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 29 

Abstract 30 

 31 

This study analyzed the long-term variations in carbon monoxide (CO) mixing ratios from January 32 

2006 to December 2017 at the Lin’an regional atmospheric background station (LAN; 30.3°N, 33 

119.73°E, 138 m a.s.l.) in China’s Yangtze River Delta (YRD) region. The CO mixing ratios were 34 

at their highest (0.69 ± 0.08 ppm) and lowest (0.54 ± 0.06 ppm) in winter and summer, respectively. 35 

The average daily variation of CO exhibited a double-peaked pattern, with peaks in the morning 36 

and evening and a valley in the afternoon. A significant downward trend of −11.3 ppb/yr of CO was 37 

observed from 2006 to 2017 at the LAN station, which was in accordance with the negative trends 38 

of the average CO mixing ratios and total column retrieved from the satellite data (the Measurements 39 

Of Pollution In The Troposphere, MOPITT) over the YRD region during the same period. The 40 

average annual CO mixing ratio at the LAN station in 2017 was 0.51 ± 0.04 ppm, which was 41 

significantly lower than that (0.71 ± 0.12 ppm) in 2006. The decrease in CO levels was largest in 42 

autumn (-15.7 ppb/yr), followed by summer (-11.1 ppb/yr), spring (-10.8 ppb/yr), and winter (-9.7 43 

ppb/yr). Moreover, the CO levels under relatively polluted conditions (the annually 95th percentiles) 44 

declined even more rapidly (-22.4 ppb/yr, r = −0.68, p < 0.05) from 2006 (0.91 ppm) to 2017 (0.58 45 

ppm) and the CO levels under clean conditions (the annually 5th percentiles) showed a decreasing 46 

evidence but not statistically significant (r = −0.41, p = 0.19) throughout the years. The long-term 47 

decline and short-term variations in the CO mixing ratios at the LAN station were mainly attributed 48 

to the implementation of the anthropogenic pollution control measures in the YRD region and to the 49 

events like Shanghai Expo in 2010 and Hangzhou G20 in 2016. The decreased CO level may 50 

influence atmospheric chemistry over the region. The average OH reactivity of CO at the LAN 51 

station is estimated to significantly drop from 4.1±0.7 s-1 in 2006 to 3.0±0.3 s-1 in 2017. 52 
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 59 

1. Introduction 60 

 61 

Carbon monoxide (CO) is a key player in the atmospheric carbon cycle (Novelli et al., 1992). 62 

In the troposphere, CO is one of the important air pollutants with high mixing ratios. The volume 63 

mixing ratios of CO can reach an order of 10−6 (Khalil et al., 1999). CO is also a reactive trace gas 64 

that considerably affects health, ecology, and climate, and hence recommended by the Global 65 

Atmosphere Watch (GAW) of the World Meteorological Organization (WMO) for priority 66 

observation. Fossil fuel combustion (mainly in the northern hemisphere), biomass combustion 67 

(mostly in the southern hemisphere), and natural processes (the oxidation of organic compounds, 68 

such as methane [CH4] and isoprene) are the main sources of CO (Holloway et al., 2000; Thompson 69 

et al., 1986; Novelli et al., 1998; Andreae and Merlet, 2001; Bakwin et al., 1994). The major sink 70 

for CO is its reaction with OH radicals in the troposphere (Holloway et al., 2000; Thompson et al., 71 

1986; Novelli et al., 1998; WMO, 2003). The lifetime of CO in the atmosphere ranges from weeks 72 

to months, which makes it an ideal tracer for atmospheric transport processes (Steinfeld and Jeffrey, 73 

1998; Worden et al., 2013). Because CH4 and CO can react with OH radicals (Thompson et al., 1992; 74 

Daniel and Solomon, 1998), certain CO mixing ratios can indirectly cause a decrease in CH4 and an 75 

increase in CO2. Therefore, CO is recognized as an important indirect greenhouse gas. Moreover, 76 

CO can be an important precursor for the photochemical generation of ozone in the rural areas 77 

(Demerjian et al., 1972). 78 

Continuous long-term observation is a method for studying large-scale CO sources, sinks, and 79 

long-distance transport. This method allows the CO balance to be determined on a regional or global 80 

scale (Fang et al., 2014). In the past decades, many studies have explored the long-term change in 81 

CO levels through ground-, aircraft-, or satellite-based observations (Yurganov et al., 2010; Worden 82 

et al., 2013; Ahmed et al., 2015; Cohen et al., 2018; Wang et al., 2018). Most of these studies have 83 

revealed downward trends for CO concentration. For example, Worden et al. (2013) reported that 84 

the CO total column over China decreased by 1.6% ± 0.5%/yr from 2002 to 2012. Ahmed et al. 85 

(2015) analyzed long-term CO observations at two urban sites in Seoul and reported a downward 86 
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trend of CO from 2004 to 2013. Wang et al. (2018) found that from 1998 to 2014, the total column 87 

amount of CO over Beijing and Moscow decreased at 1.14% ± 0.87%/yr and 3.73% ± 0.39%/yr, 88 

respectively. Cohen et al. (2018) analyzed the trends of CO in the upper troposphere from 2001 to 89 

2013. In their study, almost all observed trends were negative, with the estimated slopes ranging 90 

from −1.37 to −0.59 ppb/yr. The CO data recorded in the Arctic ice core indicated that the CO 91 

mixing ratios in this region decreased after the 1970s (Petrenko et al., 2013).  92 

Ground-based background measurements are crucial for verifying the accuracy of satellite 93 

observation data, reflecting the impact of human activities on air quality and climate change, and 94 

evaluating the effectiveness of pollution control measures. In China, many air pollutants have been 95 

emitted in very large quantities. For example, the emission of CO was estimated to be about 171 Tg 96 

in 2010 (Li et al., 2017). To fight against the air pollution, the country has implemented a series of 97 

emission control measures in the recent decade. The effectiveness of these measures needs to be 98 

verified by observational data, in particular the data from background sites. Long-term background 99 

observations over a decade are relatively scarce in China. Reports of long-term background 100 

observations of CO are very limited in the literature (Meng et al., 2009; Liu et al., 2019; Zhou et al., 101 

2004; Zhang et al., 2011) and none of them present an analysis of CO variations over a decade. The 102 

Yangtze River Delta (YRD) is one of the most developed regions in China. The long-term 103 

observation of atmospheric background CO allows for a scientific understanding of the CO source 104 

and sink cycle in this region. In this study, we present 12-year (from 2006 to 2017) ground-based 105 

observations of CO at a background station in the YRD region. We analyze the long-term CO 106 

variations and their determinants in the background areas of eastern China. The results of this study 107 

function as scientific evidence for evaluating the effectiveness of pollution control policies and as a 108 

reference for formulating practicable air pollution management and emission control measures. 109 

 110 

2. Monitoring site and data collection 111 

 112 

The CO mixing ratios analyzed in this study were collected from January 2006 to December 113 

2017 at Lin’an (LAN) station (30°18’ N, 119°44’ E, 138.6 m a.s.l), a regional atmospheric 114 

background monitoring site in China’s Zhejiang province. The LAN station is one of the seven 115 
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atmospheric background stations operated by the China Meteorological Administration, and also a 116 

member station of the World Meteorological Organization (WMO) Global Atmosphere Watch 117 

(GAW) programme. The measurements at this station reflect the changes in the YRD region’s 118 

atmospheric background composition (Qi et al., 2012). The LAN station is located approximately 119 

50 km west of Hangzhou (the capital city of Zhejiang province) and 150 km southwest of Shanghai. 120 

It is influenced by a typical subtropical monsoon climate. Fig. 1 displays the seasonal variations in 121 

temperature (T), air pressure (P), wind speed (WS), and relative humidity (RH) as well as the wind 122 

direction (WD) frequency at the LAN station from 2006 to 2017. These data were obtained from 123 

the regular meteorological observations at the LAN station. As displayed in Fig. 1, the seasonal 124 

temperature trend at the LAN station was of a convex shape. The highest and lowest temperatures 125 

occurred in July (28.4±1.5°C) and January (4.1±1.8°C), respectively. In opposition to the seasonal 126 

change in temperature, the seasonal change in atmospheric pressure at the LAN station showed a 127 

concave shape, with the lowest and highest pressures occurring in July (989.51±0.77 hPa) and 128 

January (1010.81±1.54 hPa), respectively. The seasonal patterns of the WS and RH at the LAN 129 

station were not as clear as those of air temperature and pressure. The seasonal average WS was 130 

lowest in winter (1.9±0.1 m/s) and highest in spring (2.1±0.1 m/s). The RH was highest in summer 131 

(77±3%) and lowest in spring (68±2%). The winds at the LAN station mostly originated from the 132 

northeast and southwest, as shown in Fig. 1d. On average, the northeast and southwest winds 133 

accounted for 29.2% and 22.6% of the winds, respectively. The calm wind frequency was 4%. 134 

A gas-filter correlation infrared absorption analyzer (48C trace level, Thermo Fisher, USA) 135 

was used to measure the surface CO mixing ratios. The analyzer has a limit of detection of 0.04 136 

ppm. Infrared radiation is chopped and passed through a rotating gas-filter lens, half of which is 137 

filled with CO and half with nitrogen. Thus, reference and measurement beams are produced in 138 

alternation. The beams then pass through a narrow-band interference filter and sample cell. Because 139 

the CO in the sample cell can only absorb the measurement beam, and the other gases can absorb 140 

both beams, the measurement signal of CO could be obtained by comparing the attenuation intensity 141 

between the reference and measurement beams. 142 
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The measurement signal from the CO analyzer was recorded every 5 min. Zero check and span 143 

check were conducted every 6 and 24 hours, respectively. Multipoint (>5) calibration was performed 144 

once a month using standard CO gas mixture (CO in nitrogen). Because the zero point of the 145 

instrument drifted with time, we performed linear interpolation between two adjacent zero checks 146 

to obtain the zero signals for given time point between the zero checks. These zero signals were 147 

used in the corrections of the CO data. We performed response correction according to the results 148 

of multipoint calibrations as well as the zero and span checks (Lin et al., 2009). Finally, we corrected 149 

the data according to the quantity transfer and traceability results (Lin et al., 2011). Valid 5-minute 150 

data were used to calculate the hourly mean mixing ratios. At least 10 data points were required for 151 

any given hour to calculate that hour’s mixing ratio. Missing data were caused by the malfunction 152 

of the instrument from February 1 to 13, 2007, and from abnormal measurement fluctuations from 153 

May 30 to July 17, 2009.  154 

Fig. 1. Seasonal variations in (a) temperature, air pressure, (b) WS, (c) RH, and (d) WD frequency 155 

distribution (the static wind frequency was 4%) at the LAN station from 2006 to 2017 (an error 156 

bar represents one standard deviation) 157 

 158 

 159 
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3. Results and discussion 160 

 161 

3.1 Observed levels and comparisons with other sites 162 

Fig. 2 displays the time series of hourly mean CO levels at the LAN station from January 1, 163 

2006, to December 31, 2017 and the linear fitting results of the hourly mean CO mixing ratios. The 164 

overall mean (±one standard deviation) and median values of the CO mixing ratios in the 12 years 165 

were 0.62 (± 0.23) ppm and 0.57 ppm, respectively. The highest (2.98 ppm) and lowest (0.08 ppm) 166 

hourly mean mixing ratios occurred at 17:00 on January 10, 2008, and 18:00 on October 4, 2007, 167 

respectively. The highest hourly mean CO mixing ratio was considerably lower than the second-168 

level hourly limit (approximately 8 ppm) of the ambient air quality standard in China (GB 3095-169 

2012). The highest (2.38 ppm) and lowest (0.23 ppm) daily mean mixing ratios occurred on January 170 

10, 2008, and August 31, 2011, respectively. The highest daily mean value was also below the daily 171 

limit for air quality standard (3.2 ppm). The lowest monthly average CO concentration was 0.39 172 

ppm on August 2011, and the highest concentration was 1.00 ppm on January 2010. The median of 173 

daily mean CO levels from January 2006 to December 2017 was 0.58 ppm. The overall CO 174 

concentrations at the LAN were much higher than those observed at the Waliguan global baseline 175 

station from 2006-2017 and some regional background stations outside China (Table 1), indicating 176 

that East China has been one of the regions with high CO levels. Table 1 also presents a comparison 177 

of the seasonal average CO mixing ratios at the LAN station and other background stations in the 178 

world from 2006 to 2017. The seasonal CO mixing ratios at the LAN station were marginally lower 179 

than those at the Shangdianzi station in northern China (Meng et al., 2009), but were almost 3 times 180 

higher than those at many other regional atmospheric background stations outside China, such as 181 

the Tae-ahn Peninsula station in Korea, Yonagunijima station in Japan, Park Falls (WI) station in 182 

the U.S., and Payerne station in Switzerland from 2006 to 2017 (Table 1). Moreover, the CO mixing 183 

values observed at the LAN station were nearly 5 times higher than those observed at the Waliguan 184 

station, a global baseline station in China. In conclusion, the CO levels at the LAN station were 185 

relatively high compared to other regional atmospheric background stations outside China because 186 

of more intense anthropogenic emissions in the YRD region. 187 

 188 

 189 
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 190 

Fig. 2. Time series of the CO variations at the LAN station from 2006 to 2017  191 
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3.2 Seasonal variation 235 

Fig. 3 shows the seasonal variations in CO mixing ratios at the LAN station and the number of 236 

fire emissions (retrieved from the Global Fire Emissions Database version 4 described in Werf et 237 

al., 2017) in the YRD region (22°N~ 40°N, 112°E~123°E) from 2006 to 2017. 238 

 239 

Fig. 3. Seasonal variations in CO mixing ratios at the LAN station and the number of fire spots in 240 

the YRD region from 2006 to 2017. The lines and dots in the box are the median and mean 241 

concentrations, respectively, the box’s lower and upper limits represent 25th and 75th percentiles 242 

concentrations range, respectively, and the lower and upper whiskers correspond the 10th and 90th 243 

percentiles values. 244 

As can be seen in Fig. 3(a), the average CO mixing ratios were the highest in the winter (0.69 245 

± 0.08 ppm), followed by the spring (0.61 ± 0.05 ppm), autumn (0.61 ± 0.09 ppm), and summer 246 

(0.54 ± 0.06 ppm). In the winter, because of the weak radiation, the photochemical consumption of 247 

CO in the atmosphere decreased. Also, the atmospheric stability was high and the diffusion 248 

conditions were unfavorable. Therefore, atmospheric CO accumulated easily and reached its 249 

maximum concentration in the winter. In comparison, the photochemical reaction was strong in the 250 
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summer, which resulted in an increase in the mixing ratios of OH radicals and the chemical 251 

consumption of atmospheric CO. Moreover, the boundary layer height was relatively high in the 252 

summertime, which promoted the vertical diffusion and dilution of CO in the atmosphere. Therefore, 253 

the CO mixing ratios were the lowest in the summer. By contrast, the seasonal variations in the 254 

number of fire emissions in the YRD region (Fig.3b) were opposite to the trend of the CO mixing 255 

ratios in different months, which indicated that open fire burning was not a main factor affecting the 256 

atmospheric CO concentrations at the LAN station from 2006 to 2017. 257 

3.3 Diurnal variation  258 

The daily variations in the CO mixing ratios were influenced by emission sources, atmospheric 259 

transport (horizontal and vertical), and the evolution of the atmospheric boundary layer (Xue et al., 260 

2006). Fig. 4 displays the average daily variations in the CO mixing ratios at the LAN station, along 261 

with those cities Shanghai (Gao et al., 2017), Nanjing (Huang et al., 2013a) and Hangzhou (Zhang 262 

et al., 2018). As displayed in Fig. 4, the CO mixing ratios exhibited double peaks, with higher CO 263 

levels in the morning and evening but lower CO levels in the afternoon. The peak of the CO mixing 264 

ratios at the LAN station mostly occurred in the morning (7:00–10:00) and at night (19:00–24:00). 265 

The lowest CO mixing ratios were observed between 12:00 and 16:00. The hourly CO mixing ratios 266 

usually reached their minimum value in the afternoon due to the high atmospheric boundary layer, 267 

intense vertical diffusion mixing, and sufficient OH radicals at that time (Fang et al., 2014). The 268 

Planetary Boundary Layer Height (PBLH) is a key indicator of atmospheric mixing state. As shown 269 

in Fig. S1 and Fig. S2, the PBLH was rather high during the daytime and usually reached its highest 270 

around 14:00, which indicated that the pollutants in the atmosphere were well mixed in the afternoon 271 

and corresponded to the time when the lowest CO mixing ratios were observed (Fig. 4.). Since the 272 

diurnal variations in the PBLHs at 4 sites were almost the similar according to the hourly resolution 273 

(Fig. S1 and Fig. S2), the little phase shift in the CO mixing ratio peak between different sites was 274 

likely attributed to the difference in local emissions. The peak CO mixing ratios at the LAN station 275 

occurred during the morning and evening rush hours. This is consistent with those observed in the 276 

urban areas of Shanghai (Gao et al., 2017), Nanjing (Huang et al., 2013a), and Hangzhou (Zhang et 277 

al., 2018) (Fig. 4). Thus, the CO mixing ratios at the LAN station were affected by the pollutant 278 

emissions related to transportation in the surroundings. However, the peak-valley difference of CO 279 

at LAN was much smaller than those found in the cities, reflecting reduced impacts from direct 280 
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emissions on this background site.  281 

 282 

Fig. 4. Average diurnal variations in CO mixing ratios from 2006 to 2015 in Shanghai, from January 283 

2011 to December 2011 in Nanjing, from January 2013 to December 2013 in Hangzhou, and from 284 

2006 to 2017 at the LAN station. The lines and red dots in the box are the median and mean CO 285 

concentrations at the LAN station, respectively, the box’s lower and upper limits represent 25th and 286 

75th percentiles concentrations, respectively, and the lower and upper whiskers correspond the 10th 287 

and 90th percentiles values. 288 

 289 

3.4 Long-term trends 290 

3.4.1 Trends of annual means 291 

Fig. 5 shows the change in the annual mean CO mixing ratios at the LAN station from 2006 to 292 

2017. The CO levels varied across the years. The World Expo was held in Shanghai from May to 293 

October 2010, when air pollution prevention and control measures were strengthened in Shanghai 294 

and its surrounding areas. Because of these strengthened measures, the number of days with good 295 

air quality reached its highest value since 2001 (Huang et al., 2013b). Fig. 5 also indicates that the 296 

average CO mixing ratio in 2010 was lower than those from 2006 to 2009 (1.5 months of data were 297 

missing for the summer of 2009). The CO level continued to decline in 2011 but increased in 2012, 298 

after which the CO level decreased steadily. China officially implemented the Action Plan for The 299 
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Prevention and Control of Air Pollution in 2013, which comprehensively intensified air pollution 300 

control efforts and reduced multi-pollutant emissions. The plan called for 5-year efforts to improve 301 

overall air quality and significantly reduce heavy pollution. As illustrated in Fig. 5, the effects of the 302 

aforementioned action plan began to be observed in 2014, and the CO mixing ratios started to 303 

decline significantly. Overall, the annual average of CO at LAN showed a decrease trend of 11.3 304 

ppb/yr (p < 0.01) during 2006-2017. For the period 2010-2017, we obtained a trend of -14 ppb/yr. 305 

This rate of decline in the CO mixing ratio was slightly lower than that (−16.3 ppb/yr) reported by 306 

Liu et al. (2019) for the same station for 2010-2017. The measurements of Liu et al. (2019) were 307 

performed using a cavity ring-down spectrometer, their air samples were drawn from a tower (intake 308 

height: 50 m agl), and their trend was based on non-linear fitting on CO values after removing those 309 

impacted by local events. The CO decreasing trend obtained in this study is smaller than those 310 

reported by Ahmed et al. (2015) with values of −20 ppb/yr and −13 ppb/yr respectively for two 311 

urban sites in South Korea during 2004–2013, larger than that reported by Liu et al. (2019) with a 312 

value of −1.3 ppb/yr for a regional atmospheric background station in northern China during 2011–313 

2017, and about a factor of 2-26 of those found in regional atmospheric background stations in 314 

Korea, Janpan, and Switzerland (Table 1). 315 

 316 

Fig. 5. Variation in the annual mean CO mixing ratios at the LAN station from 2006 to 2017 (the 317 

error bars represent one standard deviation calculated from monthly means) 318 

Considering the variation trend in Fig. 5 and the major air pollution control policies adopted 319 

during the study period, we divided the study data into three subsets of data (collected during 2006–320 

2009, 2010–2015, and 2016–2017, respectively). The frequency distributions of average daily CO 321 
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mixing ratios in the three data subsets and the Lorentz curve fitting results are displayed in Fig. 6. 322 

Approximately, a unimodal structure of CO frequency distribution was observed for all the datasets. 323 

The peak values of the Lorentz curves can be used to characterize the background concentration 324 

levels of atmospheric pollutants for a specific time and region (Lin et al., 2011). The peak of the CO 325 

Lorentz curve shifted towards lower mixing ratios over time and the trailing phenomenon of the 326 

fitting curve diminished gradually. The peak concentration of the fitting curve was 0.59 ± 0.01 ppm 327 

from 2006 to 2009. During 2010–2015 and 2016–2017, the peak CO concentrations were 0.56 ± 328 

0.01 and 0.49 ± 0.01 ppm, respectively. The peak frequency of the Lorentz curve was higher in 329 

2016–2017 than in 2006–2015. Moreover, the peak width was significantly narrower in 2016–2017 330 

than in 2006–2015. These are resulted from a decrease over time in the regional background mixing 331 

ratios of CO.  332 

 333 

 334 

Fig. 6. Frequency distribution of the CO mixing ratios and Lorentz curve fitting results for 335 

different time intervals 336 

3.4.2 Trends of seasonal means 337 

The time series of seasonal average levels of CO at the LAN station from 2006 to 2017 are 338 

displayed in Fig. 7. Linear trends were calculated from the seasonal data, with standard deviation 339 

of monthly mean values being used as weighting factors. From 2006 to 2017, the seasonal CO 340 
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mixing ratios exhibited larger fluctuations; nevertheless, an overall significant (p < 0.05) decreasing 341 

trend was observed in seasons except for the winter. The largest decrease (the slope of linear fitting) 342 

in the seasonal CO levels occurred in autumn (−15.7 ppb/yr), followed by summer (−11.1 ppb/yr), 343 

spring (−10.8 ppb/yr), and winter (−9.7 ppb/yr). As indicated in Table 1, the CO mixing ratios at the 344 

LAN station in the four seasons between 2016 and 2017 were lower than those between 2006 and 345 

2015, with the largest average decrease of 0.19 ppm occurring in winter.  346 

 347 

Fig. 7. Seasonal time series and linear fitting of CO mixing ratios at the LAN station 348 

(Spring: March to May, Summer: June to August, Autumn: September to November, and Winter: 349 

December to February) 350 

 351 

3.4.3 Trends of CO levels under clean and polluted condition 352 

In the annual statistics, the 95th and 5th percentiles of the CO mixing ratios can be viewed as 353 

the CO levels in the most polluted and clean (background) air masses, respectively. Here, we use 354 

these two quantities to study CO trends under polluted and clean conditions, respectively, at the 355 

LAN station. As illustrated in Fig. 8 (a), the CO concentration under the polluted condition 356 

experienced a significant decreasing trend of -22.4 ppb/yr (r = −0.68, p < 0.05) from 2006 (0.91 357 

ppm) to 2017 (0.58 ppm) and that under the clean condition descended as well but not statistically 358 
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significant (r = −0.41, p = 0.19) throughout the years. This suggests that the CO levels in pollution 359 

plumes, which are highly impacted by anthropogenic emissions in the YRD region, have been 360 

reduced greatly, and the background levels of CO at the LAN station showed a decreasing evidence 361 

at the same time. Fig. 8 (b) shows the average CO concentrations from prevailing (N, NNE, NE, S, 362 

SSW and SW) and other wind directions. As can be seen in Fig. 8 (b), the annual CO levels from 363 

different wind directions generally presented similar patterns and all of them exhibited a significant 364 

(p < 0.01) downward trend, suggesting that the CO concentrations in the provinces and cities 365 

surrounding the LAN station have all decreased.     366 

 367 

Fig. 8. Trends of CO mixing ratios at 95th and 5th percentiles and from different wind directions  368 

 369 

3.5 Causes and implications of the long-term variations 370 

3.5.1 Impacts of Shanghai Expo and G20 in Hangzhou 371 

During the Shanghai Expo in 2010 (from 1 May to 31 October) and Hangzhou G20 in 2016 372 

(from 24 July to 6 September), the Chinese government has implemented a series of joint pollution 373 

control measures in the cities of the YRD region to ensure good air quality during these mega-events. 374 

A satellite-based study (Hao et al., 2011) reported that a 12% reduction of CO concentration was 375 

observed over Shanghai city during the Expo compared to the past three years. Zhang et al. (2017) 376 

found that the ground CO levels in Hangzhou city decreased by 56% during G20 as opposed to 377 

those in 2015. In order to further evaluate the effect of these control strategies, we compared the 378 

annual trends of CO concentrations at the LAN station during the same period of Shanghai Expo 379 
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and Hangzhou G20, which are shown in Fig. 9 (a) and (b), respectively. The concentration of CO at 380 

the LAN station was 0.54 ppm during the Expo and 0.41 ppm during the G20, and the values were 381 

lower than those observed in Shanghai city (0.86 ppm) and Hangzhou city (0.53 ppm) in the same 382 

period. Sharp decreases (reductions of 18% during the Expo in 2010 and 35% during the G20 in 383 

2016) of the CO mixing ratios were observed at the LAN station compared to those during the same 384 

periods in the previous years. Since the meteorological conditions (the average values and standard 385 

deviations of temperature, air pressure, wind speed, relative humidity, and the wind direction 386 

frequency, see Table S1 and Fig. S3) between the during the same periods of Shanghai Expo and 387 

Hangzhou G20 and the same periods in the previous year were quite close, the results indicated that 388 

the pollution control measures worked well so as to reduce atmospheric CO concentrations in the 389 

YRD region. 390 

 391 

Fig. 9. Average CO levels for the periods corresponding to (a) 2010 Shanghai Expo (from 1 May 392 

to 31 October) and (b) 2016 Hangzhou G20 (from 24 July to 6 September) 393 

 394 

3.5.2 Relationships with meteorological conditions 395 

Atmospheric CO mixing ratios are not only affected by local emission sources and the mixing 396 

ratios of atmospheric OH radicals but also by meteorological conditions. Temperature, WS, WD, 397 

and other meteorological conditions directly affect atmospheric stability and photochemical reaction 398 

intensity, which influence the diffusion, generation, consumption, and lifetime of atmospheric CO 399 

(Steinfeld and Jeffrey, 1998). Meteorological conditions varied across the years of our study period. 400 

Such variations affected the comparison of the atmospheric CO mixing ratios between different time 401 

intervals, especially when analyzing or evaluating the effectiveness of pollution control policies. To 402 
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minimize the effects of meteorological conditions on the analysis results, we took temperature, WS, 403 

and WD as classification variables and analyzed the variation in the CO mixing ratios under similar 404 

meteorological conditions during the three periods. The results are displayed in Fig. 10. 405 

 406 

Fig. 10. Variations of CO mixing ratios in different periods with respect to temperature (T), Wind 407 

Speed (WS), Relative Humidity (RH), and Wind Direction (WD). The intervals are 5℃, 0.5 m/s, 408 

10%, and 22.5⁰ for T, WS, RH, and WD, respectively. 409 

As displayed in Fig. 10(a), the plot of the CO mixing ratios versus the temperature showed a 410 

convex shape, with relatively low concentrations occurring at both high and low temperatures. 411 

Generally, because the photochemical reaction of CO intensifies at extremely high temperatures, 412 

and strong winds occur at extremely low temperatures, both high temperatures and strong winds 413 

can cause low CO mixing ratios. The decrease in the CO mixing ratios in a relatively high-414 

temperature range during 2016—2017 was lower than the corresponding decreases in previous years. 415 

This result might be attributable to the summertime increase in energy consumption from the 416 

widespread use of air conditioners in China. Compared with 2006—2015, the stable area with high 417 

CO mixing ratios started to appear at lower temperatures during 2016—2017, which reflected the 418 

effectiveness of pollution control measures on the large emission sources. As displayed in Fig. 10(b), 419 

as the WS increased within a given range, the CO mixing ratios gradually decreased because of the 420 
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strengthened diffusion and dilution of the atmosphere. When WS increased to a given level, where 421 

this level differed between the time intervals and continually decreased overtime, the CO mixing 422 

ratios increased with WS. This may be attributable to the pollution sources being increasingly close 423 

to the LAN station because of increased urbanization over time. At a WS of 6–7 m/s, the CO mixing 424 

ratios in the different time intervals tended to be consistent. As the WS continued to increase to 425 

approximately 8 m/s, the atmospheric CO mixing ratios significantly decreased with the WS. As 426 

displayed in Fig. 10(c), the CO mixing ratios correlated positively with RH, which is consistent with 427 

the results reported by Turkoglu et al. (2004) and Ye et al. (2008). The main sink of CO is the 428 

oxidation reaction with OH radicals (Steinfeld and Jeffrey, 1998). Because water vapor is a 429 

precursor of clouds, at higher levels of RH, the atmosphere is more likely to be oversaturated with 430 

water and form clouds, and, because clouds can reflect sunlight and reduce the ultraviolet radiation 431 

reaching the ground, the photochemical reaction between CO and OH radicals is weakened (Ye., et 432 

al., 2008). Fig. 10(d) displayed the change in CO mixing ratios with respect to WD. The figure 433 

indicates that CO levels were the highest in the south sector of the LAN station. 434 

Table 2 summarized the average percentage decrease in the CO mixing ratios during 2010–435 

2015 and 2016–2017 relative to CO mixing ratios in the previous time intervals under the same 436 

meteorological conditions (temperature, WS, RH, and WD). As indicated in Fig. 10 and Table 2, the 437 

CO mixing ratios during 2016–2017 were generally lower than those during 2006–2009 and 2010–438 

2015. Therefore, the meteorology was not the main factor contributing to the descend trend of CO. 439 

 440 

Table 2. Comparison of the average percentage decline in CO mixing ratios during 2010–2015 441 

and 2016–2017 relative to CO mixing ratios in previous time intervals under the same 442 

meteorological factors 443 

 Decreased Percentage (%) 

 T  WS  RH WD 

2010-2015* -6.2 -13.6 -9.6 -11.9 

2016-2017** -14.5 -10.7 -11.7 -14.2 

2016-2017* -19.8 -16.5 -20.4 -24.4 

*: compared with 2006–2009, **: compared with 2010–2015. 444 

3.5.3 Changes in emissions in neighboring provinces  445 
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China has implemented a comprehensive energy conservation and emission reduction policy 446 

since 2006 (Zhao et al., 2008; Lei et al., 2011). Small and old factories and boilers have been 447 

gradually replaced by larger and more energy-efficient alternatives. Although the focus of these 448 

measures was to control sulfur dioxide emissions, these measures also greatly improved combustion 449 

efficiency and thus decreased CO emissions (Zhao et al., 2012). Fig. 11 displays the change in the 450 

CO emissions in six provinces and cities around the LAN station from 2006 to 2017. The emission 451 

data were obtained from the Multiresolution Emission Inventory for China (Li et al., 2017). As 452 

indicated in Fig. 11, the average annual CO emissions of the provinces and cities surrounding the 453 

LAN station declined significantly (r = −0.95, p < 0.01), with an average decline of 170,000 tons/yr. 454 

The percentages of CO emission decreased during 2016–2017 in Shanghai city as well as Jiangsu, 455 

Zhejiang, Anhui, Fujian, and Jiangxi provinces were −59.3%, −25.5%, −18.6%, −27.2%, −40.1%, 456 

and −19.3%, respectively, relative to CO emission values during 2006–2009. 457 

There was a strong positive correlation (r = 0.83, p<0.01) between the annual mean CO 458 

concentrations and the anthropogenic emissions of CO in the neighboring provinces. Also, 459 

compared with the base year of 2006, the CO concentration in 2017 declined by 18.7%, which is 460 

close to the decline value of 31.3% for the average anthropogenic emissions of CO in the 461 

neighboring provinces. The decreasing percentage of the CO concentrations and the emissions were 462 

overall consistent when considering larger uncertainty existing in emission. Therefore, the declined 463 

trend of CO at the LAN station might be mainly attributed to the cut-down of anthropogenic 464 

emissions in the YRD region. 465 

 466 

 467 

 468 

 469 

 470 

 471 

 472 

 473 

 474 
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 475 

 476 

Fig. 11. CO emissions from 2006 to 2017 in the provinces and cities surrounding LAN station and 477 

linear fitting of the average annual CO emissions of the six provinces and cities 478 

Data source: http://meicmodel.org/dataset-mix.html 479 

3.5.4 Implications on regional atmospheric chemistry 480 

The tropospheric CO has been measured on a global scale from the Measurements Of Pollution 481 

In The Troposphere (MOPITT) instrument on the spacecraft since 2000 (Deeter et al., 2017). 482 

Monthly CO mixing ratios at the surface layer and the CO total column concentrations over the 483 

YRD region from 2006 to 2017 were retrieved from MOPITT (MOP02J Version 8, 2018; 484 

http://www.satdatafresh.com/CO_MOPITT.html). We found significant correlations (p < 0.05) 485 

between surface CO and MOPITT CO (r = 0.75 and 0.61 for the MOPITT CO mixing ratio and total 486 

column, respectively) data (see Fig. S4), which indicate the good regional representativeness of 487 

Lin’an measurements. From 2006 to 2017, the average CO mixing ratio from MOPITT over the 488 

YRD region (22.5°N~ 39.5°N, 112.5°E~123.5°E) in 2006 (0.11±0.02 ppm) was higher than those 489 

in 2017 (0.10±0.02 ppm) , with a significant declining trend of -0.5 ppb/yr (r = −0.82, p < 0.01). 490 

As for the average CO total column, the value in 2006 (1.91×1018 ± 0.23×1018 molecules/cm2) 491 

was also higher than those in 2017 (1.76×1018 ± 0.21×1018 molecules/cm2), with a significant 492 

http://meicmodel.org/dataset-mix.html
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declining trend of -1.07×1016 molecules/(cm2
yr) (r = −0.70, p < 0.05) from 2006 to 2017. They 493 

are in consistent with the negative trends of the ground CO levels measured in the sites of the 494 

WDCGG network (Table 1) and at the LAN station. Although the negative trends both in surface and 495 

MOPITT CO data were found, their relative decline percent were different. Compared with the base year 496 

of 2006, the surface CO declined by 1.6% annually and MOPITT CO declined by 0.4% (in mixing ratio) 497 

and 0.6% (in total column), respectively.  498 

The major sink for CO is reaction with OH radical (Steinfeld and Pandis, 2006), so a decrease 499 

in the CO concentrations may lead to an increase in the lifetime of OH radical and thus affect the 500 

atmospheric OH photochemistry (i.e., ozone production). The lifetime of OH is defined as the 501 

inverse of the OH reactivity (i.e., OH loss rates), and the total OH reactivity is calculated by summing 502 

over all the products of the OH reactants (CO, volatile organic compounds, nitrogen oxides, etc.) 503 

concentrations times their respective rate coefficients with OH (kOH) (Kovacs and Brune, 2001; Di 504 

Carlo et al., 2004). The lowest average total OH reactivity (5 s-1~6 s-1) observed in the rural areas 505 

around the world (Ren et al., 2005; Ingham et al., 2009). The kOH of CO is 350 /(ppmmin) at the 506 

standard temperature of 298K (Vukovich, 2000) and CO generally contributed 10%~20% to the 507 

total OH reactivity at the rural sites of China (Lou et al., 2010). From 2006 to 2017, the average OH 508 

reactivity of CO at the LAN station exhibited a significant downward trend of -0.07 s-1/yr (r = −0.80， 509 

p < 0.01) and the average monthly OH reactivity of CO dropped from 4.1±0.7 s-1 in 2006 to 3.0±510 

0.3 s-1 in 2017.  511 

 512 

4. Conclusion 513 

The average annual levels of CO at the LAN station during 2006–2009, 2010–2015, and 2016–514 

2017 were 0.66 ± 0.03 ppm, 0.62 ± 0.03 ppm, and 0.52 ± 0.01 ppm, respectively. From a seasonal 515 

perspective, the highest seasonal average CO mixing ratio occurred in winter (0.69 ± 0.08 ppm), 516 

followed by spring (0.61 ± 0.05 ppm), autumn (0.61 ± 0.09 ppm), and summer (0.54 ± 0.06 ppm). 517 

The average daily variations in the CO concentration exhibited a double-peaked pattern, with high 518 

CO concentrations in the morning and evening and low CO concentrations in the afternoon. Such 519 

diurnal variations suggest that the CO mixing ratios at the LAN station were affected by traffic 520 

pollutant emissions in its surrounding area.  521 
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The average annual atmospheric CO mixing ratios at the LAN station exhibited a significant 522 

decreasing trend (−11.3 ppb/yr, p < 0.01) from 2006 to 2017, which was consistent with the negative 523 

trends of the average CO mixing ratios and total column retrieved from MOPITT over the YRD 524 

region. The measurements at the LAN station well reflected regional changes in atmospheric 525 

background CO mixing ratios in the YRD region. The largest decrease in the CO level was observed 526 

in autumn (-15.7 ppb/yr), followed by summer (-11.1 ppb/yr), spring (-10.8 ppb/yr), and winter (-527 

9.7 ppb/yr). The significant downward trend of the CO mixing ratios at the LAN station was not 528 

caused by meteorological conditions but by strengthened pollution control measures, which 529 

indicated that the adopted measures were effective. In spite of the nearly a quarter of reduction 530 

during 2006-2017, the CO levels at the LAN station were still much higher than those at other 531 

regional atmospheric background stations around the world so that further reductions in CO 532 

emissions in the YRD region are needed. The significant decrease of regional CO level has an 533 

implication for atmospheric chemistry, considering the role of CO in OH reactivity. From 2006 to 534 

2017, the average OH reactivity of CO at the LAN station exhibited a significant downward trend 535 

of -0.07 s-1/yr (r = −0.80, p < 0.01) and dropped from 4.1±0.7 s-1 in 2006 to 3.0±0.3 s-1 in 2017. 536 
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