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Abstract. Global coupled chemistry-climate models underestimate carbon monoxide (CO) in the 
Northern Hemisphere, exhibiting a pervasive, negative bias against measurements peaking in late 
winter and early spring. While this bias has been commonly attributed to underestimation of direct 40 
anthropogenic and biomass burning emissions, chemical production and loss via OH reaction from 
emissions of anthropogenic and biogenic VOCs play an important role. Here we investigate the 
reasons for this underestimation using aircraft measurements taken in May and June 2016 from 
the Korea United States Air Quality (KORUS-AQ) experiment in South Korea and the Air 
chemistry Research In Asia (ARIAs) in the North China Plain (NCP). For reference, multispectral 45 
CO retrievals (V8J) from the Measurements of Pollution in the Troposphere (MOPITT) are jointly 
assimilated with meteorological observations using an Ensemble Adjustment Kalman Filter 
(EAKF) within the global Community Atmosphere Model with Chemistry (CAM-chem) and the 
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Data Assimilation Research Testbed (DART). With regard to KORUS-AQ data, CO is 
underestimated by 42 % in the Control-Run and by 12 % with the MOPITT assimilation run. The 50 
inversion suggests an underestimation of anthropogenic CO sources in many regions, by up to 80 
% for Northern China, with large increments over the Liaoning province and the North China 
Plains (NCP). Yet, an often-overlooked aspect of these inversions is that correcting the 
underestimation in anthropogenic CO emissions also improves the comparison with observational 
O3 datasets, and observationally constrained box model simulations of OH and HO2. Running a 55 
CAM-chem simulation with the updated emissions of anthropogenic CO reduces the bias by 29 % 
for CO, 18 % for ozone, 11 % for HO2 and 27 % for OH. Longer lived anthropogenic VOCs whose 
model errors are correlated with CO are also improved while short-lived VOCs, including 
formaldehyde, are difficult to constrain solely by assimilating satellite retrievals of CO. During an 
anticyclonic episode, better simulation of O3, with an average underestimation of 5.5 ppbv and a 60 
reduction in the bias of surface formaldehyde and oxygenated VOCs can be achieved by separately 
increasing by a factor of two the modeled biogenic emissions for the plant functional types found 
in Korea. Results also suggest that controlling VOC and CO emissions, in addition to wide spread 
NOx controls, can improve ozone pollution over East Asia.   
 65 
 
1 Introduction 

Carbon monoxide (CO) is a good tracer of biomass burning (Crutzen et al., 1979; Edwards et al., 
2004; Edwards et al., 2006) and anthropogenic emission sources (e.g. Borsdorff et al., 2019). It is 
also the main sink of the hydroxyl radical (OH) and therefore is important in quantifying the 70 
methane (CH4) sink in the troposphere (Myhre et al., 2013; Gaubert et al., 2016, 2017; Nguyen et 
al., 2020). In fact, because of the lack of observational constraints on the OH spatio-temporal 
variability, uncertainties in the atmospheric CH4 lifetime and its interannual variability have 
precluded accurately closing the global CH4 budget (Saunois et al., 2016; Prather & Holmes, 2017; 
Turner et al., 2019). There is a need to reduce uncertainties in the main drivers of OH (National 75 
Academies of Sciences, Engineering, and Medicine 2016), which are CO, ozone (O3), water vapor 
(H2O), nitrogen oxides (NOx), and non-methane volatile organic compounds (NMVOCs). 
 
The evolution of CO in Eulerian chemical-transport is governed for each grid cell by Eq. (1): 
 80 
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CO has only one chemical sink, its reaction with OH (𝑘[𝐶𝑂][𝑂𝐻]). The other CO sink is dry 
deposition (𝑘C5D793%37E[𝐶𝑂]) through soil uptake (Conrad, 1996; Yonemura et al., 2000; Stein et 
al., 2014, Liu et al., 2018). The direct sources are the emissions from different sectors 𝐸3, the 85 
anthropogenic (fossil fuel and biofuel), biomass burning, biogenic and oceanic sources. Locally, 
CO can be advected from neighboring grid cells (−𝜈 ⋅ 𝛻[𝐶𝑂]) and produced from the oxidation of 
NMVOCs (𝜒3). Globally, the oxidation of CH4 is the main source of chemically produced CO. 
Biogenic and anthropogenic NMVOCs also contribute significantly to secondary CO. 
 90 
The use of inverse models and chemical data assimilation systems has helped in constraining the 
global CO budget and associated trends at global to continental scales, particularly with the 
availability of long time series of CO retrievals from the Measurement of Pollution In the 
Troposphere (MOPITT, Worden et al., 2013) satellite instrument (e.g., Arellano et al., 2004; 
Pétron et al., 2004; Heald et al. 2004; Kopacz et al., 2010; Fortems-Cheiney et al., 2011; Yumimoto 95 
et al., 2014). Such studies are generally in agreement with regards to the decreasing long-term 
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trends in CO emissions from anthropogenic and biomass burning sources (Jiang et al. 2015; Yin 
et al., 2015; Miyazaki et al. 2017; Zheng et al., 2019), although regional emissions remain largely 
uncertain. Outstanding issues reported in the literature that still need to be resolved include errors 
in model transport (Arellano and Hess 2006; Jiang et al. 2013), lack of accurate representation of 100 
the atmospheric vertical structure of CO (Jiang et al., 2015), OH fields (Jiang et al., 2011; Müller 
et al., 2018), aggregation errors (Stavrakou and Müller, 2006; Kopacz et al., 2009), and inclusion 
of chemical feedbacks (Gaubert et al., 2016). Recent studies have suggested mitigating these issues 
by assimilating multiple datasets of chemical observations (Pison et al. 2009; Fortems-Cheiney et 
al. 2012; Kopacz et al., 2010; Miyazaki et al., 2012; Miyazaki et al., 2015), and the use of different 105 
models that use the same data assimilation system (Miyazaki et al., 2020a).  
 
Regionally, comparison with in-situ observations of forward and inverse modeling approaches 
suggests that several standard inventories of CO emissions in China are too low (e.g. Kong et al., 
2020; Feng et al., 2020). Recently, Kong et al. (2020) compared a suite of 13 regional model 110 
simulations with surface observations over the North China Plain (NCP) and Pearl River Delta 
(PRD) and found a severe underestimation of CO, despite the models using the most up-to-date 
emissions inventory, the mosaic Asian anthropogenic emission inventory (MIX) (Li et al., 2017). 
Using surface CO observations in China, Feng et al. (2020) performed an inversion of the MIX 
inventory and found posterior emissions that were much higher than the priors, with regional 115 
differences, still pointing to a large underestimation in northern China. The large posterior increase 
of CO emissions in northern China seems to be due to a severe underestimation of residential coal 
combustion for heating and potentially for cooking (Chen et al., 2017; Cheng M., et al., 2017; Zhi 
et al., 2017). 
 120 
While the general underestimation of fossil fuel burning in East Asia seems to explain the 
underestimation of Northern Hemisphere (NH) extratropical CO found in global models (Shindell 
et al., 2006), there are other confounding factors. Naik et al. (2013) found large inter-model 
variability in the regional distribution of OH and an overestimation of OH in the NH. This is 
consistent with an overestimation of ozone (Young et al. 2013), which provides another 125 
explanation of the CO underestimation. Strode et al. (2015) confirmed that the springtime low bias 
in CO is likely due to a bias in OH. This can be caused by a bias in ozone and water vapor, which 
are OH precursors. Yan et al. (2014) suggested that these biases could be mitigated by increasing 
the horizontal resolution within a 2-way nested model. Stein et al. (2014) suggested that 
anthropogenic CO and NMVOCs from road traffic emissions were too low in their inventory, but 130 
also suggested that a wintertime increase in CO could be due to a reduced deposition flux. 
Secondary CO originating from the oxidation of CH4 and NMVOCs could also play a role in the 
CO underestimation (e.g. Gaubert et al., 2016). 
  
Due to significant efforts in reducing emissions in China, including effective implementation of 135 
clean air policies which started in 2010 (e.g. Zheng et al., 2018), there has been a reduction of CO 
emissions of around 27 % since 2010. Bhardwaj et al. (2019) found a decrease of surface MOPITT 
CO by around 10 % over the NCP and South Korea during the 2007-2016 period. As opposed to 
NOx emissions that have been decreasing since 2010, inventories suggest a net NMVOCs 
emissions increase (Zheng et al., 2018). While there are regional differences and no trends were 140 
observed in satellite retrievals of CH2O for the period 2004 to 2014 over Beijing and in the PRD 
(De Smedt et al., 2015), a more recent study suggests an overall increase of VOC emissions in the 
NCP by ~25 % between 2010 and 2016 (Souri et al., 2020). Shen et al., (2019) show that CH2O 
columns have a positive trend in urban regions of China from 2005 to 2016. Li, M. et al. (2019) 
found an increase in NMVOCs emissions from the industry sector and solvent use while emissions 145 
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from the residential and transportation sectors declined, leading to a net increase in emissions of 
NMVOCs. A modeling study suggests that the reduction of aerosols over northern China has 
reduced the sink of hydroperoxyl radicals (HO2) which resulted in an increase in surface O3 
concentrations in North Eastern China (Li, K. et al., 2019). The transport of ozone pollution 
between source regions makes it difficult to correlate trends in ozone with the trends in emissions 150 
of its precursors (Wang et al., 2017). 
 
Emissions from East Asia are known to impact regional air quality (AQ), and contribute 
significantly to surface O3 pollution at regional, continental and even intercontinental scales 
through trans-Pacific transport, in particular in spring when meteorological conditions favor rapid 155 
transport (Akimoto et al., 1996; Jacob et al., 1999; Wilkening et al., 2000; Heald et al., 2006). 
Frontal lifting in warm conveyor belts (WCBs) efficiently contributes to the transport of pollution 
(Cooper et al. 2004; Zhang et al. 2008; Lin et al. 2012), which can be observed by satellite 
retrievals of tropospheric O3 (Foret et al., 2014) and aircraft in-situ measurements (Ding et al. 
2015). However, the mechanisms that cause the uplifted pollution to effectively descend to the 160 
downwind surface layers at regional, continental and intercontinental scales are complex. In the 
case of South Korea, one efficient mechanism could be that once lifted from the emission sources 
in China, the higher altitude plumes can pass through the marine atmosphere of the Yellow Sea 
without removal processes such as dry deposition, and reach the surface of the Korean peninsula 
during the day, when the boundary layer is high (Lee et al., 2019a; Lee et al., 2019b). In addition, 165 
severe pollution episodes can be due to local emissions under stagnant conditions with reduced 
regional ventilation and lower wind speed (Kim et al. 2017). 
 
The recent literature and findings from the 2016 field campaign over South Korea indicate the 
relative importance of O3 precursors and associated transport in this region. The Korea-United 170 
States Air Quality (KORUS-AQ) field campaign was a joint effort between the National 
Aeronautics and Space Administration (NASA) of the United States and the National Institute of 
Environmental Research (NIER) of South Korea. The field campaign’s objective was to quantify 
the drivers of AQ over the Korean Peninsula with a focus on the Seoul Metropolitan Area (SMA), 
currently one of the largest cities in the world. The intensive measurement period was from May 175 
1 2016 and June 15 2016 with the deployment of a research vessel (Thompson et al., 2019) and 4 
different aircraft: the NASA DC-8, the NASA B200, the Hanseo University King Air and the 
Korean Meteorological Agency (KMA) King Air. The aircraft sampled numerous vertical profiles 
of trace gases, aerosols and atmospheric physical parameters with missed approach flying 
procedure over the SMA (e.g. Nault et al., 2018) and spiral patterns over the Taehwa Research 180 
Forest (TRF) site, downwind from the SMA (e.g. Sullivan et al., 2019). Peterson et al. (2019) 
studied the weather patterns during KORUS-AQ and distinguished four distinct periods defined 
by different synoptic patterns: a dynamic meteorological phase with complex aerosol vertical 
profiles, a stagnation phase with weaker winds, a phase of efficient long-range transport, and a 
blocking pattern.  185 
 
This campaign provides several case studies of foreign-influenced and local pollution episodes. 
Miyazaki et al. (2019a) assimilated a suite of satellite remote sensing of chemical observations and 
found that under dynamic conditions, when there was efficient transport with uplifting of pollution 
to higher altitudes (where the satellite has more sensitivity), forecasted ozone was improved by 190 
the assimilation of satellite ozone retrievals. On the contrary, under stagnant conditions, forecasted 
ozone was not improved as much when compared to the DC-8 ozone measurements, suggesting 
ozone formation closer to the surface. Lamb et al. (2018) studied at the vertical distribution of 
black carbon during KORUS-AQ. Aside from a short episode of biomass burning sources from 
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Siberia, they found that the Korean emissions were important in the boundary layer, with a large 195 
contribution from long-range transport from mainland China that varies with the large-scale 
weather patterns. There are different ways to quantify the sources contributing to pollutants, such 
as Lagrangian back trajectory, VOCs signatures, CO to CO2 ratios and CO “tags” (Tang et al., 
2019). Overall, direct Korean CO emissions are important contributors to the boundary layer CO, 
but not higher up where emissions from continental Asia dominate. Simpson et al. (2020) 200 
performed a source apportionment of the VOCs over the SMA and also found a significant source 
of CO from long-range transport with only a smaller CO source from combustion over Seoul. 
Since long-range transport is important, the forecasted CO and water vapor during KORUS-AQ 
can be improved by assimilating Soil Moisture from the NASA SMAP satellite (Soil Moisture 
Active Passive) over China (Huang et al, 2018). They stress the importance of error sources 205 
stemming from chemical initial and boundary conditions and emissions for modeling CO during 
two studied pollution events.  
 
While chemical data assimilation is effective for CO in a global model, because of its longer 
lifetime than most of the reactive species, there are some limitations if the parameters, such as 210 
emissions inventories inputs or physical and chemical processes, are not updated consistently with 
the initial conditions (Tang et al., 2013). The KORUS-AQ campaign provides a large array of 
measurements and is an excellent case study for testing the model with challenges that need to be 
addressed for further improvements of CO and related species of interest such as OH, O3, CH4 and 
NMVOCs. Here we take advantage of the concurrent measurements during the campaign to 215 
investigate the reasons for the CO underestimation and we attempt to answer the following 
question: Can we explain why CO is consistently underestimated over East Asia, using a Chemical 
Transport Model, field campaigns and satellite data assimilation? 
 
We outline the set of observations used to verify and evaluate our chemical data assimilation 220 
system in Section 2. The modeling system is presented in Section 3, the Data Assimilation system 
in Section 4, the evaluation of the data assimilation results in Section 5. The comparison of 
emissions estimates and additional sensitivity experiments in Section 6.  
 
2 Field campaign observations 225 

2.1 The Korea United States Air Quality (KORUS-AQ) field campaign 

The KORUS-AQ campaign provides a unique testbed for comparing surface and aircraft in-situ 
observations with ground-based and satellite-based remote sensing (Herman et al. 2018), 
particularly important for the targeted short-lived species such as formaldehyde (CH2O) and 
nitrogen dioxide (NO2). Miyazaki et al. (2019a) showed that the background O3 measured by the 230 
DC-8 during KORUS-AQ ranges from 72 to 85 ppbv between the surface and 800 hPa over the 
Korean Peninsula. On top of these large background values, large emissions from the SMA are 
responsible for the strong formation of secondary organic aerosols (Kim et al., 2018; Nault et al., 
2018) and O3, which can be further enhanced by biogenic emissions eastward of Seoul (Sullivan 
et al., 2019). Large ozone production is a result of emissions from areas characterized to be VOC-235 
limited, such as the urbanized SMA and industrialized regions into a NOx-limited environment 
over rural and forested regions. Both Oak et al. (2020) and Schroeder et al. (2020) examined O3 
production during KORUS-AQ with a focus on the SMA and surrounding regions and reported a 
higher ozone production efficiency over the rural areas. They pointed out higher ozone sensitivity 
to aromatics, followed by isoprene and alkenes. Observations over the Taehwa Research Forest 240 
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east of Seoul show strong ozone production (Kim et al., 2013) because of large emissions of 
reactive biogenic VOCs, in particular isoprene and monoterpenes.  
 

 
Figure 1: Location of all the KORUS-AQ DC-8 1-min merge measurements (red dots), and of the ARIAs Y-12 245 
1-min merge measurements (green dots). The location of some major cities is also indicated (blue dots).  
 
We evaluate the model output against the DC-8 aircraft measurements, shown in red in Figure 1, 
which simultaneously provide many physical and chemical parameters of the tropospheric 
chemistry environment system (appendix A). We use the 1-minute merge file of DC-8 in-situ 250 
observations. Model outputs were linearly interpolated to the exact location of the DC-8 in latitude, 
longitude, pressure altitude and in time, from the 6 hourly model outputs. During the whole 
campaign, Simpson et al. (2020) showed that high benzene concentrations (> 1 ppbv) were only 
found close to the Daesan petrochemical complex. Since those large gradients of local plumes 
simply cannot be modeled in a global model, we systematically rejected observations when the 255 
benzene proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) measurements 
were higher than 1 ppb. 
  
In order to evaluate the CO sink and the impact of the assimilation of MOPITT CO retrievals on 
the HOx levels, we used the OH and HO2 calculated with the NASA Langley Research Center 260 
(LaRC) 0-D time-dependent photochemical box model (Schroeder et al., 2020). This box model 
is constrained by measured temperature and pressure, photolysis rates derived from actinic flux 
observation and observations of O3, NO, CO, CH4, CH2O, PAN, H2O2, water vapor, and non-
methane hydrocarbons. The production and loss terms of ozone is calculated for every single 1 Hz 
DC-8 set of observations. This is the only case where we use the 1-second merge file instead of 265 
the 1-min merge dataset file. CAM-chem outputs are interpolated accordingly. While there are 
some limitations for the species with longer lifetimes, subject to physical processes that are not 
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represented, the box model has been specifically designed to estimate radical concentrations. The 
details and sensitivity of the calculation are described in Schroeder et al. (2020). 
 270 

2.2 The ARIAs campaign 

The Air Chemistry Research In Asia (ARIAs) field campaign was conducted in May and June 
2016 with the goal of better quantifying and characterizing air quality over the NCP (Benish et al., 
2020; Wang et al. 2018). The instrumented Y-12 airplane was operated by the Weather 
Modification Office of the Hebei Province to measure meteorological parameters, aerosols optical 275 
properties and trace gases. The airplane was based in Luancheng Airport, southeast of 
Shijiazhuang, the capital of Hebei Province, and flew vertical spirals from ~300m to ~3500 m over 
the cities of Julu, Quzhou, and Xingtai (Fig. 1). There were 11 research fights between May 8, 
2016 and June 11, 2016. Wang et al. (2018) identified three different Planetary Boundary Layer 
(PBL) structures with distinct aerosol vertical structure. The aerosol pollution was mostly located 280 
below an altitude of 2 km, but sometimes with a vertically inhomogeneous structure, with higher 
aerosols at higher altitudes than at the surface but still in the boundary layer. These vertical 
structures were mostly observed when the pollution originated from the southwest and from the 
eastern coastal region of the study domain, while cleaner air masses originated from the northwest. 
CO was measured by Cavity Ring Down Spectroscopy by the Picarro Model G2401-m instrument 285 
with a 5-second precision of 4 ppbv and an estimated accuracy of ±1% and O3 by UV-absorption 
using a Thermal Electron Model 49C ozone analyzer. O3 values ranged from 52 ppbv to 142 ppbv, 
partly because flight days were chosen to target meteorological conditions favorable to smog 
events (Benish et al., 2020). CO concentrations ranged from 91 ppbv to about 2 ppmv (Benish et 
al., 2020). The pervasive high levels of CO correlated with SO2 indicate extensive low-tech coal 290 
combustion. We rejected individual CO observations (about 5% of total CO observations) when 
SO2 was greater than 20 ppbv (the 95th percentile of all observations) to remove the extremely 
polluted plumes. 

3 Model configuration and improvements  

3.1 Community Atmosphere Model with Chemistry (CAM-chem) 295 

We use the open-source Community Earth System Model version 2.1 (CESM2.1); an overview of 
the modeling system and its evaluation is presented in Danabasoglu et al. (2020). It contains many 
new scientific features and capabilities, including an updated coupler, the Common Infrastructure 
for Modeling the Earth (CIME), which allows for running an ensemble of CESM runs, in parallel 
with a single executable. The atmosphere is modeled using the finite volume dynamical core of 300 
the Community Atmosphere Model version 6 (CAM6) with 32 vertical levels and a model top at 
3.6 hPa, and a 1.25° (in longitude) by 0.95° (in latitude) horizontal resolution (Gettelman et al., 
2019). The model now uses a unified parameterization of the planetary boundary layer (PBL) and 
shallow convection, the Cloud Layers Unified by Binormals (CLUBB, Bogenschutz et al. 2013). 
Other updates on the model physical parameterizations are described in Gettelman et al. (2019). 305 
The new Troposphere and Stratosphere (TS1) reduced gas phase chemical mechanism contains 
221 species and 528 reactions (Emmons et al., 2020), and thus explicitly represents stratospheric 
and tropospheric ozone and OH chemistry. This chemical scheme contains many updates, 
including on the isoprene oxidation mechanism, splitting a single aromatic into BENZENE, 
TOLUENE and XYLENES lumped species and a terpene speciation. The overall setup of 310 
CESM2.1 has been updated following the protocol of the Coupled Model Intercomparison Project 
Phase 6, which includes solar forcings (Matthes et al., 2017), surface greenhouse gases boundary 
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conditions (Meinshausen et al., 2017) and anthropogenic emissions. Therefore, we use the 
anthropogenic emission inventory of chemically reactive gases that has been generated by the 
Community Emissions Data System (CEDS, Hoesly et al., 2018). We use the latest year available 315 
(2014) for the KORUS-AQ period (2016). It is commonly acknowledged that errors in the 
emission inventory for China are much larger than the trends between different years (Feng et al., 
2020). Anthropogenic emissions over East Asia are replaced by the KORUS inventories version 5 
or KORUS v5, based on the Comprehensive Regional Emissions for Atmospheric Transport 
Experiment (CREATE) (Woo et al., 2012). Daily Biomass Burning emissions are obtained from 320 
the Fire Inventory from NCAR (FINN v1.5) version 1.5 (Wiedinmyer et al., 2011). Biogenic 
emissions are modeled within the Community Land Model, using the algorithms of the Model of 
Emissions of Gases and Aerosols from Nature (MEGAN v2.1) (Guenther et al., 2012). A summary 
of the model references is presented in Table 1. We have made some additional changes for this 
study, presented in Appendix B. In particular, we updated the heterogeneous uptake coefficient of 325 
HO2 and its coefficient.  
 
Table 1: Summary of the main model components and references for CESM2.1 / CAM6-Chem. 
Model component Reference 
Community Earth System Model Version 2.1 (CESM2.1) Danabasoglu et al., 2020 
Community Atmosphere Model version 6 (CAM6) Gettelman et al., 2019  
Tropospheric and Stratospheric chemistry scheme (TS1)   Emmons et al., 2020 
Organic aerosol scheme (with Volatility Basis Set) Tilmes et al., 2019 
Modal Aerosol Module (MAM4) Liu et al., 2016 
Community Land Model (version 5) Lawrence et al., 2019 
Model of Emissions of Gases and Aerosols from Nature (version 2.1) Guenther et al., 2012 
Inputs  
Community Emissions Data System (CEDS) Hoesly et al., 2018 
Comprehensive Regional Emissions for Atmospheric Transport 
Experiment (CREATE) version 5 or KORUS v5 Woo et al., 2012 

Fire Inventory from NCAR (FINN v1.5) version 1.5  Wiedinmyer et al., 2011 
Greenhouse gases prescribed fields Meinshausen et al., 2017 
Methane net surface fluxes Saunois et al., 2020 

 

3.2 Sensitivity test on the biogenic emissions 330 

The KORUS-AQ campaign was subject to photochemical episodes with large concentrations of 
secondary aerosols and ozone (e.g. Kim H. et al., 2018). There is a significant amount of biogenic 
emissions from the South Korean forests including deciduous oak trees (Lim et al., 2011) and 
conifers such as the Korean pine (Pinus koraiensis), both of which surround the Taehwa Research 
Forest site. As a result, there are large emissions from a variety of compounds, such as isoprene, 335 
monoterpenes and sesquiterpenes, which contribute to enhanced ozone in favorable conditions 
(Kim S. Y. et al., 2013; Kim S. et al., 2015, 2016; Kim H.-K et al., 2018). Oak et al. (2020) showed 
that the largest ozone production efficiency was in the rural areas of South Korea, where biogenic 
emissions are dominant. Kim et al. (2014) studied how the Plant Functional Type (PFT) 
distributions affect the results of biogenic emission: broadleaf trees, needleleaf trees, shrub, and 340 
herbaceous plants are significant contributors to BVOCs in South Korea. They found large 
sensitivities of calculated biogenic emissions to 3 different PFT datasets over Seoul, which resulted 
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in local but significant changes in simulated O3. We performed a sensitivity analysis to the biogenic 
emissions by increasing the emission factors for three of the Community Land Model PFT that are 
present in Korea, the “Needleleaf Evergreen Temperate Tree”, the “Broadleaf Evergreen 345 
Temperate Tree”, and the “Broadleaf Deciduous Temperate Tree”. We perform a set of simulations 
by varying biogenic emissions to determine the best fit to the observations of formaldehyde 
(CH2O) at the surface (see SI). For the sake of clarity, we will present one experiment denoted as 
CAM_MOP-Bio (see Sect. 4.6). 
 350 
4. Chemical data assimilation system 
 
4.1 Data Assimilation Research Testbed (DART) implementation 
 
The Data Assimilation Research Testbed (DART) is an open source community facility for 355 
ensemble data assimilation developed and maintained at the National Center for Atmospheric 
Research (Anderson et al., 2009a). DART has been used in numerous studies for Data Assimilation 
(DA) within CESM (Hurrell et al., 2012, Danabasoglu et al., 2020). Global DA analyses have been 
carried out with assimilation of conventional meteorological datasets within the Community 
Atmosphere Model (CAM, Raeder et al. 2012), the Community Land Model version 4.5 or 360 
CLM4.5 (Fox et al. 2018), and in a weakly coupled atmospheric assimilation in CAM and oceanic 
assimilation in the Parallel Ocean Program ocean model (Karspeck et al. 2018). The Chemical 
Data Assimilation system inherits from previous work that coupled the Ensemble Adjustment 
Kalman Filter (EAKF) analysis algorithm (Anderson et al., 2001) with CAM-chem. The 
DART/CAM-chem is designed for efficient ensemble data assimilation of chemical and 365 
meteorological observations at the global scale (Arellano et al., 2007; Barré et al., 2015; Gaubert 
et al., 2016, 2017). 
 
4.2 DART/CAM-chem analysis and forecast algorithm 
 370 
The analysis is carried out using a deterministic ensemble square root filter, the Ensemble 
Adjustment Kalman Filter (EAKF) (Anderson 2001, 2003). The ensemble of 30 CAM-chem 
members is run with a single executable of CESM using the multi-instance capability. At the 
analysis step, the following model variables are updated when weather observations are 
assimilated: surface pressure, temperature, wind components, specific humidity, cloud liquid water 375 
and cloud ice. Assimilated observations include radiosondes, Aircraft Communication, 
Addressing, and Reporting System (ACARS), but also remotely sensed data including satellite 
drift winds and Global Positioning System (GPS) Radio Occultation. We use a similar setup as 
previous studies (Barré et al., 2015; Gaubert et al., 2016, 2017) with a spatial localization of 0.1 
radians or ~600 km in the horizontal and 200 hPa in the vertical for both chemical and 380 
meteorological observations. We now use the spatially and temporally varying adaptive inflation 
enhanced algorithm (El Gharamti 2018), that generalizes the scheme of Anderson (2009b). 
Multiplicative covariance inflation is applied to the forecast ensemble before each analysis step.  
 
4.3 MOPITT assimilation 385 
 
As in previous implementations, both CO retrievals from MOPITT and meteorological 
observations are simultaneously assimilated within the DART framework. We assimilate profiles 
of retrieved CO from the MOPITT nadir sounding instrument onboard the NASA Terra satellite. 
The MOPITT V8J product (Deeter et al., 2019) is a multispectral retrieval using the CO absorption 390 
in the Thermal Infra-Red (TIR, 4.7 μm) and Near Infra-Red (NIR, 2.3 μm) bands (Worden et al., 



10 
 

2010). The objective is to maximize the retrieval sensitivity to the lower layers of the atmosphere 
while minimizing the bias. We apply the same filtering thresholds that are used to create the L3 
TIR-NIR product, which exclude all observations from Pixel 3 in addition to observations where 
both (1) the 5A signal to noise ratio (SNR) is lower than 1000 and (2) the 6A SNR is lower than 395 
400. We apply the strictest retrieval anomaly flags (all from 1 to 5). We only assimilate daytime 
measurements, where latitudes are lower than 80 degrees and when the total column degrees of 
freedom are higher than 0.5. Super-observations are produced by applying an error-weighted 
average of the profiles (Barré et al., 2015) on the CAM-chem grid, with no error correlation since 
we consider those to be minimized by a strict use of the quality flags, as in Gaubert et al. (2016). 400 
In general, MOPITT data have errors smaller than 10% (Tang et al., 2020; Hedelius et al., 2019), 
which is much lower than model errors. We evaluate our assimilation results with fully 
independent aircraft observations.  
 
4.4 Ensemble design  405 
 
The ensemble of prior emissions is generated by applying a spatially and temporally correlated 
noise to the given prior emission field, as in previous studies (Gaubert et al., 2014, 2016, 2017; 
Barré et al., 2015, 2016). Emission perturbations are generated from a two-dimensional Gaussian 
distribution with zero mean and unitary variance (Evensen, 2003), with a fixed spatial correlation 410 
length. Here we applied the same set of perturbations for every time step, thus the prior ensemble 
has a temporal correlation of 1. A different noise distribution is drawn for Biomass Burning (BB) 
CO emissions than for anthropogenic direct CO emissions, with a decorrelation length of 250 km 
for BB, and 500 km for direct anthropogenic CO. Thus, as opposed to the previous studies, 
anthropogenic and BB CO sources are completely uncorrelated in the prior ensemble. The same 415 
noise is then applied to all the species emitted by the same source, BB or anthropogenic, including 
NMVOCs, the non-organic nitrogen species, SO2, and aerosols. This means the added noise in 
emissions of NMVOCs and CO from the BB or anthropogenic sectors will be completely 
correlated. We generated another noise sample with a decorrelation length of 500 km for soil 
emissions of NO. 420 
The ensemble spread in the model physics variables is important for CO, which is directly sensitive 
to errors in horizontal and vertical winds (both boundary layer height and convection), as well as 
surface exchange, and indirectly through the impact of dynamics and physics on other chemicals. 
In particular, a spread in the MEGAN estimates of direct and indirect CO emissions from biogenic 
sources will be generated from the different atmospheric states passed to the land model. We 425 
assigned a spatially and temporally uniform noise drawn from a normal distribution with a standard 
deviation of 0.1 to the CH4 emissions. More work will be done to generate a realistic spread in 
CH4 emissions, but that is beyond the scope of this study. The ensemble spin-up starts on April 1 
2016 with perturbed emissions described above and with a spread in nudging parameters to perturb 
the dynamics. After a week, on April 7 2016, the Control-Run ensemble is initialized from the 430 
spin-up, this simulation is not nudged and this period is used to spin-up the inflation parameters 
for the assimilation of the weather observations only. The MOPITT-DA run is initialized from the 
Control-Run ensemble on April 15 2016. 
 
4.5 Variable localization and parameter estimation 435 
 
The multivariate error background error covariance allows for an estimation of the error correlation 
between the adjusted model variables or state vector and observations. As in previous studies we 
choose a strict “variable localization” (e.g. Kang et al., 2011), because (1) it is easier to quantify 
the impacts of the assimilation, such as the chemical response (Gaubert et al., 2016), as well as the 440 
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model and observations errors (Gaubert et al., 2014); (2) spurious correlation can have a strong 
impact on the non-assimilated species that have no constraints. This strict variable localization 
means that the assimilation of MOPITT only corrects the chemical state vector (i.e. CO) and has 
no impact on the meteorological state vector (U, V, T, Q, Ps) and vice-versa. However, we made 
an exception and extended our chemical state vector by including CO emissions from BB and 445 
anthropogenic sources separately and several NMVOCs. We added C2H2, C2H4, C2H6, C3H8, 
benzene, toluene, and the XYLENES, BIGENE and BIGALK surrogate species to the state vector. 
The NMVOCs with a strong anthropogenic and/or BB origin that have a primary sink with OH 
should be strongly correlated with CO (Miyazaki et al., 2012). The relationships between 
NMVOCs and CO leads to a correlation in their errors, so that the correlation existing in the 450 
ensemble will reflect those true errors. In addition to the initial spread described above, spatially 
and temporally varying adaptive inflation is also applied to the optimized CO Surface Flux (SFCO) 
model variable during the analysis procedure. 
In CAM-chem, a diurnal profile is not applied to the emissions, instead emissions are interpolated 
from the dates provided in the inventories, which is daily for BB and monthly for anthropogenic 455 
sources. The relative increments obtained from the analysis in the form of the surface fluxes model 
variable (SFCO) is propagated back to the input files emissions (E) following:  
 
𝐸3
?E?@G939 = 𝐸3

D8378(1 + 𝑤 ∆4L#$M
4L#$M

)	          (2) 

where i is an ensemble member and 𝑤 = 𝑎	𝑒P
Q
R is a weight to represent the temporal 460 

representativeness and to limit the impact of spurious correlation. At the analysis time (t=0), the 
weight will be w=a, with a=0.8, i.e. 80 % of the initial increments in Eq. 2. For the other time steps 
t, the exponential decay characteristic time, τ, is set to 4 days in the case of BB and 4 months in 
the case of anthropogenic emissions. The impact of the increments will therefore decrease 
exponentially for the other time steps t from 0.8 to 0, which is imposed (bounded) for 2τ (8 months 465 
or 8 days). This makes a strong correction for the current time and the closest time step. This allows 
for smoothing the increments over time while hopefully leading to a convergence through the 
sequential correction of the emissions during the assimilation run.  
 

4.6 Simulations overview 470 

In section 5, two simulations with the assimilation of meteorological observations will be 
presented, the Control-Run and the MOPITT-DA and the difference between the two simulations 
is the assimilation of MOPITT in the MOPITT-DA run. In the MOPITT-DA assimilation run, the 
initial conditions of CO and some NMVOCs, and CO emission inventories from anthropogenic 
and biomass burning sources, are optimized during the analysis step. The summary of the 475 
simulations presented in the following sections is presented in Table 2. 
In section 6, we compare our emission estimates with a state-of-the-art chemical data assimilation 
and inversion system, the Tropospheric Chemistry Reanalysis version 2 or TCR-2 (Miyazaki et 
al., 2019b, Miyazaki et al., 2020b). They assimilate a variety of satellite instruments using the 
Local Ensemble Transform Kalman Filter (LETKF, Hunt et al. 2007) with the MIROC-chem 480 
model (Wanatabe et al. 2011). The setup is fully described and evaluated in Miyazaki et al. 
(2020b). We regridded the anthropogenic prior and posterior CO estimate from their 1.125° × 
1.125° mesh grid to the CAM-chem grid. In the TCR-2, the prior anthropogenic emission is HTAP 
v2 for 2010 (Janssens-Maenhout et al., 2015). 
Additional sensitivity tests will be performed using deterministic CAM-chem simulations (Table 485 
2) and presented in section 7. In this case, since no meteorological data assimilation is performed, 
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the dynamics from the prognostic variables U, V, and T need to be nudged towards the NASA 
GMAO GEOS5.12 meteorological analysis in order to reproduce the meteorological variability. 
The GEOS analysis is first regridded on the CAM-chem horizontal and vertical mesh. The nudging 
is driven by two factors: the strength, a normalized coefficient that ranges between 0 and 1; and 490 
the frequency of the nudging, here configured to use 6-hourly outputs from either the GEOS5 
reanalysis or our own DART CAM-chem Control-Run. Based on an ensemble of sensitivity tests 
(SI), we use the nudging setup that minimizes the meteorological errors for the KORUS-AQ 
observations. This best simulation is the g-post-0.72, hereafter denoted as CAM_Kv5 (Table 2), 
and will serve as a reference for the additional sensitivity simulation experiments. Aside from the 495 
Control-Run and the MOPITT-DA, the CAM-chem simulations have the same nudging setup, and 
only differ by the CO anthropogenic emissions flux. In addition, the CAM_MOP-Bio is the same 
as the CAM_MOP but with an overall increase in the MEGAN emission factor. Note that the 
simulations denoted as CAM_HTAP (TCR-2 Prior) and CAM_TCR-2 (TCR-2 Posterior) are 
CAM-Chem simulations with the respective anthropogenic CO emissions from TCR-2. We also 500 
use the Copernicus Atmosphere Monitoring Service (CAMS) global bottom-up emission inventory 
(Granier et al. 2019; Elguindi et al., 2020). We use the CAMS-GLOB-ANTv3.1, which has only 
minor changes with regards to the most recent version (v4.2). The gridded inventory is available 
at a spatial resolution of 0.1° × 0.1° and at a monthly temporal resolution for the years 2000-2020. 
It is built on the EDGARv4.3.2 annual emissions (Crippa et al., 2018) and extrapolated to the most 505 
current years using linear trends fit to the years 2011-2014 from the CEDS global inventory. We 
included artificial CO tracers or “CO tags”, to track the anthropogenic contribution from different 
geographic area sources (e.g., Gaubert et al., 2016).  
 
 510 
Table 2: Summary of the simulations. The Nudging (GEOS) refers to a CAM-Chem deterministic runs with 
specified dynamics, using a nudging to GEOS-FP analysis winds and temperatures (see supplement). Aside 
from the DART simulations (first 2 rows), all the simulations have the same initial conditions and the same 
nudging and only change by their anthropogenic CO emissions inputs. 
Simulation name Meteorology Emissions (prior) 
Control-Run Assimilation (DART) Prior (CEDS-KORUS-v5) 
MOPITT-DA Assimilation (DART) Optimized (CEDS-KORUS-v5) 
CAM_Kv5 Nudging (GEOS) Prior (CEDS-KORUS-v5) 
CAM_HTAP Nudging (GEOS) Prior (HTAP v2) 
CAM_MOP Nudging (GEOS) Posterior (CEDS-KORUS-v5) 
CAM_MOP-Bio Nudging (GEOS) Posterior (CEDS-KORUS-v5) + MEGANx2 (see SI) 
CAM_TCR-2 Nudging (GEOS) Posterior (TCR-2, HTAP v2) 
CAM_CAMS Nudging (GEOS) CAMS (CAMS-GLOB-ANTv3.1) 

 515 
 

5 Assimilation results: Evaluation of the posterior CO during KORUS-AQ 

We use the fully independent DC-8 Differential Absorption CO Measurement (DACOM CO) 
measurements to evaluate the MOPITT assimilation. Figure 2 compares the averaged vertical 
profiles for the 4 different mission weather regime phases (Peterson et al., 2019) and the average 520 
and standard deviation of all the flights. Observed background CO in the upper free troposphere 
is between 100 ppbv and 125 ppbv and shows a variation of around 10 % between the different 
phases. The Control-Run shows an average background between 70 ppbv and 100 ppbv for the 
four phases and 80 ppbv for the full KORUS-AQ period, while the MOPITT-DA varies between 
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80 ppbv and 110 ppbv for the 4 phases with an average of 90 ppbv for the KORUS-AQ period. 525 
The RMSE in MOPITT-DA is reduced by around 10 ppbv compared to the Control-Run for the 
free troposphere (700 hPa to 300 hPa, Fig. 2). 
  
For the layers closer to the surface, the temporal variations are much stronger. During Phase 3, 
observed CO is 44 % and 30 % higher than the campaign average at 850 hPa and 950 hPa, 530 
respectively. While this feature is much better reproduced after assimilation, absolute RMSE 
values remain large. Overall, the bias is greatly reduced for the MOPITT-DA in the layers between 
850 hPa and 650 hPa. We note that the mean CO is still lower than the average observations. The 
MOPITT-DA shows at the 950 hPa and 850 hPa levels an underestimation of around 30 ppbv, i.e. 
between 10 % and 20 % lower than the observations. This is in the range of the expected 535 
performance given the retrieval uncertainties (10 %) and the spatial footprints of MOPITT pixels 
(22km x 22km) 
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Figure 2: Average CO profiles (left panels) and related RMSE (right panels) for the Control-Run and the 540 
MOPITT-DA. The mean (black line) and standard deviation (shaded grey) of the DC-8 observations are 
calculated for each 100 hPa bin. The first 4 rows are averaged over the different weather regimes of the 
campaign (Peterson et al. 2019). The last row displays the average over the whole campaign.  
 

5.1 VOCs state vector augmentation 545 

Concentrations of some VOCs have been added to the state vector and are therefore optimized, according 
to the covariance estimated by the ensemble, when MOPITT observations are assimilated. This setup will 
only provide meaningful corrections if CO and VOCs errors are highly correlated through common 
atmospheric and emission processes and if the ensemble samples those errors in the background error 
covariance. In this case VOCs analysis errors should be reduced by assimilating MOPITT CO, even though 550 
VOCs are not directly observed. 
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Table 3: VOCs added to the state vector, corresponding measuring instrument, and lifetime (Simpson et al., 
2020) used for validation. For comparison with surrogate species, the sum of all the corresponding VOC 
observations is used. WAS stands for Whole Air Sampler. 555 

Model 
Variable Observations Lifetime 

(days) 
C2H6 ethane (WAS) 48 
C2H2 ethyne (WAS) 15 
C3H8 propane (WAS) 11 

BENZENE benzene (PTRMS) 9.5 
BIGALK i-butane, n-butane, i-pentane, n-pentane,  3.5 +/- 1.6 

 n-hexane, n-heptane, n-octane, n-nonane, n-decane (WAS)  
TOLUENE toluene (PTRMS) 2.1 

C2H4 ethene (WAS) 1.5 
XYLENES mp-xylene, o-xylene (WAS) 0.7 +/- 0.2 

BIGENE 1-butene, i-butene, trans-2-butene, cis-2-butene, 1-3-
butadiene (WAS) 0.2 +/- 0.1 

 
The list of optimized VOCs is shown in Table 3, together with their lifetime and the corresponding 
species from the Whole Air Sampler (WAS) instrument used for evaluation. An increase in 
concentration is found for all 9 VOCs in the MOPITT-DA simulation, either because of the state 
augmentation, and/or because of the reduction in OH due to CO adjustments. Even if the changes 560 
are small, this can lead to an increase in errors for the vertical profiles compared to observations 
when the species is already overestimated in the lower layer of the atmosphere. This is the case for 
C2H4 and BIGENE, the only two species that have substantial biogenic and fire sources, as well as 
for xylenes and toluene. For all the other species, which are underestimated and are mostly from 
anthropogenic sources, the assimilation leads to an improvement compared to the observations, 565 
mostly by reducing their biases. The best results are obtained for ethane and to a lesser extent 
propane (Fig. 3). Despite the broad anthropogenic source, ethane and propane originate from 
sectors that are quite different from CO. However, CO, ethane and propane have one thing in 
common which is that their only atmospheric chemical sink is through OH oxidation. This suggests 
that a bias in OH leads to correlated errors between CO and alkanes that can be mitigated by 570 
including these species to the state vector. 
 
We define a metric of improvement based on the relative change in RMSE that is positive when 
the RMSE is reduced. Figure 3 shows a clear dependence of this metric on the atmospheric lifetime 
of the VOCs. All the modeled VOCs with a lifetime shorter than 5 days show an increase in errors, 575 
while all the VOCs with a lifetime greater than 10 days are improved, with the largest improvement 
for ethane, which has a lifetime of 48 days. The relatively large spatial and temporal scales of CO 
that arise due to its medium atmospheric lifetime significantly limit the ability of CO assimilation 
to resolve the high-frequency changes in those compounds with short lifetimes. More importantly, 
this is also to be expected given the limited sensitivity of the MOPITT observations to boundary 580 
layer CO. 
While satellite observation spatiotemporal resolution and sampling might be improved in the 
future, NMVOCs with a lifetime shorter than several days should not be included in the state vector 
when assimilating CO. However, the concentrations of NMVOCs with strong anthropogenic or 
BB sources and similar chemical characteristics to CO might be significantly improved by the 585 
assimilation. We believe that this could also be true for methane.  
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Figure 3: Atmospheric lifetime (from Simpson et al., 2020) in days for the VOCs added to the state vector. 
Xylenes, BIGALK and BIGENES are surrogate species, so an average of the lifetimes is calculated. The relative 590 
error change is the opposite of the difference in Root Mean Square Error relative to the Control-Run (i.e., 
(Control-Run-MOPITT-DA)/Control-Run). Thus, a positive relative error change means an improvement 
compared to the Control-Run. 
 

5.2 Chemical response from MOPITT-DA 595 

This section presents a short summary of the impact of the CO assimilation on the chemical state 
of the atmosphere and the comparison with unobserved species. Figure 4 shows the average 
vertical profiles for OH, HO2, NO, NO2, CH2O and O3. We use simulated OH and HO2 from the 
observationally constrained NASA LaRC box model (Schroeder et al., 2020). The Control-Run 
and the LaRC box models agree on the mean OH spanning the first two binned layers, at lower 600 
altitudes. Aloft, the Control-Run overestimates the LaRC box model simulations. The Control-
Run underestimates HO2, which suggests that the excellent agreement on OH in the boundary layer 
is likely caused by compensating errors. That is, the increase of CO through the MOPITT 
assimilation decreases the OH concentrations (Gaubert et al., 2016). Here, we find better 
agreement of the model OH with the observationally constrained LaRC box model simulation at 605 
750 hPa and above. This in turn increases HO2 and shows a better match with the LaRC box model. 
This suggests that a small part of the HO2 underestimation can be explained by the CO 
underestimation. NO and NO2 are reasonably well modeled for the surface layer, but are 
underestimated above, with a large underestimation at 850 hPa. Additional comparison with 
HNO3, J(O3), J(NO2) and H2O2 and PAN are shown in Figure S2. The underestimation of NOx at 610 
850 hPa could be due to the underestimation of NOx and PAN from upwind source regions. Despite 
the update of the HO2 heterogeneous uptake reaction and coefficient presented in appendix B, the 
CO increase leads to higher levels of H2O2, and the bias is therefore higher in the MOPITT-DA 
than the Control-Run (Figure S2). A lower value of the HO2 heterogeneous uptake coefficient than 
the one used here (γ=0.1) might produce better results by reducing the HO2 sink (see Appendix 615 
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B). It suggests that errors in NOx and related chemistry drive the underestimation of HO2 and of 
the sum of OH and HO2 (HOx). Overall, HOx is underestimated, and OH is fairly well simulated. 
This suggests that the CO chemical sink alone cannot explain the CO underestimation during the 
campaign. Alternatively, CH2O is underestimated in both simulations, suggesting an 
underprediction of the chemical production of secondary CO. A similar effect to that described in 620 
Gaubert et al. (2016) is shown, where an increase in CO through the sequential assimilation leads 
to reduced OH and is slowing down the VOC oxidation rate and formaldehyde formation, albeit a 
small effect. In the lower part of the atmosphere, the oxidation of additional CO leads to more 
effective ozone production and no changes above, consistent with observations. While the errors 
in NOx are important, the low CH2O points to a missing source, which could be due to an 625 
underestimation of NMVOCs. 
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Figure 4: Average vertical profiles of OH (top left) HO2 (top right) for the 1-sec merge and the LaRC box model 
estimates (Schroeder et al., 2020). Results are shown for DC-8 1-min merge observations for NO (middle left), 
NO2 (middle right), CH2O (bottom left) and O3 measurements (bottom right). The shaded area corresponds to 630 
the standard-deviation around the observed mean. 
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6. Comparison of anthropogenic emission estimates 

We show in Figure 5 the emissions of the prior (CEDS-KORUSv5), and its posterior, estimated 635 
through the DART/CAM-chem inversion. It also shows the prior (HTAP v2) from the TCR-2 and 
its posterior estimate, for which CO emissions are also constrained by MOPITT. We also show 
the CAMS emissions. 
 

 640 
Figure 5: Emissions flux for May 2016 in MgCO.month-1. Prior (A, CEDS-KORUS v5), TCR-2-Prior (B, HTAP 
v2) and the difference between the 2 priors (C, TCR-2-Prior – Prior). The second row shows the Posterior (D, 
estimated by DART/CAM-Chem), the TCR-2 (E) and the difference between the 2 posteriors. The last row 
shows the emissions increments, the difference between the Posterior and the Prior (G) and between TCR-2 
and TCR-2-Prior (H). The CAMS emissions are shown on the last panel (I). 645 
 
Compared to the prior (Fig. 5a), our posterior estimate (Fig. 5d) shows a reduction around the 
Guizhou province, in southwest China. Larger changes are observed for the Shandong and Henan 
provinces in central China and over the Yangtze River Delta (Fig. 5g). Increases in emissions are 
also large in the NCP and the Liaoning Province. While both inversions show large increase over 650 
northern China (Fig. 5g, h), the spatial patterns of the emissions are different between the posterior 
and the TCR-2 for northern China. The TCR-2 emission increments are located more in the NCP 
and North Korea (Fig. 5f). Large differences can be identified in central China in particular over 
the YRD (Fig. 5h. The Shanghai megacity emissions are higher in the DART/CAM-chem posterior 
(Fig. 5d) and the TCR-2 prior (Fig. 5b) than in the TCR-2 posterior (Fig. 5e). A more consistent 655 
pattern of larger emissions in the TCR-2 compared to our posterior is found in southern China and 
the Sichuan province (Fig. 5f and Fig. 5h). Prior emissions of CO, biogenic and anthropogenic 
VOCs and NOx can all contribute to differences between the TCR-2 and our DART/CAM-chem 
estimate. Another important aspect is the 500 km correlation length initial perturbation to generate 
the ensemble of anthropogenic emissions, combined with a similar localization radius of ~600 km, 660 
which explains the large-scale increments found in the DART/CAM-chem emissions increments 
(Fig 5g). The TCR-2 prior show more emissions over North Korea than South Korea (Fig 5b) and 
the opposite is true for the DART/CAM-Chem prior (Fig 6c). This is reflected in the posterior 
where the TCR-2 has more emissions in North Korea than the DART/CAM-Chem posterior (Fig. 
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5f). Compared to its prior, the DART/CAM-Chem posterior emissions are increased by 25 % for 665 
South Korea, and by 34 % over the SMA. While the CAMS emissions are generally lower (Fig. 
5i), the South Korean emissions are larger than in all the other inventories. 
 
Our inversion suggests an underestimation of bottom-up emission inventories for China. The 
agreement between the posterior emissions for Central China is better than for the bottom-up 670 
inventory (Fig. 6). The difference between CAMS (3.65 TgCO.Month-1) and the CEDS-KORUSv5 
(5.7 TgCO.Month-1) is twice as high as the difference between DART/CAM-chem posterior (7.6 
TgCO.Month-1) and TCR-2 (8.7 TgCO.Month-1). On average, the increase in emissions due to 
assimilation is about 33 % for central China and nearly doubled (80 %) in Northern China, from 
2.7 TgCO.Month-1 to 4.9 TgCO.Month-1. TCR-2 suggests higher emissions (5.7 TgCO.Month-1), 675 
while the CAMS estimate is lower (1.8 TgCO.Month-1). More work should be dedicated to check 
whether the assumptions made on the prior estimates impact the retrieved emissions. This includes 
improving the regional distribution and scaling up the baseline prior CO emissions, but also how 
much the model uncertainties in the OH chemical sink impact the CO inversions (e.g., Müller et 
al., 2018). A comparison of the amount of residential coal burning emissions in bottom-up 680 
inventories could help in understanding the discrepancy and quantifying potential offsets (Chen et 
al., 2017; Cheng M., et al., 2017; Zhi et al., 2017, Benish et al., 2020). 
 
For South Korea, a relatively smaller difference between the posterior and the prior suggests an 
improved bottom-up inventory. However, the smaller area of South Korea is much less constrained 685 
by MOPITT, and the overall estimate seems to be determined by the prior distribution. For 
instance, the TCR-2 shows larger emissions over North Korea and the Pyongyang area while 
DART/CAM-chem and CAMS suggests larger emissions for the SMA. Therefore, the CAMS total 
emissions that show a similar pattern (0.18 TgCO.Month-1) are in good agreement with the 
DART/CAM-chem (0.16 TgCO.Month-1) while the TCR-2 has a total of 0.07 TgCO.Month-1. For 690 
Japan, where biomass burning and low-tech coal combustion are rare, the total is nearly unchanged 
in contrast to the other regions, and emissions are increased from 0.38 to 0.41 TgCO.Month-1 or 8 
%. 
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Figure 6: Anthropogenic CO emissions for May 2016 for Central China (91E, 29N to 124E, 38N), North China 695 
(91E, 38N to 130E, 49N), South Korea (125E, 33.5N to 129E, 38N) and Japan (130E, 30N to 146E, 44N).  
 

7. Evaluation of the simulated vertical profiles against ARIAs and KORUS-AQ 

This section presents the evaluation of the simulated profiles of CO, O3, OH, and HO2 with the 
observations from ARIAs and KORUS-AQ. 700 

7.1 Mean profile during ARIAs and KORUS-AQ 

Figure 7 shows the average CO vertical profiles for the ARIAs and the KORUS-AQ campaigns. 
For the ARIAs field campaign, we bin the profiles into 50 hPa bins. Overall, CO observations 
show a strong variability, with large enhancement over a background of around 170 ppbv found at 
775 hPa and above. Benish et al. (2020) show that the median of the observed CO values in the 705 
lowest 500 meters is around 400 ppbv. Using additional enhancement ratios, the measurements 
indicate low-efficiency fossil fuel combustion, that could originate from residential coal burning 
and gasoline vehicles as well as crop residue burning such as straw from winter wheat. The 
MOPITT-DA and the TCR-2 overestimate the CO concentrations compared to the measurements 
for this surface layer although this overestimate is smaller by 60 % for TCR-2 and by 30 % for 710 
MOPITT-DA when a value higher than 20 ppbv SO2 (the approximate 95th percentile) is used to 
define plumes for exclusion. The CAM-chem posterior simulated CO concentrations, that just use 
the smoothed posterior emissions from the MOPITT-DA have a mean value closer to the 
observations. While both simulations do not have exactly the same transport, the remaining 
underestimation is likely to be due to the sequential data assimilation in the MOPITT-DA runs that 715 
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compensate for the remaining biases. Interestingly, the HTAP v2 inventory that was for the year 
2010 still provides good CO profiles (CAM_HTAP). The CAM_Kv5, a nudged CAM-chem 
simulation, and the Control-Run, underestimate CO concentration, with slight differences due to 
transport. The modeled profile with CAMS emissions profiles is the lowest CO of all simulations. 
For altitudes ranging between 900 hPa and 600 hPa, the bias is lowest using the TCR-2 emissions 720 
or with the MOPITT-DA, because these emissions are more spatially representative of regional 
pollution (Wang et al., 2018). This confirms that the free-tropospheric background is too low in 
CAM_Kv5 and CAM-CAMS. The MOPITT-DA naturally shows the lowest bias in CO 
concentrations in the free troposphere. The 875 hPa (900 to 850 hPa) layer mean (and median) 
observed ozone during ARIAs (Benish et al., 2020) is around 80 to 90 ppbv and the mean peaks 725 
at 90 ppbv. For this layer, higher O3 was found for simulations with higher CO. While it suggests 
that reducing CO biases can improve O3, NO2 and NMVOCs such as aromatics seem to play an 
important role in the ozone formation in the region (Benish et al., 2020). The mean O3 
concentration is still underestimated by around 10 ppbv in the free troposphere. 

 730 
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Figure 7: Average CO vertical profiles for the ARIAs campaign (top panel) and the KORUS-AQ (bottom 
panel). Observations were filtered out when SO2 was higher than 20 ppbv for ARIAs and benzene higher than 
1 ppbv for KORUS-AQ. The black line shows the observation mean and the shaded area is the observation 
standard deviation. Only mean CO or O3 are shown for the model simulations.  

Two groups appear when comparing to KORUS-AQ observations. The Control-Run and 735 
CAM_Kv5, using CEDS-KORUS v5 with two different model dynamics and CAM_CAMS are 
simulating a lower CO and show a severe low bias of more than 100 ppbv at the surface. The 
second group includes the CAM-chem simulations using posterior emission estimates. Those 
simulations are quite close together with an average for all altitude layers of CO of 141 ppbv and 
145 ppbv with a bias of 31 % and 29 % respectively (Table 4). This is to be compared with their 740 
priors that have an average CO of 116 ppbv and 125 ppbv, which implies an underestimation of 
43 % and 39 %, respectively. Correcting only the bias in anthropogenic emissions is not as efficient 
as the joint optimization of anthropogenic emissions and sequential optimization of initial 
conditions through data assimilation (MOPITT-DA). It suggests that other sources of errors such 
as transport and chemistry can be mitigated by state assimilation. The MOPITT-DA has an average 745 
CO of 179 ppbv, resulting in 12 % underestimation on average (Table 4), which is well between 
the range in measurement and representativeness errors. Aside from CAM_CAMS, the modeled 
free tropospheric O3 shows no particular bias. The enhancement of observed O3 closer to the 
surface is underestimated in all simulations. The optimized emissions lead to an increase of a few 
ppb in O3, bringing those simulations closer to the observations. In summary, using top-down 750 
estimates of CO emissions clearly improves the CO and O3 vertical profiles against independent 
observations over China and Korea. 

 
Table 4: Comparison of CO (ppbv) measured aboard the DC-8 and model simulation for all altitudes. Statistical 
indicators are calculated for phase 1 (7 flight days, 2952 observations), phase 2 (4 flight days, 2029 755 
observations), phase 3 (3 flight days, 1243 observations), phase 4 (5 flight days, 2448 observations) and the 
whole campaign (20 flight days, 9099 observations). 
 

  CO 
(1) 

Bias 
(%) 

CO 
(2) 

Bias 
(%) 

CO 
(3) 

Bias 
(%) 

CO 
(4) 

Bias 
(%) 

CO 
(All) 

Bias 
(%) 

Observation 173.1  198.3  246.8  211.2  203.6  
Control-Run  114.5 -33.8 108.6 -45.2 138.7 -43.8 115.3 -45.4 118.6 -41.8 
MOPITT-DA  146.5 -15.4 168.3 -15.1 230.6 -6.6 182.8 -13.5 178.5 -12.4 
CAM_CAMS  108.1 -37.6 110.4 -44.3 112.2 -54.5 119 -43.6 112.8 -44.6 

CAM_Kv5 112.3 -35.1 110.8 -44.1 124.7 -49.5 115.7 -45.2 115.9 -43.1 
CAM_HTAP  118.7 -31.4 115.3 -41.8 137.3 -44.4 128.5 -39.2 124.6 -38.8 
CAM_MOP  136 -21.4 131.8 -33.5 157.1 -36.3 139.5 -33.9 140.9 -30.8 

CAM_TCR-2  138.4 -20 128.9 -35 174.4 -29.3 146.1 -30.8 145 -28.8 
CAM_MOP-

Bio  138.4 -20.1 137.2 -30.8 163 -34 151.8 -28.1 147.2 -27.7 

 

7.2 Weather induced dynamical change in CO during KORUS-AQ 760 

Figure 8 shows the CO anomalies during KORUS-AQ for the observations and the simulations. 
The CO anomalies are largest in phase 3, with an enhancement of almost 100 ppb at 850 hPa. This 
transport phase, defined and described in Peterson et al. (2019) was characterized by high levels 
of ozone (>60 ppbv) and PM25 (>50 μg/m3) because of efficient transport of low-level pollution 
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(Huang et al., 2018; Miyazaki et al., 2019; Choi et al., 2019). The model reasonably reproduced 765 
the variability of the different phases, albeit with insufficient magnitude. The desired magnitude 
is only achieved when including data assimilation. Updating the anthropogenic emissions from the 
bottom-up to the top-down inventories improved the representation of the CO anomalies. This 
suggests that weather patterns and the direct anthropogenic emissions explain some of the CO 
variability during the campaign. However, since only the MOPITT-DA simulation is reproducing 770 
well the anomalies, it suggests that chemistry and transport are important too. Large-scale 
subsidence and reduced wind speeds during the anticyclone of phase 2 were marked by the lowest 
CO anomalies and are also better reproduced with the updated emissions. Over South Korea, 
running CAM-chem with the CAMS emissions shows the largest anthropogenic CO from South 
Korean sources at the surface for the 4 phases and is likely to produce more realistic simulation 775 
since CO is constantly underestimated. This cannot be seen for the total CO since most of the CO 
is not from South Korean direct anthropogenic sources. The profile tags of the contributions from 
Central China and Northern China are approximately doubled with the optimized emissions, 
consistent with Tang et al. (2019). As shown in the previous section, the CAM_TCR-2 and the 
DART/CAM-chem posteriors have the largest emissions from China and therefore the largest 780 
contribution of the CO tags from both Northern and Central China. 
 

 
Figure 8: Average CO anomalies for the four different phases of KORUS-AQ (first column). The anomaly is 
defined by subtracting the respective average vertical profile (see Fig. 2). Absolute vertical profiles of the CO 785 
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tags are shown from South Korea (Second column), Central China (third column) and Northern China (fourth 
column). Each row corresponds to a different phase. 
 
We will now focus on two case studies, Phase 2 and Phase 3, for which the highest ozone was 
observed at the surface in South Korea during KORUS-AQ (Peterson et al., 2019). 790 

7.3 Phase 2 case study: the anticyclonic phase  

A large-scale anticyclone occurred from 17 May 2016 to 22 May 2016 with increased surface 
temperatures, reduced wind speed and drier conditions, all of which enhance ozone production 
(Peterson et al., 2019). The conditions were also favorable to an increase in biogenic emissions. 
As shown in the previous sections, this episode was characterized by negative CO anomalies that 795 
were best captured by the MOPITT-DA simulations. This anomaly is reflected through lower OH 
and higher O3 between 800 hPa and 400 hPa (Figure 9). This indicates rather clean air masses, 
probably with larger stratospheric contribution. This episode is driven by the overall weather 
pattern with a clear enhancement of HOx and O3 towards the surface. In this case, changes in the 
anthropogenic CO only play a minor role, still the O3 is modeled better with a reduction of the bias 800 
by 1 ppbv between the posterior and the prior (Table 5). The increase in biogenic emissions leads 
to an improvement in O3 by further reducing the bias at the surface (Figure 9). Over the whole 
profile, the bias is reduced by 3 ppbv (4 ppbv against the prior) for the CAM_MOP-Bio, compared 
to the CAM_MOP, with a reduction in RMSE as well (Table 5). 
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 805 
Figure 9: Average LaRC box model OH and HO2 and measured O3 for phase 2 (left column) and phase 3 
(right column) of KORUS-AQ. 
 

7.4 Phase 3 case study: low-level transport and haze development. 

Phase 3 was characterized by the largest observed CO and O3 positive anomalies. In this case, there 810 
is a clear relationship between the CO bias, and the O3, OH and HO2 vertical profiles (Figure 9). 
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The OH is overestimated because of a lack of CO, other VOCs and errors in the vertical profile of 
NOx. Increasing CO in the CAM_MOP reduces OH and increases HO2 and O3. The overall bias 
(Table 5) in ozone is reduced from 11.3 ppbv to 9.9 ppbv with the change in CO, and lowered 
further to 7.3 ppbv with the additional increase in biogenic emissions (CAM_MOP-Bio). The 815 
relative impacts of biogenics are clear in the surface layer for OH, HO2 and O3. Overall, HO2 and 
O3 are underestimated as a result of CO underestimation. The MOPITT assimilation provides the 
best results for OH throughout the profile and lower RMSE and a similar bias as the CAM_MOP-
Bio (Table 5). As suggested by the Chinese origin of the pollution for higher levels, it is likely that 
additional anthropogenic NMVOCs are also missing and contribute to the ozone formation that is 820 
still underestimated. 
 
Table 5: Comparison of O3 measured aboard the DC-8 and model simulation for all altitudes. Statistical 
indicators are calculated for phase 2 (4 flight days, 1910 observations), phase 3 (3 flight days 1111 observations) 
and all KORUS-AQ. 825 

 O3 
(Phase 2) Bias RMS

E 
O3 

(Phase 3) Bias RMS
E O3 (All) Bias RMS

E 
Observation 87.7   91.5   82.1   
Control-Run 77.2 -10.6 19.6 81.8 -9.7 20.4 75.1 -7 16.8 
MOPITT-DA 79.7 -8 18.1 83.8 -7.7 19.5 76.9 -5.2 15.9 
CAM_CAMS 74.4 -13.3 20.7 76.1 -15.4 24.2 73.6 -8.5 18.8 

CAM_Kv5 78.2 -9.6 18.5 80.2 -11.3 21.5 76.5 -5.6 17.4 
CAM_HTAP 78.5 -9.2 18.4 80.7 -10.8 21.2 76.9 -5.2 17.3 
CAM_MOP 79.1 -8.6 18.2 81.6 -9.9 20.8 77.6 -4.5 17.2 

CAM_TCR-2 79.2 -8.6 18.1 82.2 -9.2 20.5 77.8 -4.4 17.1 
CAM_MOP-

Bio 82.3 -5.5 15.9 84.2 -7.3 20.2 80.5 -1.6 16.5 
 

8 Conclusions 

Anthropogenic CO emissions are an important contributor to poor summer air quality in Asia and 
to forward modelling uncertainties. Here we evaluate top-down estimates of the CO emissions in 
East Asia with aircraft observations from two extensive field campaigns. There are multiple lines 830 
of evidence that the bottom-up anthropogenic emissions are too low in winter and spring, leading 
to a large underestimation of CO during the KORUS-AQ campaign in May and June 2016. We 
also highlight in this work that chemical production and loss via OH reaction from emissions of 
anthropogenic and biogenic VOCs confound the attribution of this bias in current model 
simulations. Combined initial conditions and emission optimization remains the best method to 835 
overcome these modeling issues. The major findings of this investigation are: 

1. The comparison of OH modeling and observations confirms that assimilating CO improves 
the OH chemistry by correcting the OH/HO2 partitioning. The interactive and moderately 
comprehensive chemistry with resolved weather from reanalysis datasets represents well 
the variations in OH. These results provide an additional line of evidence that assimilating 840 
CO improves the representation of OH in global chemical-transport models. This has 
implications for studying the CH4-CO-OH coupled reactions and the impact of chemistry 
and interactive chemistry for allowing feedbacks. It suggests that even if global mean OH 
is buffered on the global scale, local changes in OH can be important, and can be quantified 
by taking advantage of field campaigns. This will provide ways to improve and provide 845 
additional constrain on CH4 inversions by either improving the sink or by better 
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characterizing anthropogenic sources through CO assimilations. A better quantification of 
the spatio-temporal variability of these compounds will improve the physical 
representation of Earth system processes and feedbacks and will be beneficial for both air 
quality and climate change mitigation scenarios. 850 

2. The setup of the CO assimilation that corrects the initial conditions and emissions provides 
the best results for CO. While the emission update improves the forecast closer to the 
source, the assimilation allows for better reproduction of the vertical profiles and the 
background and eventually compensates for model errors.  

3. The spread of emission estimates from state-of-the-art inventories, 3 bottom-up and 2 top-855 
down is significant. For example, the emissions of Central China show a range from 3.65 
TgCO.month-1 to 8.87 TgCO.month-1. Inventories with the highest emissions fluxes show 
improved vertical profiles of CO. 

4. Running the forward model with updated emissions of anthropogenic CO increases the O3 
formation, reduces OH and increases HO2. This improves the comparison with O3, OH and 860 
HO2 observations. The comparison with observations suggests that the overall modeled 
photochemistry was improved with updated CO emissions. In this case, there is also a 
better representation of severe pollution episodes with large O3 values. Often overlooked, 
it clearly shows that running chemistry transport models with biased CO and VOCs 
emissions results in poorly modeled ozone and impacts most of the chemical state of the 865 
atmosphere. The sensitivities may vary for different chemical and physical atmospheric 
environments. In this case, underestimating CO in VOC-limited chemical regimes explains 
the underestimation of ozone in the boundary layer and the lower free troposphere. 

5. Biogenic emissions appear to play an important role in ozone formation over South Korea, 
in particular when conditions are favorable (sunny and warm). The role is weaker over 870 
China, at least in May before maximum biogenic emission rates. A combined assimilation 
of CO and CH2O observations is likely to greatly improve ozone forecasting through 
estimates of boundary and initial condition estimates of VOCs. 

 
On top of CO data assimilation, improved emissions through state augmentation can help improve 875 
the next-generation of Korean (e.g., Lee et al. 2020) or global (Barré et al., 2019) air quality 
analysis and forecasting systems. Further improvements can be achieved by simultaneously 
assimilating CH2O retrievals (e.g. Souri et al., 2020) and CO retrievals. Improving the aerosol 
distribution can help correct the HO2 uptake and therefore OH, CO and O3 by assimilating satellite 
aerosol optical depth measurements, in particular for this region with high aerosol loadings (e.g. 880 
Ha et al., 2020). Using CrIS-TROPOMI joint retrievals (Fu et al. 2016), the improved vertical 
sensitivity may potentially be used to further constrain secondary CO formed through biogenic 
oxidation. In this case, secondary CO is correlated with ozone formation. This is also true for other 
geographical areas, such as over the United States in summer (Cheng et al., 2017, 2018). On 
average, there is a lower combustion efficiency in China than in Korea, with the ratio of CO to 885 
CO2 changing accordingly as shown by the DC-8 measurements during KORUS-AQ (Halliday et 
al., 2019) and indicated by model simulations (Tang et al., 2018). Tracking CO2 and CO from 
fossil fuel emissions could be combined to further constrain fossil fuel emission fluxes. 
  
Many studies have focused on the long-term CO emission trends now well characterized (Zheng 890 
et al., 2019). For the sake of forward modeling (see e.g. Huang et al., 2018), it is important to focus 
on improving the absolute emission totals and their spatio-temporal distribution. While bottom-up 
inventories are critical, the next step is a comparison of inverse modelling estimates in combination 
with aircraft observations (e.g. Gaubert et al., 2019) to assess transport, chemistry and deposition 
error. Multi-model estimates of the emissions will provide improved error bars on the CO budget, 895 
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and hopefully reduced uncertainties from chemistry and meteorology (e.g. Müller et al., 2018; 
Miyazaki et al., 2020a). 
 
 

Appendix A: KORUS-AQ DC-8 instrumentation 900 

CO and CH4 were both measured using the fast-response (1 Hz), high-precision (0.1 % for CH4, 1 
% for CO) and high accuracy (2 %) NASA Langley Differential Absorption CO Measurement or 
DACOM (Sachse et al. 1987). Based on the differential absorption technique, CO and CH4 were 
measured using an infrared tunable diode laser. The instrument has been used in many field 
campaigns and has been useful to evaluate profiles retrieved from satellite remote sensing of CO 905 
(Warner et al., 2010; Tang et al., 2020). Formaldehyde was measured using the Compact 
Atmospheric Multispecies Spectrometer (CAMS), also at 1 Hz (Richter et al., 2015). NO, NO2 and 
O3 were measured by the NCAR chemiluminescence instrument (Ridley and Grahek 1990; 
Weinheimer et al., 1993). Nitric acid (HNO3), hydrogen peroxide (H2O2) and methyl 
hydroperoxide (CH3OOH) were measured using the California Institute of Technology Chemical 910 
Ionization Mass Spectrometer (CIT-CIMS) (Crounse et al., 2006). Among the 82 speciated VOCs 
sampled by the discrete Whole Air Sampling (WAS) followed by multi-column gas 
chromatography (Simpson et al., 2020), we used ethyne (C2H2), ethane (C2H6), ethene (C2H4) and 
propane (C3H8). All the larger alkanes (i-butane, n-butane, i-pentane, n-pentane, n-hexane, n-
heptane, n-octane, n-nonane, n-decane), alkenes (1-butene, i-butene, trans-3-butene and 1-3-915 
butadiene) and xylenes (mp-xylene, o-xylene) were summed (Table 3) for the comparison with the 
BIGALK, BIGENE and XYLENES respectively of the T1 surrogate species (Emmons et al., 
2020). Methanol (CH3OH), acetaldehyde (CH3CHO), acetone (CH3COCH3), benzene (C6H6) and 
toluene (C7H8) were measured with the proton-transfer-reaction time-of-flight mass spectrometer 
(PTR-ToF-MS) at 10 Hz frequency (Müller et al., 2014). We also evaluate some meteorological 920 
parameters, such as temperature and wind speed as well as water vapor moist volumetric mixing 
ratio measured by NASA open-path diode laser hygrometer (Podolske et al., 2003), with a 5% 
uncertainty. J values were measured using the CAFS instrument (Charged-coupled device Actinic 
Flux Spectroradiometer; Shetter and Müller, 1999; Petropavlovskikh et al., 2007). 
 925 

Appendix B: CAM-chem updates 

B1 CH4 emissions from the Global Carbon Project CH4 

Radiatively active species, such as CH4, are prescribed in CAM-chem using a latitudinal-monthly 
surface field derived from observations in the past and projections for the future, defined in the 
CMIP6 protocol (Meinshausen et al., 2017). In order to include the feedbacks in the CH4-CO-OH 930 
chemical mechanism, we choose to apply CH4 emissions instead of the prescribed field. The scope 
of the paper is not to study the methane budget; the objectives are to see how much CO is produced 
from CH4 during the campaign. The long-term goal is to get sensitivities to changes according to 
CO emission updates in order to analyze the feedbacks on CH4 when CO is changed. We used 
emissions from some of the inversions of a recent compilation of CH4 budget from top-down 935 
estimates (Saunois et al., 2020). As a first step, we used the mean of the 11 inversions (Table B1) 
that assimilate CH4 retrievals from the JAXA satellite Greenhouse Gases Observing SATellite 
(GOSAT, Kuze et al., 2009). 
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Table B1: List of the 11 methane inversions from the Global Methane Budget (Saunois et al., 2020), as indicated 940 
by the number of inversions column. All the details are presented in the references. 
Institution / Model Observation Used Number 

of 
inversion

s 

References 

FMI / CarbonTracker 
Europe-CH4 

GOSAT NIES L2 v2.72 1 Tsuruta et al. (2017) 

LSCE & CEA /  
LMDz-PYVAR 

GOSAT Leicester V7.2 2 Yin et al. (2015) 

LSCE & CEA /  
LMDz-PYVAR 

GOSAT Leicester V7.2 4 Yin et al., (2019) 

NIES / NIES-
TMFLEXPART 
(NTFVAR) 

GOSAT NIES L2 v2.72 1 Maksyutov et al. (2020); Wang et 
al. (2019) 

TNO & VU /  
TM5-CAMS 

GOSAT ESA/CCI 
v2.3.88 (combined with 
surface observations) 

1 Segers (2020 report); Bergamaschi 
et al. (2010; 2013); Pandey et al., 
(2016) 

EC-JRC / TM5-4Dvar GOSAT OCPR v7.2 
(combined with surface 
observations) 

2 Bergamaschi et al.,  
(2013, 2018) 

 

B2 The HO2 uptake by aerosol particles 

The TS1 chemistry includes an HO2 uptake by aerosol particles following the recommendation of 
Jaeglé et al. (2000) and Jacob et al. (2000), that form H2O2, with a reactive uptake coefficient 𝛾 of 945 
0.2, as follow: 
 
𝐻𝑂T	 + 𝑎𝑒𝑟𝑜𝑠𝑜𝑙𝑠 → 0.5 ∗ 𝐻T𝑂T  with 𝛾=0.2                  (B1) 
 
Based on Observations from the NASA Arctic Research of the Composition of the Troposphere 950 
from Aircraft and Satellites (ARCTAS) and other field campaigns, Mao et al. (2010, 2013) 
suggested a catalytic mechanism with transition metal ions (Cu and Fe) that rapidly converts HO2 
to H2O instead of H2O2: 
 
𝐻𝑂T	 + 𝑎𝑒𝑟𝑜𝑠𝑜𝑙𝑠 → 𝐻T𝑂  with 𝛾=0.2        (B2) 955 
 
Using Eq. B2 and 𝛾=1 leads to a large loss of HOx, which in turn increases the CH4 and CO 
lifetime and thus reduces the CO bias during the high latitude winter (Mao et al., 2013). Christian 
et al. (2017) simulated a range of possible values of 𝛾 and evaluated the results against ARCTAS 
data and found that lower 𝛾, closer to zero, gave a more realistic distribution of HOx. Kanaya et al. 960 
(2009) studied ozone formation over Mount Tai, located in central East China, and looked at the 
possible influence of the heterogeneous loss of gaseous HO2 radicals. They found that introducing 
the loss reduces HO2 levels and increases ozone, with a more pronounced effect in the upper part 
of the boundary layer where the role of OH+NO2 +M reaction does not play a significant role in 
the radical termination reaction while the number density of aerosol particles is still important. Li 965 
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et al. (2018) found that the HO2 uptake was the largest HOx sink in the upper boundary layer in 
northern China. They suggested that the reduction in HO2 uptake caused by the decrease of 
aerosols was responsible for the increase of O3 in the region. Thus, the initial comparison of CAM-
chem using Eq. (B1) showed a large overestimation of H2O2. In a previous study using Eq. (B1), 
the increase in CO following data assimilation increased hydrogen peroxide (H2O2) levels (Gaubert 970 
et al., 2016). Therefore, it is expected that the hydrogen peroxide (H2O2) would be severely 
overestimated if Eq. (B1) is used. Miyazaki et al. (2019a) assimilated several satellite retrievals of 
chemical composition during KORUS-AQ, including MOPITT, and found a strong overestimation 
of H2O2 using Eq. (B1) in the chemical scheme of the MIROC-Chem model. Thus, the reaction in 
CAM-chem has been updated to Eq. (B2) with 𝛾=0.1 prior to any data assimilation run.  975 
 

B3 Results on HO2 uptake and methane emissions 

This section presents the results on the model update before the assimilation runs are conducted. 
Five CAM-Chem simulations were performed (Table B2), and CAM-Chem-Ref corresponds to 
the reference with prescribed CH4 and Eq. (B2) for the HO2 uptake. The CAM-H2O is performed 980 
with the update to Eq. 3 for the HO2 uptake and the GCP-Ref is performed with the CH4 emissions 
instead of the CH4 prescribed field. The GCP-H2O contains the update on CH4 emissions and on 
the HO2 uptake and has been run with 𝛾=0.2 and 𝛾=0.1. 
 
Table B2: description of the sensitivity test performed with CAM-Chem anterior to any assimilation run. 985 
Simulation name HO2 uptake (𝛾) Surface CH4 
CAM-chem-Ref Eq. (2) (𝛾=0.2) Prescribed 
CAM-Chem-H2O Eq. (3) (𝛾=0.2) Prescribed 
GCP-Ref Eq. (2) (𝛾=0.2) Emissions 
GCP-H2O (𝛾=0.2) Eq. (3) (𝛾=0.2) Emissions 
GCP-H2O (𝛾=0.1) Eq. (3) (𝛾=0.1) Emissions 

 
Fig. B1 shows the average profiles for H2O2 and CH4. There is a large bias in H2O2 for the reference 
simulation (CAM-chem-Ref) that is particularly large in the surface layer. The observed H2O2 at 
the surface is lower in the morning due to inhibited photochemical production and the nighttime 
deposition (Schroeder et al., 2020). Large model errors could then be due to uncertainties in the 990 
boundary layer height and wet deposition. However, this points to an underestimation of the 
H2O2 dry deposition, a common feature found due to an overestimation of surface resistance 
(Ganzeveld et al., 2006; Nguyen et al., 2015). The H2O2 daytime deposition velocities calculated 
at the location of the Taehwa Research Forest site ranged between 0.4 cm.s-1 and 1.3 cm.s-1, which 
suggests an underestimation compared to the observed velocities of around 5 cm.s-1 reported in the 995 
literature (Hall and Claiborn, 1997; Hall et al., 1999; Valverde-Canossa et al. 2006; Nguyen et al., 
2015). A simulation with a 5-fold increase of the H2O2 deposition velocity over land only partially 
reduces the H2O2 bias. Further work needs to be done to better understand the drivers of the 
H2O2 biases, which is beyond the scope of this study. 
 1000 
Interestingly, having CH4 emissions (GCP-Ref) while keeping the original reaction (Eq. 2) gives 
a slightly better H2O2, suggesting that using optimized emissions instead of a prescribed 
concentration field has an effect on the oxidants’ distribution. The three simulations with the 
updated chemistry out-perform the references with biases almost halved. This is particularly true 
for the free troposphere. The modeled H2O2 profile seems rather insensitive to the choice of the 𝛾	1005 
value. Since the simulations with the 𝛾=0.1	performs slightly better, all following simulations will 
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be done with the updated reaction and 𝛾=0.1. This is consistent with a recently published studies 
that diagnosed a median 𝛾 value of 0.1 over the NCP region (Song et al., 2020).  
 
Using emissions instead of fixed boundary conditions improves the simulated CH4 near the 1010 
surface, but with a lower tropospheric background (Figure A1). The comparison with CH4 
observations indicates a general underestimation. At this point, it is difficult to determine why it 
is underestimated.  
 
A first reason could be a too strong CH4 sink in the model compared to the sink considered in the 1015 
inversions that derived the GCP emissions. However, the prescribed CH4 is not resolved in 
longitude, while the difference for a given latitude can be up to 300ppb when using emissions (see 
Fig S1). Emissions also have uncertainties and could be underestimated, or may have just been 
estimated with lower OH than the one CAM-chem simulates for this period. Saunois et al. (2020) 
showed that the GOSAT based inversions have lower emissions than the surface-based inversions 1020 
for the northern mid-latitudes. It is likely that the errors observed during KORUS-AQ are a 
combination of both of those factors, as well as potential transport errors. Since the CH4 profile is 
overall better reproduced with the GCP emissions, we have used the ensemble mean of the 11 GCP 
optimized emissions for the simulations presented in the main paper. 
 1025 

 
Figure B1: Average H2O2 profiles (left panel) and CH4 profiles (right panels) for all KORUS-
AQ. The mean (black line) and standard deviation (shaded grey) of the DC-8 observations 
are calculated for each 100 hPa bins and only the mean is shown for model simulations. 
 1030 
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