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Abstract: 37 

The atmospheric carbon dioxide (CO2) mixing ratio and its carbon isotope (𝜹13
C-CO2) composition 38 

contain important CO2 sink and source information spanning from ecosystem to global scales. The 39 

observation and simulation for both CO2 and 𝜹13
C-CO2 can be used to constrain regional emissions and 40 

better understand the anthropogenic and natural mechanisms that control δ
13

C-CO2 variations. Such work 41 

remains rare for urban environments, especially megacities. Here, we used near-continuous CO2 and 42 

𝜹13
C-CO2 measurements, from September 2013 to August 2015, and inverse modeling to constrain the 43 

CO2 budget and investigate the main factors that dominated 𝜹13
C-CO2 variations for the Yangtze River 44 

Delta (YRD) region, one of the largest anthropogenic CO2 hotspots and densely populated regions in 45 

China. We used the WRF-STILT model framework with category-specified EDGAR v4.3.2 CO2 46 

inventories to simulate hourly CO2 mixing ratios and 𝜹13
C-CO2, evaluated these simulations with 47 

observations, and constrained the total anthropogenic CO2 emission. We show that: (1) Top-down and 48 

bottom-up estimates of anthropogenic CO2 emissions agreed well (bias < 6%) on an annual basis; (2) The 49 

WRF-STILT model can generally reproduce the observed diel and seasonal atmospheric 𝜹13
C-CO2 50 

variations; (3) Anthropogenic CO2 emissions played a much larger role than ecosystems in controlling the 51 

𝜹13
C-CO2 seasonality. When excluding ecosystem respiration and photosynthetic discrimination in the 52 

YRD area, 𝜹13
C-CO2 seasonality increased from 1.53‰ to 1.66‰; (4) Atmospheric transport processes in 53 

summer amplified the cement CO2 enhancement proportions in the YRD area, which dominated monthly 54 

𝜹s (the mixture of 𝜹13
C-CO2 from all regional end-members) variations. These findings support that 55 

the combination of long-term atmospheric carbon isotope observations and inverse modeling can provide 56 

a powerful constraint on the carbon cycle of these complex megacities.    57 

Keywords: cements production, 
13

C/
12

C ratio, WRF-STILT model, plant photosynthetic discrimination 58 
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1. Introduction 71 

Urban landscapes account for 70% of global CO2 emissions and represent less than 3% of Earth’s land 72 

area (Seto et al., 2014). Such CO2 hotspots play a dominant role in controlling the rise in atmospheric CO2 73 

concentrations, which exceeded 412 ppm in December 2019 for global monthly average observations 74 

(https://www.esrl.noaa.gov/gmd/ccgg/trends/). Furthermore, the carbon isotope ratio of CO2 (i.e. 𝜹13
C = 75 

13
C/

12
C ratio in delta notation) at the representative Mauna Loa site, USA, has steadily decreased to 76 

around -8.5‰, in December 2019 (https://www.esrl.noaa.gov/). Anthropogenic CO2 emission is produced 77 

from fossil fuel burning and cement production. As the urban population is expected to increase by 2.5 to 78 

6 billion people in 2050, anthropogenic CO2 emissions are projected to increase dramatically, especially 79 

in developing regions and countries (Sargent et al., 2018; Ribeiro et al., 2019). Under such a scenario, the 80 

observations of atmospheric CO2 and 𝜹13
C-CO2 in urban landscapes are of great importance to monitoring 81 

these potential CO2 emissions hotspots (Lauvaux et al., 2016; Nathan et al., 2018; Graven et al., 2018; 82 

Pillai et al., 2016; Staufer et al., 2016).  83 

Countries are required to report their CO2 emissions according to the Intergovernmental Panel on Climate 84 

Change guidelines (IPCC, 2019), and many “bottom-up” methods have long been used to estimate CO2 85 

emissions worldwide, but such methods have high uncertainties for CO2 emissions at regional (20%) to 86 

city (50 to 250%) scales (Gately & Hutyra, 2017; Gately et al., 2015). These large uncertainties are 87 

propagated into the estimation of biological fluxes in atmospheric inversions (Zhang et al., 2014; Jiang 88 

et al., 2014; Thompson et al., 2016). By using CO2 observations, the “top-down” atmospheric inversion 89 

approach is a useful tool to evaluate “bottom-up” inventories (Graven et al., 2018; L. Hu et al., 2019; 90 

Lauvaux et al., 2016; Nathan et al., 2018). Previous research has shown that additional information, such 91 

as data on atmospheric 𝜟14
CO2-CO2, 𝜹

13
C-CO2, and CO, is needed to better distinguish CO2 emissions 92 

from different sources and to assess their uncertainties (Chen et al., 2017; Graven et al., 2018; Nathan et 93 

al., 2018; Cui et al., 2019). The use of hourly 𝜹13
C-CO2 observation in urban areas remains rare in 94 

inversion studies, yet such observations contain invaluable information of anthropogenic CO2 from 95 

different categories.   96 

Traditional estimates of 𝜹13
C-CO2 using isotope ratio mass spectrometry (IRMS) are very limited because 97 

flask air sample collection requires long preparation time and is expensive. Consequently, there is a lack 98 

of high temporal and long-term observations of 𝜹13
C-CO2 (Sturm et al., 2006). Isotope ratio infrared 99 

spectroscopy technology (IRIS) has overcome these limitations. As a result, in situ air sample analyses 100 

using IRIS analyzers are resulting in dense time series of 𝜹13
C-CO2. However, most of the established 101 
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long-term IRMS and IRIS 𝜹13
C-CO2 measurement sites are representative of “background”, natural, or 102 

agricultural ecosystems at locations far away from  urban  landscapes (Chen et al., 2017; Griffis, 2013).  103 

To date, long-term (> 1 year) and continuous observations of both CO2 and 𝜹13
C-CO2 have been reported 104 

for only five cities, including Bern, Switzerland (Sturm et al., 2006); Boston, USA (McManus et al., 105 

2010); Salt Lake City, USA (Pataki et al., 2006); Beijing, China (Pang et al., 2016); and Nanjing, China 106 

(Xu et al., 2017). In these previous investigations, significant diel and seasonal variations of 𝜹13
C-CO2 107 

have been observed; these patterns were modulated by fossil fuel combustion, plant respiration and 108 

photosynthesis, and changes in the height of the atmospheric boundary layer (Sturm et al., 2006; Guha 109 

and Ghosh, 2010). No study has quantified the impact of each factor on the seasonal variation of 𝜹13
C-110 

CO2. This represents an important knowledge gap in understanding the underlying mechanisms of carbon 111 

cycling in complex urban ecosystems. 112 

The traditional 𝜹13
C-CO2 isotope partitioning methods (including Miller-Tans and the Keeling plot 113 

approaches) have been used to constrain different CO2 sources worldwide (Keeling, 1960; Vardag et al., 114 

2015; Newman et al., 2016; Pang et al., 2016; Xu et al., 2017). These methods are based on the 115 

assumption that partitioned atmospheric CO2 enhancement components from different sources can 116 

represent CO2 emissions at the “target area” (Miller and Tans, 2003; Ballantyne et al., 2011). Carbon 117 

dioxide emissions are highly inhomogeneous at the urban scale, with extremely strong point/line sources, 118 

and the final partitioning results are highly uncertain without considerations of source footprint 119 

characteristics (Gately & Hutyra, 2017; Cui et al., 2019; Martin et al., 2019). Atmospheric transport 120 

models can help to resolve such problems, and the coupling of atmospheric transport models with isotope 121 

observations have recently been applied in global and regional CO2 partitioning studies (Chen et al., 2017; 122 

Cui et al., 2019; Graven et al., 2018; C. Hu et al., 2018b). Although urban CO2 inversions have been 123 

applied successfully in several studies in Europe and the United States (Bréon et al., 2015; Turnbull et al., 124 

2015; Pillai et al., 2016; Brioude et al., 2013; Turner et al., 2016),  urban CO2  inversions in China are 125 

rare (Berezin et al., 2013; C. Hu, 2018a; Worden et al., 2012), presumably because of the scarcity of high 126 

quality 𝜹13
C-CO2 and CO2 observations. 127 

The Yangtze River Delta (YRD) ranks as one of the most densely populated regions in the world and is 128 

an important anthropogenic CO2 hotspot. Major anthropogenic sources include the power industry, oil 129 

refineries/transformation and cement production. Having the largest source of cement-derived CO2 130 

production across China and the world (Cai et al., 2015), the YRD contributed 20% of national cement 131 

production, nearly 12% of world’s total cement output in 2014 (USGS, 2014; Xu et al., 2017; Yang et al., 132 

2017). In addition to anthropogenic factors, natural ecosystems and croplands act as significant CO2 sinks 133 

and sources within the YRD. Independent quantification of the fossil and cement CO2 emission and 134 
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assessment of their impact on atmospheric 𝜹13
C-CO2 have potential to improve our understanding of 135 

urban CO2 cycling. Further, the observations and simulations of both atmospheric CO2 and 𝜹
13

C-CO2 can 136 

help us relate atmospheric CO2 dynamics with future emission control strategies.  137 

Here, we combine long-term (>2 years) CO2 and 𝜹13
C-CO2 observations with atmospheric transport 138 

model simulations to study urban atmospheric CO2 and 𝜹13
C-CO2 variations. The objectives were to: (1) 139 

Constrain anthropogenic CO2 emissions and determine the main sources of uncertainty for 𝜹13
C-CO2 140 

simulations, and (2) Quantify the relative contributions of each factor (i.e. background, anthropogenic 141 

CO2 emissions especially for cement production, ecosystem photosynthesis and respiration) to seasonal 142 

variations of atmospheric 𝜹13
C-CO2. 143 

2. Materials and methods 144 

2.1 Observations of atmospheric CO2 mixing ratio, 𝜹13
C-CO2 and supporting variables 145 

The observation site is located on the Nanjing University of Information Science and Technology campus 146 

(hereafter NUIST, 32
o
12’N, 118

o
43’E, green dot in Figure 1a). Continuous atmospheric CO2 mixing 147 

ratios and 𝜹13
C-CO2 were measured at a height of 34 m above ground with an IRIS analyzer (model 148 

G1101-i, Picarro Inc., Sunnyvale, CA). The observation period extended from September 2013 to August 149 

2015. Calibrations for CO2 mixing ratio and 𝜹13
C-CO2 were conducted with standard gases traceable to 150 

NOAA/GML (NOAA Global Monitoring Laboratory) standards. Calibration details are provided by 151 

Xu et al. (2017). Based on Allan variance analyses, the hourly precisions of CO2 and 𝜹13
C-CO2 were 0.07 152 

ppm and 0.05‰, respectively. We note that the 𝜹13
C-CO2 IRIS (model G1101-i) measurements are 153 

sensitive to water vapor concentration. Sensitivity tests reveal that the 𝜹13
C-CO2 IRIS 154 

measurements are biased high (less than 0.74‰) when water vapor mole fraction exceeds 2%. The 155 

data presented here have been corrected following the procedures outlined in Xu et al. (2017).  156 

We separated the two-year study period into seasons (autumn: September, October, November; winter: 157 

December, January, February; spring: March, April, May; summer: June, July, August). Further, for an 158 

annual comparison, we examined the period from September 2013 to August 2014 (Year 2014) versus 159 

September 2014 to August 2015 (Year 2015).  160 

The YRD is a cement production hotspot in China (Figure 1b). It had a total population of 190 million in 161 

2018 (Figure 2a) with 24.2 million in the city of Shanghai, 9.8 million in Hangzhou city (provincial 162 

capital of Zhejiang), 8.4 million in Nanjing city (provincial capital of Jiangsu), and 8.1 million in Hefei 163 

city (provincial capital of Anhui). The CO2 related production data (i.e. cement) and energy consumption 164 

data (i.e. coal and natural gas) were obtained from local official sources using the same method described 165 

in Shen et al. (2014). 166 
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To examine the effects of plant photosynthesis on atmospheric CO2 variations, we used NDVI 167 

(Normalized Difference Vegetation Index), SIF (solar-induced chlorophyll fluorescence) and GPP (gross 168 

primary productivity) information. These three products have a global distribution with spatial resolution 169 

of 0.05
o 

by 0.05
o
. The NDVI has a temporal resolution of 16 days and SIF and GPP products have a 170 

temporal resolution of 8 days (Li & Xiao, 2019;  http://globalecology.unh.edu/data/). Land-use and land-171 

cover classification in Yangtze River Delta for 2014 was applied by using NDVI data from MOD13A2. 172 

2.2 Simulation of atmospheric 𝜹13
C-CO2 173 

2.2.1 General equations  174 

The simulation of atmospheric 𝜹13
C-CO2 is based on mass conservation. First, we briefly describe the 175 

simulation of atmospheric CO2 mixing ratios (more details are provided in Section 2.2.2), following the 176 

previous work of Hu et al., (2018b), where atmospheric CO2 was simulated (CO2_sim) as the sum of 177 

background (CO2_bg) and the contribution from all regional sources/sinks ([𝜟CO2_sim]i), as 178 

                                2_ 2_ 2_

1

[ ]
n

sim bg sim i

i

CO CO CO


  
                                           (1)

 
179 

Note that 𝜟CO2  is the sum of all simulated sources/sinks [𝜟CO2_sim]i and represents the total 180 

simulated CO2 enhancement. We use 𝜟CO2_obs as the observed CO2 total enhancement, which can be 181 

calculated by using the CO2 observation minus the CO2 background values. Based on mass 182 

conservation, we estimated the 
13

CO2 composition by multiplying the left- and right-hand sides of 183 

equation (1) by 𝜹13
C, 

 
184 

                    
-

13 13

2_ 2_
13 1

2_

[ ]
n

bg bg i sim i

i
a sim

sim

C CO CO

C
CO

 

 

   




                 (2)
                  

185 

where 𝜹13Ca_sim and 𝜹13Cbg represent the simulated atmospheric 𝜹13C-CO2 and background 𝜹13CO2, 𝜹i
13 is 

186 

the 𝜹13C-CO2 for end-member i (including anthropogenic and biological source categories). The 𝜹13C-
187 

CO2 contributions from all regional sources/sinks can be further reformatted as equation 3,  
188 

                 

13

2_ _ 2_

1 1

[ ] [ ]
n n

i sim i s sim sim i

i i

CO CO 
 

                                           (3) 
189 

where 𝜹s_sim is the simulated enhancement-weighted mean of all regional end-members. We use 𝜹s as 
190 

the observed term to distinguish it from 𝜹s_sim (Newman et al., 2008), which will be described in detail 
191 

in section 2.2.5. The product on the right-hand side of equation 3 is the simulated regional source term 
192 

http://globalecology.unh.edu/data/
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that is added to the background value and contains both enhancement and 𝜹13
C-CO2 signals 

193 

contributed by different CO2 sources/sinks. This product can also be treated as an observed term 194 

when using the derived 𝜹s_obs and observed
 
𝜟CO2_obs values.  

 
195 

To date, there are no available global 𝜹13C-CO2 background products and the choice of 𝜹13Cbg is essential 
196 

to simulating 𝜹13Ca. Here, we apply three strategies. First, we used discrete 𝜹13C-CO2 flask observations 
197 

at Mount Waliguan (hereafter WLG, 36o17’N, 100o54’E; https://www.esrl.noaa.gov/gmd/dv/data/) to 
198 

represent the 𝜹13C-CO2 background signal at our site. These observations were measured at weekly 
199 

intervals to the end of 2015. A digital filtering curve fitting (CCGCRV) regression method was applied to 
200 

derive hourly background values following Thoning et al. (1989). There are, however, reasons why WLG 
201 

may not be an ideal background site for our study domain. For example, based on the previous simulation 
202 

results for the CO2 background sources, most of the back trajectories originate from the free atmosphere 
203 

or 1000 m higher above the ground (Hu et al., 2019). Further, the footprint at the north/west edge of 
204 

Domain 1 is relatively small, indicating that most back trajectories were observed above the 
205 

planetary boundary layer height (hereafter PBLH). Here, the WLG observations were made near the 
206 

surface. Further, WLG is not located at the border of our simulation domain 1. Therefore, the strong 
207 

vertical 𝜹13C-CO2 gradients between the boundary layer and the free tropospheric atmosphere (Chen et al., 
208 

2006; Guha et al., 2010; Sturm et al., 2013) can cause a low bias  in the 𝜹13C-CO2  background when 
209 

using this approach.  
210 

In the second approach, the 𝜹13C-CO2 background signal was estimated with wintertime “clean” air CO2 
211 

and 𝜹13C-CO2 observations at the NUIST site, using the following equation  
212 

            

13 13

2 2_
13 1

2_

[ ]
n

a i sim i

i
bg

bg

C CO CO

C
CO

 

 

   




                     (4) 

213 

where 𝜹13Ca and CO2 represent atmospheric 𝜹13C-CO2 and CO2 observations at the NUIST site under 
214 

clean conditions. Note that 𝜹13Ca represents the observed 𝜹13C-CO2 not the simulated 𝜹13C-CO2 
215 

(𝜹13Ca_sim) as shown in equation 2. [𝜟CO2_sim]i is the simulated category-specified CO2 enhancements. 
216 

We defined clean conditions as the bottom 5% wintertime CO2 observations to minimize simulated CO2 
217 

enhancement errors from both biological and anthropogenic CO2 simulations on 𝜹13C-CO2 
218 

background calculation. The CO2_bg is obtained from heights 1000 m above ground level (see Section 
219 

2.2.3).   
220 

In the third approach, we avoid the use of modeled [𝜟CO2_sim]i results and replaced the simulated regional 
221 

source term in equation 4 with observed 𝜹s_obs×𝜟CO2_obs, as described in equation 3, and used the Miller-
222 
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Tans regression method to calculate monthly 𝜹s_obs. This approach does not require simulation of [𝜟CO2]i 
223 

or the corresponding 𝜹13C-CO2 signals. The hourly 𝜹13C-CO2 background value can be derived by using 
224 

𝜹s_obs, CO2 background, observed atmospheric 𝜹13Ca and CO2 (see details in Section 2.3 and supplement 
225 

materials). Comparison of these three strategies will be evaluated and discussed in Section 3.2.1. Similar 
226 

methods used to derive other background tracers have included CO2 (Alden et al., 2016; Verhulst et al., 
227 

2017), CO (Wang et al., 2010; Ruckstuhl et al., 2012) and CH4 (Zhao et al., 2009; Verhulst et al., 2017; 
228 

Hu et al., 2019). To analyze the controlling factors for the 𝜹13C-CO2 seasonality, the CCGCRV (a digital 
229 

filtering curve fitting program developed by the Carbon Cycle Group, NOAA, USA) regression was 
230 

applied to the background, observations, and simulations. Finally, we derived CCGCRV curve fitting 
231 

lines by using 11 regressed parameters, which were based on the hourly time series of 
232 

observations/simulations, and defined the difference between peak and trough in one year as the 
233 

seasonality of 𝜹13C-CO2. 
234 

2.2.2 Simulation of atmospheric CO2 mixing ratios 
235 

In equation 1, the CO2_bg is obtained from the Carbon Tracker 2016 product, which provides global CO2 236 

distributions from the ground level up to a height of 50 km. We used the averaged concentration above 237 

the latitude and longitude where the released particles entered the study domain 1 (Figure 1a). The 238 

variable 𝜟CO2_sim was derived by multiplying the simulated hourly footprint function with the hourly CO2 239 

fluxes (Hu et al., 2018a; b). Considering the diurnal variations of both anthropogenic and biological 240 

CO2 fluxes, 168 footprints were obtained representing each simulated hour. This accounted for the 241 

back trajectory of particle movement for 168 hours (i.e. 24 hours per day for 7 days) of transport.  242 

The 168 footprints are multiplied by the corresponding hourly CO2 flux. The CO2 fluxes contain 243 

anthropogenic CO2 emissions, biological CO2 flux and biomass burning. Here the anthropogenic CO2 244 

emission sources include power industry, combustion for manufacturing, non-metallic minerals 245 

production (cement), oil refineries/transformation industry, energy for building and road transportation. 246 

Theoretically, 𝜟CO2_sim represents the CO2 changes contributed by every pixel within the simulated 247 

domain. As shown by Hu et al. (2018a), most of the 𝜟CO2_sim  is contributed by sink/source activity 248 

within the YRD area. In order to quantify the relative contributions within the YRD area, we separated 249 

the study domain into 5 zones based on provincial administrative boundaries including Jiangsu, Anhui, 250 

Zhejiang, Shanghai, and the remaining area outside the YRD (Figure 2). The modeled CO2 was 251 

calculated as follows: 252 

                                  

168

2_

1

sim i i

i

CO flux footprint


  
                               (5) 

253 
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where fluxi (units: mol m
-2

 s
-1

) corresponds to each CO2 flux category simulated for each domain for a 254 

specific hour i, and footprint (units: ppm m
2 
s/µmol) is the model simulated sensitivity of observed CO2 255 

enhancement to flux changes in each pixel. The i contains the hourly footprint during trajectory of 256 

particle movement for 168 hours as described above. The CO2 enhancement from each of the 5 257 

zones were simulated by multiplying CO2 emissions in each province with the corresponding 258 

footprint.   259 

2.2.3 WRF-STILT model configuration 260 

The Stochastic Time-Inverted Lagrangian Transport (hereafter STILT) model was used to generate the 261 

above footprint, which is defined as the sensitivity of atmospheric CO2 enhancement to the upwind flux at 262 

the receptor site (observation site). The meteorological fields used to drive the STILT model were 263 

simulated with the Weather Research and Forecasting Model (WRF3.5) at high spatial and temporal 264 

resolutions. The innermost nested domain (D3, 3 km × 3 km, Figure 1) contains the YRD area, where the 265 

most sensitive footprint is located, and the intermediate domain (D2, 9 km × 9 km) and outermost (D1, 27 266 

km × 27 km) represent Eastern China and Central and Eastern China, respectively. The same physical 267 

schemes and parameter setup for the WRF meteorological fields simulation and the Domain in the 268 

STILT model have been used previously for inverse analyses (Hu et al., 2019). These previous studies 269 

at the NUIST observation site have shown very good performance in simulating the meteorological fields, 270 

which is essential for reliable STILT simulations. The hourly footprint was simulated by releasing 500 271 

particles from the NUIST measurement site and tracking their backward locations every 5 minutes for a 272 

period of 7 days. Particle numbers and their residence time within half of the PBLH were used to 273 

calculate the footprint over the 7 day period. For the CO2 background of each hour, we tracked the 274 

sources of air particles back trajectory for 7 days, and defined these CO2 mixing ratios in Carbon Tracker 275 

as the hourly CO2 background values (Peters et al., 2007). 276 

2.2.4 A priori anthropogenic CO2 emissions and net ecosystem exchange  277 

The Emission Database for Global Atmospheric Research (EDGAR v4.3.2) inventory was selected as the 278 

a priori anthropogenic CO2 emissions (Figure 2a), which is based on the International Energy Agency’s 279 

(IEA) energy budget statistics and provides detailed CO2 source maps (29 categories, including both 280 

organic and fossil emissions, IEA, 2012)  with global coverage at high spatial resolution (0.1
o
 × 0.1

o
). The 281 

EDGAR CO2 emissions are the most up-to-date global inventory with sectoral detail (Janssens-282 

Maenhout et al., 2017; Schneising et al., 2013). Other inventories, including the Fossil Fuel Data 283 

Assimilation System (FFDAS, Rayner et al., 2010) and the Open-source Data Inventory for 284 

Anthropogenic CO2 (ODIAC, Oda et al., 2018) also provide global CO2 emissions. However, these 285 
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inventories only provide total CO2 emissions or have very limited emission categories, which limit our 286 

ability to provide isotope end-member information. EDGAR v4.3.2 provides emission estimates at a 287 

monthly time scale. Here, we applied hourly scaling factors for different categories following Hu et al., 288 

(2018a). EDGAR v4.3.2 with monthly resolution is available only for 2010. We assume that each CO2 289 

category changes linearly from its 2010 value (Peters et al., 2007) and apply an annual scaling factor of 290 

1.145 to derive CO2 emissions for 2014 and 2015. This scaling factor is based on Carbon Tracker, 291 

dividing the same anthropogenic CO2 emissions for YRD in years 2014-2015 by that in 2010.  292 

The biological flux or net ecosystem CO2 exchange (NEE) and biomass burning CO2 emissions come 293 

from Carbon Tracker a posteriori flux at 3-hour intervals and at a spatial resolution of 1
o
 × 1

o
. Because 294 

NEE is much smaller than the anthropogenic CO2 emissions in such densely developed urban landscapes, 295 

we homogeneously distributed this flux at a spatial resolution of 0.1
o
 within each grid to match the 296 

footprint. 297 

2.2.5 Simulation of the carbon isotope ratio of all sources (𝜹s_sim)   298 

The carbon isotope ratio of all the surface sources was calculated as (Newman et al., 2008):
 

299 

                                                                      
_

1

n

i i s sim

i

p 


 
                                              (6)

 300 

where δi is the 𝜹13
C-CO2 value from source category i, and pi is the corresponding enhancement 301 

proportion (i.e. proportions of a specific enhancement i to total CO2 enhancement). We define 𝜹s_sim 302 

as the simulated carbon isotope ratio of all sources to differentiate it from the observed 𝜹s_obs. Based 303 

on fossil fuel usage characteristics in YRD, we reassigned the EDGAR v4.3.2 categories according to fuel 304 

types. Coal was the fuel type for manufacturing, oil for oil refinery, natural gas for buildings, and diesel 305 

and gasoline for transportation. The power industry consumed 5% natural gas and 95% coal based on 306 

local activity data in YRD (China statistical Yearbook, 2015). The non-metallic mineral production was 307 

mainly for cement. Since there is a lack of detailed information for non-metallic mineral 308 

production, we simply attributed 100% of it to cement production. Chemical processes were 309 

mainly ammonia synthesis. Based on a literature review and our previous work (Xu et al., 2017), typical 310 

𝜹13
C-CO2 values for natural gas (−39.06‰ ± 1.07‰), coal (−25.46‰ ± 0.39‰), fuel oil (−29.32‰ ± 311 

0.15‰), gasoline (−28.69‰ ± 0.50‰), ammonia synthesis (−28.18‰ ± 0.55‰), and diesel (−28.93‰ ± 312 

0.26‰), pig iron (−24.90‰ ± 0.40‰), crude steel (−25.28‰ ± 0.40‰), cement (0‰ ± 0.30‰), biofuel 313 

combustion and biological emissions (−28.20‰ ± 1.00‰) were used in this study. We also applied a 314 

value of −28.20‰ for photosynthesis (Griffis et al., 2008; Lai et al., 2014) because YRD is a region 315 
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dominated by C3 plants. Since CO2 emissions associated with human respiration (Prairie and Duarte, 316 

2017; Turnbull et al., 2015; Miller et al., 2020) are relatively small (3.7% of anthropogenic 317 

emissions in the YRD area, Xu et al., 2017), and given that the local food diet is dominated by C3 318 

grains that have a similar 𝜹13
C-CO2 value as the biological CO2 flux of −28.20‰, we assume it has 319 

the same isotope signals as local C3 plants and ecosystem respiration. Further, the biological CO2 320 

flux from the Carbon Tracker assimilation system considered anthropogenic as fixed and 321 

attributed the remainder to the biological CO2 flux (Peters et al., 2007). Consequently, we believe 322 

the uncertainty in the biological CO2 flux will include the small proportion of human respiration. 323 

To evaluate the simulated 𝜹s_sim, we applied the Miller-Tans and Keeling plot approaches to derive 𝜹s_obs 324 

from the observed concentration and atmospheric 
13

CO2-CO2 (Xu et al. 2017). We then used the results to 325 

evaluate the calculations made with Equation (6).  326 

2.3 Independent IPCC method for anthropogenic CO2 emissions 327 

Large differences among inventories have been previously found even for the same region (Berezin et al., 328 

2013; Andrew, 2019). For comparison with the EDGAR v4.3.2 inventory results, we derived the 329 

anthropogenic CO2 emissions by using an independent IPCC method. Here, we illustrate the calculation 330 

for cement CO2 emissions. Note that the IPCC only recommended an EF for clinker, which is an 331 

intermediate product of cement. To calculate cement CO2 emissions, we need to calculate it based on 332 

clinker production, as shown in Equation (7), 333 

                      2[ ] cement clinker clinkerCO cement M C EF  
                  (7) 

 334 

where CO2[cement] is the chemical process CO2 emissions for cement production, Mcement is the 335 

production of cement, Cclinker represents the clinker to cement ratio (%), and EFclinker is the CO2 emission 336 

factor for clinker production. The IPCC recommended an EFclinker value of 0.52 ± 0.01 tonne CO2 per 337 

tonne clinker produced, where CaO content for clinker is assumed to be 65% with 100% CaO from 338 

calcium carbonate material (IPCC 2013). The EF appears to be well constrained, showing little variation 339 

among provinces with mean values ranging from 0.512 to 0.525 (Yang et al., 2017). For the Cclinker values, 340 

it generally showed a decreasing trend from 64.5% in 2004 to 56.9% in 2015 for all of China (Figure S1), 341 

with an average value of 57.0% during 2014 and 2015.  342 

2.4 Multiplicative scaling factor method 343 

To quantify anthropogenic CO2 emissions and to compare them with EDGAR products, we first derived 344 

the monthly scaling factors for anthropogenic CO2 emissions using a multiplicative scaling factor 345 
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(hereafter MSF) method (Sargent et al., 2018; He et al., 2020), and then obtained annual averages. The 346 

monthly scaling factors (SFs) were calculated as: 347 

                                   

2_ 2_ 2_ 2_

2_

obs bg bio fire

anthro

CO CO CO CO
MSF

CO

  


                     (8) 

348 

where CO2_obs, 𝜟CO2_bio, 𝜟CO2_fire and 𝜟CO2_anthro represent observed CO2 mixing ratios, simulated CO2 349 

enhancements contributed by biological flux, biomass burning, and anthropogenic emissions, respectively.  350 

Uncertainties of all factors on the final MSFs were calculated based on Monte Carlo methods, where the 351 

normal sample probability distribution was applied and the upper 97.5% and lower 2.5% of the values 352 

was considered as the uncertainty for MSF (Cao et al., 2016).  353 

3. Results and Discussion 354 

3.1 Evaluation of hourly CO2 mixing ratios 355 

3.1.1 Hourly and monthly CO2 mixing ratio comparisons  356 

This section examines the general performance of simulating hourly CO2 mixing ratios. The two-year 357 

average hourly footprint is shown in Figure 2b where the source area (blue-red) indicates strong 358 

sensitivity of the CO2 observations to regional sources. This footprint shape is representative of the YRD 359 

area. To quantify the relative contributions from each province, we calculated CO2 enhancements 360 

contributed by Anhui, Jiangsu, Zhejiang, Shanghai, and the remaining area outside of the YRD, 361 

respectively. The results indicate that Jiangsu contributed approximately 80% of the total enhancement 362 

(discussed further in Section 3.1.2).  Comparisons between simulated and observed hourly CO2 mixing 363 

ratios are displayed in Figure 3a for both years. For all hourly data in each year, the model versus 364 

observation correlation coefficient (R) was R = 0.38 (n = 8204, P < 0.001) and RMSE = 29.44 ppm for 365 

2014, and R = 0.35 (n = 7262, P < 0.001) and RMSE = 30.22 ppm for 2015. These results indicate that the 366 

model can simulate the synoptic and diel CO2 variations over the two-year period. The model also 367 

captured the monthly and seasonal variations of CO2 mixing ratios (daily averages are shown in Figure 368 

S2). The simulations captured the trend of rising CO2 mixing ratios after October and the drawdown of 369 

CO2 to the background value during the summer.  370 

Figures 3b-d illustrate the average monthly daily, nighttime (22:00-06:00, local time), and daytime 371 

(10:00-16:00) CO2 mixing ratios. These monthly values contain the effects of atmospheric transport, 372 

background and variations in CO2 emissions. The observed and simulated CO2 mixing ratios showed a 373 

significant increase from September 2013 to January 2014. Here, the CO2 mixing ratios increased by 16.0 374 

ppm according to the model results and 17.2 ppm according to the observations. The background values 375 

increased by 8.1 ppm and accounted for 47% of the total CO2 increase, and the net CO2 flux (a priori) for 376 
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YRD increased by 15%. We attributed the remaining 38% increase to changes in atmospheric transport 377 

processes including lower PBLH in January 2014 than in September 2013. To quantify how variations in 378 

PBLH affected CO2 mixing ratios, we compared the simulated monthly anthropogenic CO2 enhancement 379 

differences in the same months of different years, to eliminate the influence of monthly emission 380 

variations on CO2 enhancements. Twelve monthly paired values were used and are shown in Figure 4. 381 

This analysis indicates that atmospheric CO2 mixing ratios decreased by about 3.7 ppm for an increase of 382 

PBLH by 100 m. We also note that there were two months (March and August) that fall far below 383 

this trend, implying that changes in the monthly footprints (source area) can also play an important 384 

role.  385 

On an annual timescale, the simulated average CO2 mixing ratios were 436.63 ppm and 437.11 ppm for 386 

2014 and 2015, respectively. Since the anthropogenic CO2 emissions used in the model are the same for 387 

both years, the simulated annual average CO2 difference can be used to quantify the influence associated 388 

with meteorological factors and ecosystem carbon cycling. Between these two years, the CO2 background 389 

increased by 1.78 ppm, the biological enhancement decreased by 1.04 ppm from 2014 to 2015. The 390 

remaining 0.26 ppm change between 2014 and 2015 indicates a relatively small meteorological effect for 391 

the annual averages, such as a slight change in dominant wind direction or a PBLH difference.   392 

The simulated annual average NEE CO2 enhancements were 2.64 ppm and 1.60 ppm for the respective 393 

years. For comparison, the annual average anthropogenic enhancements were 36.20 ppm and 34.90 ppm 394 

for 2014 and 2015, respectively. The monthly NEE enhancement varied from -0.1 ppm in May 2015 to 395 

+6.0 ppm July 2014, indicating NEE contributes positively for enhancement in most months (Figure 5a), 396 

even though the sign of monthly averaged NEE flux in summer was negative (sinks). This positive 397 

contribution was mainly caused by diel PBLH variations between daytime (smaller negative enhancement) 398 

and nighttime (larger positive enhancement). To further evaluate the impact of plant photosynthetic 399 

activity on the regional CO2 cycle, we examined the NDVI, SIF and GPP seasonal patterns (Figures 5d-f). 400 

These three datasets revealed two peaks during each year, which is related to increased photosynthetic 401 

activity. The first peak occurred in May and the second in August-September, corresponding to the 402 

growing season of wheat and corn/rice, respectively (Deng et al., 2015). We note that GPP was derived 403 

from SIF, and as a result, they share a similar seasonal cycle. The land-use classification in YRD for 404 

2014 (Figure S3) shows that north YRD is dominated by agricultural land and south dominated by forest 405 

land, and our observation site was more surrounded by agricultural land which corresponded well with 406 

observed NDVI, SIF and GPP seasonal patterns. The peak SIF and GPP signals during the summer were 407 

about 20 times greater than during the winter. Consequently, we can ignore the potential influence of 408 

photosynthetic activity on the regional CO2 enhancements during the non-growing seasons.  409 
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3.1.2 Components of urban CO2 enhancement  410 

Here, we diagnose the source contributions to the urban CO2 enhancement. The observed anthropogenic 411 

CO2 enhancements, which were derived by subtracting CO2 background and simulated biological 412 

enhancement from CO2 concentration observations, were 38.36±3.32 ppm and 37.89±2.80 ppm for 2014 413 

and 2015, respectively. Here, the uncertainty of the observed anthropogenic CO2 enhancements was 414 

calculated by prescribing a 2 ppm potential bias for the Carbon Tracker CO2 fields and 50% to the 415 

simulated biological CO2 enhancement (Hu et al., 2018b). The corresponding simulated anthropogenic 416 

CO2 enhancements were 36.20 ppm and 34.90 ppm. In comparison with the simulated biological CO2 417 

enhancements displayed in Figure 5a, both the observed and simulated CO2 enhancements are indicative 418 

of a large anthropogenic (fossil fuel and cement production) CO2 emission from the YRD.  419 

Previous studies have also investigated urban CO2 enhancements from a relatively broad range of 420 

developed environments worldwide.  Verhulst et al. (2017) measured CO2 mixing ratios at seven sites in 421 

Los Angeles, USA and concluded that the mean annual enhancement varied between 2.0 ppm and 30.8 422 

ppm, which is considerably lower than our findings. Another study in Washington D.C., USA in February 423 

and July 2013 showed that the CO2 enhancement was less than 20 ppm (Mueller et al., 2018). The urban 424 

CO2 observations and modeling study by Martin et al. (2019) at three urban sites in eastern USA showed 425 

an enhancement of ~21 ppm in February 2013, substantially lower (by ~20 ppm) than our observations.  426 

The measurements at an urban-industrial complex site in Rotterdam, Netherlands, indicated a CO2 427 

enhancement of only 11 ppm for October to December 2014 (Super et al., 2017). Our enhancements were 428 

significantly higher than all of these previous reports of other urban areas. 429 

The anthropogenic components and source area contributions are displayed in Figure 5b-c. During the 430 

study period the average anthropogenic enhancements were 5.1%, 80.2%, 1.9%, 4.4%, and 8.5% for 431 

Anhui, Jiangsu, Zhejiang, Shanghai, and the remaining area outside the YRD, respectively. Although 432 

Shanghai’s area is the smallest within the YRD region and relatively distant (~300 km) from our 433 

observation site, its maximum source contribution at times exceeded 50% (i.e. on 19
th
 September 2013, 434 

not shown) via long-distance transport. In general, power industry, manufacturing, non-metallic mineral 435 

production, oil refinery, and other source categories contributed 41.0%, 21.9%, 9.3%, 11.5%, and 16.3% 436 

to the total anthropogenic CO2 enhancement, respectively. The proportions of corresponding CO2 437 

emission categories to the total anthropogenic emissions of the YRD were 39.8%, 28.4%, 7.4%, 4.1%, 438 

and 24.4%, respectively. The comparisons between the proportions of simulated enhancement and 439 

proportions of corresponding CO2 emissions can illustrate whether CO2 enhancement partitions is 440 

a good tracer for emissions in complex urban area. We found a relatively large difference between the 441 

enhancement proportion and the emission proportion for oil refineries (from 11.5% to 4.1%) as compared 442 
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to other categories. This may be because power industry, manufacturing and non-metallic mineral 443 

production were more homogeneously distributed compared to oil refineries, which were closer to our 444 

CO2 observation site. Further, changes in source footprint caused by wind direction variations likely 445 

played an important role.  446 

3.1.3 Constraints on monthly anthropogenic CO2 emissions 447 

To provide a robust comparison of bottom-up CO2 emissions for YRD, we calculated anthropogenic CO2 448 

emissions from both EDGAR v4.3.2 and with activity data provided by local governments (Table 1) and 449 

the default IPCC emission factors (https://www.ipcc-nggip.iges.or.jp/EFDB/). The total anthropogenic 450 

CO2 emissions in 2014-2015 were 24.4 × 10
11

 kg and 23.5 × 10
11

 kg according to our own inventory and 451 

EDGAR v4.3.2 CO2, respectively, indicating excellent agreement (within 4%) between these approaches. 452 

We constrained the monthly anthropogenic CO2 emissions by using the MSF method (equation 8) and 453 

computed the 12-month average to represent the years of 2014 and 2015. The a posteriori results indicate 454 

that the annual scaling factors were 1.03 ± 0.10 for 2014 and 1.06 ± 0.09 for 2015. The monthly scaling 455 

factors derived from using daytime and all-day observations are also shown in Figure S4. These 456 

factors vary seasonally with higher values observed in summer. When using daytime values only, 457 

the scaling factors were much larger than the all-day values. This can be seen in Figure 3 by 458 

comparing the simulated and observed CO2 mixing ratios. We should note here that the larger 459 

scaling factors based on the daytime data could be caused by bias in the a priori daily scaling 460 

factors used to generate the hourly CO2 emissions (Hu et al., 2018b); the monthly anthropogenic 461 

averages; and bias in negative biological CO2 enhancement. Since our study is mainly focused on 462 

the seasonality of all-day observations, the monthly scaling factors derived from the all-day 463 

approach will be used for the following analyses. The anthropogenic CO2 emissions in year 2015 did 464 

not show a significant change compared to 2014, and the overall estimates were within the uncertainty of 465 

the estimates. After applying the average scaling factors for 2014 and 2015, the a posteriori 466 

anthropogenic CO2 emissions were 24.6 (± 2.4) × 10
11 

kg for the YRD area. The application of the MSF 467 

method provides an overall constraint on the anthropogenic CO2 emissions (also displayed in Table 1).  468 

The main uncertainties associated with the simulation of hourly CO2 and 𝜹13
C-CO2 are uncertainty 469 

in meteorological fields, transport model (i.e. number of released particles), and a priori CO2 fluxes. 470 

At the annual scale the main uncertainty is attributed to the PBLH simulations and a priori 471 

anthropogenic CO2 emissions. The anthropogenic CO2 emissions biases were < 6% as described 472 

above, and the bias associated with PBLH uncertainty was typically <13% (Hu et al., 2018a; 2018b). 473 

There, we attribute a 20% uncertainty to the simulated CO2 and 𝜹13
C-CO2 signals on an annual 474 

time scale. 475 
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3.2 Simulation of atmospheric 𝜹13
C-CO2  476 

3.2.1 Background atmospheric 𝜹13
C-CO2 477 

To obtain the best representative 𝜹13
C-CO2 background value for the study domain we examined the 478 

values from the three strategies described above (Figure 6). We also compared the 𝜹13
C-CO2 at the WLG 479 

background site with observations at NUIST during winters (Figure S5). This was performed to help 480 

simplify the comparison by removing the effects of plant photosynthetic discrimination. The 𝜹13
C-CO2 at 481 

the WLG site was relatively more depleted in the heavy carbon isotope (or negative, by up to 0.5‰) than 482 

that observed at NUIST for many periods. Theoretically, there are two key factors that can cause the 483 

urban atmospheric 𝜹13
C-CO2 to be relatively more enriched in the heavy carbon isotope (or positive) 484 

compared to the background values including: 1) Discrimination associated with ecosystem 485 

photosynthesis; and 2) Enrichment of isotopic signature associated with the CO2 derived from cement 486 

production. As shown earlier, the biological CO2 enhancement was positive in winter, which implies a 487 

positive biological CO2 signal where ecosystem respiration is more important than photosynthesis. 488 

Further, sensitivity tests for cement CO2 sources showed its influence is much smaller than the observed 489 

difference in Figure S5 (discussed in section 3.3.3). Based on the above analyses and methods introduced 490 

in Section 2.3, we concluded that the WLG 𝜹13
C-CO2 signal is not an ideal choice for representing the 491 

background value. The wintertime 𝜹13
C-CO2 background values, based on strategy 2, were -7.78‰ and -492 

7.61‰ for 2013-2014 and 2014-2015, respectively (Figure 6). The corresponding values, based on 493 

strategy 3, were -7.70‰ and -7.53‰. These background values are more enriched compared to the WLG 494 

observations by 0.80‰ to 1.01‰. These derived values agree well with the monthly 𝜹13
C-CO2 simulation 495 

results of Chen et al. (2006) who showed that 𝜹13
C-CO2 is 0.6‰ higher above the PBL than in the surface 496 

layer near the ground. Recently, Ghasemifard et al. (2019) showed that hourly 𝜹13
C-CO2 values at Mount 497 

Zugspitze, the highest (2650 m) mountain in Germany, varied between -7‰ and -12‰ in the winter for 498 

2013. During two especially clean air events (in October and February) at Mount Zugspitze, the 𝜹13
C-499 

CO2 was approximately -7‰, during which the CO2 mixing ratios varied between 390 and 395 ppm. 500 

This is consistent with our estimates using strategies 2 and 3. Based on the evidence presented above, we 501 

believe that strategy 3 is the most robust way to derive a background 𝜹13
C-CO2 for the study domain.   502 

3.2.2 Evaluation of 𝜹13
C-CO2 simulations 503 

Figure 7a shows the hourly 𝜹13
C-CO2 simulations over a two-year period. To the best of our knowledge, 504 

this is the first time that 𝜹13
C-CO2 has been simulated at an hourly time scale for an urban region. The 505 

simulations are consistent with the observations at daily, monthly and annual time scales, where the 506 

average value of observations (simulations) were -8.69‰ (-8.68‰) and -8.52‰ (-8.45‰) for 2014 and 507 
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2015, respectively. The corresponding correlation was R = 0.54 (P < 0.001) and R = 0.52 (P < 0.001). 508 

The root mean square error between observations and simulations was 1.07‰ for 2014 and 1.10‰ for 509 

2015 (Table 2). Further, the observed and simulated 𝜹13
C-CO2 values showed seasonal variations that 510 

increased in summer and decreased in winter. This pattern mirrored the CO2 mixing ratios for both 511 

observations and simulations (Figures 3a and 8). Similar relations and seasonal variations of 𝜹13
C-CO2 512 

have been reported in other urban areas (Sturm et al., 2006; Guha & Ghosh, 2010; Moore & Jacobson, 513 

2015; Pang et al., 2016).
 
The simulated hourly NEE CO2 enhancement is also shown in Figure 7b. Note 514 

that negative values indicate net CO2 sinks and positive values indicate net CO2 sources. We can see large 515 

hourly variations in the growing seasons and positive enhancements during nighttime that are generally 516 

larger than negative enhancements during daytime. This shows the potential influence of NEE on 𝜹13
C-517 

CO2 seasonality. To date, no study has quantified the relative contributions to the 𝜹13
C-CO2 seasonality. 518 

Here, we re-evaluate and quantify the main factors contributing to its seasonality based on the 519 

combination of 𝜹13
C-CO2 observations and simulations in the following section.   520 

Here, we examine the comparisons for winter and summer in greater detail. The simulations showed that 521 

the model can generally capture the diel variations of observed hourly 𝜹13
C-CO2 variations (Figure 8). 522 

Statistics between observations and simulations for two seasons are shown in Table 2. The observed 523 

seasonal average increased substantially, by 1.18‰, from winter 2013-2014 (-9.27‰) to summer 2014 (-524 

8.09‰). The simulations showed a similar seasonal increase of 1.35‰. Some large discrepancies are 525 

evident and generally caused by the simulated total CO2 enhancement biases (potentially caused by 526 

poorly simulated PBLH during these periods) and the negative relationship between 𝜹13
C-CO2 and the 527 

CO2 enhancement as shown in Figure S6.   528 

Comparisons between observations and simulations for daily average CO2 mixing ratio and 𝜹13
C-CO2 are 529 

also shown in Figure 9. Although the data are distributed around the 1:1 line for both seasons, there is less 530 

scatter and higher correlation in the winter than in the summer. We attributed this to the more complex 531 

biological CO2 sinks in the summer, which are not adequately resolved by the relatively coarse model 532 

grid (1
o
 by 1

o
). We also performed comparisons by only choosing the daytime observations. The 533 

results indicated that daytime CO2 mixing ratio simulations in the summer were slightly 534 

underestimated. This caused 𝜹13
C-CO2 to be overestimated (Figure S7). The simulations for winter 535 

generally captured the trends for both CO2 and 𝜹13
C-CO2 when the biological CO2 enhancement 536 

played a relatively small role compared to anthropogenic emissions.  The larger bias in the summer 537 

could result from the relatively coarse spatial-temporal resolution (aggregation error) of the 538 

Carbon Tracker biological CO2 flux, which was 1×1 degree with three-hour average. As shown in 539 

Figure S3, the spatial distribution of land use is far more heterogeneous. This will smooth the 540 
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stronger biological CO2 signals by averaging it over the large 1×1 degree grid, while the urban 541 

biological CO2 flux occurs at much finer spatial scales and likely varies at shorter time intervals.   542 

3.2.3 Mechanisms controlling the 𝜹13
C-CO2 seasonality 543 

The mechanisms driving these seasonal variations are examined below. The peak and trough in the 544 

observed 𝜹13
C-CO2 signal was observed in December and July (Figure 10a), respectively, yielding an 545 

amplitude of 1.51‰. This was consistent with the simulated amplitude of 1.53‰. These results support 546 

that the simulated 𝜹13
C-CO2 seasonality agreed well with the observations (Figure 10), and can be used to 547 

further diagnose the mechanisms contributing to the 𝜹13
C-CO2 seasonality. According to equation 2, the 548 

𝜹13
C-CO2 seasonality can be attributed to four factors including: (1) A change in the background 𝜹13

C-549 

CO2 value from -7.64‰ in December to -6.66‰ in July; (2) A change in CO2 background from 399 ppm 550 

to 398 ppm; (3) The total CO2 enhancement change from 45.7 ppm to 37.3 ppm; and (4) The change in 551 

the isotope composition of the CO2 enhancements causing 𝜹s to vary from -26.1‰ to -22.8‰. 552 

To quantify each mechanism’s contribution to the seasonality of atmospheric 𝜹13
C-CO2, we recalculated 553 

𝜹13
C-CO2 by using the monthly averages as described above. First, we calculated 𝜹13

C-CO2 in December 554 

and July, which were -9.54‰ and -8.04‰, respectively, with amplitude of 1.50‰. Next, we replaced the 555 

𝜹13
C-CO2 background value in December (-7.64‰) with July (-6.67‰). The recalculated 𝜹13

C-CO2 was -556 

8.66‰ in December, indicating that the change in 𝜹13
C-CO2 background value caused a change of 0.88‰ 557 

(9.54‰ minus -8.66‰) to the seasonality. By changing both the total CO2 enhancement and background 558 

values, the recalculated 𝜹13
C-CO2 was -8.32‰, contributing a 0.34‰ change in the seasonality (-8.66‰ 559 

minus -8.32‰). Finally, by changing 𝜹s from -26.1‰ to -22.8‰, together with the change in background 560 

value, the recalculated 𝜹13
C-CO2 was -8.32‰ a change of 0.34‰ (i.e. -8.66‰ minus -8.32‰). This 561 

indicates that both the total CO2 enhancement and change in 𝜹s contributed equally to the regional source 562 

term, causing a variation of 0.62‰ (i.e. 1.50‰ minus 0.88‰). Based on the above analyses, we attributed 563 

59% and 41% of the 𝜹13
C-CO2 seasonality to the changing 𝜹13

C background term and regional source 564 

terms, respectively. Further, the total CO2 enhancement and change in 𝜹s, sum of both can be treated 565 

as regional source term, contributed equally (about 20%) to the 𝜹13
C-CO2 seasonality.  566 

To investigate how ecosystem photosynthetic discrimination and respiration affected atmospheric 𝜹13
C-567 

CO2 seasonality, we simulated the 𝜹13
C-CO2 again for two cases: (1) excluding negative NEE when 568 

photosynthesis is stronger than respiration, and (2) excluding both photosynthetic discrimination and 569 

respiration. Note that only NEE was used in our study with no partitioning between photosynthesis and 570 

respiration in the daytime. The only role of photosynthetic discrimination should be stronger than in 571 

case 1 when only negative NEE is used. The results are shown in Figure 10 b-c. Overall, the negative 572 
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CO2 enhancement caused atmospheric 𝜹13
C-CO2 to become more enriched in the baseline simulations 573 

with maximum values around 1‰ between April and October (Figure 10b), and positive CO2 574 

enhancement (i.e. via net respiration) caused atmospheric 𝜹13
C-CO2 to become more depleted compared 575 

to the baseline simulations through the whole year (Figure 10c). By applying the CCGRCV fitting 576 

technique to the 𝜹13
C-CO2 for the above two cases, we found that the 𝜹13

C-CO2 seasonality decreased to 577 

1.45‰ in case 1, indicating ecosystem photosynthetic discrimination explained > 0.08‰ of the 578 

seasonality (1.53‰ minus 1.45‰). For case 2, the 𝜹13
C-CO2 trough in winter slightly increased by 0.08‰ 579 

and peak in summer increased by 0.20‰, these two factors finally lead the seasonality increase to 1.66‰, 580 

which were caused by much larger respiration CO2 enhancement in summer than in winter (Figure 7b).  581 

These results indicate that biological respiration reduced the 𝜹13
C-CO2 seasonality by 0.20‰, and that 582 

negative NEE (photosynthetic discrimination) acted to increase the 𝜹13
C-CO2 seasonality by 0.08‰. 583 

Generally, both ecosystem photosynthesis and respiration played minor roles in controlling the 584 

atmospheric 𝜹13
C-CO2 seasonality within this urban area. In other words, the anthropogenic CO2 585 

emissions played a much larger role than the plants. 586 

As shown in Figure 5, CO2 sources from power industry, combustion for manufacturing, non-metallic 587 

mineral production and oil refineries and transformation industry were the top 4 contributors to the CO2 588 

enhancements. We simulated atmospheric 𝜹13
C-CO2 by assuming that no CO2 was emitted from each of 589 

these 4 categories. The simulations were performed by excluding one category at a time. The results 590 

indicated that atmospheric 𝜹13
C-CO2 seasonality was 1.30‰, 1.57‰, 1.30‰, and 1.47‰, if excluding 591 

power industry, combustion for manufacturing source, oil refineries/transformation industry, and non-592 

metallic mineral production sources, respectively. In other words, power industry and oil refineries/ 593 

transformation industry together contributed 0.40‰ to the total regional source term of 0.62‰. The 594 

cement sources played a role in enriching 0.07‰ the atmospheric 𝜹13
C-CO2 in the heavy isotope, contrary 595 

to all other anthropogenic CO2 sources.   596 

3.3 Sensitivity analysis 597 

3.3.1 Comparison of 𝜹s·𝜟CO2 598 

Based on equation 2, the regional source term determines the hourly/daily variations of 𝜹13
C-CO2, which 599 

is treated as a signal added to the background signal. To evaluate the model simulated regional source 600 

term with respect to the observations we examined daily averages for winter to minimize the influence of 601 

photosynthesis. In Figure 11a, the observed daily 𝜹s·𝜟CO2 values are compared with the simulated values 602 

using the a priori anthropogenic CO2 emissions. Here 𝜟CO2 represents the total CO2 enhancement for 603 

both observations and simulations. The product 𝜹s·𝜟CO2 can be interpreted as the regional source term.  604 
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The average values were -1009.0 (and -841.9) ppm·‰ for observations and -1096.7 (and 1000.5) ppm·‰ 605 

for model results in 2014 (and 2015). The slope of the regression fit was 0.99 (±0.12) and the intercept 606 

was -151.7 (±130.1) for all data during the two winters. After applying the monthly scaling factors to 607 

constrain the anthropogenic CO2 emissions, the re-calculated results were closer to the 1:1 line with a 608 

slightly improved correlation (R increased from 0.47 to 0.50; Figure 11b). Note that the application of the 609 

monthly scaling factors only impacts the 𝜟CO2 but not 𝜹s. The uncertainty in 𝜹s will be discussed next.  610 

3.3.2 Comparison between _s sim and 
s   611 

To evaluate the 𝜹s simulations, we compared observed and simulated 𝜹s as displayed in Figure 12a for all-612 

day and nighttime conditions. Here, nighttime simulations were selected to minimize the effects of 613 

ecosystem photosynthesis and to mainly focus on the anthropogenic CO2 sources. Two methods were 614 

used to calculate 𝜹s from the observations including the Miller-Tans and Keeling plot methods. Although 615 

𝜹s differed between these two methods, both displayed similar seasonal variations with higher values 616 

(𝜹13
C enrichment) in summer and lower values in winter.  Such seasonal variations were also observed at 617 

other urban sites including Beijing, China (Pang et al., 2016), Bern, Switzerland (Sturm et al., 2006), 618 

Bangalore city, India (Guha and Ghosh, 2010),Wroclaw, Poland (Górka and Lewicka-szczebak, 2013). 619 

If the CO2 sources/sinks are homogeneously distributed and without monthly variations, the atmospheric 620 

CO2 enhancement components would remain unchanged, and there would be no seasonal changes in 𝜹s. 621 

In reality, variations in atmospheric transport processes interact with regional CO2 sink/source changes 622 

that cause monthly variations in 𝜹s. The comparison of 𝜹s between simulations and observations indicated 623 

that the model performed well in capturing the mixing and transport of CO2 from different sources. We 624 

can also infer from their difference that the proportions of some CO2 categories were biased in the a 625 

priori emission map. This can be caused by both the downscaling of EDGAR inventory distribution to 626 

0.1
o
 and the magnitude of some emissions categories. Among all anthropogenic sources, the most 627 

significant linear relations were found between the simulated anthropogenic 𝜹s and cement CO2 628 

proportions for these 24 months, with slopes of 0.33‰ for nighttime and 0.35‰ for all-day conditions (R
2
 629 

= 0.97, p < 0.001; Figure 12 b & c). These results also indicated that cement CO2 emissions dominated 630 

monthly 𝜹s variations in the YRD region. 631 

3.3.3 Sensitivity of atmospheric 𝜹13
C-CO2 and 𝜹s to cement CO2 emissions 632 

The discrepancy between simulated and observed 𝜹s highlights that some CO2 sources were biased in the 633 

a priori inventories. As discussed above, cement CO2 emissions had the most distinct 𝜹13
C-CO2 end-634 

member value of 0‰ ± 0.30‰ when compared with the averages of other anthropogenic sources. 635 
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Combined with its large emission compared to other regions of the world, it had a strong potential to 636 

influence 𝜹s and 𝜹13
C-CO2. YRD represents the largest cement producing region in the world (USGS, 637 

2014; Cai et al., 2015; Yang et al., 2017). Its relative proportion to total national anthropogenic CO2 638 

emissions is about 5.5% to 6.5% based on IPCC method and 7.3% for EDGAR. These proportions are 50% 639 

greater than the global average of 4% (Boden et al., 2016) and much larger than most countries (Andrew, 640 

2018) and other large urbanized areas such as California (2%; Cui et al., 2019).  641 

The local activity data reveals that the cement production increased from 3.55 × 10
8 
tons in 2010 to 4.56 × 642 

10
8 

tons in 2014 in the YRD area. Our own calculation of the national clinker-to-cement indicated a 643 

decreasing trend from 64% in 2004 to around 56% in 2015. Here, we applied the value of 61.7% for 2010 644 

and the average value of 57.0% for 2014 to 2015. We then used the EF for clinker (0.52 ± 0.01 tonne CO2 645 

per tonne clinker; IPCC 2013). Finally, the calculated cement CO2 emissions were 1.14 (± 0.02) × 10
8
 646 

tonne for 2010 and 1.35 (±0.03) × 10
8
 tonne for 2014, indicating an 18.4% increase over this time period. 647 

This result is close to the scaling factor 1.145 for the total anthropogenic CO2 emissions for the same 648 

period.   649 

The cement CO2 emission was 1.45×10
8
 tonne for the EDGAR products in 2010. Applying the scaling 650 

factor of 1.184, based on our independent method, the EDGAR cement CO2 emissions was 1.72×10
8
 651 

tonne for the year of 2014. The 27% difference between the EDGAR inventory and our independent 652 

calculations probably resulted from large errors in the clinker-to-cement ratio and regional activity data. 653 

Ke et al. (2013) reported a much higher clinker-to-cement ratio of 73% to 70% for China during 2005 and 654 

2007 than the ratio of 57% in 2014 to 2015. If we applied a 70% ratio, the EDGAR cement CO2 emission 655 

would change to 1.28×10
8
 tonne for 2010.  656 

The monthly cement emission proportions varied from 6.21% to 8.98%, while its enhancement proportion 657 

was much larger and could reach 16.85%. In other words, favorable atmospheric transport processes 658 

amplified the cement CO2 enhancement proportion at our observational site (Table S2). To quantify the 659 

extent to which the cement CO2 enhancement components can affect 𝜹s and atmospheric 𝜹13
C-CO2 we 660 

conducted sensitivity tests by changing the cement enhancement proportions to 0.8, 1.2, 1.4, 1.6, 1.8, and 661 

2 times its original value. These sensitivity tests are based on two different assumptions for cement CO2 662 

enhancement changes: (1) There is no bias in the total anthropogenic CO2 enhancement such that a 663 

proportional increase/decrease in the cement component does not change the relative anthropogenic 664 

contributions; (2) Only the cement enhancement changes. From equation 2, these two assumptions will 665 

change both 𝜹s and 𝜹13
C-CO2 but with different amplitude. 666 
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Results for the first assumption are shown in Figure 13a-b for both nighttime and all-day 𝜹s simulations. 
667 

The simulated 𝜹s increased linearly with the increase of cement proportions, at a rate of 2.73‰ increase 
668 

per 10% increase of cement proportions in the nighttime and 2.72‰ for all-day. The result for the second 
669 

assumption is similar to the first one, yielding a 2.32‰ increase for a 10% increase in the cement 
670 

proportion. As shown in Table S2, the cement CO2 enhancement proportions increased from 5.60% - 6.77% 
671 

(December) to 13.16% - 16.85% (June), which is the primary cause for the observed monthly 𝜹s 
672 

variations. The high sensitivity of 𝜹s to cement CO2 proportions can partly explain the relative difference 
673 

of modeled 𝜹s and indicates a potential advantage to constrain cement CO2 emissions by using 
674 

atmospheric 𝜹13
C-CO2 observations. Finally we calculated how cement CO2 can change atmospheric 

675 

𝜹13
C-CO2 (Figure 13c). These results show that atmospheric 𝜹13

C-CO2 is more sensitive to the first 
676 

assumption than the second assumption. These sensitivity analyses indicate that a cement CO2 
677 

enhancement relative change of 20% (or absolute 1.57% increase) can cause a 0.013‰ - 0.038‰ change 
678 

in the atmospheric 𝜹13
C-CO2. These results indicate that 𝜹s is sensitive to cement CO2 emissions.  

679 

4 Conclusions 680 

(1) Total annual anthropogenic CO2 emissions for the YRD showed high consistency between the top-681 

down and bottom-up approaches with a bias less than 6%. 682 

(2) Approximately 59% and 41% of the 𝜹13
C-CO2 seasonality was attributed to the change in 𝜹13

C 683 

background value and the regional CO2 source term, respectively.  684 

(3) Power industry and oil refineries/ transformation industry together contributed 0.40‰ to the 685 

seasonal cycle, accounting for 64.5% in all regional source terms (0.62‰). 686 

(4) If excluding all ecosystem respiration and photosynthetic discrimination in YRD area, 𝜹13
C-CO2 687 

seasonality will increase from 1.53‰ to 1.66‰.  688 

(5) Atmospheric transport processes in summer amplified the cement CO2 enhancement proportions in 689 

the YRD area, which dominated monthly 𝜹s variations. 𝜹s calculated from simulations was shown 690 

to be a strong linear relation with cement CO2 EDGAR v4.3.2 inventory proportion in the YRD 691 

area. 692 
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Figure 1. (a) Weather Research and Forecasting Model simulation domains and the location of WLG site , the different region 935 

colors represent three domains, (b) cement production distribution in YRD and Eastern China. Both green dot in (a) and red 936 

star in (b) are NUIST observation site. 937 

Figure 2. (a) Annual anthropogenic CO2 emissions for study domain (units: mol m-2 s-1) and population density in 4 megacities 938 

(units: people per hectare) including Nanjing, Hefei, Zhejiang, and Shanghai for the year of 2015, (b) Two-year average 939 

concentration footprint (units: ppm m2 s/µmol). 940 

Figure 3.  (a) Comparisons of hourly CO2 mixing ratios between observations and model simulation from September 2013 to 941 
August 2015, and monthly averages for (b) whole day, (c) nighttime (22:00-06:00, local time) and (d) daytime (10:00 - 16:00);  942 
Model results (red), observations (black), and background (grey).   943 

Figure 4. Relation between monthly PBLH and change in CO2 mixing ratio, here these dots represent difference of monthly 944 

averages in two different years for all hours. 945 

Figure 5. (a) Comparisons of simulated and observed CO2 enhancement, note ‘model’ represents the sum of both 946 

anthropogenic and biological CO2 enhancement simulations, (b) CO2 enhancement contributions from different provinces, 947 

(c) simulated anthropogenic CO2 enhancement proportion for the main sources; Time series (2013 to 2015) of (d) NDVI, (e) 948 

SIF, and (f) GPP. The distance indicates the radius of area centered with NUIST observation site, and the NDVI, SIF, GPP 949 

values are averages in these areas. 950 

Figure 6. Comparisons among three strategies for calculating the background 𝜹13C-CO2 . Strategy 1 (WLG discrete: weekly 951 

discrete observations at WLG site, WLG CCGCRV: derived hourly data with WLG observations and CCGCRV method); 952 

Strategy 2 (Calculated: by choosing clean air in winter); and strategy 3 (M-T method: derived results with observations and M-T 953 

approach, M-T CCGCRV: derived hourly results with M-T approach and CCGCRV method, see details in section 2.2.1).  954 

Figure 7. (a) Comparisons of observed and modeled hourly 𝜹13C-CO2 from September 2013 to August 2015, where the grey line 955 

represent derived 𝜹13C-CO2 background, and (b) Simulated hourly biological CO2 enhancement. The shade and lines in both 956 

subfigures represent the periods for winter and summer, respectively. 957 

Figure 8. Comparisons of observed and modeled (a) CO2 mixing ratio and (b) 𝜹13C-CO2 from December 2013 to February 2014; 958 

(c) CO2 mixing ratio and (b) 𝜹13C-CO2 from December 2014 to February 2015; (e) CO2 mixing ratio and (f) 𝜹13C-CO2 from 959 

June 2014 to August 2014; (g) CO2 mixing ratio and (h) 𝜹13C-CO2 from June 2015 to August 2015. 960 

Figure 9. Scatter plots of observed versus modeled (a) winter time CO2 mixing ratios, (b) winter time 𝜹13C-CO2, (c) summer 961 

time CO2, and (d) summer time 𝜹13C-CO2 for both years, here these dots are daily averages. 962 

Figure 10. Digital filtering curve fitting (CCGCRV) for background, observations, normal  simulations, case 1 (excluding 963 

negative NEE when photosynthesis is stronger than respiration), and case 2 (excluding respiration and photosynthesis) in 964 

both years, (b) 𝜹13C-CO2 comparisons between normal simulations and case 1, and (c) 𝜹13C-CO2 comparisons between normal 965 

simulations and case 2. 966 

Figure 11. Comparisons of winter time 𝜹s·𝜟CO2 using (a) a priori and (b) constrained anthropogenic CO2 emissions.   967 

Figure 12. (a) Comparisons between observed and modeled 𝜹s, (b) relationship between cement CO2 enhancement proportion 968 

and simulated anthropogenic 𝜹s for nighttime and (c) all-day. 969 
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Figure 13. Sensitivity tests showing the influence of cement CO2 emissions on 𝜹s for (a) nighttime, (b) all-day, and (c) the 
970 

relation between cement CO2 and 𝜹13C for simulation strategies 1 (There is no bias in the total anthropogenic CO2 
971 

enhancement such that a proportional increase/decrease in the cement component does not change the relative 
972 

anthropogenic contributions) and 2 (only the cement enhancement changes). Note that the numbers in brackets indicate 
973 

changes in 𝜹13C with cement CO2 enhancement proportion (the fraction of cement CO2 enhancement to simulated  total CO2 
974 

enhancement) increase by 0.2 times. The x-axis values indicate changing cement enhancement proportions to  0.8 1.2, 1.4, 1.6, 
975 

1.8, and 2 times the original values. 
976 
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Figure 1. (a) Weather Research and Forecasting Model simulation domains and the location of WLG site , the different region 994 

colors represent three domains, (b) cement production distribution in YRD and Eastern China. Both green dot in (a) and red 995 

star in (b) are NUIST observation site. 996 
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 1019 

Figure 2. (a) Annual anthropogenic CO2 emissions for study domain (units: mol m-2 s-1) and population density in 4 megacities 1020 

(units: people per hectare) including Nanjing, Hefei, Zhejiang, and Shanghai for the year of 2015, (b) Two-year average 1021 

concentration footprint (units: ppm m2 s/µmol). 1022 
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Figure 3.  (a) Comparisons of hourly CO2 mixing ratios between observations and model simulation from September 2013 to 1033 
August 2015, and monthly averages for (b) whole day, (c) nighttime (22:00-06:00, local time) and (d) daytime (10:00 - 16:00);  1034 
Model results (red), observations (black), and background (grey).   1035 
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Figure 4. Relation between monthly PBL height and change in CO2 mixing ratio, here these dots represent difference of 1039 

monthly averages in two different years for all hours.  1040 
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Figure 5. (a) Comparisons of simulated and observed CO2 enhancement, note ‘model’ represents the sum of both 1052 

anthropogenic and biological CO2 enhancement simulations, (b) CO2 enhancement contributions from different provinces, 1053 

(c) simulated anthropogenic CO2 enhancement proportion for the main sources; Time series (2013 to 2015) of (d) NDVI, (e) 1054 

SIF, and (f) GPP. The distance indicates the radius of area centered with NUIST observation site, and the NDVI, SIF, GPP 1055 

values are averages in these areas. 1056 
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Figure 6. Comparisons among three strategies for calculating the background 𝜹13C-CO2 . Strategy 1 (WLG discrete: weekly 1064 

discrete observations at WLG site, WLG CCGCRV: derived hourly data with WLG observations and CCGCRV method); 1065 

Strategy 2 (Calculated: by choosing clean air in winter); and strategy 3 (M-T method: derived results with observations and M-T 1066 

approach, M-T CCGCRV: derived hourly results with M-T approach and CCGCRV method, see details in section 2.2.1).  1067 

 1068 

 1069 

 1070 

 1071 

 1072 

 1073 

 1074 

 1075 

 1076 

 1077 

 1078 



37 
 

 1079 

            1080 

 1081 

Figure 7. (a) Comparisons of observed and modeled hourly 𝜹13C-CO2 from September 2013 to August 2015, where the grey line 1082 

represent derived 𝜹13C-CO2 background, and (b) Simulated hourly biological CO2 enhancement. The shade and lines in both 1083 

subfigures represent the periods for winter and summer, respectively.  1084 
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 1089 

Figure 8. Comparisons of observed and modeled (a) CO2 mixing ratio and (b) 𝜹13C-CO2 from December 2013 to February 2014; 1090 

(c) CO2 mixing ratio and (b) 𝜹13C-CO2 from December 2014 to February 2015; (e) CO2 mixing ratio and (f) 𝜹13C-CO2 from 1091 

June 2014 to August 2014; (g) CO2 mixing ratio and (h) 𝜹13C-CO2 from June 2015 to August 2015. 1092 

 1093 



39 
 

  1094 

   1095 

Figure 9. Scatter plots of observed versus modeled (a) winter time CO2 mixing ratios, (b) winter time 𝜹13C-CO2, (c) summer time 1096 

CO2, and (d) summer time 𝜹13C-CO2 for both years, here these dots are daily averages. 1097 
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Figure 10. Digital filtering curve fitting (CCGCRV) for background, observations, normal  simulations, case 1 (excluding 1108 

negative NEE when photosynthesis is stronger than respiration), and case 2 (excluding respiration and photosynthesis) in 1109 

both years, (b) 𝜹13C-CO2 comparisons between normal simulations and case 1, and (c) 𝜹13C-CO2 comparisons between normal 1110 

simulations and case 2. 1111 
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Figure 11. Comparisons of winter time 𝜹s·𝜟CO2 using (a) a priori and (b) constrained anthropogenic CO2 emissions.   1116 
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Figure 12. (a) Comparisons between observed and modeled 𝜹s, (b) relationship between cement CO2 enhancement proportion and 1133 

simulated anthropogenic 𝜹s for nighttime and (c) all-day. 1134 
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 1144 

Figure 13. Sensitivity tests showing the influence of cement CO2 emissions on 𝜹s for (a) nighttime, (b) all-day, and (c) the 
1145 

relation between cement CO2 and 𝜹13C for simulation strategies 1 (There is no bias in the total anthropogenic CO2 
1146 

enhancement such that a proportional increase/decrease in the cement component does not change the relative 
1147 

anthropogenic contributions) and 2 (only the cement enhancement changes). Note that the numbers in brackets indicate 
1148 

changes in 𝜹13C with cement CO2 enhancement proportion (the fraction of cement CO2 enhancement to simulated  total CO2 
1149 

enhancement) increase by 0.2 times. The x-axis values indicate changing cement enhancement proportions to  0.8 1.2, 1.4, 1.6, 
1150 

1.8, and 2 times the original values.  
1151 

 1152 

 1153 

 1154 

 1155 

 1156 

 1157 

 1158 

 1159 

 1160 

 1161 

 1162 



44 
 

Table 1. Comparisons of cement and all anthropogenic CO2 emissions among different methods, “/” means not available. 1163 

 Units: × 10
11

 kg Year EDGAR v432 Inversion results IPCC method 

Cement CO2 emissions 
2010 1.45  / 1.14 

2014-2015 1.72 / 1.35 

All anthropogenic CO2 

emissions 

2010 20.55 / 17.56 

2014-2015 23.53 24.59±2.39 24.38 
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Table 2. Statistical metrics between observed and modeled CO2 mixing ratios and 𝜹13C-CO2 during winter, summer and annual 1183 

for 2014 and 2015. Correlation coefficient (R), averages and root mean square error (RMSE) are displayed. 1184 

  Years 2014     2015 

  Periods allyear Winter Summer allyear Winter Summer 

𝜹13
CO2 

(‰) 

R 0.54 0.40 0.47 0.52 0.27 0.39 

RMSE (‰) 1.07 0.94 0.94 1.10 0.92 0.98 

simulation (‰) -8.68 -9.37 -8.02 -8.45 -9.10 -7.66 

observation (‰) -8.69 -9.27 -8.09 -8.52 -8.98 -7.83 

CO2 

R 0.38 0.41 0.34 0.35 0.28 0.31 

RMSE (ppm) 29.44 27.48 25.55 30.22 26.81 24.29 

simulation (ppm) 436.47 441.55 436.67 437.08 442.09 432.37 

observation (ppm) 438.49 442.03 432.25 440.11 440.77 434.71 
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