, I.: Investigating sources of variability and 734 
error in simulations of carbon dioxide in an urban region. Atmospheric Environment, 199, 55–69, 735 
https://doi.org/10.1016/j.atmosenv.2018.11.013, 2019.  736 

Moore, J., & Jacobson, A. D. (2015). Seasonally varying contributions to urban CO2 in the Chicago , Illinois , USA 737 
region : Insights from a high-resolution CO2 concentration and 𝜹13

C record, Elementa: Science of the Anthropocene, 738 
3:000052.  739 

Mueller, K., Yadav, V., Lopez-Coto, I., Karion, A., Gourdji, S., Martin, C., and Whetstone, J.: Siting Background 740 
Towers to Characterize Incoming Air for Urban Greenhouse Gas Estimation: A Case Study in the Washington, 741 
DC/Baltimore Area. Journal of Geophysical Research: Atmospheres, 123(5), 2910–2926,  742 
https://doi.org/10.1002/2017JD027364, 2018.  743 

McManus, J.B., Nelson, D.D., Zahniser, M.S.: Long-term continuous sampling of 
12

CO2, 
13

CO2 and 
12

C
18

O
16

O in 744 
ambient air with a quantum cascade laser spectrometer. Isotopes in Environmental and Health Studies, 46:1, 49-63, 745 
https://doi.org/10.1080/10256011003661326, 2010. 746 

Miller, J. B., Tans, P. P., White, J. W. C., Conway, T. J., and Vaughn, B. W.: The atmospheric signal of terrestrial 747 
carbon isotopic discrimination and its implication for partitioning carbon fluxes, Tellus B, 55, 197–206,  748 
https://doi.org/10.1034/j.1600-0889.2003.00019.x, 2003. 749 

https://doi.org/10.5194/acp-2020-627
Preprint. Discussion started: 11 August 2020
c© Author(s) 2020. CC BY 4.0 License.



24 
 

Nathan, B., Lauvaux, T., Turnbull, J. C., and Richardson, S.: Source Sector Attribution of CO2 Emissions Using an 750 
Urban CO/CO2 Bayesian Inversion System. Journal of Geophysical Research: Atmospheres, 123, 13611-13621, 751 
https://doi.org/10.1029/2018JD029231, 2018. 752 

Newman, S., Xu, X., Affek, H. P., Stolper, E., and Epstein S.: Changes in mixing ratio and isotopic composition of 753 
CO2 in urban air from the Los Angeles basin, California, between 1972 and 2003, Journal of Geophysical Research, 754 
113, D23304, https://doi.org/10.1029/2008JD009999, 2008. 755 

Newman, S., Xu, X., Gurney, K. R., Hsu, Y. K., Li, K. F., Jiang, X., Keeling, R., Feng, S., O'Keefe, D., Patarasuk, 756 
R., Wong, K. W., Rao, P., Fischer, M. L., and Yung, Y. L.: Toward consistency between trends in bottom-up 757 
CO2 emissions and top-down atmospheric measurements in the Los Angeles megacity, Atmos. Chem. Phys., 16, 758 
3843–3863, https://doi.org/10.5194/acp-16-3843-2016, 2016.  759 

Oda, T., Maksyutov, S., and Andres, R. J.: The Open-source Data Inventory for Anthropogenic CO2, version 2016 760 
(ODIAC2016): a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and 761 
surface flux inversions, Earth Syst. Sci. Data, 10, 87–107, https://doi.org/10.5194/essd-10-87-2018, 2018.  762 

Pang, J., Wen, X., and Sun, X.: Mixing ratio and carbon isotopic composition investigation of atmospheric CO2 in 763 
Beijing, China. Science of the Total Environment, 539, 322–330, https://doi.org/10.1016/j.scitotenv.2015.08.130, 764 
2016. 765 

Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie, K., John B. M., Lori M. 766 
P. B., Gabrielle P., Adam I. H., Douglas E. J. W., Guido R. v., James T. R., Paul O. W., Maarten C. K., and Pieter P. 767 
T.: An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proceedings of the 768 
National Academy of Sciences, 104(48), 18925–18930, https://doi.org/10.1073/pnas.0708986104, 2007.  769 

Pataki, D. E., Bowling, D. R., Ehleringer, J. R., and Zobitz, J. M.: High resolution atmospheric monitoring of urban 770 
carbon dioxide sources, Geophysical Research Letter, 33, L03813, https://doi.org/10.1029/2005GL024822, 2006.   771 

Pillai, D., Buchwitz, M., Gerbig, C., Koch, T., Reuter, M., Bovensmann, H., Marshall, J., and Burrows, J. P.: 772 
Tracking city CO2emissions from space using a high-resolution inverse modelling approach: a case study for Berlin, 773 
Germany, Atmos. Chem. Phys., 16, 9591–9610, https://doi.org/10.5194/acp-16-9591-2016, 2016. 774 

Ruckstuhl, A. F., Henne, S., Reimann, S., Steinbacher, M., Vollmer, M. K., O'Doherty, S., Buchmann, B., and 775 
Hueglin, C.: Robust extraction of baseline signal of atmospheric trace species using local regression, Atmos. Meas. 776 
Tech., 5, 2613–2624, https://doi.org/10.5194/amt-5-2613-2012, 2012.  777 

State Statistical Bureau. China Statistical Yearbook 2015; China Statistical Press: Beijing, China, 2016. (In Chinese) 778 

Seto, K. C., Dhakal, S., Bigio, A., Blanco, H., Delgado, G. C., and Dewar, D.: Human settlements, infrastructure, 779 
and spatial planning. In O. Edenhofer, et al. (Eds.), Climate change 2014: Mitigation ofclimate change. Contribution 780 
ofworking group III to the fifth assessment report of the intergovernmental panel on climate change (pp. 923–1000). 781 
Cambridge, UK and New York, NY, USA: Cambridge University Press. 782 
https://doi.org/10.1017/CBO9781107415416.018, 2014. 783 

Thoning, K. W., Tans, P. P., and Komhyr, W. D.: Atmospheric carbon dioxide at Mauna Loa observatory 2. 784 
Analysis of the NOAA/GMCC data, 1974–1985. Journal of Geophysical Research: Atmospheres, 94(D6), 8549–785 
8565, https://doi.org/10.1029/JD094iD06p08549 ,1989.  786 

Wang, Y., Munger, J. W., Xu, S., McElroy, M. B., Hao, J., Nielsen, C. P., and Ma, H.: CO2 and its correlation with 787 
CO at a rural site near Beijing: implications for combustion efficiency in China, Atmos. Chem. Phys., 10, 8881–788 
8897, https://doi.org/10.5194/acp-10-8881-2010, 2010.  789 

Zhang, H. F., Chen, B. Z., van der Laan-Luijkx, I. T., Chen, J., Xu, G., Yan, J. W., Zhou, L. X., Fukuyama, Y., Tans, 790 
P. P., and Peters W.: Net terrestrial CO2 exchange over China during 2001–2010 estimated with an ensemble data 791 

https://doi.org/10.5194/acp-2020-627
Preprint. Discussion started: 11 August 2020
c© Author(s) 2020. CC BY 4.0 License.



25 
 

assimilation system for atmospheric CO2, Journal of Geophysical Research: Atmospheres, 119, 3500–3515, 792 
https://doi.org/10.1002/2013JD021297, 2014.  793 

Rayner, P. J., Raupach, M. R., Paget, M., Peylin, P., and Koffi, E.: A new global gridded data set of CO2 emissions 794 
from fossil fuel combustion : Methodology and evaluation, Journal of Geophysical Research: Atmospheres. 115, 795 
D19306, https://doi.org/10.1029/2009JD013439, 2010.  796 

Ribeiro, H. V, Rybski, D., and Kropp, J. P.: Effects of changing population or density on urban carbon dioxide 797 
emissions. Nature Communications, (2019), 1–9, https://doi.org/10.1038/s41467-019-11184-y, 2019.  798 

Sargent, M., Barrera, Y., Nehrkorn, T., Hutyra, L. R., Gately, C. K., Mckain, K., Sweeney, C., Hegarty, J., 799 
Hardiman, B., Steven C. Wofsy, S. C.: Anthropogenic and biogenic CO2 fluxes in the Boston urban region, 800 
Proceedings of the National Academy of Sciences of the United States of America. 115(40), 801 
https://doi.org/10.1073/pnas.1803715115, 2018.  802 

Schneising, O., Heymann, J., Buchwitz, M., Reuter, M., Bovensmann, H., and Burrows, J. P.: Anthropogenic carbon 803 
dioxide source areas observed from space: assessment of regional enhancements and trends, Atmos. Chem. Phys., 804 
13, 2445–2454, https://doi.org/10.5194/acp-13-2445-2013, 2013.  805 

Staufer, J., Broquet, G., Bréon, F.-M., Puygrenier, V., Chevallier, F., Xueref-Rémy, I., Dieudonné, E., Lopez, M., 806 
Schmidt, M., Ramonet, M., Perrussel, O., Lac, C., Wu, L., and Ciais, P.: The first 1-year-long estimate of the Paris 807 
region fossil fuel CO2 emissions based on atmospheric inversion, Atmos. Chem. Phys., 16, 14703–14726, 808 
https://doi.org/10.5194/acp-16-14703-2016, 2016.  809 

Sturm, P., Leuenberger, M., Valentino, F. L., Lehmann, B., and Ihly, B.: Measurements of CO2, its stable isotopes, 810 
O2/N2, and 

222
Rn at Bern, Switzerland, Atmos. Chem. Phys., 6, 1991–2004, https://doi.org/10.5194/acp-6-1991-2006, 811 

2006. 812 

Sturm, P., Tuzson, B., Henne, S., and Emmenegger, L.: Tracking isotopic signatures of CO2 at the high altitude site 813 
Jungfraujoch with laser spectroscopy: analytical improvements and representative results, Atmos. Meas. Tech., 6, 814 
1659–1671, https://doi.org/10.5194/amt-6-1659-2013, 2013. 815 

Super, I., Denier van der Gon, H. A. C., van der Molen, M. K., Sterk, H. A. M., Hensen, A., and Peters, W.: A 816 
multi-model approach to monitor emissions of CO2 and CO from an urban–industrial complex, Atmos. Chem. Phys., 817 
17, 13297–13316, https://doi.org/10.5194/acp-17-13297-2017, 2017.  818 

Thompson, R. L., Patra, P. K., Chevallier, F., Maksyutov, S., Law, R. M., Ziehn, T., and Ciais P.: Top-down 819 
assessment of the Asian carbon budget since the mid 1990s. Nature Communications, 7, 1–10, 820 
https://doi.org/10.1038/ncomms10724, 2016.  821 

Turnbull, J. C., Sweeney, C., Karion, A., Newberger., T., Lehman, S. J., Tans P. P., Davis, K.: Toward 822 
quantification and source sector identification of fossil fuel CO2 emissions from an urban area: results from the 823 
influx experiment. Journal of Geophysical Research: Atmospheres, 120(1, 292):–312, 824 
https://doi.org/10.1002/2014JD022555, 2015. 825 

Turner, A. J., Shusterman, A. A., McDonald, B. C., Teige, V., Harley, R. A., and Cohen, R. C.: Network design for 826 
quantifying urban CO2 emissions: assessing trade-offs between precision and network density, Atmos. Chem. Phys., 827 
16, 13465–13475, https://doi.org/10.5194/acp-16-13465-2016, 2016.  828 

Vardag, S. N., Gerbig, C., Janssens-Maenhout, G., and Levin, I.: Estimation of continuous anthropogenic CO2: 829 
model-based evaluation of CO2, CO, δ

13
C(CO2) and Δ

14
C(CO2) tracer methods, Atmos. Chem. Phys., 15, 12705–830 

12729, https://doi.org/10.5194/acp-15-12705-2015, 2015. 831 

Verhulst, K. R., Karion, A., Kim, J., Salameh, P. K., Keeling, R. F., Newman, S., Miller, J., Sloop, C., Pongetti, T., 832 
Rao, P., Wong, C., Hopkins, F. M., Yadav, V., Weiss, R. F., Duren, R. M., and Miller, C. E.: Carbon dioxide and 833 

https://doi.org/10.5194/acp-2020-627
Preprint. Discussion started: 11 August 2020
c© Author(s) 2020. CC BY 4.0 License.



26 
 

methane measurements from the Los Angeles Megacity Carbon Project – Part 1: calibration, urban enhancements, 834 
and uncertainty estimates, Atmos. Chem. Phys., 17, 8313–8341, https://doi.org/10.5194/acp-17-8313-2017, 2017. 835 

Worden, H. M., Cheng, Y., Pfister, G., Carmichael, G. R., Zhang, Q., Streets, D. G.: Satellite-based estimates of 836 
reduced CO and CO2 emissions due to traffic restrictions during the 2008 Beijing Olympics, Geophysical Research 837 
Letters, 39, 1–6, https://doi.org/10.1029/2012GL052395, 2012.  838 

Xu, J., Lee, X., Xiao, W., Cao, C., Liu, S., Wen, X., Xu, J., Zhang, Z., and Zhao, J.: Interpreting the 
13

C∕ 
12

C ratio of 839 
carbon dioxide in an urban airshed in the Yangtze River Delta, China, Atmos. Chem. Phys., 17, 3385–3399, 840 
https://doi.org/10.5194/acp-17-3385-2017, 2017.  841 

Yang, Y., Wang, L., Cao, Z. Mou C., Shen, L.,Zhao, J.,and Fang, Y.:  CO2 emissions from cement industry in China: 842 
A bottom-up estimation from factory to regional and national levels. Journal of  Geographical Science, 27, 711–730.  843 

Zhao, C., Andrews, A. E., Bianco, L., Eluszkiewicz, J. Hirsh, A., Macdonald, C., Nehrkorn, T., and Fischer M. L.,. 844 
Atmospheric inverse estimates of methane emissions from Central California[J]. Journal of Geophysical Research: 845 
Atmospheres, 2009, 114(D16): 4723-4734, https://doi.org/10.1029/2008JD011671, 2009. 846 

 847 

 848 

 849 

 850 

 851 

 852 

 853 

 854 

 855 

 856 

 857 

 858 

 859 

 860 

 861 

 862 

 863 

https://doi.org/10.5194/acp-2020-627
Preprint. Discussion started: 11 August 2020
c© Author(s) 2020. CC BY 4.0 License.



27 
 

Figure 1. (a) Weather Research and Forecasting Model simulation domains and the location of WLG site, (b) cement production 864 

distribution in YRD and Eastern China. 865 

Figure 2. (a) Annual anthropogenic CO2 emissions for study domain (units: nmol m-2 s-1) and population density in 4 megacities 866 

(units: people per hectare) including Nanjing, Hefei, Zhejiang, and Shanghai for the year of 2015, (b) Two-year average 867 

concentration footprint. 868 

Figure 3.  (a) Comparisons of hourly CO2 mixing ratios between observations and model simulation from September 2013 to 869 
August 2015, and monthly averages for (b) whole day, (c) nighttime (22:00-06:00, local time) and (d) daytime (10:00 - 16:00);  870 
Model results (red), observations (black), and background (grey).   871 

Figure 4. (a) Relation between monthly PBL height and change in CO2 mixing ratio; Time series (2013 to 2015) of (b) NDVI, (c) 872 

SIF, and (d) GPP.  873 

Figure 5. (a) Comparisons of simulated and observed CO2 enhancement, (b) Simulated anthropogenic CO2 enhancement 874 
proportion for the main sources, and (c) CO2 enhancement contributions from different provinces. 875 

Figure 6. Comparisons among three strategies for calculating the background 𝜹13C-CO2 . Strategy 1 (WLG discrete: weekly 876 

discrete observations at WLG site, WLG CCGCRV: derived hourly data with WLG observations and CCGCRV method); 877 

Strategy 2 (Calculated: by choosing clean air in winter); and strategy 3 (M-T method: derived results with observations and M-T 878 

approach, M-T CCGCRV: derived hourly results with M-T approach and CCGCRV method, see details in section 2.2.1).  879 

Figure 7. (a) Comparisons of observed and modeled hourly 𝜹13C-CO2 from September 2013 to August 2015, and (b) Simulated 880 

hourly biological CO2 enhancement. 881 

Figure 8. Comparisons of observed and modeled (a) CO2 mixing ratio and (b) 𝜹13C-CO2 from December 2013 to February 2014; 882 

(c) CO2 mixing ratio and (b) 𝜹13C-CO2 from December 2014 to February 2015; (e) CO2 mixing ratio and (f) 𝜹13C-CO2 from 883 

June 2014 to August 2014; (g) CO2 mixing ratio and (h) 𝜹13C-CO2 from June 2015 to August 2015. 884 

Figure 9. Scatter plots of observed versus modeled (a) winter time CO2 mixing ratios, (b) winter time 𝜹13C-CO2, (c) summer 885 

time CO2, and (d) summer time 𝜹13C-CO2 for both years. 886 

Figure 10. Digital filtering curve fitting (CCGCRV) for background, observations, normal  simulations, case 1 (excluding 887 

photosynthesis), and case 2 (excluding respiration and photosynthesis) in both years, (b) 𝜹13C-CO2 comparisons between normal 888 

simulations and case 1, and (c) 𝜹13C-CO2 comparisons between normal simulations and case 2. 889 

Figure 11. Comparisons of winter time 𝜹s·𝜟CO2 using (a) a priori and (b) constrained anthropogenic CO2 emissions.   890 

Figure 12. (a) Comparisons between observed and modeled 𝜹s, (b) relationship between cement CO2 enhancement proportion 891 

and simulated anthropogenic 𝜹s for nighttime and (c) all-day. 892 

Figure 13. Sensitivity tests showing the influence of cement CO2 emissions on 𝜹s for (a) nighttime, (b) all-day, and (c) the 
893 

relation between cement CO2 and 𝜹13C for simulation strategies 1 and 2. Note that the numbers in brackets indicate changes in 
894 

𝜹13C with cement CO2 proportion increase by 0.2 times. The x-axis values indicate changing cement enhancement proportions to  
895 

0.8 1.2, 1.4, 1.6, 1.8, and 2 times the original values.  
896 
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 899 

 900 

Figure 1. (a) Weather Research and Forecasting Model simulation domains and the location of WLG site, (b) cement production 901 

distribution in YRD and Eastern China. 902 
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                                                928 
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 930 

Figure 2. (a) Annual anthropogenic CO2 emissions for study domain (units: nmol m-2 s-1) and population density in 4 megacities 931 

(units: people per hectare) including Nanjing, Hefei, Zhejiang, and Shanghai for the year of 2015, (b) Two-year average 932 

concentration footprint. 933 
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 951 

Figure 3.  (a) Comparisons of hourly CO2 mixing ratios between observations and model simulation from September 2013 to 952 
August 2015, and monthly averages for (b) whole day, (c) nighttime (22:00-06:00, local time) and (d) daytime (10:00 - 16:00);  953 
Model results (red), observations (black), and background (grey).   954 
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 958 

Figure 4. (a) Relation between monthly PBL height and change in CO2 mixing ratio; Time series (2013 to 2015) of (b) NDVI, (c) 959 

SIF, and (d) GPP. 960 
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 970 

Figure 5. (a) Comparisons of simulated and observed CO2 enhancement, (b) Simulated anthropogenic CO2 enhancement 971 
proportion for the main sources, and (c) CO2 enhancement contributions from different provinces. 972 
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 988 

Figure 6. Comparisons among three strategies for calculating the background 𝜹13C-CO2 . Strategy 1 (WLG discrete: weekly 989 

discrete observations at WLG site, WLG CCGCRV: derived hourly data with WLG observations and CCGCRV method); 990 

Strategy 2 (Calculated: by choosing clean air in winter); and strategy 3 (M-T method: derived results with observations and M-T 991 

approach, M-T CCGCRV: derived hourly results with M-T approach and CCGCRV method, see details in section 2.2.1).  992 

 993 

 994 

 995 

 996 

 997 

 998 

 999 

 1000 

 1001 

 1002 

 1003 

https://doi.org/10.5194/acp-2020-627
Preprint. Discussion started: 11 August 2020
c© Author(s) 2020. CC BY 4.0 License.



34 
 

 1004 

            1005 

 1006 

Figure 7. (a) Comparisons of observed and modeled hourly 𝜹13C-CO2 from September 2013 to August 2015, and (b) Simulated 1007 

hourly biological CO2 enhancement. 1008 
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 1012 

Figure 8. Comparisons of observed and modeled (a) CO2 mixing ratio and (b) 𝜹13C-CO2 from December 2013 to February 2014; 1013 

(c) CO2 mixing ratio and (b) 𝜹13C-CO2 from December 2014 to February 2015; (e) CO2 mixing ratio and (f) 𝜹13C-CO2 from 1014 

June 2014 to August 2014; (g) CO2 mixing ratio and (h) 𝜹13C-CO2 from June 2015 to August 2015. 1015 
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   1018 

Figure 9. Scatter plots of observed versus modeled (a) winter time CO2 mixing ratios, (b) winter time 𝜹13C-CO2, (c) summer time 1019 

CO2, and (d) summer time 𝜹13C-CO2 for both years. 1020 
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 1027 

 1028 

Figure 10. Digital filtering curve fitting (CCGCRV) for background, observations, normal  simulations, case 1 (excluding 1029 

photosynthesis), and case 2 (excluding respiration and photosynthesis) in both years, (b) 𝜹13C-CO2 comparisons between normal 1030 

simulations and case 1, and (c) 𝜹13C-CO2 comparisons between normal simulations and case 2. 1031 
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 1034 

Figure 11. Comparisons of winter time 𝜹s·𝜟CO2 using (a) a priori and (b) constrained anthropogenic CO2 emissions.   1035 
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Figure 12. (a) Comparisons between observed and modeled 𝜹s, (b) relationship between cement CO2 enhancement proportion and 1051 

simulated anthropogenic 𝜹s for nighttime and (c) all-day. 1052 
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 1062 

Figure 13. Sensitivity tests showing the influence of cement CO2 emissions on 𝜹s for (a) nighttime, (b) all-day, and (c) the 
1063 

relation between cement CO2 and 𝜹13C for simulation strategies 1 and 2. Note that the numbers in brackets indicate changes in 
1064 

𝜹13C with cement CO2 proportion increase by 0.2 times. The x-axis values indicate changing cement enhancement proportions to  
1065 

0.8 1.2, 1.4, 1.6, 1.8, and 2 times the original values.  
1066 
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Table 1. Comparisons of cement and all anthropogenic CO2 emissions among different methods. 1080 

 Units: × 10
11

 kg Year EDGAR v432 Inversion results IPCC method 

Cement CO2 emissions 
2010 1.45  / 1.14 

2014-2015 1.72 / 1.35 

All anthropogenic CO2 

emissions 

2010 20.55 / 17.56 

2014-2015 23.53 24.59±2.39 24.38 
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Table 2. Statistical metrics between observed and modeled CO2 mixing ratios and 𝜹13C-CO2 during winter, summer and annual 1100 

for 2014 and 2015. Correlation coefficient (R), mean bias (MB), and root mean square error (RMSE) are displayed. 1101 

  Years 2014     2015 

  Periods Annual Winter Summer Annual Winter Summer 

𝜹13
C-CO2 

R 0.54 0.40 0.47 0.52 0.27 0.39 

RMSE (‰) 1.07 0.94 0.94 1.10 0.92 0.98 

simulation (‰) -8.68 -9.37 -8.02 -8.45 -9.10 -7.66 

observation (‰) -8.69 -9.27 -8.09 -8.52 -8.98 -7.83 

CO2 

R 0.38 0.41 0.34 0.35 0.28 0.31 

RMSE (ppm) 29.44 27.48 25.55 30.22 26.81 24.29 

MB (ppm) 2.16 -0.27 3.80 2.99 -0.43 1.53 
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