Anthropogenic and natural controls on atmospheric δ^{13} C-CO₂ variations in the Yangtze River Delta: Insights from a carbon isotope modeling framework Cheng Hu^{1, 2*}, Jiaping Xu³, Cheng Liu⁴, Yan Chen³, Dong Yang⁵, Wenjing Huang², Lichen Deng⁶, Shoudong Liu², Timothy J. Griffis^{7**}, and Xuhui Lee⁸ ¹ College of Biology and the Environment, Joint Center for sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China ² Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change (ILCEC), Nanjing University of Information, Science & Technology, Nanjing, 210044, China ³ Jiangsu Climate Center, China Meteorological Administration, Nanjing, 210009, China ⁴ Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China ⁵ Ningbo Meteorological Observatory, Ningbo, 315012, China ⁶ Ecological Meteorology Center, Jiangxi Meteorological Bureau, Nanchang, 330096, China ⁷ Department of Soil, Water, and Climate, University of Minnesota-Twin Cities, St. Paul, Minnesota, **USA** ⁸ School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, USA Correspondence: *Cheng Hu, College of Biology and the Environment, Joint Center for sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China. nihaohucheng@163.com or huxxx991@umn.edu ** Timothy J. Griffis, Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108, timgriffis@umn.edu To be submitted to Atmospheric Chemistry and Physics

Abstract:

The atmospheric carbon dioxide (CO₂) mixing ratio and its carbon isotope (δ ¹³C-CO₂) composition contain important CO₂ sink and source information spanning from ecosystem to global scales. The observation and simulation for both CO_2 and $\delta^{13}C$ - CO_2 can be used to constrain regional emissions and better understand the anthropogenic and natural mechanisms that control δ¹³C-CO₂ variations. Such work remains rare for urban environments, especially megacities. Here, we used near-continuous CO2 and δ^{13} C-CO₂ measurements, from September 2013 to August 2015, and inverse modeling to constrain the CO_2 budget and investigate the main factors that dominated $\delta^{13}C$ - CO_2 variations for the Yangtze River Delta (YRD) region, one of the largest anthropogenic CO₂ hotspots and densely populated regions in China. We used the WRF-STILT model framework with category-specified EDGAR v4.3.2 CO₂ inventories to simulate hourly CO_2 mixing ratios and $\delta^{13}C-CO_2$, evaluated these simulations with observations, and constrained the total anthropogenic CO₂ emission. We show that: (1) Top-down and bottom-up estimates of anthropogenic CO₂ emissions agreed well (bias < 6%) on an annual basis; (2) The WRF-STILT model can generally reproduce the observed diel and seasonal atmospheric δ^{13} C-CO₂ variations; (3) Anthropogenic CO₂ emissions played a much larger role than ecosystems in controlling the δ^{13} C-CO₂ seasonality. When excluding ecosystem respiration and photosynthetic discrimination in the YRD area, δ^{13} C-CO₂ seasonality increased from 1.53% to 1.66%; (4) Atmospheric transport processes in summer amplified the cement CO₂ enhancement proportions in the YRD area, which dominated monthly δ s (the mixture of δ^{13} C-CO₂ from all regional end-members) variations. These findings support that the combination of long-term atmospheric carbon isotope observations and inverse modeling can provide a powerful constraint on the carbon cycle of these complex megacities.

Keywords: cements production, ¹³C/¹²C ratio, WRF-STILT model, **plant** photosynthetic discrimination

1. Introduction

71

72 Urban landscapes account for 70% of global CO₂ emissions and represent less than 3% of Earth's land 73 area (Seto et al., 2014). Such CO₂ hotspots play a dominant role in controlling the rise in atmospheric CO₂ concentrations, which exceeded 412 ppm in December 2019 for global monthly average observations 74 (https://www.esrl.noaa.gov/gmd/ccgg/trends/). Furthermore, the carbon isotope ratio of CO₂ (i.e. δ^{13} C = 75 ¹³C/¹²C ratio in delta notation) at the representative Mauna Loa site, USA, has steadily decreased to 76 77 around -8.5‰, in December 2019 (https://www.esrl.noaa.gov/). Anthropogenic CO₂ emission is produced 78 from fossil fuel burning and cement production. As the urban population is expected to increase by 2.5 to 79 6 billion people in 2050, anthropogenic CO₂ emissions are projected to increase dramatically, especially 80 in developing regions and countries (Sargent et al., 2018; Ribeiro et al., 2019). Under such a scenario, the observations of atmospheric CO₂ and δ^{13} C-CO₂ in urban landscapes are of great importance to monitoring 81 these potential CO₂ emissions hotspots (Lauvaux et al., 2016; Nathan et al., 2018; Graven et al., 2018; 82 83 Pillai et al., 2016; Staufer et al., 2016). 84 Countries are required to report their CO₂ emissions according to the Intergovernmental Panel on Climate Change guidelines (IPCC, 2019), and many "bottom-up" methods have long been used to estimate CO₂ 85 emissions worldwide, but such methods have high uncertainties for CO₂ emissions at regional (20%) to 86 city (50 to 250%) scales (Gately & Hutyra, 2017; Gately et al., 2015). These large uncertainties are 87 88 propagated into the estimation of biological fluxes in atmospheric inversions (Zhang et al., 2014; Jiang 89 et al., 2014; Thompson et al., 2016). By using CO₂ observations, the "top-down" atmospheric inversion approach is a useful tool to evaluate "bottom-up" inventories (Graven et al., 2018; L. Hu et al., 2019; 90 91 Lauvaux et al., 2016; Nathan et al., 2018). Previous research has shown that additional information, such as data on atmospheric Δ^{14} CO₂-CO₂, δ^{13} C-CO₂, and CO, is needed to better distinguish CO₂ emissions 92 93 from different sources and to assess their uncertainties (Chen et al., 2017; Graven et al., 2018; Nathan et al., 2018; Cui et al., 2019). The use of hourly δ^{13} C-CO₂ observation in urban areas remains rare in 94 inversion studies, yet such observations contain invaluable information of anthropogenic CO2 from 95 96 different categories. Traditional estimates of δ^{13} C-CO₂ using isotope ratio mass spectrometry (IRMS) are very limited because 97 98 flask air sample collection requires long preparation time and is expensive. Consequently, there is a lack of high temporal and long-term observations of δ^{13} C-CO₂ (Sturm et al., 2006). Isotope ratio infrared 99 100 spectroscopy technology (IRIS) has overcome these limitations. As a result, in situ air sample analyses using IRIS analyzers are resulting in dense time series of δ^{13} C-CO₂. However, most of the established 101

long-term IRMS and IRIS δ^{13} C-CO₂ measurement sites are representative of "background", natural, or agricultural ecosystems at locations far away from urban landscapes (Chen et al., 2017; Griffis, 2013).

To date, long-term (> 1 year) and continuous observations of both CO₂ and δ ¹³C-CO₂ have been reported for only five cities, including Bern, Switzerland (Sturm et al., 2006); Boston, USA (McManus et al., 2010); Salt Lake City, USA (Pataki et al., 2006); Beijing, China (Pang et al., 2016); and Nanjing, China (Xu et al., 2017). In these previous investigations, significant diel and seasonal variations of δ^{13} C-CO₂ have been observed; these patterns were modulated by fossil fuel combustion, plant respiration and photosynthesis, and changes in the height of the atmospheric boundary layer (Sturm et al., 2006; Guha and Ghosh, 2010). No study has quantified the impact of each factor on the seasonal variation of δ^{13} C-CO₂. This represents an important knowledge gap in understanding the underlying mechanisms of carbon cycling in complex urban ecosystems.

The traditional δ^{13} C-CO₂ isotope partitioning methods (including Miller-Tans and the Keeling plot approaches) have been used to constrain different CO₂ sources worldwide (Keeling, 1960; Vardag et al., 2015; Newman et al., 2016; Pang et al., 2016; Xu et al., 2017). These methods are based on the assumption that partitioned atmospheric CO₂ enhancement components from different sources can represent CO₂ emissions at the "target area" (Miller and Tans, 2003; Ballantyne et al., 2011). Carbon dioxide emissions are highly inhomogeneous at the urban scale, with extremely strong point/line sources, and the final partitioning results are highly uncertain without considerations of source footprint characteristics (Gately & Hutyra, 2017; Cui et al., 2019; Martin et al., 2019). Atmospheric transport models can help to resolve such problems, and the coupling of atmospheric transport models with isotope observations have recently been applied in global and regional CO₂ partitioning studies (Chen et al., 2017; Cui et al., 2019; Graven et al., 2018; C. Hu et al., 2018b). Although urban CO₂ inversions have been applied successfully in several studies in Europe and the United States (Bréon et al., 2015; Turnbull et al., 2015; Pillai et al., 2016; Brioude et al., 2013; Turner et al., 2016), urban CO₂ inversions in China are rare (Berezin et al., 2013; C. Hu, 2018a; Worden et al., 2012), presumably because of the scarcity of high quality δ^{13} C-CO₂ and CO₂ observations.

The Yangtze River Delta (YRD) ranks as one of the most densely populated regions in the world and is an important anthropogenic CO₂ hotspot. Major anthropogenic sources include **the** power industry, oil refineries/transformation and cement production. Having the largest source of cement-derived CO₂ production across China and the world (Cai et al., 2015), the YRD contributed 20% of national cement production, nearly 12% of world's total cement output in 2014 (**USGS, 2014**; Xu et al., 2017; Yang et al., 2017). In addition to anthropogenic factors, natural ecosystems and croplands act as significant CO₂ sinks and sources within the YRD. Independent quantification of the fossil and cement CO₂ emission and

- assessment of their impact on atmospheric δ^{13} C-CO₂ have potential to improve our understanding of
- urban CO₂ cycling. Further, the observations and simulations of both atmospheric CO₂ and δ ¹³C-CO₂ can
- help us relate atmospheric CO₂ dynamics with future emission control strategies.
- Here, we combine long-term (>2 years) CO_2 and $\delta^{13}C$ - CO_2 observations with atmospheric transport
- model simulations to study urban atmospheric CO_2 and $\delta^{13}C$ - CO_2 variations. The objectives were to: (1)
- Constrain anthropogenic CO₂ emissions and determine the main sources of uncertainty for δ^{13} C-CO₂
- simulations, and (2) Quantify the relative contributions of each factor (i.e. background, anthropogenic
- 142 CO₂ emissions especially for cement production, ecosystem photosynthesis and respiration) to seasonal
- variations of atmospheric δ^{13} C-CO₂.

2. Materials and methods

144

145

2.1 Observations of atmospheric CO₂ mixing ratio, δ^{13} C-CO₂ and supporting variables

- The observation site is located on the Nanjing University of Information Science and Technology campus
- 147 (hereafter NUIST, 32°12'N, 118°43'E, green dot in Figure 1a). Continuous atmospheric CO₂ mixing
- ratios and δ^{13} C-CO₂ were measured at a height of 34 m above ground with an IRIS analyzer (model
- G1101-i, Picarro Inc., Sunnyvale, CA). The observation period extended from September 2013 to August
- 2015. Calibrations for CO_2 mixing ratio and $\delta^{13}C$ - CO_2 were conducted with standard gases traceable to
- 151 NOAA/GML (NOAA Global Monitoring Laboratory) standards. Calibration details are provided by
- Xu et al. (2017). Based on Allan variance analyses, the hourly precisions of CO₂ and δ ¹³C-CO₂ were 0.07
- ppm and 0.05‰, respectively. We note that the δ^{13} C-CO₂ IRIS (model G1101-i) measurements are
- sensitive to water vapor concentration. Sensitivity tests reveal that the δ^{13} C-CO₂ IRIS
- measurements are biased high (less than 0.74%) when water vapor mole fraction exceeds 2%. The
- data presented here have been corrected following the procedures outlined in Xu et al. (2017).
- We separated the two-year study period into seasons (autumn: September, October, November; winter:
- December, January, February; spring: March, April, May; summer: June, July, August). Further, for an
- annual comparison, we examined the period from September 2013 to August 2014 (Year 2014) versus
- 160 September 2014 to August 2015 (Year 2015).
- The YRD is a cement production hotspot in China (Figure 1b). It had a total population of 190 million in
- 2018 (Figure 2a) with 24.2 million in the city of Shanghai, 9.8 million in Hangzhou city (provincial
- capital of Zhejiang), 8.4 million in Nanjing city (provincial capital of Jiangsu), and 8.1 million in Hefei
- city (provincial capital of Anhui). The CO₂ related production data (i.e. cement) and energy consumption
- data (i.e. coal and natural gas) were obtained from local official sources using the same method described
- in Shen et al. (2014).

To examine the effects of plant photosynthesis on atmospheric CO₂ variations, we used NDVI (Normalized Difference Vegetation Index), SIF (solar-induced chlorophyll fluorescence) and GPP (gross primary productivity) information. These three products have a global distribution with spatial resolution of 0.05° by 0.05°. The NDVI has a temporal resolution of 16 days and SIF and GPP products have a temporal resolution of 8 days (Li & Xiao, 2019; http://globalecology.unh.edu/data/). Land-use and land-cover classification in Yangtze River Delta for 2014 was applied by using NDVI data from MOD13A2.

2.2 Simulation of atmospheric δ¹³C-CO₂

2.2.1 General equations

The simulation of atmospheric δ^{13} C-CO₂ is based on mass conservation. First, we briefly describe the simulation of atmospheric CO₂ mixing ratios (more details are provided in Section 2.2.2), following the previous work of Hu et al., (2018b), where atmospheric CO₂ was simulated (CO_{2_sim}) as the sum of background (CO_{2_bg}) and the contribution from all regional sources/sinks ([Δ CO_{2_sim}]_i), as

$$CO_{2_sim} = CO_{2_bg} + \sum_{i=1}^{n} [\Delta CO_{2_sim}]_{i}$$
 (1)

Note that ΔCO_2 is the sum of all simulated sources/sinks $[\Delta CO_{2_sim}]_i$ and represents the total simulated CO_2 enhancement. We use ΔCO_{2_obs} as the observed CO_2 total enhancement, which can be calculated by using the CO_2 observation minus the CO_2 background values. Based on mass conservation, we estimated the $^{13}CO_2$ composition by multiplying the left- and right-hand sides of equation (1) by $\delta^{13}C$,

185
$$\delta^{13}C_{a_sim} = \frac{\delta^{13}C_{bg} \times CO_{2_bg} + \sum_{i=1}^{n} \delta_{i}^{13} \times [\Delta CO_{2_sim}]_{i}}{CO_{2_sim}}$$
(2)

where $\delta^{13}C_{a_sim}$ and $\delta^{13}C_{bg}$ represent the simulated atmospheric $\delta^{13}C$ -CO₂ and background $\delta^{13}CO_2$, δ_i^{13} is the $\delta^{13}C$ -CO₂ for end-member i (including anthropogenic and biological source categories). The $\delta^{13}C$ -CO₂ contributions from all regional sources/sinks can be further reformatted as equation 3,

189
$$\sum_{i=1}^{n} \delta_{i}^{13} \times [\Delta CO_{2_sim}]_{i} = \delta_{s_sim} \times \sum_{i=1}^{n} [\Delta CO_{2_sim}]_{i}$$
 (3)

where δ_{s_sim} is the **simulated enhancement-weighted mean** of all regional end-members. We use δ_s as the observed term to distinguish it from δ_{s_sim} (Newman et al., 2008), which will be described in detail in section 2.2.5. The product on the right-hand side of equation 3 is the simulated regional source term

that is added to the background value and contains both enhancement and δ^{13} C-CO₂ signals contributed by different CO₂ sources/sinks. This product can also be treated as an observed term when using the derived $\delta_{s \text{ obs}}$ and observed Δ CO_{2 obs} values.

To date, there are no available global δ^{13} C-CO₂ background products and the choice of δ^{13} C_{bg} is essential to simulating δ^{13} C_a. Here, we apply three strategies. First, we used discrete δ^{13} C-CO₂ flask observations at Mount Waliguan (hereafter WLG, 36°17'N, 100°54'E; https://www.esrl.noaa.gov/gmd/dv/data/) to represent the δ^{13} C-CO₂ background signal at our site. These observations were measured at weekly intervals to the end of 2015. A digital filtering curve fitting (CCGCRV) regression method was applied to derive hourly background values following Thoning et al. (1989). There are, however, reasons why WLG may not be an ideal background site for our study domain. For example, based on the previous simulation results for the CO₂ background sources, **most of the back trajectories** originate from the free atmosphere or 1000 m higher above the ground (Hu et al., 2019). **Further, the footprint at the north/west edge of Domain 1 is relatively small, indicating that most back trajectories were observed above the planetary boundary layer height (hereafter PBLH). Here, the WLG observations were made near the surface. Further, WLG is not located at the border of our simulation domain 1. Therefore, the strong vertical \delta^{13}C-CO₂ gradients between the boundary layer and the free tropospheric atmosphere (Chen et al., 2006; Guha et al., 2010; Sturm et al., 2013) can cause a low** bias in the δ^{13} C-CO₂ background when using this approach.

In the second approach, the δ^{13} C-CO₂ background signal was estimated with wintertime "clean" air CO₂ and δ^{13} C-CO₂ observations at the NUIST site, using the following equation

213
$$\delta^{13}C_{bg} = \frac{\delta^{13}C_a \times CO_2 - \sum_{i=1}^n \delta_i^{13} \times [\Delta CO_{2_sim}]_i}{CO_{2_bg}}$$
(4)

where $\delta^{13}C_a$ and CO_2 represent atmospheric $\delta^{13}C$ - CO_2 and CO_2 observations at the NUIST site under clean conditions. Note that $\delta^{13}C_a$ represents the observed $\delta^{13}C$ - CO_2 not the simulated $\delta^{13}C$ - CO_2 ($\delta^{13}C_{a_sim}$) as shown in equation 2. [ΔCO_{2_sim}]_i is the simulated category-specified CO_2 enhancements. We defined clean conditions as the bottom 5% wintertime CO_2 observations to minimize simulated CO_2 enhancement errors from both biological and anthropogenic CO_2 simulations on $\delta^{13}C$ - CO_2 background calculation. The CO_{2_bg} is obtained from heights 1000 m above ground level (see Section 2.2.3).

In the third approach, we avoid the use of modeled $[\Delta CO_{2_sim}]_i$ results and replaced the simulated regional source term in equation 4 with observed $\delta_{s obs} \times \Delta CO_{2 obs}$, as described in equation 3, and used the Miller-

Tans regression method to calculate monthly δ_{s_obs} . This approach does not require simulation of [Δ CO₂]_i or the corresponding δ^{13} C-CO₂ signals. The hourly δ^{13} C-CO₂ background value can be derived by using δ_{s_obs} , CO₂ background, observed atmospheric δ^{13} C_a and CO₂ (see details in Section 2.3 and supplement materials). Comparison of these three strategies will be evaluated and discussed in Section 3.2.1. Similar methods used to derive other background tracers have included CO₂ (Alden et al., 2016; Verhulst et al., 2017), CO (Wang et al., 2010; Ruckstuhl et al., 2012) and CH₄ (Zhao et al., 2009; Verhulst et al., 2017; Hu et al., 2019). To analyze the controlling factors for the δ^{13} C-CO₂ seasonality, the CCGCRV (a digital filtering curve fitting program developed by the Carbon Cycle Group, NOAA, USA) regression was applied to the background, observations, and simulations. Finally, we derived CCGCRV curve fitting lines by using 11 regressed parameters, which were based on the hourly time series of observations/simulations, and defined the difference between peak and trough in one year as the seasonality of δ^{13} C-CO₂.

2.2.2 Simulation of atmospheric CO₂ mixing ratios

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240241

242243

244

245

246247

248

249250

251252

In equation 1, the CO_{2 bg} is obtained from the Carbon Tracker 2016 product, which provides global CO₂ distributions from the ground level up to a height of 50 km. We used the averaged concentration above the latitude and longitude where the released particles entered the study domain 1 (Figure 1a). The variable $\triangle CO_2$ sim was derived by multiplying the simulated hourly footprint function with the hourly CO_2 fluxes (Hu et al., 2018a; b). Considering the diurnal variations of both anthropogenic and biological CO₂ fluxes, 168 footprints were obtained representing each simulated hour. This accounted for the back trajectory of particle movement for 168 hours (i.e. 24 hours per day for 7 days) of transport. The 168 footprints are multiplied by the corresponding hourly CO₂ flux. The CO₂ fluxes contain anthropogenic CO₂ emissions, biological CO₂ flux and biomass burning. Here the anthropogenic CO₂ emission sources include power industry, combustion for manufacturing, non-metallic minerals production (cement), oil refineries/transformation industry, energy for building and road transportation. Theoretically, $\Delta CO_{2 \text{ sim}}$ represents the CO_{2} changes contributed by every pixel within the simulated domain. As shown by Hu et al. (2018a), most of the $\Delta CO_{2 \text{ sim}}$ is contributed by sink/source activity within the YRD area. In order to quantify the relative contributions within the YRD area, we separated the study domain into 5 zones based on provincial administrative boundaries including Jiangsu, Anhui, Zhejiang, Shanghai, and the remaining area outside the YRD (Figure 2). The modeled CO₂ was calculated as follows:

$$\Delta CO_{2_sim} = \sum_{i=1}^{168} flux_i \times footprint_i$$
 (5)

where flux_i (units: mol m⁻² s⁻¹) corresponds to each CO₂ flux category simulated for each domain for a specific hour *i*, and footprint (units: ppm m² s/µmol) is the model simulated sensitivity of observed CO₂ enhancement to flux changes in each pixel. The *i* contains the hourly footprint during trajectory of particle movement for 168 hours as described above. The CO₂ enhancement from each of the 5 zones were simulated by multiplying CO₂ emissions in each province with the corresponding footprint.

2.2.3 WRF-STILT model configuration

254255

256

257

258

259

260

261262

263

264265

266

267

268

269

270

271272

273274

275

276

277

278

279

280

281

282283

284

285

The Stochastic Time-Inverted Lagrangian Transport (hereafter STILT) model was used to generate the above footprint, which is defined as the sensitivity of atmospheric CO₂ enhancement to the upwind flux at the receptor site (observation site). The meteorological fields used to drive the STILT model were simulated with the Weather Research and Forecasting Model (WRF3.5) at high spatial and temporal resolutions. The innermost nested domain (D3, 3 km × 3 km, Figure 1) contains the YRD area, where the most sensitive footprint is located, and the intermediate domain (D2, 9 km × 9 km) and outermost (D1, 27 km × 27 km) represent Eastern China and Central and Eastern China, respectively. The same physical schemes and parameter setup for the WRF meteorological fields simulation and the Domain in the STILT model have been used previously for inverse analyses (Hu et al., 2019). These previous studies at the NUIST observation site have shown very good performance in simulating the meteorological fields. which is essential for reliable STILT simulations. The hourly footprint was simulated by releasing 500 particles from the NUIST measurement site and tracking their backward locations every 5 minutes for a period of 7 days. Particle numbers and their residence time within half of the PBLH were used to calculate the footprint over the 7 day period. For the CO₂ background of each hour, we tracked the sources of air particles back trajectory for 7 days, and defined these CO₂ mixing ratios in Carbon Tracker as the hourly CO₂ background values (Peters et al., 2007).

2.2.4 A priori anthropogenic CO₂ emissions and net ecosystem exchange

The Emission Database for Global Atmospheric Research (EDGAR v4.3.2) inventory was selected as the *a priori* anthropogenic CO₂ emissions (Figure 2a), which is based on the International Energy Agency's (IEA) energy budget statistics and provides detailed CO₂ source maps (29 categories, including both organic and fossil emissions, IEA, 2012) with global coverage at high spatial resolution (0.1° × 0.1°). The EDGAR CO₂ emissions are the most up-to-date global inventory with sectoral detail (Janssens-Maenhout et al., 2017; Schneising et al., 2013). Other inventories, including the Fossil Fuel Data Assimilation System (FFDAS, Rayner et al., 2010) and the Open-source Data Inventory for Anthropogenic CO₂ (ODIAC, Oda et al., 2018) also provide global CO₂ emissions. However, these

inventories only provide total CO₂ emissions or have very limited emission categories, which limit our ability to provide isotope end-member information. EDGAR v4.3.2 provides emission estimates at a monthly time scale. Here, we applied hourly scaling factors for different categories following Hu et al., (2018a). EDGAR **v4.3.2** with monthly resolution is available only for 2010. We assume that each CO₂ category changes linearly from its 2010 value (Peters et al., 2007) and apply an annual scaling factor of 1.145 to derive CO₂ emissions for 2014 and 2015. This scaling factor is based on Carbon Tracker, dividing the same anthropogenic CO₂ emissions for YRD in years 2014-2015 by that in 2010.

The biological flux or net ecosystem CO2 exchange (NEE) and biomass burning CO2 emissions come from Carbon Tracker a posteriori flux at 3-hour intervals and at a spatial resolution of $1^{\circ} \times 1^{\circ}$. Because NEE is much smaller than the anthropogenic CO₂ emissions in such densely developed urban landscapes, we homogeneously distributed this flux at a spatial resolution of 0.1° within each grid to match the footprint.

2.2.5 Simulation of the carbon isotope ratio of all sources ($\delta_{s \text{ sim}}$)

286

287

288

289

290

291 292

293

294

295

296 297

298

299

301

302

303 304

305

306

307

308

309

310

311

312

313

314 315 The carbon isotope ratio of all the surface sources was calculated as (Newman et al., 2008):

$$\sum_{i=1}^{n} \delta_{i} \times p_{i} = \delta_{s_sim}$$
 (6)

where δ_i is the δ^{13} C-CO₂ value from source category i, and p_i is the corresponding enhancement proportion (i.e. proportions of a specific enhancement i to total CO₂ enhancement). We define δ_{s_sim} as the simulated carbon isotope ratio of all sources to differentiate it from the observed $\delta_{s \text{ obs}}$. Based on fossil fuel usage characteristics in YRD, we reassigned the EDGAR v4.3.2 categories according to fuel types. Coal was the fuel type for manufacturing, oil for oil refinery, natural gas for buildings, and diesel and gasoline for transportation. The power industry consumed 5% natural gas and 95% coal based on local activity data in YRD (China statistical Yearbook, 2015). The non-metallic mineral production was mainly for cement. Since there is a lack of detailed information for non-metallic mineral production, we simply attributed 100% of it to cement production. Chemical processes were mainly ammonia synthesis. Based on a literature review and our previous work (Xu et al., 2017), typical δ^{13} C-CO₂ values for natural gas (-39.06% ± 1.07%), coal (-25.46% ± 0.39%), fuel oil (-29.32% ± 0.15%), gasoline ($-28.69\% \pm 0.50\%$), ammonia synthesis ($-28.18\% \pm 0.55\%$), and diesel ($-28.93\% \pm 0.55\%$) 0.26‰), pig iron ($-24.90\% \pm 0.40\%$), crude steel ($-25.28\% \pm 0.40\%$), cement ($0\% \pm 0.30\%$), biofuel combustion and biological emissions ($-28.20\% \pm 1.00\%$) were used in this study. We also applied a value of -28.20% for photosynthesis (Griffis et al., 2008; Lai et al., 2014) because YRD is a region

dominated by C_3 plants. Since CO_2 emissions associated with human respiration (Prairie and Duarte, 2017; Turnbull et al., 2015; Miller et al., 2020) are relatively small (3.7% of anthropogenic emissions in the YRD area, Xu et al., 2017), and given that the local food diet is dominated by C_3 grains that have a similar $\delta^{13}C$ - CO_2 value as the biological CO_2 flux of -28.20%, we assume it has the same isotope signals as local C_3 plants and ecosystem respiration. Further, the biological CO_2 flux from the Carbon Tracker assimilation system considered anthropogenic as fixed and attributed the remainder to the biological CO_2 flux (Peters et al., 2007). Consequently, we believe the uncertainty in the biological CO_2 flux will include the small proportion of human respiration.

To evaluate the simulated δ_{s_sim} , we applied the Miller-Tans and Keeling plot approaches to derive δ_{s_obs} from the observed concentration and atmospheric $^{13}CO_2$ -CO₂ (Xu et al. 2017). We then used the results to evaluate the calculations made with Equation (6).

2.3 Independent IPCC method for anthropogenic CO₂ emissions

Large differences among inventories have been previously found even for the same region (Berezin et al., 2013; Andrew, 2019). For comparison with the EDGAR **v4.3.2** inventory results, we derived the anthropogenic CO₂ emissions by using an independent IPCC method. Here, we illustrate the calculation for cement CO₂ emissions. Note that the IPCC only recommended an EF for clinker, which is an intermediate product of cement. To calculate cement CO₂ emissions, we need to calculate it based on clinker production, as shown in Equation (7),

$$CO_{2}[cement] = M_{cement} \times C_{clinker} \times EF_{clinker}$$
(7)

where CO_2 [cement] is the chemical process CO_2 emissions for cement production, M_{cement} is the production of cement, $C_{clinker}$ represents the clinker to cement ratio (%), and $EF_{clinker}$ is the CO_2 emission factor for clinker production. The IPCC recommended an $EF_{clinker}$ value of 0.52 ± 0.01 tonne CO_2 per tonne clinker produced, where CaO content for clinker is assumed to be 65% with 100% CaO from calcium carbonate material (IPCC 2013). The EF appears to be well constrained, showing little variation among provinces with mean values ranging from 0.512 to 0.525 (Yang et al., 2017). For the $C_{clinker}$ values, it generally showed a decreasing trend from 64.5% in 2004 to 56.9% in 2015 for all of China (Figure S1), with an average value of 57.0% during 2014 and 2015.

2.4 Multiplicative scaling factor method

To quantify anthropogenic CO₂ emissions and to compare **them** with EDGAR products, we first derived the monthly scaling factors for anthropogenic CO₂ emissions using a multiplicative scaling factor

(hereafter MSF) method (Sargent et al., 2018; He et al., 2020), and then obtained annual averages. The monthly scaling factors (SFs) were calculated as:

$$MSF = \frac{CO_{2_obs} - CO_{2_bg} - \Delta CO_{2_bio} - \Delta CO_{2_fire}}{\Delta CO_{2_anthro}}$$
(8)

where CO_{2_obs}, Δ CO_{2_bio}, Δ CO_{2_fire} and Δ CO_{2_anthro} represent observed CO₂ mixing ratios, simulated CO₂ enhancements contributed by biological flux, biomass burning, and anthropogenic emissions, respectively. Uncertainties of all factors on the final MSFs were calculated based on Monte Carlo methods, where the normal sample probability distribution was applied and the upper 97.5% and lower 2.5% of the values was considered as the uncertainty for MSF (Cao et al., 2016).

3. Results and Discussion

3.1 Evaluation of hourly CO₂ mixing ratios

3.1.1 Hourly and monthly CO₂ mixing ratio comparisons

This section examines the general performance of simulating hourly CO_2 mixing ratios. The two-year average hourly footprint is shown in Figure 2b where the source area (blue-red) indicates strong sensitivity of the CO_2 observations to regional sources. This footprint shape is representative of the YRD area. To quantify the relative contributions from each province, we calculated CO_2 enhancements contributed by Anhui, Jiangsu, Zhejiang, Shanghai, and the remaining area outside of the YRD, respectively. The results indicate that Jiangsu contributed approximately 80% of the total enhancement (discussed further in Section 3.1.2). Comparisons between simulated and observed hourly CO_2 mixing ratios are displayed in Figure 3a for both years. For all hourly data in each year, the model versus observation correlation coefficient (R) was R = 0.38 (n = 8204, P < 0.001) and RMSE = 29.44 ppm for 2014, and R = 0.35 (n = 7262, P < 0.001) and RMSE = 30.22 ppm for 2015. These results indicate that the model can simulate the synoptic and diel CO_2 variations over the two-year period. The model also captured the monthly and seasonal variations of CO_2 mixing ratios (daily averages are shown in Figure S2). The simulations captured the trend of rising CO_2 mixing ratios after October and the drawdown of CO_2 to the background value during the summer.

Figures 3b-d illustrate the average monthly daily, nighttime (22:00-06:00, local time), and daytime (10:00-16:00) CO₂ mixing ratios. These monthly values contain the effects of atmospheric transport, background and variations in CO₂ emissions. The observed and simulated CO₂ mixing ratios showed a significant increase from September 2013 to January 2014. Here, the CO₂ mixing ratios increased by 16.0 ppm according to the model results and 17.2 ppm according to the observations. The background values increased by 8.1 ppm and accounted for 47% of the total CO₂ increase, and the net CO₂ flux (*a priori*) for

YRD increased by 15%. We attributed the remaining 38% increase to changes in atmospheric transport processes including lower PBLH in January 2014 than in September 2013. To quantify how variations in PBLH affected CO₂ mixing ratios, we compared the simulated monthly anthropogenic CO₂ enhancement differences in the same months of different years, to eliminate the influence of monthly emission variations on CO₂ enhancements. Twelve monthly paired values were used and are shown in Figure 4. This analysis indicates that atmospheric CO₂ mixing ratios decreased by about 3.7 ppm for an increase of PBLH by 100 m. We also note that there were two months (March and August) that fall far below this trend, implying that changes in the monthly footprints (source area) can also play an important role.

On an annual timescale, the simulated average CO₂ mixing ratios were 436.63 ppm and 437.11 ppm for 2014 and 2015, respectively. Since the anthropogenic CO₂ emissions used in the model are the same for both years, the simulated annual average CO₂ difference can be used to quantify the influence associated with meteorological factors and ecosystem carbon cycling. Between these two years, the CO₂ background increased by 1.78 ppm, the biological enhancement decreased by 1.04 ppm from 2014 to 2015. The remaining 0.26 ppm change between 2014 and 2015 indicates a relatively small meteorological effect **for the annual averages,** such as a slight change in dominant wind direction or a PBLH difference.

The simulated annual average NEE CO₂ enhancements were 2.64 ppm and 1.60 ppm for the respective years. For comparison, the annual average anthropogenic enhancements were 36.20 ppm and 34.90 ppm for 2014 and 2015, respectively. The monthly NEE enhancement varied from -0.1 ppm in May 2015 to +6.0 ppm July 2014, indicating NEE contributes positively for enhancement in most months (Figure 5a), even though the sign of monthly averaged NEE flux in summer was negative (sinks). This positive contribution was mainly caused by diel PBLH variations between daytime (smaller negative enhancement) and nighttime (larger positive enhancement). To further evaluate the impact of plant photosynthetic activity on the regional CO₂ cycle, we examined the NDVI, SIF and GPP seasonal patterns (Figures 5d-f). These three datasets revealed two peaks during each year, which is related to increased photosynthetic activity. The first peak occurred in May and the second in August-September, corresponding to the growing season of wheat and corn/rice, respectively (Deng et al., 2015). We note that GPP was derived from SIF, and as a result, they share a similar seasonal cycle. The land-use classification in YRD for 2014 (Figure S3) shows that north YRD is dominated by agricultural land and south dominated by forest land, and our observation site was more surrounded by agricultural land which corresponded well with observed NDVI, SIF and GPP seasonal patterns. The peak SIF and GPP signals during the summer were about 20 times greater than during the winter. Consequently, we can ignore the potential influence of photosynthetic activity on the regional CO₂ enhancements during the non-growing seasons.

3.1.2 Components of urban CO₂ enhancement

Here, we diagnose the source contributions to the urban CO₂ enhancement. The observed anthropogenic CO₂ enhancements, which were derived by subtracting CO₂ background and simulated biological enhancement from CO₂ concentration observations, were 38.36±3.32 ppm and 37.89±2.80 ppm for 2014 and 2015, respectively. Here, the uncertainty of the observed anthropogenic CO₂ enhancements was calculated by prescribing a 2 ppm potential bias for the Carbon Tracker CO2 fields and 50% to the simulated biological CO₂ enhancement (Hu et al., 2018b). The corresponding simulated anthropogenic CO₂ enhancements were 36.20 ppm and 34.90 ppm. In comparison with the simulated biological CO₂ enhancements displayed in Figure 5a, both the observed and simulated CO₂ enhancements are indicative of a large anthropogenic (fossil fuel and cement production) CO₂ emission from the YRD.

Previous studies have also investigated urban CO₂ enhancements from a relatively broad range of developed environments worldwide. Verhulst et al. (2017) measured CO₂ mixing ratios at seven sites in Los Angeles, USA and concluded that the mean annual enhancement varied between 2.0 ppm and 30.8 ppm, which is considerably lower than our findings. Another study in Washington **D.C.**, USA in February and July 2013 showed that the CO₂ enhancement was less than 20 ppm (Mueller et al., 2018). The urban CO₂ observations and modeling study by Martin et al. (2019) at three urban sites in **eastern** USA showed an enhancement of ~21 ppm in February 2013, substantially lower (by ~20 ppm) than our observations. The measurements at an urban-industrial complex site in Rotterdam, Netherlands, indicated a CO₂ enhancement of only 11 ppm for October to December 2014 (Super et al., 2017). Our enhancements were significantly higher than all of these previous reports of other urban areas.

The anthropogenic components and source area contributions are displayed in Figure 5b-c. During the study period the average anthropogenic enhancements were 5.1%, 80.2%, 1.9%, 4.4%, and 8.5% for Anhui, Jiangsu, Zhejiang, Shanghai, and the remaining area outside the YRD, respectively. Although Shanghai's area is the smallest within the YRD region and relatively distant (~300 km) from our observation site, its maximum source contribution at times exceeded 50% (i.e. on 19th September 2013, **not shown**) *via* long-distance transport. In general, power industry, manufacturing, non-metallic mineral production, oil refinery, and other source categories contributed 41.0%, 21.9%, 9.3%, 11.5%, and 16.3% to the total anthropogenic CO₂ enhancement, respectively. The proportions of corresponding CO₂ emission categories to the total anthropogenic emissions of the YRD were 39.8%, 28.4%, 7.4%, 4.1%, and 24.4%, respectively. **The comparisons between the proportions of simulated enhancement and proportions of corresponding CO₂ emissions can illustrate whether CO₂ enhancement partitions is a good tracer for emissions in complex urban area. We found a relatively large difference between the enhancement proportion and the emission proportion for oil refineries** (from 11.5% to 4.1%) as compared

to other categories. This may be because power industry, manufacturing and non-metallic mineral production were more homogeneously distributed compared to oil **refineries**, **which** were closer to our CO₂ observation site. Further, **changes in source footprint caused by wind direction variations likely played an important role.**

3.1.3 Constraints on monthly anthropogenic CO₂ emissions

443

444

445

446

447

448 449

450

451

452

453 454

455

456

457

458

459

460

461

462

463 464

465

466

467

468

469 470

471

472

473

474 475

To provide a robust comparison of bottom-up CO₂ emissions for YRD, we calculated anthropogenic CO₂ emissions from both EDGAR v4.3.2 and with activity data provided by local governments (Table 1) and the default IPCC emission factors (https://www.ipcc-nggip.iges.or.jp/EFDB/). The total anthropogenic CO_2 emissions in 2014-2015 were 24.4 × 10¹¹ kg and 23.5 × 10¹¹ kg according to our own inventory and EDGAR v4.3.2 CO₂, respectively, indicating excellent agreement (within 4%) between these approaches. We constrained the monthly anthropogenic CO₂ emissions by using the MSF method (equation 8) and computed the 12-month average to represent the years of 2014 and 2015. The *a posteriori* results indicate that the annual scaling factors were 1.03 ± 0.10 for 2014 and 1.06 ± 0.09 for 2015. The monthly scaling factors derived from using daytime and all-day observations are also shown in Figure S4. These factors vary seasonally with higher values observed in summer. When using daytime values only, the scaling factors were much larger than the all-day values. This can be seen in Figure 3 by comparing the simulated and observed CO₂ mixing ratios. We should note here that the larger scaling factors based on the daytime data could be caused by bias in the a priori daily scaling factors used to generate the hourly CO₂ emissions (Hu et al., 2018b); the monthly anthropogenic averages; and bias in negative biological CO₂ enhancement. Since our study is mainly focused on the seasonality of all-day observations, the monthly scaling factors derived from the all-day approach will be used for the following analyses. The anthropogenic CO₂ emissions in year 2015 did not show a significant change compared to 2014, and the overall estimates were within the uncertainty of the estimates. After applying the average scaling factors for 2014 and 2015, the a posteriori anthropogenic CO₂ emissions were 24.6 (\pm 2.4) \times 10¹¹ kg for the YRD area. The application of the MSF method provides an overall constraint on the anthropogenic CO₂ emissions (also displayed in Table 1).

The main uncertainties associated with the simulation of hourly CO_2 and $\delta^{13}C$ - CO_2 are uncertainty in meteorological fields, transport model (i.e. number of released particles), and *a priori* CO_2 fluxes. At the annual scale the main uncertainty is attributed to the PBLH simulations and *a priori* anthropogenic CO_2 emissions. The anthropogenic CO_2 emissions biases were < 6% as described above, and the bias associated with PBLH uncertainty was typically <13% (Hu et al., 2018a; 2018b). There, we attribute a 20% uncertainty to the simulated CO_2 and $\delta^{13}C$ - CO_2 signals on an annual time scale.

3.2 Simulation of atmospheric δ^{13} C-CO₂

476

477

478

479

480

481

482 483

484

485 486

487

488 489

490

491

492

493 494

495

496

497

498

499

500

501

502

503

504

505

506

507

3.2.1 Background atmospheric δ¹³C-CO₂

To obtain the best representative δ^{13} C-CO₂ background value for the study domain we examined the values from the three strategies described above (Figure 6). We also compared the δ^{13} C-CO₂ at the WLG background site with observations at NUIST during winters (Figure S5). This was performed to help simplify the comparison by removing the effects of plant photosynthetic discrimination. The δ^{13} C-CO₂ at the WLG site was relatively more depleted in the heavy carbon isotope (or negative, by up to 0.5%) than that observed at NUIST for many periods. Theoretically, there are two key factors that can cause the urban atmospheric δ^{13} C-CO₂ to be relatively more enriched in the heavy carbon isotope (or positive) compared to the background values including: 1) Discrimination associated with ecosystem photosynthesis; and 2) Enrichment of isotopic signature associated with the CO₂ derived from cement production. As shown earlier, the biological CO₂ enhancement was positive in winter, which implies a positive biological CO₂ signal where ecosystem respiration is more important than photosynthesis. Further, sensitivity tests for cement CO₂ sources showed its influence is much smaller than the observed difference in Figure S5 (discussed in section 3.3.3). Based on the above analyses and methods introduced in Section 2.3, we concluded that the WLG δ^{13} C-CO₂ signal is not an ideal choice for representing the **background value.** The wintertime δ^{13} C-CO₂ background values, based on strategy 2, were -7.78% and -7.61‰ for 2013-2014 and 2014-2015, respectively (Figure 6). The corresponding values, based on strategy 3, were -7.70% and -7.53%. These background values are more enriched compared to the WLG observations by 0.80% to 1.01%. These derived values agree well with the monthly δ^{13} C-CO₂ simulation results of Chen et al. (2006) who showed that δ^{13} C-CO₂ is 0.6% higher above the PBL than in the surface layer near the ground. Recently, Ghasemifard et al. (2019) showed that hourly δ^{13} C-CO₂ values at Mount Zugspitze, the highest (2650 m) mountain in Germany, varied between -7‰ and -12‰ in the winter for 2013. During two especially clean air events (in October and February) at Mount Zugspitze, the δ^{13} C-CO₂ was approximately -7‰, during which the CO₂ mixing ratios varied between 390 and 395 ppm. This is consistent with our estimates using strategies 2 and 3. Based on the evidence presented above, we believe that strategy 3 is the most robust way to derive a background δ^{13} C-CO₂ for the study domain.

3.2.2 Evaluation of δ^{13} C-CO₂ simulations

Figure 7a shows the hourly δ^{13} C-CO₂ simulations over a two-year period. To the best of our knowledge, this is the first time that δ^{13} C-CO₂ has been simulated at an hourly time scale for an urban region. The simulations are consistent with the observations at daily, monthly and annual time scales, where the average value of observations (simulations) were -8.69‰ (-8.68‰) and -8.52‰ (-8.45‰) for 2014 and

2015, respectively. The corresponding correlation was R = 0.54 (P < 0.001) and R = 0.52 (P < 0.001). The root mean square error between observations and simulations was 1.07% for 2014 and 1.10% for 2015 (Table 2). Further, the observed and simulated δ^{13} C-CO₂ values showed seasonal variations that increased in summer and decreased in winter. This pattern mirrored the CO₂ mixing ratios for both observations and simulations (Figures 3a and 8). Similar relations and seasonal variations of δ^{13} C-CO₂ have been reported in other urban areas (Sturm et al., 2006; Guha & Ghosh, 2010; Moore & Jacobson, 2015; Pang et al., 2016). The simulated hourly NEE CO₂ enhancement is also shown in Figure 7b. Note that negative values indicate net CO₂ sinks and positive values indicate net CO₂ sources. We can see large hourly variations in the growing seasons and positive enhancements during nighttime that are generally larger than negative enhancements during daytime. This shows the potential influence of NEE on δ^{13} C- CO_2 seasonality. To date, no study has quantified the relative contributions to the δ^{13} C- CO_2 seasonality. Here, we re-evaluate and quantify the main factors contributing to its seasonality based on the combination of δ^{13} C-CO₂ observations and simulations in the following section. Here, we examine the comparisons for winter and summer in greater detail. The simulations showed that

Here, we examine the comparisons for winter and summer in greater detail. The simulations showed that the model can generally capture the diel variations of observed hourly δ^{13} C-CO₂ variations (Figure 8). Statistics between observations and simulations for two seasons are shown in Table 2. The observed seasonal average increased substantially, by 1.18‰, from winter 2013-2014 (-9.27‰) to summer 2014 (-8.09‰). The simulations showed a similar seasonal increase of 1.35‰. Some large discrepancies are evident and generally caused by the simulated total CO₂ enhancement biases (**potentially caused by poorly simulated PBLH during these periods**) and the negative relationship between δ^{13} C-CO₂ and the CO₂ enhancement as shown in Figure S6.

Comparisons between observations and simulations for daily average CO_2 mixing ratio and $\delta^{13}C\text{-}CO_2$ are also shown in Figure 9. Although the data are distributed around the 1:1 line for both seasons, there is less scatter and higher correlation in the winter than in the summer. We attributed this to the more complex biological CO_2 sinks in the summer, which are not adequately resolved by the relatively coarse model grid (1° by 1°). We also performed comparisons by only choosing the daytime observations. The results indicated that daytime CO_2 mixing ratio simulations in the summer were slightly underestimated. This caused $\delta^{13}C\text{-}CO_2$ to be overestimated (Figure S7). The simulations for winter generally captured the trends for both CO_2 and $\delta^{13}C\text{-}CO_2$ when the biological CO_2 enhancement played a relatively small role compared to anthropogenic emissions. The larger bias in the summer could result from the relatively coarse spatial-temporal resolution (aggregation error) of the Carbon Tracker biological CO_2 flux, which was 1×1 degree with three-hour average. As shown in Figure S3, the spatial distribution of land use is far more heterogeneous. This will smooth the

541 stronger biological CO2 signals by averaging it over the large 1×1 degree grid, while the urban

biological CO₂ flux occurs at much finer spatial scales and likely varies at shorter time intervals.

3.2.3 Mechanisms controlling the δ^{13} C-CO₂ seasonality

The mechanisms driving these seasonal variations are examined below. The peak and trough in the observed δ^{13} C-CO₂ signal was observed in December and July (Figure 10a), respectively, yielding an amplitude of 1.51%. This was consistent with the simulated amplitude of 1.53%. These results support that the simulated δ^{13} C-CO₂ seasonality agreed well with the observations (Figure 10), and can be used to further diagnose the mechanisms contributing to the δ^{13} C-CO₂ seasonality. According to equation 2, the δ^{13} C-CO₂ seasonality can be attributed to four factors including: (1) A change in the background δ^{13} C-CO₂ value from -7.64% in December to -6.66% in July; (2) A change in CO₂ background from 399 ppm to 398 ppm; (3) The total CO₂ enhancement change from 45.7 ppm to 37.3 ppm; and (4) The change in the isotope composition of the CO_2 enhancements causing δ s to vary from -26.1% to -22.8%.

To quantify each mechanism's contribution to the seasonality of atmospheric δ^{13} C-CO₂, we recalculated δ^{13} C-CO₂ by using the monthly averages as described above. First, we calculated δ^{13} C-CO₂ in December and July, which were -9.54% and -8.04%, respectively, with amplitude of 1.50%. Next, we replaced the δ^{13} C-CO₂ background value in December (-7.64%) with July (-6.67%). The recalculated δ^{13} C-CO₂ was -8.66% in December, indicating that the change in δ^{13} C-CO₂ background value caused a change of 0.88% (9.54% minus -8.66%) to the seasonality. By changing both the total CO₂ enhancement and background values, the recalculated δ^{13} C-CO₂ was -8.32%, contributing a 0.34% change in the seasonality (-8.66% minus -8.32%). Finally, by changing δ s from -26.1% to -22.8%, together with the change in background value, the recalculated δ^{13} C-CO₂ was -8.32% a change of 0.34% (i.e. -8.66% minus -8.32%). This indicates that both the total CO₂ enhancement and change in δ s contributed equally to the regional source term, causing a variation of 0.62% (i.e. 1.50% minus 0.88%). Based on the above analyses, we attributed 59% and 41% of the δ^{13} C-CO₂ seasonality to the changing δ^{13} C background term and regional source terms, respectively. Further, the total CO₂ enhancement and change in δ s, sum of both can be treated as regional source term, contributed equally (about 20%) to the δ^{13} C-CO₂ seasonality.

To investigate how ecosystem photosynthetic discrimination and respiration affected atmospheric δ^{13} C-CO₂ seasonality, we simulated the δ^{13} C-CO₂ again for two cases: (1) excluding **negative NEE when photosynthesis is stronger than respiration**, and (2) excluding both photosynthetic discrimination and respiration. Note that only NEE was used in our study with no partitioning between photosynthesis and respiration in the daytime. **The only role of photosynthetic discrimination should be stronger than in case 1 when only negative NEE is used**. The results are shown in Figure 10 b-c. Overall, the negative

CO₂ enhancement caused atmospheric δ^{13} C-CO₂ to become more enriched in the baseline simulations with maximum values around 1‰ between April and October (Figure 10b), and positive CO₂ enhancement (i.e. via **net** respiration) caused atmospheric δ^{13} C-CO₂ to become more depleted compared to the baseline simulations through the whole year (Figure 10c). By applying the CCGRCV fitting technique to the δ^{13} C-CO₂ for the above two cases, we found that the δ^{13} C-CO₂ seasonality decreased to 1.45‰ in case 1, indicating ecosystem photosynthetic discrimination explained > 0.08‰ of the seasonality (1.53‰ minus 1.45‰). For case 2, the δ^{13} C-CO₂ trough in winter slightly increased by 0.08‰ and peak in summer increased by 0.20‰, these two factors finally lead the seasonality increase to 1.66‰, which were caused by much larger respiration CO₂ enhancement in summer than in winter (Figure 7b). These results indicate that biological respiration reduced the δ^{13} C-CO₂ seasonality by 0.20‰, and that negative NEE (photosynthetic discrimination) acted to increase the δ^{13} C-CO₂ seasonality by 0.08‰. Generally, **both** ecosystem photosynthesis **and respiration played minor roles** in controlling the atmospheric δ^{13} C-CO₂ seasonality within this urban area. In other words, the anthropogenic CO₂ emissions played a much larger role than the plants.

As shown in Figure 5, CO₂ sources from power industry, combustion for manufacturing, non-metallic mineral production and oil refineries and transformation industry were the top 4 contributors to the CO₂ enhancements. We simulated atmospheric δ^{13} C-CO₂ by assuming that no CO₂ was emitted from each of these 4 categories. The simulations were performed by excluding one category at a time. The results indicated that atmospheric δ^{13} C-CO₂ seasonality was 1.30‰, 1.57‰, 1.30‰, and 1.47‰, if excluding power industry, combustion for manufacturing source, oil refineries/transformation industry, and non-metallic mineral production sources, respectively. In other words, power industry and oil refineries/transformation industry together contributed 0.40‰ to the total regional source term of 0.62‰. The cement sources played a role in enriching 0.07‰ the atmospheric δ^{13} C-CO₂ in the heavy isotope, contrary to all other anthropogenic CO₂ sources.

3.3 Sensitivity analysis

3.3.1 Comparison of **δ**s·**Δ**CO₂

Based on equation 2, the regional source term determines the hourly/daily variations of δ^{13} C-CO₂, which is treated as a signal added to the background signal. To evaluate the model simulated regional source term with respect to the observations we examined daily averages for winter to minimize the influence of photosynthesis. In Figure 11a, the observed daily $\delta s \cdot \Delta CO_2$ values are compared with the simulated values using the *a priori* anthropogenic CO₂ emissions. Here ΔCO_2 represents the total CO₂ enhancement for both observations and simulations. The product $\delta s \cdot \Delta CO_2$ can be interpreted as the regional source term.

The average values were -1009.0 (and -841.9) ppm·‰ for observations and -1096.7 (and 1000.5) ppm·‰ for model results in 2014 (and 2015). The slope of the regression fit was 0.99 (\pm 0.12) and the intercept was -151.7 (\pm 130.1) for all data during the two winters. After applying the monthly scaling factors to constrain the anthropogenic CO₂ emissions, the re-calculated results were closer to the 1:1 line with a slightly improved correlation (R increased from 0.47 to 0.50; Figure 11b). Note that the application of the monthly scaling factors only impacts the Δ CO₂ but not δ s. The uncertainty in δ s will be discussed next.

3.3.2 Comparison between $\delta_{s \ sim}$ and δ_{s}

- To evaluate the δ_s simulations, we compared observed and simulated δ_s as displayed in Figure 12a for all-day and nighttime conditions. Here, nighttime simulations were selected to minimize the effects of ecosystem photosynthesis and to **mainly** focus on the anthropogenic CO₂ sources. Two methods were used to calculate δ_s from the observations including the Miller-Tans and Keeling plot methods. Although δ_s differed between these two methods, both displayed similar seasonal variations with higher values (δ^{13} C enrichment) in summer and lower values in winter. Such seasonal variations were also observed at other urban sites including Beijing, China (Pang et al., 2016), Bern, Switzerland (Sturm et al., 2006), Bangalore city, India (Guha and Ghosh, 2010), Wroclaw, Poland (Górka and Lewicka-szczebak, 2013).
- If the CO₂ sources/sinks are homogeneously distributed and without monthly variations, the atmospheric CO_2 enhancement components would remain unchanged, and there would be no seasonal changes in δ_s . In reality, variations in atmospheric transport processes interact with regional CO₂ sink/source changes that cause monthly variations in δ_s . The comparison of δ_s between simulations and observations indicated that the model performed well in capturing the mixing and transport of CO₂ from different sources. We can also infer from their difference that the proportions of some CO₂ categories were biased in the a priori emission map. This can be caused by both the downscaling of EDGAR inventory distribution to 0.1° and the magnitude of some emissions categories. Among all anthropogenic sources, the most significant linear relations were found between the simulated anthropogenic δ_s and cement CO₂ proportions for these 24 months, with slopes of 0.33% for nighttime and 0.35% for all-day conditions (R² = 0.97, p < 0.001; Figure 12 b & c). These results also indicated that cement CO₂ emissions dominated monthly δ s variations in the YRD region.

3.3.3 Sensitivity of atmospheric δ^{13} C-CO₂ and δ_s to cement CO₂ emissions

The discrepancy between simulated and observed δ_s highlights that some CO₂ sources were biased in the *a priori* inventories. As discussed above, cement CO₂ emissions had the most distinct δ^{13} C-CO₂ endmember value of $0\% \pm 0.30\%$ when compared with the averages of other anthropogenic sources.

636 Combined with its large emission compared to other regions of the world, it had a strong potential to influence δ_s and δ^{13} C-CO₂. YRD represents the largest cement producing region in the world (USGS, 637 2014; Cai et al., 2015; Yang et al., 2017). Its relative proportion to total national anthropogenic CO₂ 638 emissions is about 5.5% to 6.5% based on IPCC method and 7.3% for EDGAR. These proportions are 50% 639 640 greater than the global average of 4% (Boden et al., 2016) and much larger than most countries (Andrew, 2018) and other large urbanized areas such as California (2%; Cui et al., 2019). 641 The local activity data reveals that the cement production increased from 3.55×10^8 tons in 2010 to 4.56×10^8 642 10⁸ tons in 2014 in the YRD area. Our own calculation of the national clinker-to-cement indicated a 643 decreasing trend from 64% in 2004 to around 56% in 2015. Here, we applied the value of 61.7% for 2010 644 and the average value of 57.0% for 2014 to 2015. We then used the EF for clinker (0.52 \pm 0.01 tonne CO₂ 645 per tonne clinker; IPCC 2013). Finally, the calculated cement CO_2 emissions were 1.14 (\pm 0.02) \times 10⁸ 646 tonne for 2010 and 1.35 (± 0.03) \times 10⁸ tonne for 2014, indicating an 18.4% increase over this time period. 647 This result is close to the scaling factor 1.145 for the total anthropogenic CO₂ emissions for the same 648 649 period. The cement CO₂ emission was 1.45×10⁸ tonne for the EDGAR products in 2010. Applying the scaling 650 factor of 1.184, based on our independent method, the EDGAR cement CO₂ emissions was 1.72×10⁸ 651 tonne for the year of 2014. The 27% difference between the EDGAR inventory and our independent 652 653 calculations probably resulted from large errors in the clinker-to-cement ratio and regional activity data. 654 Ke et al. (2013) reported a much higher clinker-to-cement ratio of 73% to 70% for China during 2005 and 2007 than the ratio of 57% in 2014 to 2015. If we applied a 70% ratio, the EDGAR cement CO₂ emission 655 would change to 1.28×10⁸ tonne for 2010. 656 657 The monthly cement emission proportions varied from 6.21% to 8.98%, while its enhancement proportion was much larger and could reach 16.85%. In other words, favorable atmospheric transport processes 658 amplified the cement CO₂ enhancement proportion at our observational site (Table S2). To quantify the 659 extent to which the cement CO_2 enhancement components can affect δ s and atmospheric $\delta^{13}C$ - CO_2 we 660 conducted sensitivity tests by changing the cement enhancement proportions to 0.8, 1.2, 1.4, 1.6, 1.8, and 661 662 2 times its original value. These sensitivity tests are based on two different assumptions for cement CO₂

enhancement changes: (1) There is no bias in the total anthropogenic CO2 enhancement such that a

proportional increase/decrease in the cement component does not change the relative anthropogenic contributions; (2) Only the cement enhancement changes. From equation 2, these two assumptions will

change both δ s and δ^{13} C-CO₂ but with different amplitude.

663 664

665

Results for the first assumption are shown in Figure 13a-b for both nighttime and all-day δ_s simulations. The simulated δ_s increased linearly with the increase of cement proportions, at a rate of 2.73‰ increase per 10% increase of cement proportions in the nighttime and 2.72‰ for all-day. The result for the second assumption is **similar to** the first one, yielding a 2.32‰ increase for a 10% increase in the cement proportion. As shown in Table S2, the cement CO₂ enhancement proportions increased from 5.60% - 6.77% (December) to 13.16% - 16.85% (June), which is the primary cause for the observed monthly δ_s variations. The high sensitivity of δ_s to cement CO₂ proportions can partly explain the relative difference of modeled δ_s and indicates a potential advantage to constrain cement CO₂ emissions by using atmospheric δ_s and indicates a potential advantage to constrain cement CO₂ can change atmospheric δ_s C-CO₂ (Figure 13c). These results show that atmospheric δ_s increase) can cause a 0.013‰ - 0.038‰ change in the atmospheric δ_s C-CO₂. These results indicate that δ_s is sensitive to cement CO₂ emissions.

4 Conclusions

667

668

669

670

671

672

673

674

675

676

677

678

679

680

693

- (1) Total annual anthropogenic CO₂ emissions for the YRD showed high consistency between the topdown and bottom-up approaches with a bias less than 6%.
- 683 (2) Approximately 59% and 41% of the δ^{13} C-CO₂ seasonality was attributed to the change in δ^{13} C background value and the regional CO₂ source term, respectively.
- 685 (3) Power industry and oil refineries/ transformation industry together contributed 0.40‰ to the seasonal cycle, accounting for 64.5% in all regional source terms (0.62‰).
- 687 (4) If excluding all ecosystem respiration and photosynthetic discrimination in YRD area, δ^{13} C-CO₂ seasonality will increase from 1.53% to 1.66%.
- (5) Atmospheric transport processes in summer amplified the cement CO₂ enhancement proportions in the YRD area, which dominated monthly δs variations. δ_s calculated from simulations was shown to be a strong linear relation with cement CO₂ EDGAR v4.3.2 inventory proportion in the YRD area.

Acknowledgements

- This work is supported by the National Key R&D Program of China (grants 2020YFA0607501 &
- 695 2019YFA0607202 to Xiao Wei), Cheng Hu acknowledges support from the Natural Science Foundation
- of Jiangsu Province (BK20200802), this work is also supported by National Natural Science Foundation
- of China (grant no.42021004), Natural Science Foundation of Jiangsu Province (BK20181100),
- and Key Research Foundation of Jiangsu Meteorological Society (KZ201803).

699 Code/Data availability

- The data presented in this manuscript has been uploaded on our group website:
- 701 https://yncenter.sites.yale.edu/data-access.
- Author contribution: Cheng Hu, Timothy J. Griffis and Xuhui Lee designed the study, Cheng
- Hu performed the model simulation and wrote the original draft, Supervision: Timothy J. Griffis
- and Xuhui Lee, Data acquisition: Jiaping Xu, Wenjing Huang, Dong Yang, Yan Chen, Cheng
- Liu, Shoudong Liu, and Lichen Deng, all co-authors contributed to the data analysis.
- **Competing interests**: The authors declare that they have no conflict of interest.

708 References:

- Alden, C. B., Miller, J. B., and Gatti, L. V.: Regional atmospheric CO₂ inversion reveals seasonal and geographic
- 710 differences in Amazon net biome exchange, Global Change Biology, 22, 3427–3443,
- 711 https://doi.org/10.1111/gcb.13305, 2016.
- Andrew, R. M.: Global CO₂ emissions from cement production, *Earth System Science Data*, 10, 2213–2239.
- 713 https://doi.org/10.5194/essd-2017-77, 2018.
- Ballantyne, A. P., Miller, J. B., Baker, I. T., Tans, P. P., and White, J. W. C.: Novel applications of carbon isotopes
- in atmospheric CO₂: what can atmospheric measurements teach us about processes in the biosphere? *Biogeosciences*,
- 716 8, 3093–3106, https://doi.org/10.5194/bg-8-3093-2011, 2011.
- 717 Boden, T., Andres, R., and Marland, G.: Global, Regional, and National Fossil-Fuel CO₂ Emissions (1751 2013)
- 718 (V. 2016) [Data set]. Environmental System Science Data Infrastructure for a Virtual Ecosystem; Carbon Dioxide
- 719 Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States).
- Berezin, E. V., Konovalov, I. B., Ciais, P., Richter, A., Tao, S., Janssens-Maenhout, G., Beekmann, M., and Schulze,
- 721 E.-D.: Multiannual changes of CO₂ emissions in China: indirect estimates derived from satellite measurements of
- 722 tropospheric NO₂ columns, Atmos. Chem. Phys., 13, 9415–9438, https://doi.org/10.5194/acp-13-9415-2013, 2013.
- 723 Brioude, J., Angevine, W. M., Ahmadov, R., Kim, S.-W., Evan, S., McKeen, S. A., Hsie, E.-Y., Frost, G. J.,
- Neuman, J. A., Pollack, I. B., Peischl, J., Ryerson, T. B., Holloway, J., Brown, S. S., Nowak, J. B., Roberts, J. M.,
- Wofsy, S. C., Santoni, G. W., Oda, T., and Trainer, M.: Top-down estimate of surface flux in the Los Angeles Basin
- using a mesoscale inverse modeling technique: assessing anthropogenic emissions of CO, NO_x and CO₂ and their
- 727 impacts, Atmos. Chem. Phys., 13, 3661–3677, https://doi.org/10.5194/acp-13-3661-2013, 2013.
- Bréon, F. M., Broquet, G., Puygrenier, V., Chevallier, F., Xueref-Remy, I., Ramonet, M., Dieudonné, E., Lopez, M.,
- 729 Schmidt, M., Perrussel, O., and Ciais, P.: An attempt at estimating Paris area CO₂ emissions from atmospheric
- 730 concentration measurements, Atmos. Chem. Phys., 15, 1707–1724, https://doi.org/10.5194/acp-15-1707-2015, 2015.
- 731 Cao, C., Lee, X., Liu, S., Schultz, N., Xiao, W., Zhang, M., and Zhao, L.: Urban heat islands in China enhanced by
- haze pollution. *Nature Communications*, 7(1), doi: 10.1038/ncomms12509, 2016.

- 733 Chen, B., Chen J., Tans, P., and Huang L.: Simulating dynamics of δ^{13} C of CO₂ in the planetary boundary layer over
- a boreal forest region: covariation between surface fluxes and atmospheric mixing, *Tellus*, 537–549,
- 735 https://doi.org/10.1111/j.1600-0889.2006.00213.x, 2006.
- 736 Chen, J. M., Mo, G., and Deng, F.: A joint global carbon inversion system using both CO2 and 13CO2
- atmospheric concentration data, Geosci. Model Dev., 10, 1131-1156, https://doi.org/10.5194/gmd-10-1131-
- 738 2017, 2017.
- 739 Cai B., Wang J., He J., and Geng Y.: Evaluating CO₂ emission performance in China's cement industry: An
- 740 enterprise perspective. *Applied Energy*, 2015.11.006, https://doi.org/10.1016/j.apenergy.2015.11.006, 2015.
- 741 Cui, X., Newman, S., Xu, X., Andrews, A. E., Miller, J., Lehman, S.: Atmospheric observation-based estimation of
- fossil fuel CO₂ emissions from regions of central and southern California. Science of the Total Environment, 664,
- 743 381–391, https://doi.org/10.1016/j.scitotenv.2019.01.081, 2019.
- Deng L., Liu S., and Zhao X., Study on the change in land cover of Yangtze River Delta based on MOD13A2 data,
- 745 *China Science Paper*, 000(015):1822-1827 (in Chinese).
- 746 Gately, C. K., Hutyra, L. R., and Wing, I. S.: Cities, traffic, and CO₂: A multidecadal assessment of trends, drivers,
- and scaling relationships, *Proceedings of the National Academy of Sciences of the United States of America*, 112(16),
- 748 4999–5004, https://doi.org/10.1073/pnas.1421723112, 2015.
- Gately, C. K., and Hutyra, L. R.: Large uncertainties in urban-scale carbon emissions. *Journal of Geophysical*
- 750 Research: Atmospheres, 122, 11,242–11,260, https://doi.org/10.1002/2017JD027359, 2017.
- 751 Ghasemifard, H., Vogel, F. R., Vardag, et al. Pollution Events at the High-Altitude Mountain Site Zugspitze-
- 752 Schneefernerhaus (2670 m a.s.l.), Germany[J]. Atmosphere, 2019, 10(6).
- 753 Graven, H. D., Fischer, M. L., Lueker, T., Jeong, S., Guilderson, T. P., Keeling, R.: Assessing fossil fuel CO₂
- 754 emissions in California using atmospheric observations and models. Environmental Research Letters, 13(2018)
- 755 065007, https://doi.org/10.1088/1748-9326/aabd43, 2018.
- 756 Griffis, T. J., Sargent, S., Baker, J., Lee, X., Tanner, B., Greene, J., Swiatek, E., and K. Billmark K.: Direct
- 757 measurement of biosphere-atmosphere isotopic CO₂ exchange using the eddy covariance technique, *Journal of*
- 758 Geophysical Research: Atmospheres, 113, D08304, 2008.
- 759 Griffis, Timothy J.: Tracing the flow of carbon dioxide and water vapor between the biosphere and atmosphere: A
- review of optical isotope techniques and their application. Agricultural and Forest Meteorology, 174–175, 85–109,
- **761** 2013.
- 762 Górka, M., and Lewicka-Szczebak, D.: One-year spatial and temporal monitoring of concentration and carbon
- isotopic composition of atmospheric CO₂ in a Wroclaw (SW Poland) city area. *Applied Geochemistry*, 35:7-13,
- 764 https://doi.org/10.1016/j.apgeochem.2013.05.010, 2013.
- Guha, T., and Ghosh, P.: Diurnal variation of atmospheric CO₂ concentration and δ^{13} C in an urban atmosphere
- during winter-role of the Nocturnal Boundary Layer. *Journal of Atmospheric Chemistry*, 65(1), 1–12, https://doi.org/
- 767 10.1007/s10874-010-9178-6, 2010.
- Hu, C., Liu, S., Wang, Y., Zhang, M., Xiao, W., Wang, W., and Xu, J.: Anthropogenic CO₂ emissions from a
- megacity in the Yangtze River Delta of China. Environmental Science and Pollution Research, 25(23), 23157–
- 770 23169, https://doi.org/10.1007/s11356-018-2325-3, 2018a.
- Hu, C., Griffis, T. J., Liu, S., Xiao, W., Hu, N., Huang, W., Yang D., and Lee X.: Anthropogenic methane emission
- and its partitioning for the Yangtze River Delta region of China. Journal of Geophysical Research: Biogeosciences,
- 773 124, https://doi.org/10.1029/2018JG004850, 2019.

- Hu, C., Griffis, T. J., Lee, X., Millet, D. B., Chen, Z., Baker, J. M., and Xiao, K.: Top-Down constraints on
- anthropogenic CO₂ emissions within an agricultural-urban landscape. *Journal of Geophysical Research:*
- 776 Atmospheres, 123(9), 4674–4694, https://doi.org/10.1029/2017JD027881, 2018b.
- Hu, L., Andrews, A. E., Thoning, K. W., Sweeney, C., Miller, J. B., Michalak, A. M.: Enhanced North American
- carbon uptake associated with El Niño. Science Advances, 5, eaaw0076, https://doi.org/10.1126/sciadv.aaw0076,
- 779 2019.
- 780 He, J., Naik, V., Horowitz, L. W., Dlugokencky, E., and Thoning, K.: Investigation of the global methane budget
- 781 over 1980–2017 using GFDL-AM4.1, Atmos. Chem. Phys., 20, 805–827, https://doi.org/10.5194/acp-20-805-2020,
- **782** 2020.
- 783 IPCC (Intergovernmental Panel on Climate Change): 2019 Refinement to the 2006 IPCC Guidelines for
- National Greenhouse Gas Inventories, available at: https://www.ipcc-nggip.iges.or.jp/ public/2019rf/ (last
- 785 access: 24 April 2021), 2019
- 786 IEA, 2012. CO₂ Emissions from Fuel Combustion 1971–2010, 2012 Edition. International Energy Agency (IEA),
- 787 Paris 2012.
- Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F.: EDGAR v4.3.2 Global
- 789 Atlas of the three major Greenhouse Gas Emissions for the period 1970-2012. Earth System Science Data
- 790 Discussions, (August), 1–55. https://doi.org/10.5194/essd-2017-79, 2017.
- Jiang, F., Wang, H. M., Chen, J. M., Machida, T., Zhou, L. X., Ju, W. M., Matsueda, H., and Sawa, Y.: Carbon
- balance of China constrained by CONTRAIL aircraft CO₂ measurements, Atmos. Chem. Phys., 14, 10133–10144,
- 793 https://doi.org/10.5194/acp-14-10133-2014, 2014.
- Ke J., Mcneil M., Price L., and Zhou N.: Estimation of CO₂ emissions from China's cement production:
- 795 Methodologies and uncertainties[J]. *Energy Policy*, 57:172-181, https://doi.org/10.1016/j.enpol.2013.01.028, 2013.
- Keeling, C. D.: The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus, 12(2), 200–
- 797 203. Keeling, C. D. (1961). The concentration and isotopic abundances of carbon dioxide in rural and marine air.
- 798 Geochimica et Cosmochimica Acta, 24(3-4), 277–298, https://doi.org/10.1111/j.2153-3490.1960.tb01300.x, 1960.
- Lai, C., Ehleringer, J. R., Tans, P., and Wofsy, S. C.: Estimating photosynthetic ¹³C discrimination in terrestrial CO₂
- exchange from canopy to regional scales, Global Biogeochemical Cycles, 18, GB1041,
- 801 https://doi.org/1010.1029/2003gb002148, 2014.
- 802 Li, X., and Xiao, J.: A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2,
- 803 MODIS, and reanalysis data. *Remote Sensing*, 11, 517, https://doi.org/10.3390/rs11050517, 2019.
- Lauvaux, T., Miles, N. L., Deng, A., Richardson, S. J., Cambaliza, M. O., Davis, K. J., and Wu K.: High-resolution
- atmospheric inversion of urban CO₂ emissions during the dormant season of the Indianapolis flux experiment
- 806 (INFLUX). Journal of Geophysical Research: Atmospheres, 121(10), 5213–5236,
- 807 https://doi.org/10.1002/2015JD024473, 2016.
- Martin, C. R., Zeng, N., Karion, A., Mueller, K., Ghosh, S., Lopez-coto, I.: Investigating sources of variability and
- error in simulations of carbon dioxide in an urban region. Atmospheric Environment, 199, 55–69,
- 810 https://doi.org/10.1016/j.atmosenv.2018.11.013, 2019.
- Moore, J., & Jacobson, A. D. (2015). Seasonally varying contributions to urban CO₂ in the Chicago, Illinois, USA
- region: Insights from a high-resolution CO₂ concentration and δ^{13} C record, Elementa: Science of the Anthropocene,
- **813** 3:000052.
- Mueller, K., Yadav, V., Lopez-Coto, I., Karion, A., Gourdji, S., Martin, C., and Whetstone, J.: Siting Background
- Towers to Characterize Incoming Air for Urban Greenhouse Gas Estimation: A Case Study in the Washington,

- 816 DC/Baltimore Area. Journal of Geophysical Research: Atmospheres, 123(5), 2910–2926,
- 817 https://doi.org/10.1002/2017JD027364, 2018.
- McManus, J.B., Nelson, D.D., Zahniser, M.S.: Long-term continuous sampling of ¹²CO₂, ¹³CO₂ and ¹²C¹⁸O¹⁶O in
- ambient air with a quantum cascade laser spectrometer. *Isotopes in Environmental and Health Studies*, 46:1, 49-63,
- 820 https://doi.org/10.1080/10256011003661326, 2010.
- Miller, J. B., Tans, P. P., White, J. W. C., Conway, T. J., and Vaughn, B. W.: The atmospheric signal of terrestrial
- 822 carbon isotopic discrimination and its implication for partitioning carbon fluxes, *Tellus B*, 55, 197–206,
- 823 https://doi.org/10.1034/j.1600-0889.2003.00019.x, 2003.
- Miller JB, Lehman SJ, Verhulst KR, Miller CE, Duren RM, Yadav V, Newman S, and Sloop CD. Large and
- 825 seasonally varying biospheric CO2 fluxes in the Los Angeles megacity revealed by atmospheric radiocarbon.
- 826 Proc Natl Acad Sci U S A, 2020; 117 (43) 26681-26687; doi.org/10.1073/pnas.2005253117.
- Nathan, B., Lauvaux, T., Turnbull, J. C., and Richardson, S.: Source Sector Attribution of CO₂ Emissions Using an
- 828 Urban CO/CO₂ Bayesian Inversion System. *Journal of Geophysical Research: Atmospheres*, 123, 13611-13621,
- 829 https://doi.org/10.1029/2018JD029231, 2018.
- Newman, S., Xu, X., Affek, H. P., Stolper, E., and Epstein S.: Changes in mixing ratio and isotopic composition of
- 831 CO₂ in urban air from the Los Angeles basin, California, between 1972 and 2003, *Journal of Geophysical Research*,
- 832 113, D23304, https://doi.org/10.1029/2008JD009999, 2008.
- Newman, S., Xu, X., Gurney, K. R., Hsu, Y. K., Li, K. F., Jiang, X., Keeling, R., Feng, S., O'Keefe, D., Patarasuk,
- R., Wong, K. W., Rao, P., Fischer, M. L., and Yung, Y. L.: Toward consistency between trends in bottom-up
- CO₂ emissions and top-down atmospheric measurements in the Los Angeles megacity, Atmos. Chem. Phys., 16,
- 836 3843–3863, https://doi.org/10.5194/acp-16-3843-2016, 2016.
- Oda, T., Maksyutov, S., and Andres, R. J.: The Open-source Data Inventory for Anthropogenic CO₂, version 2016
- 838 (ODIAC2016): a global monthly fossil fuel CO₂ gridded emissions data product for tracer transport simulations and
- 839 surface flux inversions, Earth Syst. Sci. Data, 10, 87–107, https://doi.org/10.5194/essd-10-87-2018, 2018.
- Pang, J., Wen, X., and Sun, X.: Mixing ratio and carbon isotopic composition investigation of atmospheric CO₂ in
- Beijing, China. Science of the Total Environment, 539, 322–330, https://doi.org/10.1016/j.scitotenv.2015.08.130,
- **842** 2016.
- Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie, K., John B. M., Lori M.
- P. B., Gabrielle P., Adam I. H., Douglas E. J. W., Guido R. v., James T. R., Paul O. W., Maarten C. K., and Pieter P.
- 845 T.: An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. *Proceedings of the*
- 846 National Academy of Sciences, 104(48), 18925–18930, https://doi.org/10.1073/pnas.0708986104, 2007.
- Pataki, D. E., Bowling, D. R., Ehleringer, J. R., and Zobitz, J. M.: High resolution atmospheric monitoring of urban
- carbon dioxide sources, *Geophysical Research Letter*, 33, L03813, https://doi.org/10.1029/2005GL024822, 2006.
- Pillai, D., Buchwitz, M., Gerbig, C., Koch, T., Reuter, M., Bovensmann, H., Marshall, J., and Burrows, J. P.:
- Tracking city CO₂emissions from space using a high-resolution inverse modelling approach: a case study for Berlin,
- 851 Germany, Atmos. Chem. Phys., 16, 9591–9610, https://doi.org/10.5194/acp-16-9591-2016, 2016.
- 852 Prairie, Y. T. and Duarte, C. M.: Direct and indirect metabolic CO2 release by humanity, Biogeosciences, 4,
- 853 215–217, doi:10.5194/bg-4-215-2007, 2007.
- Ruckstuhl, A. F., Henne, S., Reimann, S., Steinbacher, M., Vollmer, M. K., O'Doherty, S., Buchmann, B., and
- Hueglin, C.: Robust extraction of baseline signal of atmospheric trace species using local regression, Atmos. Meas.
- 856 Tech., 5, 2613–2624, https://doi.org/10.5194/amt-5-2613-2012, 2012.

- 857 Rayner, P. J., Raupach, M. R., Paget, M., Peylin, P., and Koffi, E.: A new global gridded data set of CO2 emissions
- from fossil fuel combustion: Methodology and evaluation, Journal of Geophysical Research: Atmospheres. 115,
- 859 D19306, https://doi.org/10.1029/2009JD013439, 2010.
- Ribeiro, H. V, Rybski, D., and Kropp, J. P.: Effects of changing population or density on urban carbon dioxide
- emissions. Nature Communications, (2019), 1–9, https://doi.org/10.1038/s41467-019-11184-y, 2019.
- Sargent, M., Barrera, Y., Nehrkorn, T., Hutyra, L. R., Gately, C. K., Mckain, K., Sweeney, C., Hegarty, J.,
- Hardiman, B., Steven C. Wofsy, S. C.: Anthropogenic and biogenic CO₂ fluxes in the Boston urban region,
- Proceedings of the National Academy of Sciences of the United States of America. 115(40),
- 865 https://doi.org/10.1073/pnas.1803715115, 2018.
- 866 Schneising, O., Heymann, J., Buchwitz, M., Reuter, M., Bovensmann, H., and Burrows, J. P.: Anthropogenic carbon
- dioxide source areas observed from space: assessment of regional enhancements and trends, Atmos. Chem. Phys.,
- 868 13, 2445–2454, https://doi.org/10.5194/acp-13-2445-2013, 2013.
- 869 Staufer, J., Broquet, G., Bréon, F.-M., Puygrenier, V., Chevallier, F., Xueref-Rémy, I., Dieudonné, E., Lopez, M.,
- 870 Schmidt, M., Ramonet, M., Perrussel, O., Lac, C., Wu, L., and Ciais, P.: The first 1-year-long estimate of the Paris
- region fossil fuel CO2 emissions based on atmospheric inversion, Atmos. Chem. Phys., 16, 14703–14726,
- 872 https://doi.org/10.5194/acp-16-14703-2016, 2016.
- 873 Sturm, P., Leuenberger, M., Valentino, F. L., Lehmann, B., and Ihly, B.: Measurements of CO2, its stable isotopes,
- 874 O2/N2, and 222Rn at Bern, Switzerland, Atmos. Chem. Phys., 6, 1991–2004, https://doi.org/10.5194/acp-6-1991-
- **2006**, 2006.
- 876 Sturm, P., Tuzson, B., Henne, S., and Emmenegger, L.: Tracking isotopic signatures of CO2 at the high altitude site
- Jungfraujoch with laser spectroscopy: analytical improvements and representative results, Atmos. Meas. Tech., 6,
- 878 1659–1671, https://doi.org/10.5194/amt-6-1659-2013, 2013.
- 879 Super, I., Denier van der Gon, H. A. C., van der Molen, M. K., Sterk, H. A. M., Hensen, A., and Peters, W.: A
- multi-model approach to monitor emissions of CO2 and CO from an urban-industrial complex, Atmos. Chem. Phys.,
- 881 17, 13297–13316, https://doi.org/10.5194/acp-17-13297-2017, 2017.
- 882 State Statistical Bureau. China Statistical Yearbook 2015; China Statistical Press: Beijing, China, 2016. (In Chinese)
- 883 Seto, K. C., Dhakal, S., Bigio, A., Blanco, H., Delgado, G. C., and Dewar, D.: Human settlements, infrastructure,
- and spatial planning. In O. Edenhofer, et al. (Eds.), Climate change 2014: Mitigation of climate change. Contribution
- ofworking group III to the fifth assessment report of the intergovernmental panel on climate change (pp. 923–1000).
- Cambridge, UK and New York, NY, USA: Cambridge University Press.
- 887 https://doi.org/10.1017/CBO9781107415416.018, 2014.
- Thompson, R. L., Patra, P. K., Chevallier, F., Maksyutov, S., Law, R. M., Ziehn, T., and Ciais P.: Top-down
- assessment of the Asian carbon budget since the mid 1990s. Nature Communications, 7, 1–10,
- 890 https://doi.org/10.1038/ncomms10724, 2016.
- 891 Turnbull, J. C., Sweeney, C., Karion, A., Newberger., T., Lehman, S. J., Tans P. P., Davis, K.: Toward
- quantification and source sector identification of fossil fuel CO2 emissions from an urban area: results from the
- influx experiment. Journal of Geophysical Research: Atmospheres, 120(1, 292):–312,
- 894 https://doi.org/10.1002/2014JD022555, 2015.
- Turner, A. J., Shusterman, A. A., McDonald, B. C., Teige, V., Harley, R. A., and Cohen, R. C.: Network design for
- quantifying urban CO2 emissions: assessing trade-offs between precision and network density, Atmos. Chem. Phys.,
- 897 16, 13465–13475, https://doi.org/10.5194/acp-16-13465-2016, 2016.

- 898 Thoning, K. W., Tans, P. P., and Komhyr, W. D.: Atmospheric carbon dioxide at Mauna Loa observatory 2.
- Analysis of the NOAA/GMCC data, 1974–1985. Journal of Geophysical Research: Atmospheres, 94(D6), 8549–
- 900 8565, https://doi.org/10.1029/JD094iD06p08549,1989.
- 901 USGS (U. S. Geological Survey), 2014. Mineral Commodity Summaries 2013.http://minerals.usgs.gov/
- 902 minerals/pubs/commodity/cement/.
- Wang, Y., Munger, J. W., Xu, S., McElroy, M. B., Hao, J., Nielsen, C. P., and Ma, H.: CO₂ and its correlation with
- 904 CO at a rural site near Beijing: implications for combustion efficiency in China, Atmos. Chem. Phys., 10, 8881–
- 905 8897, https://doi.org/10.5194/acp-10-8881-2010, 2010.
- Zhang, H. F., Chen, B. Z., van der Laan-Luijkx, I. T., Chen, J., Xu, G., Yan, J. W., Zhou, L. X., Fukuyama, Y., Tans,
- P. P., and Peters W.: Net terrestrial CO₂ exchange over China during 2001–2010 estimated with an ensemble data
- 908 assimilation system for atmospheric CO₂, Journal of Geophysical Research: Atmospheres, 119, 3500–3515,
- 909 https://doi.org/10.1002/2013JD021297, 2014.
- 910 Vardag, S. N., Gerbig, C., Janssens-Maenhout, G., and Levin, I.: Estimation of continuous anthropogenic CO₂:
- model-based evaluation of CO₂, CO, δ^{13} C(CO₂) and Δ^{14} C(CO₂) tracer methods, Atmos. Chem. Phys., 15, 12705–
- 912 12729, https://doi.org/10.5194/acp-15-12705-2015, 2015.
- Verhulst, K. R., Karion, A., Kim, J., Salameh, P. K., Keeling, R. F., Newman, S., Miller, J., Sloop, C., Pongetti, T.,
- Rao, P., Wong, C., Hopkins, F. M., Yadav, V., Weiss, R. F., Duren, R. M., and Miller, C. E.: Carbon dioxide and
- 915 methane measurements from the Los Angeles Megacity Carbon Project Part 1: calibration, urban enhancements,
- 916 and uncertainty estimates, Atmos. Chem. Phys., 17, 8313–8341, https://doi.org/10.5194/acp-17-8313-2017, 2017.
- Worden, H. M., Cheng, Y., Pfister, G., Carmichael, G. R., Zhang, Q., Streets, D. G.: Satellite-based estimates of
- 918 reduced CO and CO₂ emissions due to traffic restrictions during the 2008 Beijing Olympics, Geophysical Research
- 919 *Letters*, 39, 1–6, https://doi.org/10.1029/2012GL052395, 2012.
- 920 Xu, J., Lee, X., Xiao, W., Cao, C., Liu, S., Wen, X., Xu, J., Zhang, Z., and Zhao, J.: Interpreting the ¹³C/¹²C ratio of
- carbon dioxide in an urban airshed in the Yangtze River Delta, China, Atmos. Chem. Phys., 17, 3385–3399,
- 922 https://doi.org/10.5194/acp-17-3385-2017, 2017.

929

930

931

932

933

- Yang, Y., Wang, L., Cao, Z. Mou C., Shen, L., Zhao, J., and Fang, Y.: CO₂ emissions from cement industry in China:
- A bottom-up estimation from factory to regional and national levels. *Journal of Geographical Science*, **27**, 711–730.
- 25 Zhao, C., Andrews, A. E., Bianco, L., Eluszkiewicz, J. Hirsh, A., Macdonald, C., Nehrkorn, T., and Fischer M. L.,.
- 926 Atmospheric inverse estimates of methane emissions from Central California. *Journal of Geophysical Research*:
- 927 Atmospheres, 2009, 114(D16): 4723-4734, https://doi.org/10.1029/2008JD011671, 2009.

- 935 Figure 1. (a) Weather Research and Forecasting Model simulation domains and the location of WLG site, the different region
- 936 colors represent three domains, (b) cement production distribution in YRD and Eastern China. Both green dot in (a) and red
- 937 star in (b) are NUIST observation site.
- Figure 2. (a) Annual anthropogenic CO₂ emissions for study domain (units: mol m⁻² s⁻¹) and population density in 4 megacities
- 939 (units: people per hectare) including Nanjing, Hefei, Zhejiang, and Shanghai for the year of 2015, (b) Two-year average
- 940 concentration footprint (units: ppm m² s/μmol).
- 941 Figure 3. (a) Comparisons of hourly CO₂ mixing ratios between observations and model simulation from September 2013 to
- August 2015, and monthly averages for (b) whole day, (c) nighttime (22:00-06:00, local time) and (d) daytime (10:00 16:00);
- Model results (red), observations (black), and background (grey).
- 944 Figure 4. Relation between monthly PBLH and change in CO₂ mixing ratio, here these dots represent difference of monthly
- averages in two different years for all hours.
- 946 Figure 5. (a) Comparisons of simulated and observed CO₂ enhancement, note 'model' represents the sum of both
- anthropogenic and biological CO₂ enhancement simulations, (b) CO₂ enhancement contributions from different provinces,
- 948 (c) simulated anthropogenic CO₂ enhancement proportion for the main sources; Time series (2013 to 2015) of (d) NDVI, (e)
- 949 SIF, and (f) GPP. The distance indicates the radius of area centered with NUIST observation site, and the NDVI, SIF, GPP
- 950 values are averages in these areas.
- 951 **Figure 6**. Comparisons among three strategies for calculating the background δ^{13} C-CO₂. Strategy 1 (WLG discrete: weekly
- 952 discrete observations at WLG site, WLG CCGCRV: derived hourly data with WLG observations and CCGCRV method);
- 953 Strategy 2 (Calculated: by choosing clean air in winter); and strategy 3 (M-T method: derived results with observations and M-T
- approach, M-T CCGCRV: derived hourly results with M-T approach and CCGCRV method, see details in section 2.2.1).
- Figure 7. (a) Comparisons of observed and modeled hourly δ^{13} C-CO₂ from September 2013 to August 2015, where the grey line
- 956 represent derived δ^{13} C-CO₂ background, and (b) Simulated hourly biological CO₂ enhancement. The shade and lines in both
- 957 subfigures represent the periods for winter and summer, respectively.
- 958 Figure 8. Comparisons of observed and modeled (a) CO₂ mixing ratio and (b) δ^{13} C-CO₂ from December 2013 to February 2014;
- 959 (c) CO₂ mixing ratio and (b) δ^{13} C-CO₂ from December 2014 to February 2015; (e) CO₂ mixing ratio and (f) δ^{13} C-CO₂ from
- June 2014 to August 2014; (g) CO₂ mixing ratio and (h) δ ¹³C-CO₂ from June 2015 to August 2015.
- Figure 9. Scatter plots of observed versus modeled (a) winter time CO_2 mixing ratios, (b) winter time $\delta^{13}C$ - CO_2 , (c) summer
- time CO₂, and (d) summer time δ^{13} C-CO₂ for both years, here these dots are daily averages.
- 963 Figure 10. Digital filtering curve fitting (CCGCRV) for background, observations, normal simulations, case 1 (excluding
- 964 negative NEE when photosynthesis is stronger than respiration), and case 2 (excluding respiration and photosynthesis) in
- both years, (b) δ^{13} C-CO₂ comparisons between normal simulations and case 1, and (c) δ^{13} C-CO₂ comparisons between normal
- simulations and case 2.
- **Figure 11**. Comparisons of winter time $\delta s \cdot \Delta CO_2$ using (a) *a priori* and (b) constrained anthropogenic CO_2 emissions.
- Figure 12. (a) Comparisons between observed and modeled δ_s , (b) relationship between cement CO₂ enhancement proportion
- and simulated anthropogenic δ s for nighttime and (c) all-day.

Figure 13. Sensitivity tests showing the influence of cement CO_2 emissions on δ_s for (a) nighttime, (b) all-day, and (c) the relation between cement CO_2 and $\delta^{13}C$ for simulation strategies 1 (There is no bias in the total anthropogenic CO_2 enhancement such that a proportional increase/decrease in the cement component does not change the relative anthropogenic contributions) and 2 (only the cement enhancement changes). Note that the numbers in brackets indicate changes in δ^{13} C with cement CO₂ enhancement proportion (the fraction of cement CO₂ enhancement to simulated total CO₂ enhancement) increase by 0.2 times. The x-axis values indicate changing cement enhancement proportions to 0.8 1.2, 1.4, 1.6, 1.8, and 2 times the original values.

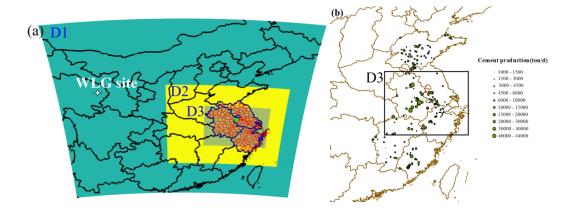
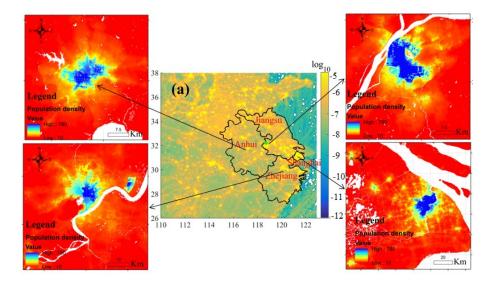


Figure 1. (a) Weather Research and Forecasting Model simulation domains and the location of WLG site, the different region colors represent three domains, (b) cement production distribution in YRD and Eastern China. Both green dot in (a) and red star in (b) are NUIST observation site.



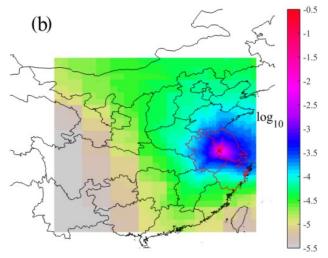


Figure 2. (a) Annual anthropogenic CO_2 emissions for study domain (units: mol m⁻² s⁻¹) and population density in 4 megacities (units: people per hectare) including Nanjing, Hefei, Zhejiang, and Shanghai for the year of 2015, (b) Two-year average concentration footprint (units: ppm m² s/ μ mol).

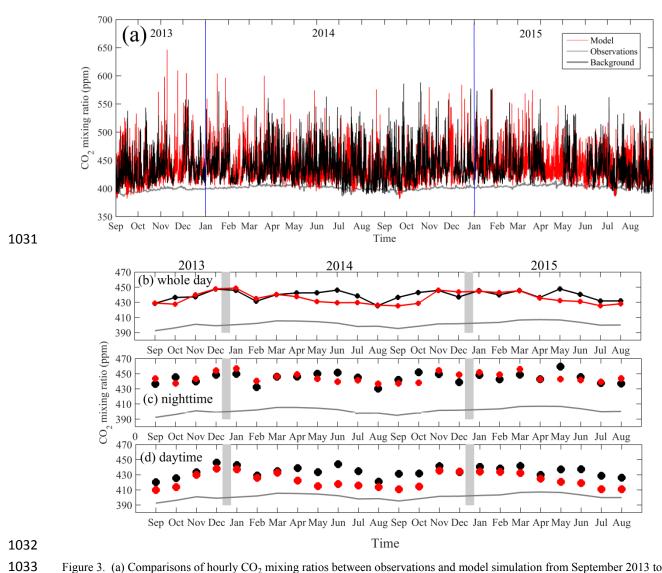


Figure 3. (a) Comparisons of hourly CO_2 mixing ratios between observations and model simulation from September 2013 to August 2015, and monthly averages for (b) whole day, (c) nighttime (22:00-06:00, local time) and (d) daytime (10:00 - 16:00); Model results (red), observations (black), and background (grey).

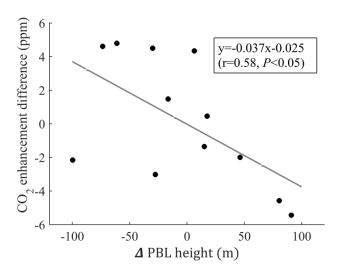


Figure 4. Relation between monthly PBL height and change in CO₂ mixing ratio, here these dots represent difference of monthly averages in two different years for all hours.

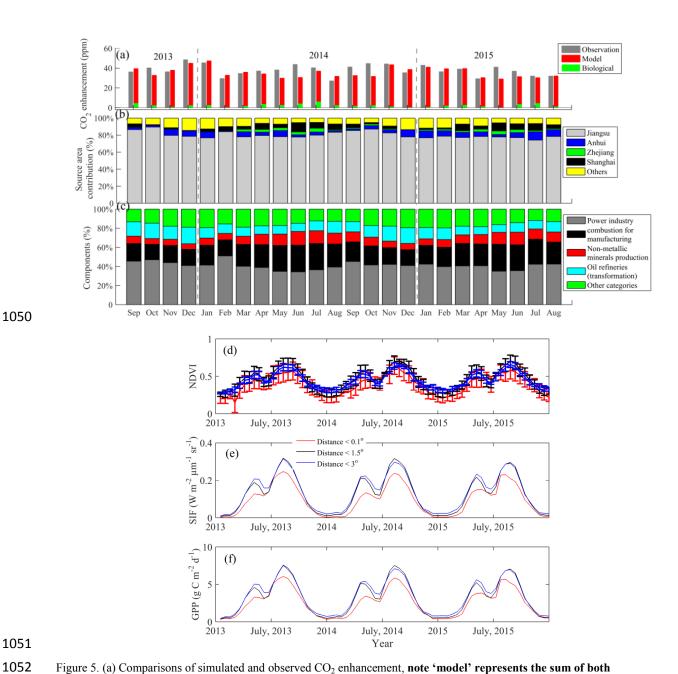


Figure 5. (a) Comparisons of simulated and observed CO₂ enhancement, note 'model' represents the sum of both anthropogenic and biological CO₂ enhancement simulations, (b) CO₂ enhancement contributions from different provinces, (c) simulated anthropogenic CO₂ enhancement proportion for the main sources; Time series (2013 to 2015) of (d) NDVI, (e) SIF, and (f) GPP. The distance indicates the radius of area centered with NUIST observation site, and the NDVI, SIF, GPP values are averages in these areas.

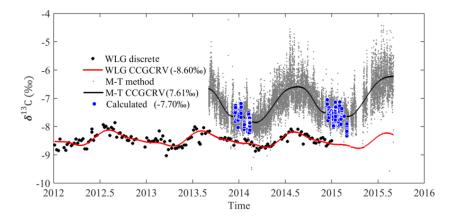
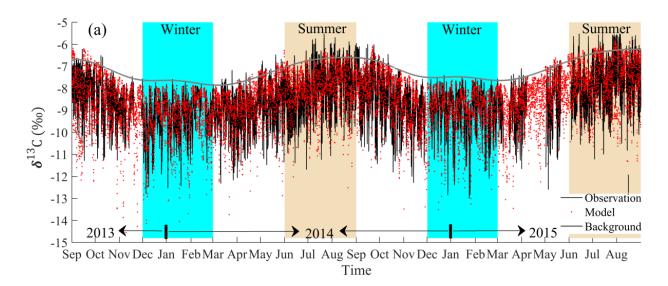


Figure 6. Comparisons among three strategies for calculating the background δ^{13} C-CO₂. Strategy 1 (WLG discrete: weekly discrete observations at WLG site, WLG CCGCRV: derived hourly data with WLG observations and CCGCRV method); Strategy 2 (Calculated: by choosing clean air in winter); and strategy 3 (M-T method: derived results with observations and M-T approach, M-T CCGCRV: derived hourly results with M-T approach and CCGCRV method, see details in section 2.2.1).

-0.0



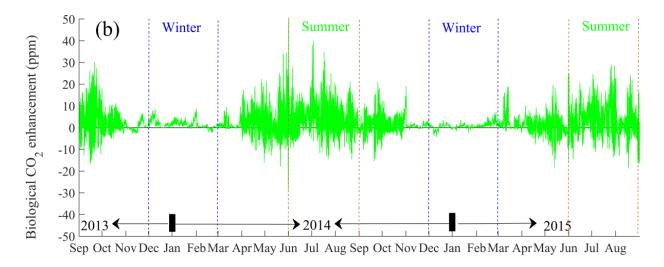


Figure 7. (a) Comparisons of observed and modeled hourly δ^{13} C-CO₂ from September 2013 to August 2015, where the grey line represent derived δ^{13} C-CO₂ background, and (b) Simulated hourly biological CO₂ enhancement. **The shade and lines in both subfigures represent the periods for winter and summer, respectively.**

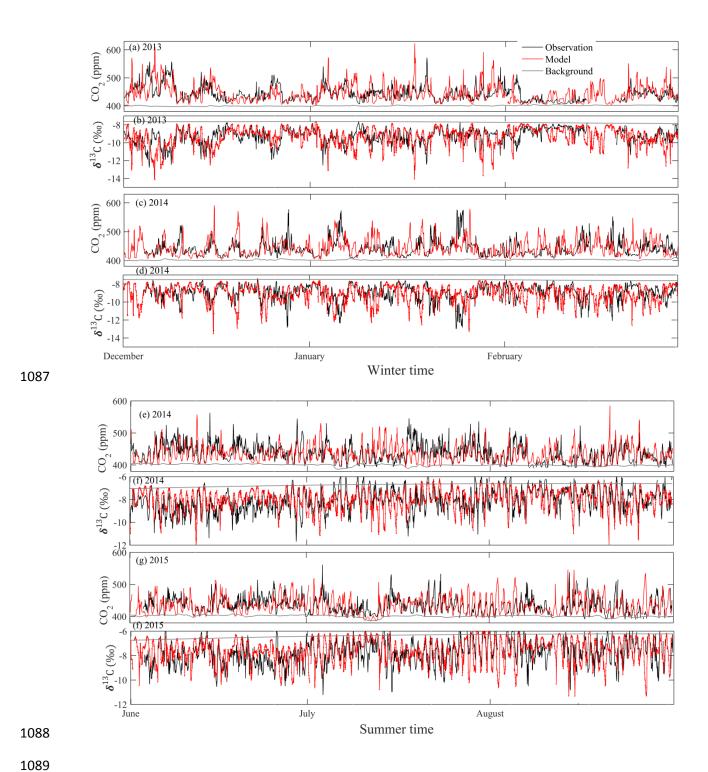


Figure 8. Comparisons of observed and modeled (a) CO_2 mixing ratio and (b) $\delta^{13}C$ - CO_2 from December 2013 to February 2014; (c) CO_2 mixing ratio and (b) $\delta^{13}C$ - CO_2 from December 2014 to February 2015; (e) CO_2 mixing ratio and (f) $\delta^{13}C$ - CO_2 from June 2014 to August 2014; (g) CO_2 mixing ratio and (h) $\delta^{13}C$ - CO_2 from June 2015 to August 2015.

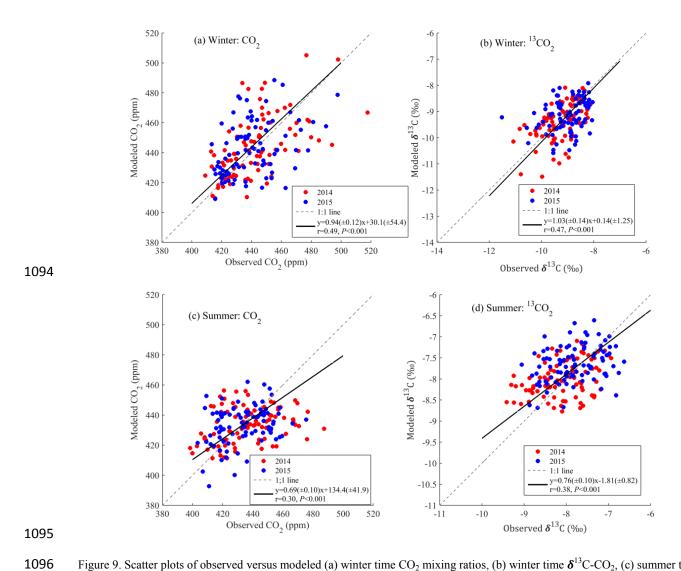
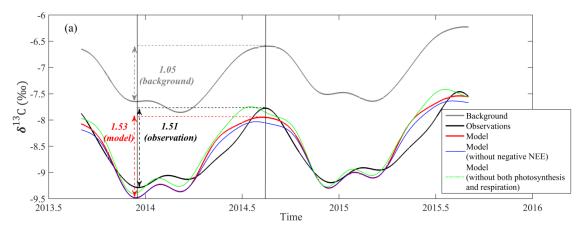


Figure 9. Scatter plots of observed versus modeled (a) winter time CO_2 mixing ratios, (b) winter time $\delta^{13}C\text{-}CO_2$, (c) summer time CO_2 , and (d) summer time $\delta^{13}C\text{-}CO_2$ for both years, here these dots are daily averages.



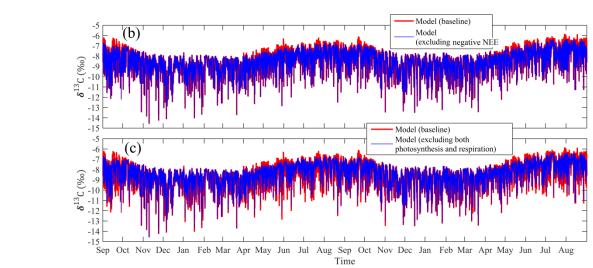


Figure 10. Digital filtering curve fitting (CCGCRV) for background, observations, normal simulations, case 1 (excluding **negative NEE when photosynthesis is stronger than respiration**), and case 2 (excluding respiration and photosynthesis) in both years, (b) δ^{13} C-CO₂ comparisons between normal simulations and case 1, and (c) δ^{13} C-CO₂ comparisons between normal simulations and case 2.

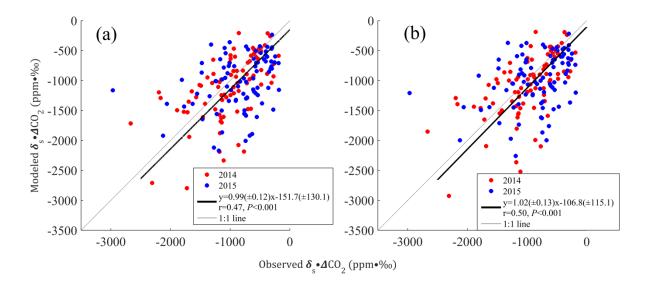
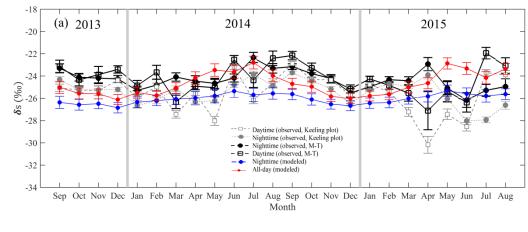


Figure 11. Comparisons of winter time $\delta s \cdot \Delta CO_2$ using (a) *a priori* and (b) constrained anthropogenic CO_2 emissions.



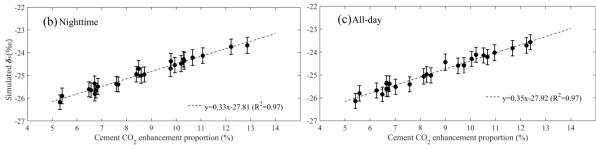


Figure 12. (a) Comparisons between observed and modeled δ_s , (b) relationship between cement CO₂ enhancement proportion and simulated anthropogenic δ s for nighttime and (c) all-day.

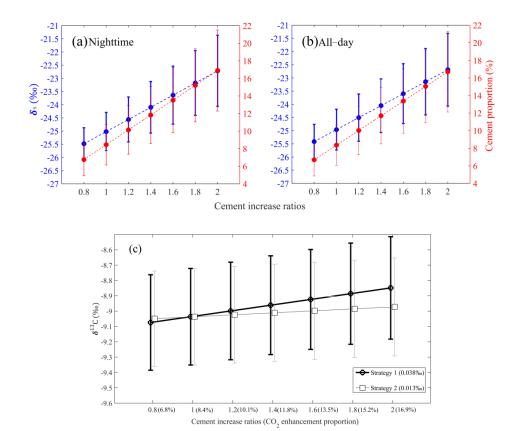


Figure 13. Sensitivity tests showing the influence of cement CO_2 emissions on δ_s for (a) nighttime, (b) all-day, and (c) the relation between cement CO_2 and $\delta^{13}C$ for simulation strategies 1 (There is no bias in the total anthropogenic CO_2 enhancement such that a proportional increase/decrease in the cement component does not change the relative anthropogenic contributions) and 2 (only the cement enhancement changes). Note that the numbers in brackets indicate changes in $\delta^{13}C$ with cement CO_2 enhancement proportion (the fraction of cement CO_2 enhancement to simulated total CO_2 enhancement) increase by 0.2 times. The x-axis values indicate changing cement enhancement proportions to 0.8 1.2, 1.4, 1.6, 1.8, and 2 times the original values.

Table 1. Comparisons of cement and all anthropogenic CO₂ emissions among different methods, "/" means not available.

Units: × 10 ¹¹ kg	Year	EDGAR v432	Inversion results	IPCC method
Cement CO ₂ emissions	2010	1.45	/	1.14
Cement CO2 emissions	2014-2015	1.72	/	1.35
All anthropogenic CO ₂	2010	20.55	/	17.56
emissions	2014-2015	23.53	24.59 ± 2.39	24.38

Table 2. Statistical metrics between observed and modeled CO_2 mixing ratios and $\delta^{13}C$ - CO_2 during winter, summer and annual for 2014 and 2015. Correlation coefficient (R), averages and root mean square error (RMSE) are displayed.

	Years	2014				2015		
	Periods	allyear	Winter	Summer	allyear	Winter	Summer	
δ ¹³ CO ₂ (‰)	R	0.54	0.40	0.47	0.52	0.27	0.39	
	RMSE (‰)	1.07	0.94	0.94	1.10	0.92	0.98	
	simulation (‰)	-8.68	-9.37	-8.02	-8.45	-9.10	-7.66	
	observation (‰)	-8.69	-9.27	-8.09	-8.52	-8.98	-7.83	
CO_2	R	0.38	0.41	0.34	0.35	0.28	0.31	
	RMSE (ppm)	29.44	27.48	25.55	30.22	26.81	24.29	
	simulation (ppm)	436.47	441.55	436.67	437.08	442.09	432.37	
	observation (ppm)	438.49	442.03	432.25	440.11	440.77	434.71	