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Abstract.

Carbonyl sulfide (COS) has the potential to be used as a climate diagnostic due to its close coupling to the biospheric uptake

of CO2 and its role in the formation of stratospheric aerosol. The current understanding of the COS budget, however, lacks

COS sources, which have previously been allocated to the tropical ocean. This paper presents a first attempt of global inverse

modelling of COS within the 4-Dimensional variational data-assimilation system of the TM5 chemistry transport model (TM5-5

4DVAR) and a comparison of the results with various COS observations. We focus on the global COS budget, including COS

production from its precursors carbon disulfide (CS2) and dimethyl sulfide (DMS). To this end, we implemented COS uptake

by soil and vegetation from an updated biosphere model (SiB4). In the calculation of these fluxes, a fixed atmospheric mole

fraction of 500 pmol mol−1 was assumed. We also used new inventories for anthropogenic and biomass burning emissions.

The model framework is capable of closing the COS budget by optimizing for missing emissions using NOAA observations10

in the period 2000–2012. The addition of 432 Gg a−1 (as S equivalents) COS is required to obtain a good fit with NOAA

observations. This missing source shows little year-to-year variations, but considerable seasonal variations. We found that

the missing sources are likely located in the tropical regions, and an overestimated biospheric sink in the tropics cannot be

ruled out due to missing observations in the tropical continental boundary layer. Moreover, high latitudes in the Northern

Hemisphere require extra COS uptake or reduced emissions. HIPPO aircraft observations, NOAA airborne profiles from an15

ongoing monitoring program, and several satellite data sources are used to evaluate the optimized model results. This evaluation

indicates that COS mole fractions in the free troposphere remain underestimated after optimization. Assimilation of HIPPO

observations slightly improves this model bias, which implies that additional observations are urgently required to constrain

sources and sinks of COS. We finally find that the biosphere flux dependency on surface COS mole fraction (which was not

accounted for in this study) may substantially lower the fluxes of the SiB4 biosphere model over strong uptake regions. Using20

COS mole fractions from our inversion, the prior biosphere flux reduces from 1053 Gg a−1 to 851 Gg a−1, which is closer to

738 Gg a−1 as was found by Berry et al. (2013). In planned further studies we will implement this biosphere dependency, and
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additionally assimilate satellite data with the aim to better separate the role of the oceans and the biosphere in the global COS

budget.

1 Introduction25

Carbonyl sulfide (COS or OCS) is a low abundant trace gas in the atmosphere with a lifetime of about 2 years and a tropospheric

mole fraction of about 484 pmol mol−1 (Montzka et al., 2007). COS is regarded as a promising diagnostic tool for constraining

photosynthetic gross primary production (GPP) of CO2 through similarities in their stomatal control (Montzka et al., 2007;

Campbell et al., 2017; Berry et al., 2013; Whelan et al., 2018; Kooijmans et al., 2017, 2019; Wang et al., 2016). COS also con-

tributes to stratospheric sulfur aerosols, which have a cooling effect on climate and hence mitigate climate warming (Crutzen,30

1976; Andreae and Crutzen, 1997; Brühl et al., 2012; Kremser et al., 2016). In the recent decades, COS mole fractions in the

troposphere have remained relatively constant, which implies that sources and sinks of COS are balanced. Whelan et al. (2018)

reviewed the state of current understanding of the global COS budget and the applications of COS to ecosystem studies of

the carbon cycle. The most pressing challenge currently is to reconcile the balance of COS sources and sinks, given the small

global atmospheric trends.35

Previous studies show that substantial emissions of COS are coming from oceanic, anthropogenic, and biomass burning

sources, and the largest sinks are uptake by plants and soils (Watts, 2000; Kettle et al., 2002; Berry et al., 2013). Oceanic

emissions are thought to be the largest source of COS, both directly and indirectly, due to emissions of CS2 and possibly

DMS (Lennartz et al., 2017, 2020), which can be quickly oxidized to COS in the atmosphere (Sze and Ko, 1980). There are

considerable uncertainties related to this indirect COS source, with reported yields to COS being (83 ± 8)% from CS2 (Stickel40

et al., 1993), and (0.7 ± 0.2)% from DMS under NOx-free conditions at 298 K (Barnes et al., 1996). Blake et al. (2004)

reported anthropogenic Asian emissions for COS and CS2, which appear to have been underestimated by 30–100% due to

underestimated coal burning in China (Du et al., 2016). Zumkehr et al. (2018) recently presented a new global anthropogenic

emission inventory for COS. The new anthropogenic emission estimates are, with 406 Gg a−1 (as S equivalents)1 in 2012,

substantially larger than the previous estimate of 180.5 Gg a−1 by (Berry et al., 2013). Another recent study (Stinecipher et al.,45

2019) concluded that it is unlikely that biomass burning accounts for the balance between sources and sinks of COS, due to the

relatively small contribution of biomass burning to the total emissions ((60±37) Gg a−1).

Suntharalingam et al. (2008) made a first attempt to simulate the global COS budget using the GEOS-Chem model and

global-scale surface measurements from NOAA. In order to fit the observed seasonal cycle of COS mole fraction, they had to

double the terrestrial vegetation uptake estimated in (Kettle et al., 2002), reduce the southern extra-tropical ocean source, and50

assume an additional COS source of 235 Gg a−1. Campbell et al. (2008) found that this upward revision could be validated

using direct observations from the continental boundary layer from the intensive INTEX-NA airborne campaign. Berry et al.

(2013) implemented COS in the global biosphere model SiB3. They inferred that, in order to compensate for updated COS

1In convention, the unit of COS sources or sinks is written as Gg S a−1 to account for mass of sulfur. To avoid misunderstanding and keep clarity of

physical unit, we use Gg a−1 throughout the paper, but only account for mass of sulfur in COS, CS2 or DMS.
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biosphere and soil sinks of 1093 Gg a−1, there must be additional COS sources of 600 Gg a−1, which was allocated to the

ocean. Glatthor et al. (2015) and Launois et al. (2015) estimated direct COS emissions from the ocean as 992 and 813 Gg a−1,55

respectively, and also Kuai et al. (2015) hinted to underestimated COS sources from tropical oceans by optimizing sources

using one month of COS satellite observations by TES-Aura. However, Lennartz et al. (2017, 2019) used COS measurements

in ocean water to show that the direct oceanic emissions were much lower (130 Gg a−1) than top-down studies suggested. It is

therefore not resolved whether ocean emissions account for the missing source.

In this paper, we address several important open questions concerning the COS budget using inverse modelling techniques,60

employing the TM5-4DVAR modelling system. We focus on the closure of the COS budget, the contributions of the potential

COS precursors CS2 and DMS, and evaluation of the results with aircraft and satellite observations. In Section 2 we will

describe the observations, the implementation of COS, CS2, and DMS in TM5, and the inverse modelling system TM5-

4DVAR. In Section 3, we will analyze the results of various inverse model calculations, which are discussed further in Section

4.65

2 Method

This study aims to close the gap in the global COS budget by so-called flux inversions. This technique employs atmospheric

measurements to optimize sources and sinks of trace gases such that mismatches between simulations and observations are min-

imized. In Section 2.1 the observations used in this study are introduced. Section 2.2 will subsequently describe our modelling

system, including new emission data sets that have been coupled to the modelling system. The inverse modelling framework is70

discussed in Section 2.3.

2.1 Measurements

2.1.1 NOAA flask data

The NOAA surface flask network provides long-term measurements of COS mole fraction at 14 locations at weekly–monthly

frequencies. Most of the stations are located in the Northern Hemisphere (NH), as shown in Figure 1. Although the number of75

sampling sites is modest, their locations cover most latitudinal regions, and sample over both land and coastal area. It is worth

to note that there is a lack of observations in the tropical continental boundary layer. The observational error for each sample

is relatively small (< 7 pmol mol−1), therefore we have taken inter-annual variability of COS from Table 1 in Montzka et al.

(2007) to represent a fixed observational error upper-limit at each site. In general, the observational error defined in this way

varies between 4–10 pmol mol−1 in the NH, and between 2–4 pmol mol−1 in the Southern Hemisphere (SH). This error is80

used in the inverse modelling as will be described in Section 2.4.
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2.1.2 HIPPO aircraft and NOAA airborne data

Flask data of the HIAPER Pole-to-Pole Observations (HIPPO) experiments (Wofsy, 2011; Wofsy et al., 2017) is used to

validate the results of the inverse modelling. There are five HIPPO campaigns conducted from 2009 to 2011 that sampled

the COS mole fraction from the North Pole to the South Pole, and from the lower troposphere up to the stratosphere. Three85

different instruments were used to make measurements of COS during HIPPO. Instrument 2 was used by NOAA to measure

COS, and instrument 1 was calibrated consistently with the NOAA calibration standard. Results of instrument 3 were scaled to

be consistent with that of instrument 2, such that results from all three instruments on HIPPO are referenced to the same NOAA

scale. The probability distribution function of the mole fractions confirms that the three instruments report consistent values,

with similar averages (see Figure S1). Thus, HIPPO data provides valuable data to check the consistency of the optimized90

COS budget. The flight routes of the five campaigns are shown in Figure 1. In some numerical experiments, HIPPO data

are additionally assimilated to investigate their impact on the optimized COS budget. To investigate this impact on the vertical

distribution of COS, we compared to 2008–2011 NOAA airborne data that are mainly available over North America (Figure 1).

The number of aircraft sites used is 19, and the upper altitude that was typically reached is 8 km.

2.1.3 Satellite data95

Our inverse modelling results are compared to three independent satellite data sources: TES-Aura, ACE-FTS, and MIPAS. We

have selected the period 2008–2011 for the comparison.

NASA’s Tropospheric Emission Spectrometer (TES) is a both nadir and limb viewing instrument that flies on the AURA

satellite, which was launched in 2004 (Beer et al., 2001). TES measures the infrared radiation emitted from the Earth and

atmosphere in high spectral resolution for 16 orbits every other day. From these spectra, abundances of tropospheric trace100

gases are retrieved. The COS product used in this study is described in Kuai et al. (2014). The COS retrievals cover the whole

vertical column and have less than 1 degree of freedom (DOF) and show maximum sensitivity in the 300–500 hPa region. We

will therefore focus our comparisons on total COS columns. To account for the non-uniform vertical sensitivity, we use the

Averaging Kernel (AK) in the model–satellite comparison. As described in Kuai et al. (2014), the AK included in the TES data

files is defined in log-space, and should be applied as:105

ln(χcon) = ln(χp) +A[ln(χm)− ln(χp)], (1)

where χcon, χp, and χm are respectively the convolved, prior, and modeled profiles, and A is the AK. In Section 3.4 the

modeled profiles are convolved with the TES AK (χcon), vertically integrated, and compared to the TES columns.

The Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) is a high spectral resolution infrared

FTS instrument that performs solar occultation measurements, with the aim to sample stratospheric and upper tropospheric110

profiles of trace gases (Boone et al., 2013). The instrument flies on SCISAT, a Canadian satellite mission for remote sensing

of the Earth’s atmosphere that was launched in 2003. Its orbit covers tropical, mid-latitude, and polar regions. COS is one of

the atmospheric trace gases measured by the ACE-FTS instrument (Koo et al., 2017). ACE-FTS profiles have been compared
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to balloon observations and generally showed good agreement, with underestimations smaller than 20% (Krysztofiak et al.,

2015). We use product version 3.6 and only observations with quality flag of zero are used. ACE-FTS measures COS within115

0–150 km vertically, but the data quality is only sufficient in the upper troposphere and lower stratosphere (UTLS).

The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) is a Fourier transform spectrometer for detection

of the radiative emission of various molecules in limb observation mode in the middle and upper atmosphere (Fischer et al.,

2008). MIPAS flew on ESA’s Envisat platform that operated between 2002–2012. MIPAS delivers global atmospheric COS

profiles in the upper troposphere and stratosphere (Glatthor et al., 2015, 2017). Similar to TES, the MIPAS data product120

contains representative AKs and prior profiles to facilitate comparison to modelled profiles, but not in log-space, since MIPAS

COS is evaluated by a linear retrieval:

χcon = χp +A[χm−χp], (2)

where χm has to be resampled on the MIPAS retrieval grid in advance.

As for most other gases, the prior profile for MIPAS COS retrievals is a zero profile. Eq .2 thus becomes a simple multipli-125

cation of the AK with the modelled profiles. A detailed description of the application of MIPAS AKs on other datasets can be

found in Stiller et al. (2012).

The MIPAS product has been compared to modelled COS distributions (Glatthor et al., 2015) and ACE-FTS (Glatthor

et al., 2017). The latter comparison showed that MIPAS retrieves higher mole fractions around the tropopause compared to

ACE-FTS. The MIPAS product has also been compared to airborne measurements of the HIPPO, ARCTAS and INTEX-B130

campaigns (Supplement of Glatthor et al. 2015). Finally, MIPAS has been compared to MkIV and SPIRALE profiles (Glatthor

et al., 2017).

The retrievals of TES, MIPAS and ACE-FTS v3.6 are provided on 14, 60, and 150 vertical levels in the atmosphere, respec-

tively. We map our modelled COS profiles to these levels using a mass conserving interpolation scheme.

2.1.4 Seasonal decomposition135

In Section 3.1 we apply a simple seasonal decomposition method to our calculated exchange fluxes. The seasonal decomposi-

tion is performed using Python module StatsModels version 0.10. The time series are decomposed into trend, seasonality and

noise:

y(t) = yt(t) +ys(t) +yr(t), (3)

with y(t) the monthly exchange fluxes, and yt, ys, and yr the trend, seasonal, and residual components, respectively.140

2.2 Model description

2.2.1 Anthropogenic emissions

We have implemented the anthropogenic emissions based on a recent global gridded emission inventory of COS (Campbell

et al., 2015; Zumkehr et al., 2018). Since we aim to model COS, CS2 and DMS as separated tracers, we disentangled the

5



reported COS emissions into COS and CS2 contributions. Here, we applied an assumed yield of 0.87 (Zumkehr et al., 2018),145

which means that 1 mole CS2 yields 0.87 mole COS. As a precursor of COS, CS2 reacts with OH to produce COS, and has

an atmospheric lifetime of about 12 days (Khalil and Rasmussen, 1984). We applied a detailed anthropogenic emission budget

for COS and CS2 from Table 1 in (Lee and Brimblecombe, 2016). This allows us to roughly estimate the ratio of this budget

and hence the direct and indirect COS anthropogenic emissions. The converted emissions averaged over the period 2000–2012

are summarized in Table 1.150

The total anthropogenic COS emissions are on average 343.3 Gg a−1, split between direct COS emissions of 147.5 Gg a−1

and CS2 emissions of 450.2 Gg a−1. This indicates that CS2 is an important precursor of COS. Figure 2 shows time-series of

COS and CS2 anthropogenic emissions. COS emissions are dominated by industrial and residential coal sources, while CS2

emissions are dominated by rayon industry and TiO2 production. Moreover, while COS emissions remained relatively constant

in the 2007–2012 period, CS2 emissions show an increasing trend.155

While Zumkehr et al. (2018) assumed a molar yield of CS2 to COS of 87%, other reported yields are (83 ± 8)% (Stickel

et al., 1993) and 81% (Chin and Davis, 1993). We decided to use a yield of 83% in our modelling, while we used the reported

yield of 87% to produce the numbers listed in Table 1. This implies that we introduce slightly less COS in the atmosphere

compared to using the Zumkehr et al. (2018) data as direct COS emissions. Note that we apply all categorical emissions or

fluxes with a monthly time resolution. It is also worth noting that the uncertainty in the anthropogenic inventory is much larger160

than the uncertainty in molar yield.

2.2.2 Biomass burning emissions

We estimated biomass burning emissions based on the widely used GFED V.4.1 data set (Randerson et al., 2018) for six of the

seven emissions categories listed in Table 2. In converting dry mass burned to COS emissions, we used the updated emission

factors reported in Andreae (2019). For biofuel use, we base our estimates on the Community Emission Data System (CEDS)165

(Hoesly et al., 2018). We calculated COS emissions by first converting CO emissions to dry mass burned, which were converted

to COS emissions in a second step. Emission factors are listed in Table 2. In this process we made a distinction between biofuel

with and without dung. Dung burning is mainly employed in South Asia (Fernandes et al., 2007) and we applied the dung

emission ratios only in the region 60-100◦E and 0–40◦N. Our biomass burning emissions in the 2000–2012 period are in the

range 118–154 Gg a−1 (Figure 2), similar to the emissions used in Berry et al. (2013) (135 Gg a−1) and estimates reported170

in Campbell et al. (2015) (116±52 Gg a−1). The more recent biomass burning estimate from Stinecipher et al. (2019) based

on GFED 1997–2016 data reports global emissions of 60±37 Gg a−1. Note, however, that biofuel use is not included in

this estimate. The spatial and seasonal distribution of the biomass burning emissions averaged over the period 2000–2012 is

presented in Supplementary Figure S2.

2.2.3 Biosphere flux175

Our biosphere fluxes are based on simulations with the Simple Biosphere model, version 4 (SiB4) (Berry et al., 2013; Haynes

et al., 2019). Currently, soil uptake is scaled to the CO2 soil respiration term, and the implementation of specific COS soil
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models (Sun et al., 2015; Ogée et al., 2016) is ongoing. The SiB4 model was constrained by a prescribed COS mole fraction

of 500 pmol mol−1 outside the canopy. This 500 pmol mol−1 is merely as a placeholder, and probably leads to too large fluxes

over active biosphere, where COS mole fractions decline because of strong uptake. This is further discussed in Section 3.5.180

Meteorological data that are used as forcing for the SiB4 model are taken from the Modern Era Retrospective Analysis for

Research and Applications (MERRA) and are available from 1980 onwards (Rienecker et al., 2011). A spin-up of the model

was performed for the period 1850-1979 to reach an equilibrium of the carbon pools. As no MERRA data were available for

the spin-up period, the climatological average of MERRA data over the period 1980-2018 was used as meteorological input

for the spin-up period. A final simulation was performed for 1980–2018 with the actual MERRA driver data. The 2000–2018185

average flux to the biosphere (vegetation plus soil) amounts to -1053 Gg a−1, in line with estimates using SiB3 (-951 Gg a−1

(Kuai et al., 2015)) and (Berry et al., 2013). The spatial and seasonal distribution of the biosphere uptake is shown in Figure S3.

The uptake shows a large seasonal cycle in the NH and large uptake over tropical forests. The biosphere fluxes were deployed

on a monthly timescale.

2.2.4 Ocean emissions190

Climatological ocean emissions of COS and the COS precursors CS2 and DMS are based on Suntharalingam et al. (2008) and

Kettle et al. (2002). Large quantities of COS, DMS, and CS2 are emitted from open oceans. The estimated DMS emissions are

about 22 Tg a−1, and we note that even if the COS yield from oxidation of DMS is as small as 0.7 % (Barnes et al., 1996),

already 156 Gg a−1 COS is formed. The CS2 direct emission from oceans is roughly 195 Gg a−1, yielding 81 Gg a−1 of

COS. When the ocean water is cold enough, oceans can turn into a sink of COS instead of a source (Lennartz et al., 2017).195

Supplementary Figure S4 shows the spatial distribution of the January and July direct and indirect ocean emissions of COS.

Note that our estimates of all COS oceanic emissions as 277 Gg a−1 are substantially smaller than the estimates of 813 Gg a−1

by Launois et al. (2015).

2.3 TM5-4DVAR inverse modelling system

We have implemented three tracers (COS, CS2, and DMS) in the inverse modelling framework TM5-4DVAR (Krol et al., 2005,200

2008; Meirink et al., 2008). In brief, the TM5 model is used to convert fluxes, collected in state vector x, to observations y:

y =H(x), (4)

whereH represents the global chemistry transport model TM5. Since the relation between fluxes and observations is currently

linear, y =H(x) can be written as y =Hx. In a flux inversion a cost function is minimized. The cost function has the form:

205

J(x) =
1

2
(x−xb)

TB−1(x−xb) +
1

2
(y−Hx)TR−1(y−Hx), (5)

where xb represents the prior state of the fluxes, and B and R are the error covariance matrices of the fluxes and observations,

respectively. B contains the errors assigned to the fluxes, as well as their correlations in space and time (i.e. B is a non-diagonal
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matrix). R contains the errors assigned to (y−Hx). These errors are assumed to be uncorrelated and they include, next to

the observational errors, also errors related to the process of mapping coarse-scale fluxes x to localized observations y. The210

adjoint of the TM5 model (Krol et al., 2008; Meirink et al., 2008) is used to calculate the gradient of this cost function with

respect to all elements in the state vector:

∇J(x) = B−1(x−xb) +HTR−1(Hx− y). (6)

In all inversions, y is represented by COS observations from the NOAA flask network data (Montzka et al., 2007). Our flux

space, however, in addition to COS emissions, may represent CS2 and DMS emissions from anthropogenic activity and oceans.215

To map their influence on simulated COS observations y, we need to consider chemical conversions of CS2 and DMS to COS.

CS2 and DMS are short-lived trace gases, with atmospheric lifetimes of approximately 12 days (Khalil and Rasmussen, 1984)

and 1.2 days (Khan et al., 2016; Boucher et al., 2003; Breider et al., 2010), respectively. For CS2 we implemented OH-initiated

conversion to COS, while for DMS we simply apply exponential decay with a lifetime of 1.2 days. COS itself is also destroyed

by OH in the troposphere and by photolysis in the stratosphere. For OH, we use monthly varying climatological OH fields220

(Spivakovsky et al., 2000), and applied a correction factor of 0.92 (Naus et al., 2019). In summary, the chemistry that is

implemented therefore consists of the following four reactions:

COS + OH r1−→ products (R1)

COS + hν
j1−→ products (R2)225

CS2 + OH r2−→ f1 COS + other products (R3)

DMS r3−→ f2 COS + other products, (R4)

where j1 is the stratospheric photolysis frequency, and r1 and r2 are the rate constants of COS and CS2 OH-oxidation, respec-230

tively. The fractions f1 and f2 represent the molar yields of COS from CS2 (taken as 0.83 (Stickel et al., 1993)) and DMS

(taken as 0.007 (Barnes et al., 1996)). The rate r1 is calculated according to the Arrhenius equation:

r1 =Ae
−1200K

T , (7)

where T is temperature in K , and A is 1.13× 10−12 cm3 s−1 molecule−1 (Cheng and Lee, 1986). The rate r2 is 2.0 × 10−12

cm3 s−1 molecule−1 (Jones et al., 1983). Note that this rate expression is independent of temperature and slightly different235
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from Sander et al. (2006). This latter rate was used in Khan et al. (2017), and resulted in a short CS2 lifetime of 2.8–3.4 days.

However, when we implement the Sander et al. (2006) are in TM5, we find a CS2 lifetime of 6.2 days. This might be due to

the fact that we ignore CS2 deposition ( 15% of the loss according to Khan et al. (2017)) or that we use lower OH or higher

emissions. Rate r2 = 2.0 × 10−12 cm3 s−1 molecule−1 leads to an atmospheric CS2 lifetime of 9.4 days in TM5. Rate r3

represents an exponential decay of 1.2 days for DMS (r3 = 9.6 × 10−6 s−1).240

COS photolysis frequencies are calculated based on troposphere ultraviolet and visible (TUV) radiation model (Madronich

et al., 2003). Based on monthly climatologies of ozone profiles and temperatures, monthly-averaged photolysis frequencies are

calculated on a 1 km grid spanning 0 – 120 km and on 180 latitude bands. Implemented in TM5, COS loss in the stratosphere

amounts to about 40 Gg a−1. This estimate is in line with earlier estimates of (50±15) Gg a−1 (Brühl et al., 2012; Barkley

et al., 2008; Chin and Davis, 1995; Engel and Schmidt, 1994; Weisenstein, 1997; Krysztofiak et al., 2015; Turco et al., 1980;245

Crutzen and Schmailzl, 1983; Crutzen, 1976).

2.4 Model-data mismatch errors

The diagonal elements of the error covariance matrix R in Eq. 5 contain contributions from observational errors, representation

errors and errors related to applying large fluxes in the planetary boundary layer (Bergamaschi et al., 2010):

σt =
√

(σ2
o +σ2

r +σ2
f ), (8)250

where σt is the total error, σo the observational error, σr the representation error, and σf an error related to applying large

surface fluxes. The assumed observational error is shown in Figure 3. It is worth to note that observational errors are usually

overwhelmed by the representation and flux errors. The representation error is calculated by sampling the modelled gradients

in the vicinity of the sampled station (Bergamaschi et al., 2010). Finally, the flux error in each cell is linked to the magnitude

of the monthly surface flux f (kg m−2 s−1 in each cell) applied in the model as:255

σf =
fgMair∆t

MS∆p
. (9)

Here, f represent the sum of all COS prior flux components. In this sum, the biosphere flux is dominant over regions with

strong biosphere uptake. Further, g is gravitational acceleration (9.8 m s−2), Mair is molar mass of dry air (28.9 kg kmol−1),

MS is molar mass of sulfur (32.1 kg kmol−1), ∆p (Pa) is the thickness of the first model layer, and ∆t is the time (s) over

which the COS flux accumulates (we use 1 hour). Note that σf is unit-less and is multiplied by 1×1012 to obtain units of pmol260

mol−1.

Based on the total error, we define a χ2 metric to quantify how well the observations are reproduced by the model (e.g. at a

particular station).

χ2 =

∑N
i=1 (Hx− y)

2

Nσ2
t

, (10)

where N is the number of individual observations. We can calculate this metric before optimization (prior) and after opti-265

mization (posterior). χ2 is used to diagnose whether inversions are over-fitting or under-fitting the information contained in
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the measurement network. A value χ2 ≈ 1.0 indicates that the inverse system is able to fit the data within the error setting

(Hooghiemstra et al., 2011). A large posterior χ2 indicates that the state does not have enough degrees of freedom to fit the

observations properly (or the error settings are too small). A small posterior χ2 indicates over-fitting of the observations (or

too wide error settings).270

2.5 Model settings

In this study, the TM5-4DVAR system is employed on a global resolution of 6◦× 4◦ (longitude × latitude). Flux fields are

coarsened from a resolution of 1◦× 1◦. To create a reasonable start field for the inversions, we initially performed an 11-year

forward simulation starting with zero initial mole fractions and baseline surface fluxes augmented by 432 Gg a−1, distributed

uniformly to close a gap in the global budget. After 11 years, sources and sinks are roughly in balance, with atmospheric mole275

fractions of about 500 pmol mol−1. Note that fluxes are used as zero-order terms, while the COS removal by OH and photolysis

are first order removal terms that grow as the atmospheric COS increases.

We will present the results of four inversions. Firstly, we optimized the missing emissions, which amount to 432 Gg a−1.

This inversion will be denoted by Su throughout the paper. The aim of this inversion is to investigate the spatial structure and

temporal variability of the missing COS emissions. This is the first time that a formal 4DVAR approach is applied to the COS280

budget. To this end, we start from an emission field of 432 Gg a−1 that is uniformly distributed globally. We optimize emissions

on a monthly timescale, and assign a grid-scale prior error of 100%, which is an arbitrary number to give fluxes enough freedom

to adjust. In a three-year inversion, the total number of state vector elements amounts to 97200 (36 months×45 latitudinal

bins ×60 longitudinal bins). The total number of NOAA observations is much smaller, thus rendering the inversion under-

determined. We therefore also use inversion Su to explore different settings of the temporal and spatial correlation lengths,285

which control the degrees of freedom of the state vector. We explore spatial correlation lengths of 1000 km, 4000 km, 6000

km, 10000 km, and 20000 km, and temporal correlation lengths of 5.5, 7, 9.5, 12 months.

Secondly, we explore the optimization of specific categories in inversions S1–S3. In S1 we attempt to perform an "objective"

inversion, in which we assign grid-scale errors of 50% to the biosphere and ocean (we optimize both COS and CS2), and 10% to

the anthropogenic COS and CS2 emissions, and to the biomass burning emissions. Furthermore, in S2 we only optimise ocean290

exchange, and in S3 we only optimise the biosphere exchange. The aim of inversions S1–S3 is to explore whether either ocean

fluxes or the biosphere fluxes (or both) should be used to close the gap in the COS budget. Note that DMS ocean emissions are

not optimized. The names and setting of the inversions are summarized in Table 3.

The cost function is minimized with Congrad, an efficient numerical algorithm for solving linear systems (Lanczos, 1950).

This minimizer was also used in previous inverse modelling studies with the TM5-4DVAR system (Basu et al., 2013; Monteil295

et al., 2011, 2013; Houweling et al., 2014; Pandey et al., 2015). For convergence, we request a gradient norm reduction of

1×105, and this reduction is usually achieved within 40 iterations.

We perform flux inversions for the period 2000–2012. To decrease computational costs, we adopt the strategy to run parallel

3-year inversions, and we discard the optimized fluxes of the first 6 months (spin-up) and the last 6 months (spin-down). For

example, the first inversion targets the period 1-1-2000 to 1-1-2003, the second inversion 1-1-2002 to 1-1-2005, and so on. In300
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the spin-up period the fluxes in the first 6 months are used to adjust the imperfect initial condition. In the spin-down period,

fluxes are less reliable, because they have not been well constrained by observations. The optimized fluxes in the overlapping

years are used to check the inversion results for consistency. In general, it is found that the optimized fluxes in the overlapping

periods are highly consistent.

3 Results305

3.1 Closing a gap in the COS budget

In this section, we consider inversion Su, in which a uniform field emitting 432 Gg a−1 is optimized. We use different settings

for the spatial and temporal correlation lengths of this field in the inversion, and quantify the posterior goodness-of-fit using

the χ2 metric (Eq. 10). As presented in more detail in Supplementary Figure S5 we find, as expected, that χ2 decreases with

increasing degrees of freedom (smaller correlations).310

Overall, the posterior fit to NOAA surface observations from 14 sites does not improve significantly for smaller correlation

lengths. If we analyse the posterior fit to the short-term sampling program from HIPPO, however, we find that the χ2 reaches

a minimum (see supplement Figure S5). After this minimum, χ2 values increase again, a possible sign of over-fitting. We

therefore select 4000 km and 12 months for respectively the spatial and temporal correlation length, and use these values in the

remainder of this study.315

Figure 4 presents the fit to observations of the prior and posterior simulation, for the inversion with temporal and spatial

correlation lengths of 12 months and 4000 km, respectively. Corresponding χ2 metrics per station are listed as labels in

Figure 4. Posterior fits are by design much better than prior fits. Only for NOAA stations THD and NWR the posterior χ2

remains larger than 3, indicating insufficient degrees of freedom to resolve remaining discrepancies, underestimated model

errors, or the influence of outliers (see Figure 4 g, h). THD is a coastal site (107 m a.s.l.) and NWR is a tundra site above320

treeline (3526 m a.s.l.) in the US (Figure 1), and thus the model resolution of 6◦×4◦ is likely too coarse to represent these

sites. The local coastal effect might be another reason why THD yields a larger χ2 (Riley et al., 2005). It is worth to note that

the posterior simulation does not exhibit jumps in overlapping years from the parallel running inversions, indicating that our

inversion strategy works well.

The correlation settings have a large impact on the optimized fluxes. Figure 5 shows the spatial distribution of the posterior325

flux field calculated with two different correlation settings. For correlations of 1000 km and 5.5 months (panel (a)) we detect

a typical pattern that signals over-fitting of the observations. In such a pattern, the optimized flux displays hot spots close

to measurement locations (e.g. THD, MLO, SMO). For very long spatial correlations, e.g., 20000 km, posterior fits are poor

(χ2 > 6, see Figure S5) and optimized flux patterns show irregular behaviour (Figure S6). Our best inversion (4000 km and

12 months) produces a smooth optimized flux without apparent spatial patterns near observational stations (Figure 5b). This330

pattern confirms the missing COS sources in the tropics (Suntharalingam et al., 2008; Berry et al., 2013) and also requires more

uptake at high latitudes, especially in the NH.
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To investigate the variation in the optimized fluxes of inversion Su, we decompose the flux components as described in

Section 2.1.4.The monthly fluxes and derived long-term trend are shown in Supplementary Figure S7. The global flux was

subsequently split into 8 regions, and the regional COS Su fluxes analyzed for these regions are shown in (Figure 6). Region335

NH1 (North America plus part of Pacific and Atlantic Oceans, orange) shows a negative "unknown" flux, indicating that more

sinks are needed. This likely points to an underestimation of the biosphere uptake in the prior, since this region (that is well

constrained by observations) depicts a clear seasonal cycle in the optimized "unknown" flux. A larger sink is also needed

in NH2 (Europe, green) and NH3 (Asia, red), but of smaller magnitude than NH1. Tropical regions TR0–TR3 have similar

trend and seasonality, and generally show a positive flux signal, with little seasonal cycle. This could represent an oceanic340

signal (underestimated emissions of COS or COS precursors in the prior), a signal from biomass burning, or an overestimated

biosphere sink. The ocean-dominated region SH (blue) has a near neutral flux, with a seasonal cycle that shows higher emissions

in local fall and early winter. In the next section, we will explore the optimization of the ocean and biosphere fluxes.

3.2 Objective inversions

In this section we will discuss the results of inversions S1, S2, and S3. The resulting global budgets are compared to literature345

values in Table 4. In addition, χ2 metrics and biases of the various inversions are reported in Table 5 for the NOAA surface

network, the HIPPO campaigns, and the NOAA airborne profiles. Note that we also report results for optimizations that

assimilated the HIPPO observations next to the NOAA surface data. The period of the analysed inversions is 2008–2010.

The prior and posterior emission errors and error reduction of the different inversion scenarios are listed and discussed in

Supplement Table S1.350

The three inversions are all able to close the gap in the global COS budget, however, with very different budget terms

(Table 4). Inversions S1 and S3 close the gap in the budget by a drastic reduction of the biosphere uptake in the tropics and

more biosphere uptake at high latitudes. When the biosphere is not optimized (S2), the inversion enhances the CS2 tropical

oceanic source and reduces direct COS emissions from the high latitude oceans (Table 4). Both patterns lead to reduced tropical

biospheric uptake and more uptake at high latitudes, as was found for inversion Su.355

Concerning the posterior fit to observations, none of the S1–S3 inversions performed like inversion Su. The statistics in

Table 5 show that Su leads to the best fit to the assimilated observations, and only a small remaining bias. Inversions S1 and

S3 show better χ2 statistics and smaller biases than inversion S2, because it is difficult to fit continental NOAA stations (LEF,

HFM, NWR, THD) only by optimizing ocean fluxes. However, S1 and S3 show a tendency to turn the tropical biosphere sink

into a source, as shown in Figure 7, which depicts the posterior biosphere flux and flux increment for inversion S1. Note that360

while the uptake over high NH latitudes is enhanced, fluxes over regions in South America and over Indonesia have turned

into a source. This behaviour can be explained by the under-determined nature of the inverse problem: there are simply not

enough observations in the tropics to constrain the tropical fluxes. Fast mixing in the tropics further complicates the detection

of signals from the tropical biosphere using the NOAA surface network. Without additional observations it is therefore hard to

unequivocally close the gap in the tropical COS budget. Currently, inversion S1 mostly assigns the missing sources to reduced365

biosphere uptake in the tropics, but the superior Su inversion assigns the missing COS sources to a broad band in the tropics,
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without strong preference for land or ocean. Note that the behaviour of inversions S1, S2, and S3 is strongly driven by the

predefined spatio-temporal patterns in the prior flux fields. In section 3.4, we will revisit this issue.

Although we currently cannot close the gap in the global COS budget with one specific known flux, it is instructive to explore

the information content of a separate set of COS observations. In the next section, we will therefore evaluate the results of our370

inversions with HIPPO and NOAA airborne observations (Figure 1).

3.3 Evaluation with HIPPO and NOAA airborne profiles

From Table 5 it is clear that for all inversions the comparison to HIPPO observations is not very favourable. Most notably,

the simulations with optimized fluxes show strong negative biases, and poor χ2 statistics. However, Figure 8 shows that the

inversions S1 and Su (blue lines) largely improve the correspondence to HIPPO campaign 1 observations (red), relative to the375

prior simulation (black). The posterior simulations do capture the HIPPO observations much better. The remaining differences

in the middle panels of Figure 8 show the general underestimation of the model. However, inversion S1 overestimates HIPPO in

the southern tropics, likely caused by too large flux adjustments over South America, the region sampled by HIPPO campaign

1.

Interestingly, when the HIPPO observations are additionally assimilated in the inversion, biases are largely removed (Fig-380

ure 8, lower panels) while the correspondence to the NOAA surface network deteriorates only slightly (Table 5). Posterior χ2

values for the HIPPO campaigns remain relatively poor, however, signalling too strict error settings or processes that are not

properly modeled.

From the comparison with HIPPO we find that our state vector has enough flexibility to fit additional observations, and

that the inversions are strongly observation-limited. Moreover, we find that the inversions based on only observations from385

the NOAA surface network tend to underestimate COS in the free troposphere. This is corroborated by observations from the

NOAA airborne profiles, which are mostly collected over the US (see Figure 1). Figure 9 shows a comparison between profiles

using results of inversion S1. Although most posterior profiles (blue) improve considerably compared to the prior simulation

(black), they still underestimate observations (red) in the free troposphere. Note that the simulations based on inversion S1

correctly predict the draw-down of COS towards the surface for most measured profiles, and especially the match with the390

LEF site is very good at the surface, which confirms the performance of the inversion. If HIPPO observations are additionally

assimilated (green), the agreement in the free troposphere slightly improves. For S1, χ2 for the profile comparison reduces from

27.7 to 20.1, and the bias reduces from -13.9 to -9.7 pmol mol−1 (Table 5). This confirms the low bias of the free troposphere

COS mole fractions in simulations with fluxes that are optimized using both NOAA surface and HIPPO observations.

It is now clear that inversions using surface data from the available NOAA network sites will not be able to separate various395

source categories, and specifically not in the data-void tropics. In the next section we will therefore investigate the prospects of

using satellite data to constrain fluxes.
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3.4 Satellite validation

In Figure 10 we present a comparison between MIPAS, ACE–FTS, and co-sampled TM5 COS profiles. The latitude–height

distributions of MIPAS, TM5 (convolved with the MIPAS AK) and ACE–FTS are shown in Figure 10(a-c). In Figure 10(d)400

we show averaged ACE-FTS, MIPAS and TM5 profiles, the latter two resulting from collocations with respect to ACE-FTS.

The TM5 profiles shown are from the prior simulation (black), from inversion S1 (blue), and from inversion S1 with additional

assimilation of HIPPO profiles (green). They are all convolved with the MIPAS AK.

In general, TM5 reproduces the observed pattern of COS well, but with lower values in the tropical up-welling region around

25 km altitude. The comparison between ACE–FTS and MIPAS is consistent with findings of Glatthor et al. (2017), who found405

that ACE-FTS is systematically lower in the UTLS region. Moreover, they found that MIPAS data showed no bias compared

to MkIv and SPIRALE COS balloon profiles, which also exhibit higher COS values than ACE-FTS (Krysztofiak et al., 2015;

Velazco et al., 2011). TM5 profiles, after convolution with the MIPAS AK, are in between MIPAS and ACE–FTS. Prior TM5

profiles (black) show highest values around the tropopause. Again, TM5 profiles optimized by HIPPO and NOAA observation

(green dashed line in Figure 10d) show a slight increase in the upper troposphere compared to the optimization with only410

NOAA surface-site data (blue dashed line).

To compare the different inversions with respect to the simulated latitude–longitude distribution, Figure 11 shows a compar-

ison of COS between TM5 inversions and MIPAS on 250 hPa in June to August. Similar results on 250 hPa from September to

November and on 150 hPa from June to August are shown in supplement (Figure S8 and Figure S9). MIPAS COS represents

a 2002–2011 average taken from Glatthor et al. (2017). TM5 results have been averaged over 2008–2010. The distributions415

of COS in all inversions match relatively well with MIPAS. Note, however, that we adjusted the TM5 results by +25 pmol

mol−1 to match the colorscale of MIPAS. The COS distribution from the prior simulation correctly simulates low COS over

the Amazon and Africa, but is clearly too high over Northern latitudes. This latter aspect is partly solved by the inversions.

If we concentrate on the observed COS minimum over the Atlantic, Africa and the Amazon, inversions S1 and S3 shift this

minimum to the east, consistent with the COS biosphere flux increment shown in Figure 7 for S1. Inversions Su and S2 exhibit420

a better comparison with MIPAS, suggesting that the large increments of the tropical biosphere over South America (Figure 7)

are unrealistic. However, assigning the missing tropical source totally to ocean emissions (S2) appears to overestimate the COS

drawdown over the Amazon.

TM5 results are also compared to the nadir viewing TES instrument. To this end, COS columns of TM5 (convolved with

the TES AK, see Equation 1) and TES are averaged in 20 latitudinal bins between 32◦S and 32◦N. Outside this latitude425

band, TES observations become too noisy for a reasonable comparison. Comparisons are shown for the months March, June,

September and December in Figure 12, based on inversion S1, and averaged over the years 2008–2011. This comparison

shows that the prior simulation is too high in the tropical latitudes and on the NH (e.g., June, September, and December).

After assimilation, the agreement with TES improves, but now a general underestimate can be observed. The inversion in

which also the HIPPO observations are assimilated bring the simulated mole fractions closer to TES (except for September),430

confirming our earlier findings based on the airborne observation. Thus, although the TES-derived columns are rather noisy,
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they offer good perspective to better constrain the COS budget in the tropics. Due to the sensitivity of TES to COS in the

middle troposphere (Kuai et al., 2015), the assimilation of TES in our 4DVAR system might be able to differentiate between

the biosphere and ocean signal, something that turned out to be difficult using NOAA surface observations only.

3.5 Discussion435

In this study we have presented inversions focused on the closure of the global COS budget. In general, our inversion modelling

framework based on the TM5-4DVAR system is quite well capable to close the gap in the global budget (e.g., inversion Su, S1

and S3) and to optimize flux fields such that surface observations are well reproduced. However, due to the lack of observations,

we are unable to unambiguously assign the missing COS sources to either missing ocean emissions or to reduced tropical

uptake by the biosphere. Firstly, the total number of observations remains relatively small, which leads to an under-determined440

inversion problem. Secondly, there are no observational sites that sample air masses from tropical Africa, South America, and

South East Asia, which are regions with important COS fluxes. An important next step will therefore be the utilization of

satellite data in future inverse modelling studies. In the current study, we did not include all exchange fluxes that are reported

in literature (Whelan et al., 2018). In general, we find that our inversions still underestimate COS in the free troposphere. Here,

there might be a role for volcanic emissions (25-42 Gg a−1 (Whelan et al., 2018)), or ’unnoticed’ tropical sources like wetland445

exchange (-150 to 290 Gg a−1 (Whelan et al., 2018)). Volcanic emissions are important to mitigate the stratospheric aerosol

loading in the stratosphere (Sheng et al., 2015) and might be able to reduce the gap between modelled COS by TM5 and

measurements. Alternatively, missing COS could come from an atmospheric oxidation process that converts CS2 or DMS to

COS. We did not find strong evidence for enhanced CS2 emissions from tropical oceans in our S1 inversion, although inversion

S2 produced reasonable COS simulations by optimizing only COS and CS2 emissions from the ocean. Moreover, our "best"450

Su inversion produced a flux field that indicated enhanced tropical sources over both land and ocean (Figure 5). Thus, field

studies that address tropical COS exchange processes are urgently needed (Lennartz et al., 2020).

We have also considered some variations in our modelling setup. A unique approach of our study is the inclusion of CS2

and DMS as COS precursors. We tested the effect of emitting CS2 ocean and anthropogenic sources directly as COS in an

additional forward model simulation. As shown in Figure S10, COS mole fractions would become significantly larger close to455

CS2 emission hot spots in Asia, Europe and the US. At selected stations (LEF in the US and MHD in Europe, Figure S10 a

and b), we observe COS mole fractions that are up to 40 pmol mol−1 higher during events where emitted CS2 is advected to

the station. Some ambiguity has been introduced about the CS2 lifetime (Khan et al., 2017). In our Su inversion, the lifetime

of CS2 is estimated as 9.4 days (CS2 burden divided by CS2 loss by OH), substantially longer than the ≈ 3 day lifetime

mentioned in Khan et al. (2017). Future work should be based on the rate recommendations in Sander et al. (2006). Thus, we460

conclude that inclusion of CS2 as a separate tracer is important if we want to understand emissions of CS2 and COS, which have

distinctly different spatial patters (e.g. see Supplementary Figure S4). Regarding DMS as COS precursor, we have evaluated

its importance by performing a NO-DMS inversion, in which DMS as a tracer was removed and the 162 Gg a−1 DMS source

was added to the COS "unknown flux" in inversion Su. In Supplement Figure S11, it can be seen that the NO-DMS inversion

shows larger adjustment over both oceans and continents, but that the pattern remains comparable to inversion Su.465
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The use of COS as a proxy for gross primary productivity on a global scale needs a better level of understanding of the

biosphere flux. Here we used monthly prior flux fields calculated with the SiB4 model (Berry et al., 2013) in which soil

exchange and vegetation uptake are combined. In future studies, we might need a better prior description of this important

global COS sink. For instance, recent studies (Ogée et al., 2016; Sun et al., 2018; Meredith et al., 2019; Spielmann et al.,

2020) stress the importance of the soil-atmosphere COS exchange. Our inversions S1 and S3 calculate large increments in the470

biosphere exchange (Figure 7), with general less uptake in the tropics (turning the flux even into a COS source) and enhanced

uptake in the NH high latitudes. Quantitatively, the COS uptake is reduced from a prior value of 1053 Gg a−1 to 557 Gg

a−1 to close the gap in the COS budget. While we seriously question the validity of this result given the fact that most flux

adjustments are projected in the data-void tropics, it is still instructive to consider the feedback of the atmospheric COS mole

fractions on COS uptake. Since biosphere models operate mostly uncoupled to atmospheric transport models, we used a fixed475

mole fraction of 500 pmol mol−1 to construct the prior biosphere fluxes. However, observations clearly show a large drawdown

of COS near the surface (Campbell et al., 2008; Hilton et al., 2017; Spielmann et al., 2020; Berkelhammer et al., 2020). We

therefore explored the calculations in SiB4 and found that biosphere flux should scale linearly with atmospheric COS mole

fractions (Berry et al., 2013). To estimate the potential impact of reduced mole fractions at the surface on the biosphere flux,

we corrected the monthly SiB4 fluxes as:480

fbiosp,cor = fbiosp
y(COS)

500pmol mol−1 , (11)

where fbiosp and fbiosp,cor are the original and corrected monthly biosphere fluxes on the TM5 grid, and y(COS) is the

monthly mean COS mole fractions (pmol mol−1) in the first model layer (approximately 50 m) from inversion Su. This simple

correction, based on monthly mean fields, changes the biosphere sink from 1053 Gg a−1 to 851 Gg a−1, an update of 202 Gg

a−1 (Supplementary Figures S12, S13 and S14), and closer to the 738 Gg a−1 reported by Berry et al. (2013). Interestingly,485

the corrected flux is strongly reduced over regions with an active tropical biosphere, in line with results from inversions S1

and S3. This indicates that uptake of COS should be treated as a first order loss process, and that the SiB4 prior fields based

on fixed atmospheric mole fractions of 500 pmol mol−1 likely overestimate COS uptake. However, such an approach makes

the optimization problem non-linear. This, and the challenge of assimilating satellite observations, will be the subject of future

studies.490

4 Conclusions

In this study, we have implemented an inverse modelling framework for COS, coupled to the budgets of CS2 and DMS. Inver-

sions using the NOAA surface observation network have been evaluated with observations from HIPPO, airborne observations,

and satellite products. Conclusions are:

– In line with earlier studies, our inversions point to missing sources in the tropics and missing sinks at high latitudes.495

With seasonal decomposition of the optimized unknown COS flux, it is found that the missing sources show regional
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seasonality, indicating regional source or sink impacts. Whether the missing sources in the tropics originate from the

land or ocean cannot be determined currently because of a lack of observations in the tropics.

– Simulations that are optimized by only NOAA surface observations from 14 sites lack information about COS in the

free troposphere. When the short-term HIPPO aircraft sampling program is used as an additional data source in the500

inversions, the comparison to NOAA airborne observations and satellite products generally improves.

– Comparison between TM5 inversions and satellite data shows that COS in the model is systematically lower than MIPAS

or TES, and inversions reproduced the tropospheric COS spatial distribution well, specifically for inversions Su and S2.

These comparisons indicate that the missing tropical source likely originates from a combination of underestimated

ocean emissions, and overestimated biosphere uptake. Part of the tropical sources can be explained by the dependence505

of COS uptake on atmospheric mole fractions.

– Future improvements are expected from the assimilation of satellite data and better prior descriptions of the ocean and

biosphere fluxes.

Our future plan is therefore to assimilate satellite data into our 4DVAR inverse modelling system to have better constraints

on COS in the free troposphere and lower stratosphere. Other developments target the coupling of COS and CO2 in a shared510

inverse modelling system, with the aim to better constrain gross primary productivity.
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Figure 1. Geographical locations of the NOAA ground-based observations (shown in boxes), the five HIPPO campaign tracks, and the

NOAA profile program (inset). Note that there are no NOAA surface stations located in Asia, South America, or Africa.
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Figure 2. Yearly anthropogenic emissions of COS and CS2 and COS biomass burning emissions in the period 2000 to 2012. We disentangled

the emissions reported in Zumkehr et al. (2018) into COS and CS2 emissions using their reported yield of 0.87 (see main text). Biomass

burning emissions are calculated based on the GFED 4.1 biomass burning inventory and the CEDS biofuel emission inventory (see main

text).
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Figure 3. Error analysis for NOAA stations. Black error bars represent the time-variations of the errors over a 3–year period ( 2008–2010).

For ALT, SPO and SUM, the flux-related errors are close to zero and not shown. Stations are ordered from the North Pole to the South Pole.
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Figure 4. COS prior and posterior comparison at NOAA stations. Red dots and bars are NOAA measurements with errors. Blue and black

dots represent the posterior and prior simulation, respectively. Results are shown for inversion Su in which only the "unknown" emission

category is optimized.
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Figure 5. Optimized emission pattern of the "unknown" field of inversion Su for different settings of the spatio-temporal correlation lengths

(a) Spatial correlation of 1000 km and temporal correlation of 5.5 months (b) Spatial correlation of 4000 km and temporal correlation of 12

months. Results are averages over 2008–2011.
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Figure 6. Regional analysis of multi-year optimized COS fluxes of inversion Su: (a) posterior flux per region (b) regions over which the

posterior flux is analysed (c) trend in the decomposed signal (d) seasonal signal in the decomposed signal. Note that region colors in (b) are

used in panels (a), (c) and (d).
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Figure 7. Posterior biosphere flux from inversion S1 and increment (posterior-prior). The fluxes represent 3–year (2008–2010) averages with

removal of 6 month spin-up and spin-down periods. The maximum and minimum flux values are given in the boxes.
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Figure 8. HIPPO campaign 1 COS observations compared to results from inversions S1 (left) and Su (right). The first row shows time

series of HIPPO observations (red), prior (black), posterior (blue), and posterior with HIPPO observations assimilated (green). The middle

and bottom rows show model minus observations in a latitude-height plot for inversions with and without assimilating HIPPO observations,

respectively.
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Figure 9. Prior (black) and posterior (blue) profiles of inversion S1, compared to NOAA aircraft profiles (red). Location (see Figure 1)

and number of observations are mentioned in the caption. The green lines are results from an inversion in which, next to NOAA surface

observations, also HIPPO observations are assimilated. Note that the profiles are from all seasons.
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(a) MIPAS, N=350271
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(b) TM5 inversion S1 convolved with MIPAS, N=350271
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(c) ACEFTS v3.6, N=4191
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Figure 10. Comparison of MIPAS and ACE-FTS v3.6 with TM5 results from inversions for 2009. (a) latitude–height contour plot of MIPAS;

(b) TM5 S1 convolved with the MIPAS AK; (c) ACE-FTS profiles; (d) average of collocated profiles for MIPAS (red), TM5 convolved with

MIPAS AK from inversion S1 (blue), TM5 convolved from inversion S1 (with HIPPO observations assimilated) (green), TM5 convolved

prior (black), and ACE-FTS. In (d) TM5 and MIPAS profiles are collocated with respect to ACE-FTS profiles within a temporal offset of 6

hr and a spatial distance within 5 degrees. The number of collocated profiles is 1381.
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Figure 11. COS mole fraction comparison of MIPAS and TM5 inversions on 250 hPa in June to August. (a–e) are TM5 prior, and inversions

Su, S1, S2, S3, respectively. (f) is captured from figure 11 in (Glatthor et al., 2017). TM5 results represent a 2008–2010 average, and MIPAS

is averaged over 2002–2011. Because TM5 results are systematically lower than MIPAS, 25 pmol mol−1 is added to the TM5 results for a

better visual comparison.
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Figure 12. Column averaged COS mole fractions sampled by TES (red), model prior (black), model posterior (blue) and posterior with

HIPPO observations assimilated (green) for March, June, September and December. The columns are averaged over 2008–2010 in 20

latitudinal bins from 32◦S to 32◦N. The result of inversion S1 is shown. Error bars on TES represent variability in the measurements and the

number of observations is given in the caption. Variability is mostly determined by measurement noise.
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Table 1. The split of anthropogenic emissions in the different categories and between COS and CS2 based on Zumkehr et al. (2018). Note

that we used a CS2 to COS molar yield of 0.87 and that CS2 contains two S atoms. Averages over 2000–2012 are presented.

Emission Type Total COS Fraction COSa Direct COS Direct CS2

Gg a−1 % Gg a−1 Gg a−1

Agricultural Chemicals 16.9 0.0 0.0 38.9

Aluminum Smelting 22.2 88.2 19.6 6.0

Industrial Coal 52.1 99.5 51.8 0.7

Residential Coal 54.0 100.0 54.0 0.0

Industrial Solvents 5.4 0.0 0.0 12.5

Carbon Black 19.7 26.5 5.2 33.3

Titanium Dioxide 39.4 26.5 10.5 66.6

Pulp & Paper 0.1 3.2 0.0 0.3

Rayon Yarn 41.1 0.0 0.0 94.6

Rayon Staple 77.3 0.0 0.0 177.7

Tires 15.1 43.0 6.5 19.8

Total Anthropogenic 343.3 - 147.5 450.2

a The fraction of COS is calculated based on the COS to CS2 emission ratio reported

in Table 1 of Lee and Brimblecombe (2016).
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Table 2. Biomass burning emission factors used in converting COS emissions. EF COS denotes the COS emission factor from dry mass in

units g kg−1 COS per dry mass, and EF CO denotes the CO emission factor in g kg−1 CO per dry mass. Emission factors were taken from

Andreae (2019).

EF COS EF CO

g kg−1 COS per dry mass g kg−1 CO per dry mass

Savanna and grassland 0.038 -

Tropical forest 0.078 -

Temperate forest 0.035 -

Boreal forest 0.058 -

Peat fires 0.110 -

Agricultural waste burning 0.059 -

Biofuel burning without dung 0.017 83

Biofuel burning with dung 0.210 89
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Table 3. Names and error settings of the inversions performed in this study. The values correspond to grid-scale errors. Monthly flux fields

are optimized using spatial and temporal correlation lengths of 4000 km and 12 months, except for inversion Su, in which multiple settings

are explored.

Biosphere Ocean COS Ocean CS2 Biomass burning Anthropogenic COS and CS2 "Unknown"

Su - - - - - 100%

S1 50% 50% 50% 10% 10% -

S2 - 50% 50% - - -

S3 50% - - - - -
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Table 5. χ2 metrics and mean biases for the different inversion scenarios. Statistics are shown for the NOAA surface stations, the HIPPO

campaigns, and the NOAA airborne profiles. Biases are given in pmol mol−1.

Inversion scenario HIPPO optimizeda Metric HIPPO NOAA surface NOAA airborne

Su

No χ2 40.7 1.9 26.0

No Bias -13.9 0.0 -12.4

Yes χ2 4.7 2.5 17.3

Yes Bias -1.1 1.5 -8.3

S1

No χ2 43.8 2.4 27.7

No Bias -12.0 -0.4 -13.8

Yes χ2 4.8 2.9 20.1

Yes Bias -1.3 1.3 -9.7

S2

No χ2 54.2 4.9 48.2

No Bias -19.4 1.5 -16.7

Yes χ2 6.3 5.9 27.0

Yes Bias -4.6 7.5 -5.9

S3

No χ2 43.3 2.5 27.5

No Bias -12.3 -0.2 -14.3

Yes χ2 5.0 3.2 21.1

Yes Bias -1.4 1.6 -10.5

a If HIPPO is not optimized, only NOAA surface data is assimilated in inversions. If HIPPO is

optimized, both NOAA surface data and HIPPO are assimilated in inversions. NOAA airborne

data is only used for validation.
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